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Quantum phase transition in the SU4) spin-orbital model on the triangular lattice
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Motivated by the absence of a cooperative Jahn-Teller effect in LiMi@l BaV$, two layered oxides with
triangular planes, we study the 81 symmetric spin-orbital model on the triangular lattice. Upon reducing the
next-nearest-neighbor coupling, we show that the system undergoes a quantum phase transition to a liquid
phase. A variational approach to this liquid phase shows that simple types of long-range correlations are
suppressed, suggesting that it is stable against lattice distortions.
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The possibility to enhance quantum fluctuations and demodel on other simple lattices has revealed that, whenever
stroy magnetic long-range order by orbital fluctuations wagossible, there is a tendency to form four-site plaquettes to
proposed a few years ago in the pioneering work of Festter accommodate S@) singlets’ in contrast to the orbital
al.l A careful analysis of the spin-orbital model of cubic valence-bond solids. These plaquettes have been unambigu-
perovskites with twofold orbital degeneracy revealed theously shown to form a well-defined pattern in the case of
presence of spin liquid phases in which orbital degrees ofadders® and evidence that this might also be the case for the
freedom form valence-bond patterns. The search for expersquare lattice has been put forwardf.Alternatively, long-
mental realizations of this intriguing physics has been goingange ordefLRO) has been proposed in Ref. 11. It is inter-
on since then, but the best candidate remains the old systeesting to note that this S¥) model is also a good starting
LiNiO,,? a layeredS=1/2 system which does not undergo point to describe CeB(e.g., see Ref. 22 while the other
any phase transition down to the lowest temperatures. In thigersion with conjugate representations on different sublat-
system, Ni* ions are arranged in triangular layers, and sincetices is more appropriate in the context of strong coupling to
the SU2) Heisenberg model on a triangular lattice is now the lattice'® or to perform a I expansiort?
believed to sustain long-range ordethe origin of this be- In this paper, we present strong evidence, all based on
havior has logically been attributed to the twofold orbital arguments that respect the underlying(&Usymmetry, that
degeneracy of Ni" in the low-spin state. However, the ab- the SU4) model on a triangular lattice with nearest-neighbor
sence of any structural distortions, which one would expect(NN) exchangel>0 only is also a spin liquid, but unlike
e.g., from a valence-bond-ordered spin liquid of Ref. 1, isprevious suggestiors:° we put forward detailed variational
still a mystery. Similar physics seems to be present irarguments that go against the presence of plaquette order in
BaVsS;,* a 3d (Ref. 1) system with stacked triangular planes: the ground state. Extending the model by including a cou-
Between 30 K and 70 K it develops a spin gapped phasegling J’>0 between next-nearest neighbdifSNNs), we
again without significant lattice distortions. We believe thatprove that the model undergoes a quantum phase transition
essential aspects of this intermediate phase are also descrliietween a disordered state f8r=0 and an ordered state for
able in terms of a triangular spin-orbital model with twofold large enoughl’. The emerging picture of the disordered
orbital degeneracy. phase is that of a true liquid both in spin and orbital sectors,

On the theory side, it has become clear since the work o#ith accordingly no tendency to undergo any distortion when
Feineret al? that states in which orbitals form valence-bond coupled to the lattice.
dimer patterns do not exhaust the possibilities of spin liquid The infinite degeneracy of the antiferromagnetic, four-
states. In particular, increasing attention has been devoted tate Potts model on the triangular lattice is lifted by
the SU4) symmetric Kugel-Khomskii modélwhere the or- >0, leading to a unique, four-sublattice ordering patfsee
bital and spin degrees of freedom play symmetric roles. IrFig. 1(a)]. Once the classical state is ordered, quantum fluc-
terms of spin-1/2 operatoxs; for the spins and pseudospin- tuations can be analyzed within a flavor-wave thedry,

