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Quantum phase transition in the SU„4… spin-orbital model on the triangular lattice
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Motivated by the absence of a cooperative Jahn-Teller effect in LiNiO2 and BaVS3, two layered oxides with
triangular planes, we study the SU~4! symmetric spin-orbital model on the triangular lattice. Upon reducing the
next-nearest-neighbor coupling, we show that the system undergoes a quantum phase transition to a liquid
phase. A variational approach to this liquid phase shows that simple types of long-range correlations are
suppressed, suggesting that it is stable against lattice distortions.
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The possibility to enhance quantum fluctuations and
stroy magnetic long-range order by orbital fluctuations w
proposed a few years ago in the pioneering work of Feineet
al.1 A careful analysis of the spin-orbital model of cub
perovskites with twofold orbital degeneracy revealed
presence of spin liquid phases in which orbital degrees
freedom form valence-bond patterns. The search for exp
mental realizations of this intriguing physics has been go
on since then, but the best candidate remains the old sy
LiNiO2,2 a layeredS51/2 system which does not underg
any phase transition down to the lowest temperatures. In
system, Ni31 ions are arranged in triangular layers, and sin
the SU~2! Heisenberg model on a triangular lattice is no
believed to sustain long-range order,3 the origin of this be-
havior has logically been attributed to the twofold orbi
degeneracy of Ni31 in the low-spin state. However, the ab
sence of any structural distortions, which one would exp
e.g., from a valence-bond-ordered spin liquid of Ref. 1,
still a mystery. Similar physics seems to be present
BaVS3,4 a 3d ~Ref. 1! system with stacked triangular plane
Between 30 K and 70 K it develops a spin gapped pha
again without significant lattice distortions. We believe th
essential aspects of this intermediate phase are also des
able in terms of a triangular spin-orbital model with twofo
orbital degeneracy.

On the theory side, it has become clear since the wor
Feineret al.1 that states in which orbitals form valence-bo
dimer patterns do not exhaust the possibilities of spin liq
states. In particular, increasing attention has been devote
the SU~4! symmetric Kugel-Khomskii model,5 where the or-
bital and spin degrees of freedom play symmetric roles
terms of spin-1/2 operatorssW i for the spins and pseudospin
1/2 operatorstW i for the orbitals, this model is defined by th
Hamiltonian

H5(
( i , j )

Ji j S 2sW i .sW j1
1

2D S 2tW i .tW j1
1

2D . ~1!

This Hamiltonian can be rewritten asH5( ( i , j )Ji j Pi , j ,
wherePi , j permutes the states of the four-dimensional fu
damental representations of SU~4! at sites i and j. In one
dimension, this model has a gapless spectrum with a four
periodicity of correlation functions.6 The investigation of this
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model on other simple lattices has revealed that, whene
possible, there is a tendency to form four-site plaquettes
accommodate SU~4! singlets,7 in contrast to the orbital
valence-bond solids. These plaquettes have been unam
ously shown to form a well-defined pattern in the case
ladders,8 and evidence that this might also be the case for
square lattice has been put forward.9,10 Alternatively, long-
range order~LRO! has been proposed in Ref. 11. It is inte
esting to note that this SU~4! model is also a good startin
point to describe CeB6 ~e.g., see Ref. 12!, while the other
version with conjugate representations on different sub
tices is more appropriate in the context of strong coupling
the lattice,13 or to perform a 1/N expansion.14

In this paper, we present strong evidence, all based
arguments that respect the underlying SU~4! symmetry, that
the SU~4! model on a triangular lattice with nearest-neighb
~NN! exchangeJ.0 only is also a spin liquid, but unlike
previous suggestions,7,10 we put forward detailed variationa
arguments that go against the presence of plaquette ord
the ground state. Extending the model by including a c
pling J8.0 between next-nearest neighbors~NNNs!, we
prove that the model undergoes a quantum phase trans
between a disordered state forJ850 and an ordered state fo
large enoughJ8. The emerging picture of the disordere
phase is that of a true liquid both in spin and orbital secto
with accordingly no tendency to undergo any distortion wh
coupled to the lattice.

