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Delocalization in harmonic chains with long-range correlated random masses
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We study the nature of collective excitations in harmonic chains with masses exhibiting long-range corre-
lated disorder with a power spectrum proportional to 1/ka, wherek is the wave vector of the modulations on
the random masses landscape. Using a transfer-matrix method and exact diagonalization, we compute the
localization length and participation ratio of eigenmodes within the band of allowed energies. We find extended
vibrational modes in the low-energy region fora.1. In order to study the time evolution of an initially
localized energy input, we calculate the second momentM2(t) of the energy spatial distribution. We show that
M2(t), besides being dependent of the specific initial excitation and exhibiting an anomalous diffusion for
weakly correlated disorder, assumes a ballistic spread in the regimea.1 due to the presence of extended
vibrational modes.
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I. INTRODUCTION

The role played by disorder on the nature of collect
excitations in condensed-matter physics has been the su
of intensive studies due to its relevance in defining gen
transport characteristics.1 Usually, disorder induces localiza
tion of collective excitations, thus degrading transport pro
erties, an effect that is largely pronounced in low dimensio
In particular, the one-electron eigenstates in the o
dimensional Anderson model with site-diagonal uncorrela
disorder are exponentially localized for any degree
disorder.2 However, several one-dimensional models w
correlated disorder have been proposed which exhibit d
calized states.3–5 It has been recently shown that the on
dimensional Anderson model with long-range correlated d
order presents a phase of extended electronic states.6–8 These
results have been confirmed by microwave transmiss
spectra of single-mode waveguides with inserted correla
scatters.9 More recently, it has been conjectured that lon
range correlations may strongly affect the electronic tra
port properties in DNA, although in this case the meta
phase is in fact induced by an order-disorder transition.10

The above results have motivated the study of furt
model systems that can be mapped onto the Anderson m
and are, therefore, expected to present a similar trans
between localized and extended collective excitations.
cently, studies concerning the one-dimensional quan
Heisenberg ferromagnet with exchange couplings exhibi
long-range correlated disorder reported the emergence
phase of extended spin waves.11,12 It was also shown that
associated with the emergence of extended spin waves in
low-energy region, the wave-packet mean-square displ
ment exhibits a long-time ballistic behavior.12 The effect of
correlated disorder has also been studied in other ran
magnets in which it was shown that long-range correlati
change the universality class of quantum critical points.13 In
addition, a criterion for determining the kind of diffusion i
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systems governed by a generalized Langevin equation
long-range memory was recently reported.14

The collective vibrational motion of one-dimensional di
ordered harmonic chains can also be mapped onto a
electron tight-binding model.15 Most of the normal vibra-
tional modes are localized. However, there are a f
delocalized low-frequency modes, whose number is of
order ofAN, in which case the disordered chains behave l
the disorder-free system.15,16 Further, it was shown that cor
relations in the mass distribution produce a new set of n
scattered modes in this system.17,18 The transport of energy
in mass-disordered~uncorrelated and correlated! harmonic
chains is strongly dependent on nonscattered vibratio
modes as well as on the initial excitation.19 For impulse ini-
tial excitations, uncorrelated random chains have a supe
fusive behavior for the second moment of the energy dis
bution @M2(t)}t1.5#, while for initial displacement
excitations a subdiffusive spread takes place@M2(t)}t0.5#.
The dependence of the second moment spread on the in
excitation was also obtained in Ref. 20. Correlations indu
by thermal annealing have been shown to enhance the lo
ization length of vibrational modes, although they st
present an exponential decay for distances larger than
thermal correlation length.21 Recently the thermal conductiv
ity of harmonic and anharmonic chains with uncorrelat
random masses,22 as well as that of a chain of hard-poin
particles with alternate masses,23 have been numerically in
vestigated in detail. In such cases, the main issue is whe
the systems display finite thermal conductivity in the therm
dynamic limit, a question that remains controversial.24