1/2 operators for the orbitals, this model is defined by the Which is a generalization of the standard (3Ulinearized
Hamiltonian spin-wave theory. First, one extends the fundamental repre-

sentation on a single site into a Young diagram with a single

row and M columns (the fully symmetric representatian
(1)  The SUA4) operators can be conveniently expressed by a

generalized Holstein-Primakoff transformation, where the
This Hamiltonian can be rewritten as=3;,J;;P;;, fluctuations on each site are described by three different
where P; ; permutes the states of the four-dimensional fun-bosonsb;'(1) with m#n, for which the vacuum state is the
damental representations of W at sitesi andj. In one  M-fold direct product of the statém) associated with the
dimension, this model has a gapless spectrum with a fourfolgarticular sublattice[Fig. 1(a)]. Following the standard
periodicity of correlation function$The investigation of this  proceduré? i.e., expanding in M and keeping the qua-
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Quantitatively the fluctuations are reflected in the effective
staggered momentM)=M — (= ,b™(1)b™(1)), which

reads
J+J’ 1
M)=M— —_—
< > n;m <wmn(k) 2> RBZ
FIG. 1. (a) Four-sublattice long-range-ordered state with basis 3 3 J’
vectorsu;=(1,0) andu,=(—1/2,/3/2). The dashed line repre- ~M+ §+ﬂln@+O(J’/J). (4)

sents the next-nearest-neighbor exchange. The sublattices are la-

beled according to the occupation by the states of the fundamentdihe logarithmic divergence is the manifestation of the low-

representation(b) Brillouin zone of the triangular lattice. The energy modes. ThéM) for M=1 is finite whenJ'/J

smaller, shaded hexagon denotes the reduced Brillouin zone asse-0 12 (inset in Fig. 3, and we take this criterion for the

ciated with the four-sublattice order. stability of the LRO. Note that, within the linear flavor-wave
theory, the staggered moments and the energy are symmetric

dratic bosonic terms, the Hamiltonian can be diagonalizegh J andJ’. So we expect LRO to be stable for 022'/J

and, up to a constant, is given by =8 (for J=0 we have four decoupled intercalated triangular
lattices.
1 To assess the validity of these results in the extreme quan-
Hew= 2 2 omn(K) a"mTkanm,ﬁ ik (2 tum limit of the fundamental representation, we have looked
keRBZz m.n for signatures of the quantum phase transition in the exact
_ ) spectrum on a finite system. Specifically, we have numeri-
The energies of the flavor modes are given by cally diagonalized a 12-site cluster defined by the lattice vec-
tors T;=2u;+4u, andT,=4u;+ 2u,. This particular clus-
on(K)=2 \/(J+J’)2— [J cog kr ) +J" cog kr r'nn)]2, ter inherits theD g symmetry of the triangular lattice, and it is

(3 also compatible with the four-sublattice ordering. Our aim
was to identify the existence of the so-called Anderson tower

wherer ,, andr/. are the NN and NNN distances between SPeCtrum, a set of states well separated from the others,
sublatticesm and n. There are 12 branches in the reduced"hich become degenerate and give rise to a linear combina-
Brillouin zone[RBZ, Fig. 1(b)], which is equivalent to three tion with LRO in the thermodynamic limt™® For SU?2)
in the normal Brillouin zone. The operators and b are ~ Models, their energy for a-site system, measured from the
related through a Bogoliubov transformation. ground state, is proportional &/N, where the total spi$

In Fig. 2 we show a plot of the flavor dispersion for someS the add|t|0n_ of _sublattlce spins which maximize the sub-
arbitrary value of)'/J. ForJ' =0, the energy of the flavor 'attice magneﬂzaﬂon%?. "2‘ the SU4) case, the same formula
excitations becomes effectively one dimensidhdle.g., 1S €xpected to hold ifS™ is replaced by the first Casimir
w1k)=2J| sink/, with a zero energy node along the operatorC of the SU4) algebra(see Ref. 9 for the definition
=0 line). These low-energy quantum fluctuations destroy theé?nd convention o .
four-sublattice long-range order. Includidg, the magnons These states can be easily identified in Figa) 3which

along thel’-M line acquire finite dispersion \JJ', and this ShOWS the spectrum far'/J=0.2. ".1 partlcglar, the degen-
will reduce the fluctuations and stabilize the LRO State.erames_and the symmetry properties are in complete agree-
ment with group-theoretical calculatiof§This structure is

