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Ab initio and finite-temperature molecular dynamics studies of lattice resistance in tantalum
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We explore the apparent discrepancy between experimental data and theoretical calculations of the lattice
resistance of bcc tantalum. We present an empirical potential calculation for the temperature dependence of the
Peierls stress in this system andaminitio calculation of the zero-temperature Peierls stress, which employs
periodic boundary conditions, those best suited to the study of metallic systems at the electronic-structure level.
Our ab initio value for the Peierls stress is over five times larger than current extrapolations of experimental
lattice resistance to zero temperature. Although we find that the common techniques for such extrapolation
indeed tend to underestimate the zero-temperature limit, the amount of the underestimation we observe is only
10%-20%, leaving open the possibility that mechanisms other than the lattice resistance to motion of an
isolated, straight dislocation are important in controlling the process of low-temperature slip.
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[. INTRODUCTION determinea priori whether this discrepancy is due to the
interatomic potential, the environmental complexities dis-

The study of the plasticity of crystalline materials is a rich cussed above, or to a flaw in our understanding of the rela-
many-body problem involving physics on multiple length tion between the Peierls stress and the experiments.
scales, with many remaining unexplained mysteries. The Since itis a daunting experimental t3%to observe prop-
plasticity of bcc metals, for instance, is particularly challeng-erties of a single dislocation locked deep in the heart of a
ing. Unlike their fcc and hcp counterparts, the bcc metalsnaterial, accurate theoretical calculations of such systems
exhibit many active slip planes, have a strong temperaturare essential. Nearly all theoretical calculations to date, con-
dependence in their plasticity, and violate the simple empiricerning such dislocations, have relied upon empirical
cal Schmid law:? Moreover, theoretical calculations of the potentials’~®°-1417.1Gjven the empirical nature of such cal-
most basic question in plasticity, the stress needed to induarulations, the complex directional bonding properties of bcc
yield at low temperature in a pure sample, differ from ex-materials, and the lack of direct comparison with experi-
perimental extrapolations by over a factor of Phe purpose ments for validation, first-principleab initio calculations of
of this work is to provide needed insight into this discrep-dislocations in such systems are clearly needed. Ismail-Beigi
ancy. and Arias® showed that density-functional theory calcula-

It is generally believed that it is the physics of %L1 tions were crucial for understanding the fundamental proper-
screw dislocation defect which controls the low-temperaturdies of the(111) screw dislocation core structure in bcc mo-
plasticity of bcc materials? The Peierls stress, the yield lybdenum and tantalum. Until that work, most computational
stress at which these dislocations first begin to move spontastudies based on empirical potenttafs!®~*?supported the
neously, is difficult to compare directly with experiment. idea that the dislocation core breaks symmetry, with two en-
Whereas most computational work on the Peierls stress meargetically equivalent ground-state structures which spread
sures the stress to move an isolated, infinitely straight disloeutward along two different equivalent sets of th{del 0
cation at zero temperatufe* experiments measure the planes’ similar to the concept originally proposed by Hirsch
Peierls stress at a finite temperature in systems with mangnd co-worker$:?° Until the availability of theab initio cal-
interacting, curved dislocations and in media with defectsculations, the prevailing view of the violation of the Schmid
and surfaces. As an example of the present challenges, usite in the bcc metals was based upon this structusenail-
model generalized pseudopotential thedGPT),*?> Yang  Beigi and Arias® in contrast, showed that for both molyb-
et al® predicted for theT=0 Peierls stress a value 2.5 times denum and tantalum the ground-state structure within
greater than experimental extrapolatidR&ecause such po- density-functional theory was a nondegenerate symmetric
tentials are not based upon first principles, it is impossible t@wore, supporting the work of Suzuki, Takeuchi,
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and co-workers*?122 which first suggested that it is the held fixed to the solution of anisotropic elasticity theory
Peierls potential itself that controls the lattice resistance andvhile the atoms in the inner region relax under the inter-
not the details of the core structure. To help resolve the disatomic forces. To calculate the Peierls stress, a stress is ap-
crepancy between theoretical and experimental Peierlglied to the system until the dislocation moves.
stresses, the work below provides a reliadleinitio predic- This approach suffers numerous drawbacks when applied
tion of the Peierls stress in bcc tantalum which is free of theo density- functional theory. To avoid surface effects and to
unrealistic electronic boundary conditions employed in theproperly account for the nonlinear nature of the dislocation,
only otherab initio prediction of the Peierls stre$§. such cylinders generally have to be quite large. First, even
Here, we show that the Peierls stress, calculated withithe outer cylinder is of finite size and therefore the outer
density-functional theory, is over a factor-of-5 larger thanregion must be sufficiently large enough so that forces it
expected from extrapolation of experimental restit$his  generates onto the inner region are equivalent to those gen-
supports the view that the discrepancy between the expererated from an infinite continuum. The inner region also
mental and computational predictions is largely due to thanust be sufficiently large to mitigate two effects. The inner
aforementioned environmental complexities, to a flaw in re+egion must be large enough so that linear elasticity theory
lating the experimental data to the Peierls stress, or to eepresents well the forces it imposes on the outer region. The
combination of both. inner region also must be large enough so that motion of the
To further explore possible physical effects leading to thisdislocation is not adversely affected by the fixed outer re-
discrepancy, we study the extrapolation of experimental datgion, which is a concern because the fixed outer region rep-
to determine the zero-temperature Peierls stress. Such esesents the displacement field when a dislocation is at its
trapolations generally employ fits from mesoscopic orcenter and therefore generates a extraneous force that tends
thermodynamics/kinetic modet3?3-2>However, it has not to prevent motion of the dislocatidh.When using simple,
been established that such models can accurately describe tineratomic potentials, the use of large cylinders mitigates all
lowest-temperature regime correctly, placing doubt on thef these effects. However, this approach is not viable for
quality of these extrapolations. To address this issue, thdensity-functional calculations with their extreme computa-
work below also provides a temperature- and orientationtional demands.
dependent study of the Peierls stress, in which empirical po- This approach, moreover, is particularly ill suited for
tentials are employed. We moreover show that extrapolatioelectronic-structure calculations because the artificial surface
of our finite-temperature results using a current fitting modekt the outside of the outer region, being quite different from
leads to an underestimation of the zero-temperature Peiertie bulk, give rise to strong scattering of the electrons very
stress. This underscores the difficulty in extrapolating thelifferent than that of an infinite continuum. This is particu-
experimental data accurately but does not fully account fotarly problematic for metals, because the single-particle den-
the observed discrepancy. sity matrix, which quantifies the effects of this scattering on
In Sec. Il, we review the various techniques in use forthe interatomic forces, decays only algebraically in metals.
calculation of the Peierls stress in the context of efficacy forThe following section demonstrates that the boundary re-
application toab initio calculations. Section IIl gives the gions should be quite large in order to prevent these surface
calculation of the temperature- and orientation-dependergffects from resulting in large fictitious forces in the active
Peierls stress in a bcc material. Section IV describes ouregion of the calculation.
technique for obtaining Peierls stresses within small unit
cells with periodic boundary conditions. Finally, Sec. V pre-
sents oumab initio prediction for the Peierls stress and com- B. Greens-function boundary conditions
pares and contrasts it to currently available experimental and the yse of Greens-function, or flexible, boundary