In this paper we extend the study of collective modes
the presence of long-range correlated disorder for the cas
vibrational excitations. We consider harmonic chains w
long-range correlated random masses assumed to have
tral power densityS}1/ka. By using a transfer-matrix calcu
lation, we obtain accurate estimates for the Lyapunov ex
nent, defined as the inverse of the degree of localizationlc .
©2003 The American Physical Society02-1
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We show that, fora.1, this model also presents a phase
extended modes in the low-frequency region. This resul
confirmed by participation ratio measurements from an ex
diagonalization procedure and finite-size scaling argume
The spatial evolution of an initially localized excitation
also studied by computing the spread of the second mom
of the energy distribution,M2(t). We find that, associate
with the emergence of a phase of delocalized modes, a
listic energy spread takes place.

II. VIBRATIONAL MODES

We consider a disordered harmonic chain ofN masses, for
which the equation of motion for the Fourier transformun of
the spatial displacementQn5une2 ivt of the nth mass with
vibrational frequencyv is16,18

~bn211bn2v2mn!un5bn21un211bnun11 . ~1!

Here mn is the mass at thenth site andbn is the spring
constant that couples the massesmn andmn11. In what fol-
lows, we use units in whichbn51. In the present harmoni
chain model, we take the massesmn following a random
sequence describing the trace of a fractional Brown
motion:25

mn5 (
k51

N/2

r~k!cosS 2pnk

N
1fkD , ~2!

wherek is the wave vector of the modulations on the rand
mass landscape andfk are N/2 random phases uniforml
distributed in the interval@0,2p#. The amplitude of each
Fourier component can be written asr(k)5@S(k)
3(2p/N)(12a)#1/2, where S(k) is the power spectrum. A
long-range correlated mass sequence can be generate
imposing the power spectrum to obey a power lawS(k)
5Ck2a, whereC5C(N/2p)(12a) andC is chosen to give a
unitary mass varianceDmn51. The exponenta is directly
related to the Hurst exponentH of the rescaled range analys
a52H11.25 In order to avoid vanishing masses we shift
masses generated by Eq.~2! to have an average value^mn&
55. Using matrix formalism, Eq.~1! can be rewritten as

S un11

un
D 5S 22mnv2 21

1 0 D S un

un21
D 5TnS un

un21
D . ~3!

Once the initial values foru0 andu1 are known, the value o
un can be obtained by repeated iterations along the chain
described by the product of transfer matricesMN

5)n51
N Tn . The localization length of each vibrational mod

is taken as the inverse of the Lyapunov exponentg defined
by16,18,26,27

g5~1/N! lim
N→`

log@ uMNc~0!u/uc~0!u#, ~4!

wherec(0)5( u0

u1) is a generic initial condition. The nature o

the vibrational modes can also be investigated by compu
the participation ratioj, since it displays a dependence o
the chain size for extended states and is finite for expon
01220
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tially localized ones. j is defined by j(v)
5(n51

N un
2/(n51

N un
4 ,17,21 where the Fourier transformsun are

those associated with an eigenmodev of a chain ofN masses
and are obtained by direct diagonalization of theN3N secu-
lar matrix A defined by Ai ,i52/mi , Ai ,i 115Ai 11,i
51/(mimi 11)1/2, and all otherAi , j50.15,18The participation
ratio calculations were averaged over 100 samples.

To investigate the effect of weak long-range correla
disorder, we present in Fig. 1~a! the Lyapunov coefficient as
a function ofv2 for a50.75 andN523105. In spite ofg
being very small in the bottom of the band,j/N for v.0
vanishes in the thermodynamic limit. This trend can be o
served in Fig. 1~b! where the participation ratio continuous
decreases as longer chains are considered. A more qua
tive scaling analysis of such a trend can be derived by in
ducing the set of auxiliary functions

u~v,N1 ,N2!5expF2U N1

j~v,N1!
2

N2

j~v,N2!
UG , ~5!