also present in the spectra obtained for all values)'@dd
2r E 1 larger than 0.2 up td)’=J, including J'=J/2, a special
point for the 12-site cluster where the tower structure can be
explicitly proven!® By contrast, the spectrum fal' =0 is
shown in Fig. 8b). Clearly, the tower structure is lost: The
excitation energies are not aligned on a straight line, and the
symmetry and degeneracy of the corresponding excited
states do not agree with group theory. This behavior is con-
sistent with a quantum phase transition betw&gd=0 and
NG 0.2. Due to the very rapid increase of the size of the Hilbert
1 space, we could not study larger systems to check that the
tower structure is still there for large enough/J, and to
perform a finite-size scaling of the slope. Still, the compari-
son of the spin-wave results, obtained in the thermodynamic
limit, with these exact diagonalization results gives a very
strong indication that there is a quantum phase transition
FIG. 2. Flavor-wave dispersion fal'/J=0.1. Inset: Reduced between a four-sublattice ordered state for large endugh
moment as a function af'/J. and some kind of spin liquid fod’ =0.
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FIG. 3. Low-energy spectrum of the 12-site cluster as a function

of the first CasimirC for (a) J'/J=0.2 and(b) J’=0. The Ander-
son tower of states is clearly identified fét/J=0.2 (upper plo}.

The Young diagrams corresponding to the states that build up the

tower are depicted.
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there are foufrespectively, sixsinglets before the first mul-
tiplet, but no clear tendency can be identified.

To reach larger system sizes, we have decided to resort to
variational calculations in the spirit of the resonating
valence-bond approach to frustrated(8Junagnets! There
are significant differences though. First, one needs at least
four sites to make an SU¥) singlet. Now, among all possible
four-site clusters, the particular role of the singlet plaquettes
was pointed out by Leet al:” On a triangular lattice, each
plaguette has a diagonal energy-0{13/4)J, which is much
lower than the diagonal energy of the LRO stathich is 0.

Thus the singlet plaquettes are a good starting point for a
variational calculation. To implement the method, we define
a Hilbert space which is spanned by the different coverings
li) (i=1,... Ngo) of the finite-size cluster with singlet
plaguettes. The eigenenergies are then the solution of the
generalized eigenvalue problem de@; —H;;)=0, where
Oi;=(¢il¢;) andH;;=(4;|H| ;). A systematic way to im-
prove the method is to double the Hilbert space by including
the stategy)=H|¢;), which leads to the

Hy  HP O Hj
2 3)| 2)||=0 (5
HP HP| T(H; AP

2NgpX2Ngo,  eigenvalue  problem,  where H{

=(4i|H"|;). This step can be repeated to include matrix
elements of further powers of{". The efficiency of the
method is illustrated in Table I.

The advantage of the variational approach is that we
could perform calculations for much larger clusters, up to 36
sites with two additional steps, 48 sites with one additional
step, and 64 sites with no additional step. For clarity, we

What is the nature of this disordered ground state? Fofocys the discussion on two natural possibilitiésThe sin-
SU(2) models, experience with frustrated systems has showgjet plaquettes form a pattern with long-range order, the most
that it is useful to look at the structure of the low-lying natural candidate being then the static coveripquette
singlet spectrum of a finite system, which can contain aarray as in the square lattite[see Fig. 4a)]; (i) the
single state in valence-bond solids with no lattice-symmetryplaquettes undergo strong resonances between configurations
breaking, four states for true spin liquids on a toftepo-
logical degenerady), a finite number of states in valence- a resonance being the diamond depicted in Fi).4

bond solids with lattice-symmetry breaking, or a prolifera-

tion of low-lying singlets, as in the spin-1/Xagome
antiferromagnet’ In the present case, exact diagonalizationthe plaquette covering which has the largest weight in the
results on finite-size clusters with 12 and 16 sites show thaground-state wave function is not the square covering, but a

that differ only locally, the smallest pattern that allows such

The first possibility is definitely not favored by our varia-
tional results: For both the 36-site and the 48-site clusters,