computational values. condition€?®?’s an effective way to reduce the size of the
simulation cell. This approach also employs a cylindrical ge-

Il. BOUNDARY CONDITIONS ometry. However, rather than the “inner” and “outer” ato-
_mistic regions of the cylindrical boundary approach, the

proaches to calculation of the Peierls stress is the choice ¢f'€ens-function approach employs three interatomic regions:

boundary condition. The literature describes three type&" 'Ner- core rgglon ‘(l:tc))nftrawlmg the centt(ajr of the disloca-
of boundary conditions: cylindrical boundary condi- U0 an intermediate “buffer” region, and an outermost

tions2-410:12-14.17Greens-function(or “flexible” ) boundary “continuum—re.sponse“ region. Witlprope_rimplementation,
conditions26-°2627 and periodic boundary conditiofS:!® the outer and inner regions couple only indirectly through the
We now briefly review each with emphasis on the uniqueresponse of the buffer region. :
challenges ofb initio electronic-structure calculations. In th|s me';hod, all three regions respond to the presence
of a dislocation; however, the response of each region is
treated differently through a number of steps. Initially, all
regions are displaced by the solution to anisotropic elasticity
In the practice of cylindrical boundary conditions, aniso-theory. Each iteration then begins by relaxing the atoms in
tropic elasticity theors?*Cis used to generate a dislocation the core region according to the forces which they experi-
in the center of a cylinder. The cylinder is then separated int@nce, as computed from either an interatomic potential or an
inner and outer regions. The atoms in the outer region areab initio method. The forces generated from the mismatch

The fundamental distinction among theoretical ap

A. Cylindrical boundary conditions
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between the outer and inner regions, which the cylindrical
approach above ignores, are then relieved by moving the
atoms ofall three regionsaccording to the elastic Greens-
function solution, leaving only the nonlinear effects from the
core region unaccounted. The next iteration then begins by
relaxing these forces as described above. Iterations proceed
until until the forces in the core and buffer regions are neg-
ligible.

What distinguishes this approach from simple cylindrical
boundary conditions is that the continuum region, via the
Greens-function response, is allowed to respond to the mo-
tion of the dislocation and to the elastic response generated
by the core region as the dislocation moves. So long as the : : : : :
continuum-response regiofi) accurately represents the STh5 . S0 0 5 1q
structure induced by the presence of the dislocation (@nd Distance from center [A]
is sufficiently wide to properly reproduce the forces on the
atoms in the buffer and inner regions, this approach accu- FIG. 1. Force on the atoms, along {fL1], due to the presence
rately describes basic properties of a dislocation. of a domain boundary. The forces are plotted as a function of dis-

In order for the first assumptiofi) above to hold, the tance from the center of the unit gell. The_ domair_1 boundary'is_
inner-core region must be sufficiently large to contain a”ge?erated such that the nearest-neighbor distance is always within
atoms with displacements outside of the linear regime an85/° of the bulk @=1/4).
the buffer region must be sufficiently wide so that displaced
atoms in the core have no direct effect on the forces experizng F3=a/2[111], where a is the lattice constant of the
enced. In ._the co.ntmuum-respons.e region. The secqnd aUbic unit cell. We choose this cell because its length along
sumption(ii) requires that the continuum-response region be. ™ i } X
sufficiently large so that its termination has no effect on the 2 iS the same as the smallest simulation cell used in Refs. 7
forces on the atoms in the buffer or inner region. The radiu§nd 8. We then generate a domain boundary at the gdge of
of the calculation must therefore exceed the sum of the nonsell along the (112 plane by changing the lattice vectoy
linear core radius plus twice the range over which motion ofio F2=4a[112]+ aF3 and holding the atoms in the unit cell
atoms creates forces within the lattice. Since the latter rangfxed in their bulk locationse is chosen such that the shift is
can be quite large for electronic-structure calculations insmall and the nearest neighbor distance is always within
metals, the application of this approach to electronic-959 of the bulk, representing even less of a disturbance than
structure calculations can be problematic. that in Ref. 7, where atoms were within 90% of the bulk