The infinite degeneracy of the antiferromagnetic, fo
state Potts model on the triangular lattice is lifted byJ8
.0, leading to a unique, four-sublattice ordering pattern@see
Fig. 1~a!#. Once the classical state is ordered, quantum fl
tuations can be analyzed within a flavor-wave theory15

which is a generalization of the standard SU~2! linearized
spin-wave theory. First, one extends the fundamental re
sentation on a single site into a Young diagram with a sin
row and M columns ~the fully symmetric representation!.
The SU~4! operators can be conveniently expressed b
generalized Holstein-Primakoff transformation, where t
fluctuations on each site are described by three differ
bosonsbn

m( l ) with mÞn, for which the vacuum state is th
M-fold direct product of the stateum& associated with the
particular sublattice@Fig. 1~a!#. Following the standard
procedure,15 i.e., expanding in 1/M and keeping the qua
©2003 The American Physical Society08-1
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BRIEF REPORTS PHYSICAL REVIEW B68, 012408 ~2003!
dratic bosonic terms, the Hamiltonian can be diagonali
and, up to a constant, is given by

HFW5 (
kPRBZ

(
m,n

vmn~k!Fam,k
n† am,k

n 1
1

2G . ~2!

The energies of the flavor modes are given by

vmn~k!52A~J1J8!22@J cos~kr mn!1J8 cos~kr mn8 !#2,
~3!

wherermn and rmn8 are the NN and NNN distances betwe
sublatticesm and n. There are 12 branches in the reduc
Brillouin zone@RBZ, Fig. 1~b!#, which is equivalent to three
in the normal Brillouin zone. The operatorsa and b are
related through a Bogoliubov transformation.

In Fig. 2 we show a plot of the flavor dispersion for som
arbitrary value ofJ8/J. For J850, the energy of the flavo
excitations becomes effectively one dimensional15 @e.g.,
v12(k)52Ju sinkxu, with a zero energy node along thekx
50 line!. These low-energy quantum fluctuations destroy
four-sublattice long-range order. IncludingJ8, the magnons
along theG-M line acquire finite dispersion}AJJ8, and this
will reduce the fluctuations and stabilize the LRO sta

FIG. 1. ~a! Four-sublattice long-range-ordered state with ba
vectors u15(1,0) andu25(21/2,A3/2). The dashed line repre
sents the next-nearest-neighbor exchange. The sublattices a
beled according to the occupation by the states of the fundame
representation.~b! Brillouin zone of the triangular lattice. The
smaller, shaded hexagon denotes the reduced Brillouin zone
ciated with the four-sublattice order.

FIG. 2. Flavor-wave dispersion forJ8/J50.1. Inset: Reduced
moment as a function ofJ8/J.
01240
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Quantitatively the fluctuations are reflected in the effect
staggered moment̂ M &5M2^( iÞmbi

m†( l )bi
m( l )&, which

reads

^M &5M2 (
nÞm

K J1J8

vmn~k!
2

1

2L
RBZ

'M1
3

2
1

3

2p
ln

J8

16J
1O~J8/J!. ~4!

The logarithmic divergence is the manifestation of the lo
energy modes. ThêM & for M51 is finite when J8/J
*0.12 ~inset in Fig. 2!, and we take this criterion for the
stability of the LRO. Note that, within the linear flavor-wav
theory, the staggered moments and the energy are symm
in J andJ8. So we expect LRO to be stable for 0.12&J8/J
&8 ~for J50 we have four decoupled intercalated triangu
lattices!.

To assess the validity of these results in the extreme qu
tum limit of the fundamental representation, we have look
for signatures of the quantum phase transition in the ex
spectrum on a finite system. Specifically, we have num
cally diagonalized a 12-site cluster defined by the lattice v
torsT152u114u2 andT254u112u2. This particular clus-
ter inherits theD6 symmetry of the triangular lattice, and it i
also compatible with the four-sublattice ordering. Our a
was to identify the existence of the so-called Anderson tow
spectrum, a set of states well separated from the oth
which become degenerate and give rise to a linear comb
tion with LRO in the thermodynamic limit.3,16 For SU~2!
models, their energy for anN-site system, measured from th
ground state, is proportional toS2/N, where the total spinS
is the addition of sublattice spins which maximize the su
lattice magnetizations.17 In the SU~4! case, the same formul
is expected to hold ifS2 is replaced by the first Casimi
operatorC of the SU~4! algebra~see Ref. 9 for the definition
and convention!.