TABLE |. Energy, degeneracy, and wave vector of the low-lying singlet states of the 12- and 16-site
symmetric clusters obtained fdr=1 andJ’'=0 by exact diagonalization and by the variational approach
with 0, one, and two additional steps. The second column is the energy of a single cdwerirggonance
between plaquettesThe number of plaquette coverings is equal to(84 for 12 (16) sites, while there are
462 (24 029 singlets in the full Hilbert space. In the exact diagonalization spectrum, these states lie below
the first multiplet E= —12.841 and-18.451 for 12 and 16 sites, respectively

N Diagonal energy 0 steps one step two steps Exact Degenerack
12 —-9.75 —14.657 —15.314 —15.381 —15.384 1 r
12 —-9.75 —12.206 —13.781 —14.141 —14.188 3 M
16 -13 —-19.253 —20.935 -—21.068 —21.079 1 r
16 —13 —15.767 —17.979 —18.634 —18.908 2 r
16 —-13 —16.798 —18.252 —18.624 —18.754 3 M
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FIG. 4. Three remarkable covering patterns of the triangular vAVAVAvAvAvAvAV VAVAVAV VAVA'

lattice with plaquettes. The last two resonate strongly. A A A AVA A A
AvAvAV VAVAVAVAVAV WAVAVAV
diamond coveringsee Fig. 5. This fact is actually easy to A y\ 4 A A

understand: The matrix elements corresponding to the resa AvAv VAVAVAV VAVAVAVAvAVAVAe

nance of Fig. &) dominate the secular equation, and they

are completely suppressed in the square pattern of Fagy. 4
The effect of these resonances on the ground-state corre-

lations is a delicate issue. The ground states of the 36- S'tz?s site cluster(dashed ling The diamonds making up the new

and 48-site clusters are consistent with a long-range p"3‘tter'ﬂ1perlattice are shaded using different grays for the two patterns of
for the diamond covering of the triangular lattice, but given Fig. 4(b).

the very small sizes from that point of vieithe 36- and
48-site clusters can accommodate three and four diamond
respectively this result is probably not significant. What is

FIG. 5. Dominant plaquette covering in the ground state of the

of the present results. We just note that, if no longer-range
correlations are present, this plaguette liquid is expected, as
% its SU?2) counterparts, to exhibit topological degenertty.

To conclude, we have shown that it is possible to order

e SU4) Heisenberg model for sufficiently large next-

that would enter a description in terms of an effective Hamil-
tonian. The two plaquette coverings inside a diamond can b
:Jlesctrlbed by ar}‘: ||S(;Iingf vaég‘lzleTﬁnd thetres%r:ance(zj?weta ”%?earest neighbor repulsion, without the need to introduce an-
0 atransverse fieid ot or € Spectra obtained for the isotropy, and we have identified a quantum phase transition
36-site and 48-site clusters are then consistent with a ver

small potential-energy term with two- and three-body inter- droundy’/3=0.12. Ford’ = 0, which corresponds to a mini-
actions. A detailed analysis of this model lies beyond the gmal model of LINIO;, we have shown that the ground state

cope of the present paper, but given the prominence of thls a spinand orbital liquid, and we have shown that simple
scop present pap ut giv promi jects such as dimers of plaquettes do not develop long-

(lglnl?igglggte?fyt;irgisgrgeysc;y I;]I;eslg g}atthtehfsi\yﬂriz] d'; tikr1]e range order. These results are consistent with the absence of
q P 9 acmy kind of phase transition in LiNi© More generally, Mott

1 2
transverse field insulators with orbital degeneracy and the appropriate geom-

In summary, this variational approach strongly SuglgeSt%try emerge as potential candidates for completely order-free
that the ground state is a plaquette liquid with no four- S|teSpln liquids with topological degeneracy.

plaquette long-range order, and with strong local resonance
between the configurations of Fig(b4. The presence of We acknowledge the financial support of the Hungarian
long-range order associated to a specific pattern of diamon@TKA Grant Nos. T038162 and D32689, Bolyai Grant No.
covering can neither be ascertained nor excluded on the basid8/99, and the Swiss National Fund.
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