The Greens-function approach has predicted successfullyearest-neighbor distance. To estimate the effect of the scat-
dislocation properties when applied to time-consuming eMtering of electrons at the domain boundary on the interatomic
pirical potential®® which have a limited interaction range. forces, we hold the atoms fixed and compute dheinitio
The approach also has been applied to density-functional cajorces acting upon them.
culations of the Peierls stress for molybdenum and Figure 1 shows the forces along thel1] direction as a
tantalum]® where its application is more questionable due tofunction of distance from the center of each domain. Note
the above interactions. In these latter WorkS, the artiﬁCiathat re|ative|y |arge forces deve|op deep within the cell. This
boundary on the outside of the continuum-response regiofata indicates that the continuum-response region should be
has been treated in one of two wayeither by keeping the  quite large (5— 10 A) in order to prevent the response of
surface free in vacuum or by embedding in periodic boundthe electrons from adversely effecting the forces in the buffer
ary conditions with the vacuum filled with material which region. Note also that the buffer region should be of similar
must contain severe domain boundaries due to the incompaidth to prevent forces from the nonlinear displacements in
ibility of a net Burgers vector with periodic boundary condi- the core from penetrating into the linear continuum-response
tions. To gauge the effects this artificial boundary may havgegion. Such large continuum-response and buffer regions
and how far these effects penetrate from the continuumean make the calculation incompatible with current compu-
response region into the buffer region, we perform a testational techniques.
calculation within the density-functional theory pseudopo- |n fact, the only density-functional calculations of the
tential approactt of the magnitude of the forces generated peieris stress in this system to date employ the Greens-
onto the system due to the presence of a domain boundafMnction method but with a distance from the buffer region to
similar to those in the works cited abo{&. ~ the domain boundary of only=3.7 A . It thus is unclear

For this calculation, we employ the same computationalyhether the continuum region in these calculations is suffi-
procedure as for our production calculations in Sec. V. Heregjently large enough to yield reliable results and clearly fur-
however, since this is a test, we employ only a sifigi®int  ther calculations are needed to support those results. Below,
to sample the Brillouin zonel(). We begin with an ortho- e provide just such calculations using the method of peri-
rhombic cell of 24 atoms of tantalum in a bulk arrangemeniodic boundary conditions, which perturb the electronic sys-
with supercell lattice vectors,=a[110], r,=4a[112], tem far less than the introduction of domain boundaries.
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C. Periodic boundary conditions TABLE I. Peierls stress for thél11) screw dislocation in tan-

The final common choice for boundary conditions is to@Um N the winning(112), and antitwinning directions; the last
. . . column shows the ratio between antitwinning and twinning Peierls
repeat the dislocation core periodically throughout space, 9,

that the dislocation is no longer isolated, but embedded mtresses' MGPT results are from Yaeigal. (Ref. 9.
bulk material containing an array of dislocations. Consis-piantial
tency with periodic boundary conditions then demands that
the unit cell contain a net zero Burgers vectors, arrangedEAM FF 575 MPa 655 MPa 1075 MPa 1.6412
typically in a dipolaf®*=* or quadrupold®®®® array. For MGPT 605 MPa 640 MPa 1400 MPa 2.29

static properties of the dislocation core, such cells give reli
able results as the elastic fields of the surrounding disloca-

tions effectively cancel at the location of each core. sive to study such properties as the temperature dependence
Periodic boundalrg/ conditions can also be used to calculalgs the Peierls stress. Therefore, for these calculations, we

the Peierls stress> “Care must be taken, however, be(_:auseemp|oy a molecular-dynamicdd/D) framework carried out

the material properties of a densely packed array of d'5|0031]sing a first-principles-based embedded atom method

tions can be quite different from those of bulk. The use Of(qEAM) many-body force fieldFF) for tantalum which we

large unit cells can control this effett;however, such a paye developed to allow accurate and computationally effi-

direct, brute-force approach is not practical for computationjent evaluation of atomic interactiofs’

ally demandingab initio calculations. To make such calcula-  aAgq gescrived above. we carry out these calculations

tions feasible, they must occur in small periodic cells,yithin periodic boundary conditions. The supercell consists

thereby demanding proper accounting for the presence Qff 5 quadrupolar arrangem@hi® of dislocations containing

many neighboring dislocations. , 5670 atoms with lattice parametera,=70.59 A, a,
We have shown in another wdtrkhat, under certain con- =739 A, anda,=20.11 A , where thex, y, andz axes of

ditions, such effects can be accounted for accurately with . — —
minimal extra computational effort, so that accurate values ' coordinate system are alog§10], [112], and[111]

of the Peierls stress can be obtained from density-functiona(ljf'recnons’ respectively. As we have shown in another Work,

calculations in periodic cells. Since the residual errors withSUCh a cell gives very accurate values for the Pelerls siress.

this approach are associated with the boundary conditions,
the magnlltude of such an error can be _t?Sted by u§|ng other A. Orientation dependence of the zero-temperature Peierls
computational methods, such as empirical potentials. Our
previous work shows that this residual error is relatively
small? a fact which we confirm explicitly below. To calculate the zero-temperature Peierls stress, we start
Because the deviations from the bulk arrangement at péNi'[h a fully relaxed quadrupole dislocation configuration at
riodic boundaries are relatively mild, such calculations areZ€ro stress and increase the stress in steps of 50 MPa until
ideal for mitigating electronic boundary effects. Given thethe dislocations move. Once the dislocations move, we re-
simplicity of working with these boundary conditions and start the calculation from the structure equilibrated just prior
the possibility of the extraction of accurate values for theto the motion and increase the stress in smaller stepPa)
Peierls stress from small unit cells, we choose to work within order to more narrowly define the critical stress. At each
periodic boundary conditions throughout this work. Sectionincremental target stress, we relax the atoms and stresses in
IV outlines our procedure for calculating the Peierls stresghe cell by running two very low-temperatureT (
while working with periodic boundary conditions and de- =0.001 K) MD simulations. The first run is for 15 ps at

scribes the sources and the magnitude of the residual errorgonstant stress and temperatuféo{T ensemblg using a
(See Ref. 4 for a full discussion of these issmes‘ Parinello-Rahman barosfﬁand a HOOVé”f9 thermostat, and

the second run is for 50 ps at constant volume and tempera-
ture (NoT ensemblg We find this approach to be quite
stable for relaxing the cell and the atoms of the system.