These states can be easily identified in Fig. 3~a!, which
shows the spectrum forJ8/J50.2. In particular, the degen
eracies and the symmetry properties are in complete ag
ment with group-theoretical calculations.18 This structure is
also present in the spectra obtained for all values ofJ8/J
larger than 0.2 up toJ85J, including J85J/2, a special
point for the 12-site cluster where the tower structure can
explicitly proven.18 By contrast, the spectrum forJ850 is
shown in Fig. 3~b!. Clearly, the tower structure is lost: Th
excitation energies are not aligned on a straight line, and
symmetry and degeneracy of the corresponding exc
states do not agree with group theory. This behavior is c
sistent with a quantum phase transition betweenJ8/J50 and
0.2. Due to the very rapid increase of the size of the Hilb
space, we could not study larger systems to check that
tower structure is still there for large enoughJ8/J, and to
perform a finite-size scaling of the slope. Still, the compa
son of the spin-wave results, obtained in the thermodyna
limit, with these exact diagonalization results gives a ve
strong indication that there is a quantum phase transi
between a four-sublattice ordered state for large enoughJ8/J
and some kind of spin liquid forJ850.
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BRIEF REPORTS PHYSICAL REVIEW B68, 012408 ~2003!
What is the nature of this disordered ground state?
SU~2! models, experience with frustrated systems has sh
that it is useful to look at the structure of the low-lyin
singlet spectrum of a finite system, which can contain
single state in valence-bond solids with no lattice-symme
breaking, four states for true spin liquids on a torus~topo-
logical degeneracy19!, a finite number of states in valence
bond solids with lattice-symmetry breaking, or a prolifer
tion of low-lying singlets, as in the spin-1/2kagome
antiferromagnet.20 In the present case, exact diagonalizati
results on finite-size clusters with 12 and 16 sites show

FIG. 3. Low-energy spectrum of the 12-site cluster as a func
of the first CasimirC for ~a! J8/J50.2 and~b! J850. The Ander-
son tower of states is clearly identified forJ8/J50.2 ~upper plot!.
The Young diagrams corresponding to the states that build up
tower are depicted.
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there are four~respectively, six! singlets before the first mul
tiplet, but no clear tendency can be identified.

To reach larger system sizes, we have decided to reso
variational calculations in the spirit of the resonatin
valence-bond approach to frustrated SU~2! magnets.21 There
are significant differences though. First, one needs at l
four sites to make an SU~4! singlet. Now, among all possible
four-site clusters, the particular role of the singlet plaquet
was pointed out by Liet al.:7 On a triangular lattice, each
plaquette has a diagonal energy of2(13/4)J, which is much
lower than the diagonal energy of the LRO state~which is 0!.
Thus the singlet plaquettes are a good starting point fo
variational calculation. To implement the method, we defi
a Hilbert space which is spanned by the different coverin
uc j& ( j 51, . . . ,Ncov) of the finite-size cluster with single
plaquettes. The eigenenergies are then the solution of
generalized eigenvalue problem det(EOi j 2Hi j )50, where
Oi j 5^c i uc j& andHi j 5^c i uHuc j&. A systematic way to im-
prove the method is to double the Hilbert space by includ
the statesuc j8&5Huc j&, which leads to the

UF Hi j Hi j
(2)

Hi j
(2) Hi j

(3)G2EFOi j Hi j

Hi j Hi j
(2)GU50 ~5!

2Ncov32Ncov eigenvalue problem, where Hi j
(n)

5^c i uH nuc j&. This step can be repeated to include mat
elements of further powers ofH n. The efficiency of the
method is illustrated in Table I.

The advantage of the variational approach is that
could perform calculations for much larger clusters, up to
sites with two additional steps, 48 sites with one additio
step, and 64 sites with no additional step. For clarity,
focus the discussion on two natural possibilities:~i! The sin-
glet plaquettes form a pattern with long-range order, the m
natural candidate being then the static covering~plaquette
array! as in the square lattice9 @see Fig. 4~a!#; ~ii ! the
plaquettes undergo strong resonances between configura
that differ only locally, the smallest pattern that allows su
a resonance being the diamond depicted in Fig. 4~b!.