The (111) screw dislocation has three equivaldiai2}

To illustrate the complexities of relating computational and three equivalentl10t potential slip planes, with such
predictions to experimental findings, we now explore the deplanes occurring at 30° intervals. To study the orientation
pendence of the Peierls stress in bce tantalum on orientatioependence of the Peierls stress, we apply three types of pure
and temperature. The strong dependencies that we find ushear stress to the systemeg, stress, a positiver, stress,
derscore the unique properties of dislocations in bcc metalsind a negativer,, stress(Note that with coordinate axes as
To clarify, since some authors use slightly different defini-defined above, the axis lies along the dislocation line.
tions for the Peierls stress, here we consider the Peierls stre§bese stresses lead to forces on the dislocation in the
as the value of the stress on the maximum resolved she&il12, (110)-twinning, and (110-antitwinning directions,
stress plandmaximum value of the shear stress along therespectively® Along these directions, we find Peierls
[111] direction when the dislocatiofirst moves to a differ- stresses ofry1,=655 MPa, 7,in=575 MPa, and 7,y
ent equilibrium position. =1075 MPa, respectively. Table | shows that our essentially

Despite recent advances @ initio quantum-mechanical zero-temperature results are in good agreement with those of
methods, such methods are still too computationally intenYang and collaboratorswho employed model generalized

Twin (112 Antitwin ~ Asymmetry

stress of the(111) screw dislocation

IIl. DEPENDENCE OF THE PEIERLS STRESS ON
ORIENTATION AND TEMPERATURE
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pseudopotential theofGPT),'? a different interatomic po- 1400
tential. The result of such a strong dependence of the Peierl
stress on orientation is consistent with the experimentally 1200 r
observed breakdown of the Schmid law in bcc metals. 4
To make quantitative comparison with experiments, z 1000
which were carried out at nonzero temperature, we comparg
our results to those of Tangt al,'® who fitted experimental
datd® to a mesoscopic model and then extrapolated to ex-& :
tract the zero-temperature Peierls stress. Their predicted 800 4
value of 248 MPa for thé112) Peierls stress is over a factor- £
of-2 lower than our result. This type of discrepancy, where
the theoretical Peierls stress overestimates the zero

Ta gEAM FF
1/2a<111> screw dislocation

g

800

/Anti—Twinnl'ng

<112>

400 -

200

temperature extrapolation of the experimental data by a fac Twinning

tor of 2 to 3, is quite generally observédhis discrepancy 0 . . . . .

may be due either to inaccuracies in the theoretical calcula 0 50 100 150 200 250 300
tions or, perhaps, a flaw in the comparison between the zero- Temperature (K)

temperature extrapolation of the experimental data and theo-

. s FIG. 2. Temperature dependence of the Peierls stress along vari-
retical predictions.

ous directions: thé112), twinning and antitwinning directions. The
fits are done for the high-temperature data using(EQ.The tem-
B. Temperature dependence of the Peierls stress of thel11) perature is in degrees Kelvin, and the stress in mega-Pascals.

screw dislocation 0 o o
Wasserbach? We feel that this is reasonable, considering the

To explore potential difficulties with the zero-temperaturefacts that our simulation cells do not allow for double kink
extrapolation, we now present what is to our knowledge thgormation and that, as discussed above, our strain rates are
first temperature-dependent study of Peierls stress using @ych higher than those in the experimelité
realistic potential for a bcc metal. For these calculations, we Experimental extrapolations of the Peierls stress to zero
continue to employ the gEAM FF and begin with the zero-iemperature generally come from mesoscopic or kinetic/
temperature, equilibrated structures. We then apply Variouﬁhermodynamic mod&123-25fits to experimental data and
constant shear stressémwer than thel =0 Peierls stre340  gre then extrapolated to zero temperature. To explore the
the system while slowly increasing the temperatiimesteps  effects of this procedure, we fit our atomistic data to such a
of 10 K) until the dislocations move. Similarly to th€  model, perform the extrapolation, and then compare with our
=0.001 K case, for each temperature we first run for 10 ps injirect zero-temperature results.
theNoT ensemble and then for 25 psiMvT ensemble. For the fit we use an analytical expression for the depen-

Because the Peierls stress can depend on the rate at whigBnce of the Peierls stress with temperature at constant strain
the strain is applied, to place our results in context, we firsat42°pased on a mechanism involving double kink nucle-
estimate the strain rate in our Computations. The strain rate iétion and propagation_ This model gives for the temperature-
approximatelyy= pv4b, wherev is the dislocation veloc- dependent Peierls stress
ity, p is the dislocation density, artalis the Burgers vector.

Using a dislocation density typical of the experiménts o _ Y pkink

=10"x 1/m?)and estimating the dislocation velocity as the rpzmarcsm & , @
ratio between the distance traveled in one jump {132 Yo

=2.717 A and the simulation tim&35 p39, we obtain an  whereg is 1kgT, with kg being Boltzmann’s constant aifd
effective strain rate of-10°x 1/s, which is large compared the absolute temperaturg™ is the kink energy® , is the

to the strain rates (4 10°) in the experiments used for the effective Peierls stress, and™ is the reference strain rate.

zero-temperature extrapolatiotis®® Here, the effective Peierls stress is
Figure 2 summarizes our results for the temperature de-
pendence of the Peierls stress as a function of temperature Ekink
for the three directions((12), twinning, and antitwinning 0= ik 2
As expected, the Peierls stress obtained from our MD simu- bL™p

lations decreases rapidly with increasing temperature, pakng the reference strain rate is

ticularly for very low temperatures. It is important to men-

tion that, although our simulations are three dimensional, the 'yléink:2bp| . 3)
dislocations move as straight lines without the formation of .

double kinks because our simulation cell is only seven Burwhereb is the Burgers vectot, X"« is the kink length,p is
gers vectors long along the dislocation lines. Such doubl¢he dislocation densityyy is the attempt frequency which
kinks are quite important at finite temperatures since theynay be identified with the Debye frequency to a first
tend to lower the lattice resistance at nonzero temperatureapproximatiort*2° and|, is the distance between two con-
Our results are approximately a factor-of-2 to 4 larger tharsecutive Peierls valleys. Physicallg“™ is the minimum
the fit of Tang etal!® to the experimental data of energy to form a double kinK, "™ is the minimum length
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o-° 0.6:%6:%4:25° [111], and the vectors between the columns of atoms indi-
0% 9 905000 cate the relative shift along the Burgers vector due to the
.: : .h‘z.: presence of a dislocation between each pair of columns, with
°::l : WAeliel. the vectors scaled so that a vector of full length between the
-0 ° eli0l:0 ; 9 .
%o 0:%:0:2:0:%:0:%0 columns corresponds to one-third the Burgers vector. In this
i~ %o 0:2:6:2:0:%:0:%0 ground-state structure of the dislocation, triads of full length
= e 0:%:0:%:0:%:0:%0 vectors surround the center of each dislocation, correspond-
e - SO RT3 . )
o2 4 0.5:%:5:° ing to a new displacement by a full Burgers vector upon
o d: -9 030:0:0:0 completion of a closed loop about each center. In the figure,
o: : :b:Zo: four dislocations are present.
o.-: : B 1707 0", In practice, because of symmetry, the quadrupole cell may
-le; ° t0l..0l-l0 X ;
2.6 ° 2:0:%:0:%0 be reduced to half the size, when lattice vectors are properly
°e ° ‘0-%0 %0 chosert® Since such a reduction is computationally efficient,
i we now use such smaller cells. Although the computational

cells will now only contain two dislocations, we still refer to
FIG. 3. Quadrupolar unit cell of size 42 & 41 A : relative it as a quadrupolar cell, in order to differentiate it from the
displacements of neighboring columns of atofmsows and dislo-  dipolar cell, which also has two dislocations but whose pe-
cation centerstriad of arrows. Note, that in the calculations half riodic images differ.
the amount of such cells are used, which can always be done with As Sec. Il notes, for calculations of static properties such
an appropriate choice of lattice vectdfef. 36. as the ground-state dislocation core structure, the strain fields
from the surrounding dislocations in a quadrupolar array es-
for this double kink, andr, is the stress, whose work to sentially cancel at each dislocation core. However, in a dy-
move a dislocation a distandg is equal toEX™, namical problem such as the calculation of the Peierls stress,
Figure 2 shows the fit of Eq1) to our atomistic data. To the dislocations begin to interact with the stress fields of the
mimic how zero-temperature lattice resistances are generallythers as they begin to move. Our previous Woskows
extracted, we adjust the three unknown parameterthat, for the particular geometry considered here, accurate
(70, EX" and '),'éink)to fit our higher-temperature datmly. ~ Values for the Peierls stress can be extracted from quite small

Intriguingly, extrapolation of our higher-temperature resultsunit cells provided the proper procedure is followed. We now
to zero temperature leads to an underestimation of the Peier@itline that procedure while reviewing the relevant back-
stress of between 10% and 20%. We would also expect th&tround.

a fit to data from a cell sufficiently large to allow for double

kink formation (which are only active at nonzero tempera- A. Calculation of Peierls stress within periodic

tures would lead to an even larger underestimation of the boundary conditions

zero-temperature stress. These results therefore suggest thatyy -51culate the Peierls stress in a small periodic cell, we

the general discrepancy between extrapolated experimentglqin with lattice vectors appropriate to bulk material in the

values and the calculated values for the zero-temperatuig,sence of dislocations and then, while relaxing the internal

Peierls stress may be the result of failure of nonzero,q dinates of the cell, apply increasingly purg, strains

temperature models to properly describe the low-temperaturg,sing the same Cartesian coordinates as those in Seg. Il C
regime. However, since this discrepancy is over a factor of 2, il the dislocations move. Such a strain drives the disloca-

when employing empirical potentials, further calculations.. = . .. g . .
would clegrly be neeged to (;Oetermine if the underestimatiofi©" along the[112] direction. Before the d'SIOC"’lt'.On
due to extrapolations, when double kinks are capable ofoves, the strain energy of the cell increases quadratically,
forming, could fully account for the discrepancy. 1
Ezzc'eiz, (4)

IV. ACCURATE PEIERLS STRESS CALCULATIONS IN

SMALL PERIODIC CELLS whereC’ is an elastic constant associated with the quadru-
pole unit cell which can be extracted simply from the ener-