The first possibility is definitely not favored by our varia
tional results: For both the 36-site and the 48-site clust
the plaquette covering which has the largest weight in
ground-state wave function is not the square covering, b

n

he
6-site
ch

below
TABLE I. Energy, degeneracy, and wave vector of the low-lying singlet states of the 12- and 1
symmetric clusters obtained forJ51 andJ850 by exact diagonalization and by the variational approa
with 0, one, and two additional steps. The second column is the energy of a single covering~no resonance
between plaquettes!. The number of plaquette coverings is equal to 36~84! for 12 ~16! sites, while there are
462 ~24 024! singlets in the full Hilbert space. In the exact diagonalization spectrum, these states lie
the first multiplet (E5212.841 and218.451 for 12 and 16 sites, respectively!.

N Diagonal energy 0 steps one step two steps Exact Degeneracyk

12 29.75 214.657 215.314 215.381 215.384 1 G

12 29.75 212.206 213.781 214.141 214.188 3 M
16 213 219.253 220.935 221.068 221.079 1 G

16 213 215.767 217.979 218.634 218.908 2 G

16 213 216.798 218.252 218.624 218.754 3 M
8-3



es
ey
4
or
-s
tte
en

n
is
se
il
b
r

e
e

er
th
t

he
n

s
it
c

f
o
a

ge
, as
.
er

t-
an-
tion
-
te
le
ng-

ce of

om-
free

ian
o.

la

the

s of

BRIEF REPORTS PHYSICAL REVIEW B68, 012408 ~2003!
diamond covering~see Fig. 5!. This fact is actually easy to
understand: The matrix elements corresponding to the r
nance of Fig. 4~b! dominate the secular equation, and th
are completely suppressed in the square pattern of Fig.~a!.

The effect of these resonances on the ground-state c
lations is a delicate issue. The ground states of the 36
and 48-site clusters are consistent with a long-range pa
for the diamond covering of the triangular lattice, but giv
the very small sizes from that point of view~the 36- and
48-site clusters can accommodate three and four diamo
respectively! this result is probably not significant. What
likely to be more relevant is the amplitude of the proces
that would enter a description in terms of an effective Ham
tonian. The two plaquette coverings inside a diamond can
described by an Ising variable, and the resonance gives
to a transverse field of orderJ/2. The spectra obtained for th
36-site and 48-site clusters are then consistent with a v
small potential-energy term with two- and three-body int
actions. A detailed analysis of this model lies beyond
scope of the present paper, but given the prominence of
kinetic-energy term, it is very likely that the system is t
equivalent of the disordered phase of the Ising model i
transverse field.22

In summary, this variational approach strongly sugge
that the ground state is a plaquette liquid with no four-s
plaquette long-range order, and with strong local resonan
between the configurations of Fig. 4~b!. The presence o
long-range order associated to a specific pattern of diam
covering can neither be ascertained nor excluded on the b

FIG. 4. Three remarkable covering patterns of the triangu
lattice with plaquettes. The last two resonate strongly.
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of the present results. We just note that, if no longer-ran
correlations are present, this plaquette liquid is expected
is its SU~2! counterparts, to exhibit topological degeneracy19

To conclude, we have shown that it is possible to ord
the SU~4! Heisenberg model for sufficiently large nex
nearest-neighbor repulsion, without the need to introduce
isotropy, and we have identified a quantum phase transi
aroundJ8/J50.12. ForJ850, which corresponds to a mini
mal model of LiNiO2, we have shown that the ground sta
is a spinand orbital liquid, and we have shown that simp
objects such as dimers of plaquettes do not develop lo
range order. These results are consistent with the absen
any kind of phase transition in LiNiO2. More generally, Mott
insulators with orbital degeneracy and the appropriate ge
etry emerge as potential candidates for completely order-
spin liquids with topological degeneracy.

We acknowledge the financial support of the Hungar
OTKA Grant Nos. T038162 and D32689, Bolyai Grant N
118/99, and the Swiss National Fund.
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FIG. 5. Dominant plaquette covering in the ground state of
48-site cluster~dashed line!. The diamonds making up the new
superlattice are shaded using different grays for the two pattern
Fig. 4~b!.
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