Having underscored the need for first-principlesgies of the cell as the strain increases. The stress associated
electronic-structure studies and already having determinegith this strain is
that the most effective boundary conditions for such studies
is periodic, we now focus on determining minimal cell size
appropriate to calculation of the zero-temperature Peierlso that at the strain at which the dislocation moves, (&Y.
stress for g§111) screw dislocation in a bcc metal when the gives the Peierls stress.
maximum resolved shear stress is alond &3} plane. The great benefit of the above procedure is that it requires

To minimize image effects, we employ periodic boundarya minimal search through phase space in order to calculate
conditions with a quadrupolar unit cell. Figure 3 shows athe Peierls stress and accounts accurately for the effects of
differential displacement mamf such a cell of size 42 A the dislocation-dislocation interactions. Thé elastic con-
41 A in the plane perpendicular to the Burgers vector. Instant, which is a direct byproduct of the procedure and re-
such a map, the dots indicate columns of atoms along thquires no further calculations, suffices to account accurately

0x;=C' €z, 5
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for the main effects of having a cell with a densely packed J2
array of dislocationé.This correction prevents most of the C'=-— 3
effects from working with small unit cells and can differ

from that of an equivalent bulk cell by a value of 2 or more.\yhereC;; are the standard elastic constants for cubic mate-
The above procedure involves several approximations rerg|s.

quiring justification. First, we apply strain relative to the lat- A evidence of the correlation between the ratio of these
rather than those of the quadrupole array. Previously, Wyr previous studywith the same empirical potential as that
have shown through explicit calculation on model inter-in sec. i1, the ratioC”/C’ varied from approximately 1/5 in
atomic potentials that working with the relaxed lattice vec-the smallest cell studied to less than 1/10 for all other cells,

tors of the quadrupolar array does not improve the valugyhile the error in extracting the Peierls stress went from 18%
calculated for the Peierls stress and therefore is not néedeqdy |ess than 2%, respectively. For the potential used in that

The reason for this is that although working with the bulk gdy, the value of”/C’ computed from bulk elastic con-
lattice vectors generates artificial stresses, these are primariltanys js 1/90. Since the bulk value®f/C’ within density-
diagonal 7;;), because the greatest effect of the presence qf;nctional theory is less than 1/16dwe expect the errors in

the dislocations is dilation of the systénin the present ge- oy ab initio value of the Peierls stress to be even somewhat
ometry, such diagonal stresses result only in a constant shifimaler. Lending further support to this view is the result of

in the energy over the range of applied strain and do nopyespery and ViteR that demonstrated that the effectef,
generate drivingPeach-Kohle¥) forces on the dislocations. stresses on core structure is much less for the nondegenerate

Some slight care must be taken with the above argumenore strycture, which we have in our density-functional cal-
Duesbery and othets have pointed out that stresses which ¢y jations, than for the degenerate core structures, which we
do not result in driving forces on a dislocation still may haq in our interatomic potential calculatiohs.

affect the overall value of the Peierls stress needed to drive
the dislocation, because such stresses may modify the dislo-
cation core structurd, an effect not accounted for in linear
elasticity theory. This effect of nondriving stresses is, in fact, To demonstrate the efficacy of the above procedure, we
one of the common violations of the Schmid law that bccnow proceed to extract the Peierls stress in{tht?) direc-
metals exhibit. Diagonal stresses, however, do not have tion for vanadium and tantalum from calculations in small
large effect on the value for the Peierls stress, since theyperiodic cells, when the maximum resolved shear stress is
tend to only compress or expand the core. Fortunately, bealong a{110; plane. In all calculations we calculate the
cause the bulk lattice vectors should be relatively close tdPeierls stress for an infinite straight dislocation, since our

that of the dislocation cell, we expect all of these effects tqyeriodic cells have the lattice vectag=a[ 111]/2 along the
be quite small, as we have found previodsnd again gisiocation line. To allow comparison with the Peierls stress

verify in the test calculations below. _ of isolated dislocations, we employ empirical potentials for
The second simplification in our procedure is that ratheknhis demonstration. For vanadium we use the

than applying a strain which imposes a purg, stress, we  Finnjs-Sinclaif? potential with modifications made Ackland
apply a puree,, strain, which also generates a residug),  and Thetford'® and for tantalum we use the same potential as
stress’® To generate a pure stress of the fas, one would  that used in Sec. Il but with a slight adjustment of param-
have to apply an additional,, strain of a magnitude deter- eters to produce a nondegenerate core structure. The bulk
mined by yet another elastic constant of the quadrupolar afatios for C”/C’ for vanadium and tantalum within these
ray. Because the calculation of this constant would signifimodels are 1/10 and 1/6.5, respectively, much larger than the
cantly increase the number of calculations required an@iensity-functional theory value.

because the residual,, stres’® acts on the plane perpen- T determine the reference value for the Peierls stress, we
dicular to the dislocation, and thus does not create a drivin@mpbyed cylindrical boundary conditions with large
force on the dislocations, we simply apply the peggstrain.  amounts of material, increasing the radii of the cylinders
As with the diagonal stress components, although the reyntil the boundary forces were snidland the Peierls stress
sidual in-planeo,, stress does not drive the dislocations, it approached an asymptotic value. To extract the Peierls stress
can affect the Peierls stress by modifying the core structurgrom within periodic boundary conditions, we follow pre-
Unlike the diagonal stress components, the in-plane stresgsely the procedure that Sec. IV A outlines.
significantly affects the Peierls stress in bcc metafsThis Figure 4 shows the resulting energy versus strain curve
effect, however, will be small as long as the residug),  for vanadium within a periodic cell of size 42 & 20 A . At
stress is small compared to the driving, stress. The ratio  a strain~0.054, the curve exhibits a discontinuity, signaling
oyl 0yz, is equal toC"/C’, whereC’ is the elastic constant the critical strain for moving the dislocation. The curvature
appearing in Eq4) andC” is another combination of elastic of the fit determines the elastic const&t through Eq.(4).
constants. In pure bulk cubic materials these constants hayanally, combining this value of’ with the observed critical
the fornt® strain, Eq.(5), yields the Peierls stress. We repeated this
procedure for tantalum as well.
(Cyy+ Cas—C1o) Table Il summarizes our results for both vanadium and
17 =ad =12k tantalum. The table shows that the errors are relatively small,

(2C44+C1o—Cyy),

B. Demonstration

w| =

C'=
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x10” liably to within 0.1 eV/atom. Finally, to determine the elec-
- s N tronic structure, we minimize using the analytically contin-
L ued functional approach!, expressed within the DFF+
% 4 i (Ref. 50 formalism.
D 3 EAER
g o B. Energy landscapes
G # To demonstrate the discrepancies that occur between the
z e predictions of empirical potentials and first-principles
2 e ] electronic-structure studies, we compare the energy land-
> ‘,_.--0"' scape for a dislocation moving along a reaction coordinate
o b 4 from the easy-core configuration to the hard-core
2 configuratioR'® for both molybdenum and tantalum as de-
w termined within MGPT(Ref. 12 and as calculated usirap

0 0.06 initio studies. Within MGPT, we carried out the calculation

0.02 . 0.04
Strain &, for molybdenum ourselves and used the hard-easy-core en-

FIG. 4. Energy versus strain of vanadium in a quadrupolar cel€'dY_difference reported in the literatdtefor tantalum.
of size 42 Ax 20 A . Diamonds denote the energy calculated at Within density-functional theory, we have calculated the en-

various strains. The dotted line is a quadratic fit up to the Peieri€'dy at a number of points along the reaction pathway for
stress. tantalum, and for molybdenum we report the difference be-

tween the easy-core and hard-core configurations as found in

much smaller than the general discrepancy between empirRef. 19. We also note that, for molybdenum, within density-
cal potentials and the experimental extrapolations. It is alséunctional theory, the hard-core configuration was not stable
noteworthy that the potentials employed in this demonstraand therefore the stable structure found within MGPT was
tion exhibit C"/C’ ratios over an order-of-magnitude larger Used as the reference state.

than those of density-functional theory. From these and pre- Figure 5 shows the results. Most noticeably, the atomistic
vious result$, we conservatively estimate that the error in landscapes are three times stiffer than #te initio land-

the Peierls stress in the density-functional calculations belocapes. This raises the question of whether the approximate
should be no greater than20%. factor-of-3 overestimate of theoretical calculations over the

extrapolation of the experimental Peierls stresses to zero
temperature is due to defects in the interatomic potentials or
to failures in the connection between the experiments and the
A. Computational details theoretical calculations.

V. DENSITY-FUNCTIONAL RESULTS AND DISCUSSION

All of our first principles electronic-structure calculations
employ the plane-wave density-functional theofFT) C. Verification of cell size
pseudopotential approath within the local-density
approximatiorf**®> We employ a pseudopotential of the
Kleinman-Bylander forff with s, p, andd nonlocal chan-
nels that have been successfully used in previous Wofks

To compute the Peierls stress, we employ a cell of dimen-
sions 23 Ax 12 A . To verify that long-range electronic-
structure effects in metals do not interfere with results in

S .- such a cell, we compare the core structure reported
and a plane-wave basis with cutoff of 40 Ry. As justified reviously® for this cell with a new calculation using a

above, we employ a quadrupolar supercell, containing tw arger cell. Figure 6 shows the result for the core structure

dislocations, of sizesr;=5a[1,1,0], rp=(3/2)a[1,1,2],  in a cell of size 41 Ax 20 A . The quadrupole supercell
andrz;=a[1,1,1]/2, wherea=3.25 A is the lattice constant pas  sizes ri= 9a[1,1,0], r,= (5/2)a[1,1,2], andrs
of the cubic unit cell. The lattice vectors of this cell @e  — a[1,1,1]/2. The lattice vectors are similarlg,=r,/2
=r1/2=154 1302, 8,=1,/2+1,+T13/2, andag=rs. TOo MYy ¢ 4y /2 a,=r,/2+1,+714/2, andaz=r. Here we use
out the integrations over the Brillouin zone we use a nonzergjght speciak points®! which is sufficient since the lattice
electronic temperature df;T=0.1 eV to facilitate integra- yectors in the plane of the dislocation have doubled.
tion over the Fermi surface and sample the zone at sixteen e note that the core structure is very similar to previous
specialk points.™ These choices give energy differences re-gydied® which used a smaller cell equal in size to the one
) ) ) we employ for our calculation of the Peierls stress. We there-
TABLE II. Magnitude of percentage of error in calculating the ¢qre go not expect the long-range nature of electronic effects
Peierls stress in periodic cells of two different sizes from empiricalin metallic systems to greatly affect the value which shall
potentials for vanadium and tantalum. extract for the Peierls stress. We also note that the empirical

potential results for tantalurtSec. 1\) had a very large cut-
x11. ; ’
23 Ax115 A 42 Ax20 A off of 9 A and accurate results were obtained in the smallest
Ta 250% 10% cells used in those calculations. These facts lend confidence
\V; 26% 11% to the reliability of our density-functional theory predictions
below.
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Ta Mo ° t °
Aevib o \ ”
bt
2 ~ / ™~
oy wmx ) 0.01 I °
jo.05 = - \ o
easy easy l ° t
Aevib . et ~
© t o
[ i
l, -
% mm o R i [110]
=
0.14 FIG. 6. Easy-core structure for tantalum calculated within
, density- functional theory. This cell of size 4134 20 A gives very
easy easy easy easy similar results to the cell of size 23 & 12 A, used in Ref. 19.

FIG. 5. (Color online Energy landscape per Burgers vector - . — i
along a reaction coordinate when going from the easy-core to the Intriguingly, despite the fact that tab initio energy land

hard-core configurations in tantalum and molybdenum: density-Scape idesscorrugated than that of the interatomic potential

functional theory(squares in upper pangland MGPT (curves in by a fa_ctor of near_ly 3Fig. 5, the aboveab initio result er
lower panels Ab initio results for molybdenum are from Ref. 19, the Peierls stress is over a factor-olazger than the empiri-

and the MGPT results for tantalum are from Ref. 11. cal potential resul{Table ). Moreover, our result is over a
_ factor-of-5larger than extrapolations of experimental data to
D. Results for the Peierls stress zero temperatur®, a discrepancy much larger than any ef-

Figure 7 shows our density-functional theory results forfécts from the use of either our relatively small quadrupolar
energy as a function of strain following the procedure of SecCell or the local-density approximation to density-functional
IV A. We regard each data point as fully relaxed when thetheory. Certainly, as Sec. IlI s_hows, some of this discrepancy
magnitude of the residual force on each atom is less thaf@n be due to the extrapolation of experimental data to zero
0.005 eV/A . temperature. However, errors in the zero-temperature ex-

From Fig. 7 it is apparent that, at a strain of 0.05, thetr_apolation may not.like!y account for.aII of the discrepancy
Peierls stress has been exceeded, whereas at a strain of 0.8iice the underestimation in Fig. 2 is oniy10%—20%.
the energy curve lies on the elastic solution. From the curvaflthough we made the conjecture that double kink formation
ture of the data in the elastic regio (=35.2 GPaand with ~ May even make these errors larger, we would not expect this
these critical strains, we bound the Peierls stresg)(to be  €ffect to account for the 500% difference between dite
between 1.41 GPa and 1.76 GPa. These results are slightfjitio results and the experimental findings. One must there-
lower than the previous density-functional results=o1.8 fore consider the possibility of other factors such as the ef-
GPa obtained using Greens-function boundary condifions.

However, both results are still in reasonable agreement, as x 107

we expect our results to be within 20% of the infinite cell
limit, while it is unclear how the domain boundary affected
the value of the Peierls stress in the Greens-function bound-
ary condition calculation.

Figures 8 and 9 show differential displacement mayfs
the dislocation configuration at strains of 0.04 and 0.05, re-
spectively. The solid upright triangles in the figures represent
the locations of the center of the dislocations before the ap-
plication of strain and the upsidedown, triangles represent
the center of the dislocations once they have moved. Figure 8
shows the relaxed dislocation core to remain in the position
of its unstressed state, whereas Fig. 9 shows that at an ap-
plied strain of 0.05, the dislocation moves onto the next triad 0 0.02 . 004 0.06
of columns of atoms. This glide is consistent with such screw Strain g,;

dislocations since the initial displacement is along the §011 - Energy versus strain for tantalum in a cell of size 23 A

plane. The subsequent motion should be along théd)Y11 x 12 A | calculated within density-functional theory. Squares de-
plane, since the core symmetry is broken prior and upomote the calculate energy at various strains. The line is a quadratic
motion* and hence overall motion is along{&12 plane fit to the first five data points. The graph indicates that the points
(twinning direction, consistent with the previous density- with strain at and above 0.0%(,=1.76 GPa will be at a stress
functional theor§ calculations. above the Peierls stress.
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FIG. 8. Differential displacement map at an applied strain of FIG. 9. Differential displacement map at an applied strain of
0.04 (o,,=1.41 GPa The cell has converged to within the toler- 0.05 (ox,=1.76 GP& The cell has converged to within the toler-
ance defined in the text. The solid upright triangle is the location ofance defined in the text. This figure shows that the core has moved
the center of the dislocation, under no stress. The center of thifom the old triad(solid upright trianglg to a new triad(upsid-
dislocation, at this applied stress, has not moved. edown trianglg along a(112) direction.

fects of J“”Ct'o_né’z defects, surfaces, strain-rate dependen<q 4 normally be attributed to the use of a relatively small
cies, curved dislocations, screening from the presence Qfnit cell or the local-density approximation to density-
other dislocations, or a combination of effects to accuratelyynctional theory. The error is also significantly larger than
predict the experimental results. the underestimation we have seen in the the extrapolation of
nonzero-temperature data to zero temperature, thus support-
VI. CONCLUSION ing the notion that mechanisms other than the simple Peierls

This work explores various aspects of the Peierls stres[%eSIStanCe may play an important role in controlling the pro-

for the (111) screw dislocation in bcc tantalum. The first cess of low-temperature slip.
nonzero-temperature results for the Peierls stress in this sys-
tem show both a strong orientation- and temperature-
dependent response, consistent with experimental results.
These data also demonstrate that common extrapolations of The authors would like to thank Guofeng Wang for pro-
experimental data tend to underestimate the zero-temperatuvaing us with the parameters for the gEAM potential. This
limit. work was supported by an ASCI ASAP Level 2 gréBon-

We have also presented a density-functional theory calcuract Nos. B338297 and B347887Computational support
lation for the Peierls stress within periodic boundary condi-on ASCI Blue Pacific was provided through the Cal-Tech
tions, the approach best suited to metallic systems. The valulBOE ASCI center. We thank the members of the H division
we find for the Peierls stress is substantially larger than botlat Lawrence Livermore National Laboratories for providing
the experimental extrapolations and current empirical potenthe Ta pseudopotential, the Mo MGPT code, and many use-
tial results. This difference is much larger than errors whichful discussions.
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