which is a measure of the difference between data from
consecutive chain sizes investigated, withN152N2 in our
simulations. For extended statesu'1 for large chain sizes
For localized statesu→0 in the thermodynamic limit. In Fig.
1~c! one sees clearly the increasing tendency of localiza
as longer chains are considered. Therefore, all modes
v.0 are still localized, a feature that holds for any 0<a
<1. However, the nature of the low-frequency mod

FIG. 1. ~a! Lyapunov coefficientg versusv2 for a50.75 and
N523105 sites.~b! Scaled participation ratioj/N as a function of
v2 for a50.75. From top to bottom,N5200, 400, 800, and 1600
~c! u(v,2N,N) function ~see text! versusv2 for N5200 ~solid
line!, 400 ~dashed line!, and 800~dot-dashed line!. In spite of g
being very small in the bottom of the band, all modes withv.0
are localized.~d!–~f! The same as in~a!–~c! for a51.5. The
Lyapunov coefficient vanishes within a finite range of frequen
values, thus revealing the presence of extended vibrational mo
The phase of extended vibrational modes is confirmed by thej/N
size-independent plateau in the low-frequency region and the s
invariance ofu(v,2N,N).
2-2
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changes qualitatively fora.1. In Fig. 1~d! we showg ver-
susv2 for a51.5 andN523105 sites. The Lyapunov co
efficient vanishes within a finite range of frequency valu
thus revealing the presence of extended vibrational mo
The scaled participation ratioj/N @see Fig. 1~e!# displays a
well-defined data collapse in the low-frequency region.
Fig. 1~f! we can see that theu versusv2 data suggest that th
phase of extended low-frequency vibrational modes is sta
in the thermodynamic limit.

III. ENERGY TRANSPORT

In order to study the time evolution of a localized ener
pulse, we calculate the second moment of the ene
distribution.19,20 This quantity is related to the thermal co
ductivity by Kubo’s formula.19,28 The classical Hamiltonian
H for a harmonic chain can be written asH5(n51

N hn(t),
where the energyhn(t) at the siten is given by (bn[1)

hn~ t !5
Pn

2

2mn
1F1

4
~Qn112Qn!21

1

4
~Qn2Qn21!2G . ~6!

Here Pn andQn define the momentum and displacement
the mass at thenth site. The fraction of the total energyH at
the siten is given byhn(t)/H and the second moment of th
energy distribution,M2(t), is defined by19

M2~ t !5 (
n51

N

~n2n0!2@hn~ t !/H#, ~7!

where an initial excitation is introduced at the siten0 at t
50. Using the fourth-order Runge-Kutta method, we so
Hamilton’s differential equationsṖn(t)52]H/]Qn and
Q̇n(t)5]H/]Pn , and calculateM2(t). The second momen
of the energy distributionM2(t) has the same status of th
mean-square displacement of the wave packet of an elec
in a crystal.19 We calculateM2(t) for severala values and
two kinds of initial excitation: impulse excitation and di
placement excitation.

A. Impulse excitation

In Fig. 2 we present the scaled second momentM2(t)/t1.5

versus timet for a50 ~dotted line!, which corresponds to
the uncorrelated random chain, anda50.75 ~dashed line!.
These results have been obtained after an initial impulse
citation, Pn0

(t50)5dn0 ,N/2 . In our calculations fora50,

the self-expanded chain method4,19 with initial chain sizeN
51000 was used to minimize end effects. Throughout
numerical integration process we kept the fraction of the
tal energyH at the ends of the chain@h0(t)/H andhN(t)/H]
smaller than 102300 for all times. As shown in Fig. 2~a!, we
find a long-time superdiffusive behavior fora50, in agree-
ment with Ref. 19. In contrast, fora.0 we cannot use the
self-expanded chain method due to the long-range chara
of the mass correlations. Therefore, chains withN510 000
masses were considered, and the runs stopped wheneve
fraction of the total energy at the chain ends achiev
102300. For a50.75 the time dependence of the scaled
01220
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ergy second momentM2(t)/t1.5 typically represents a wea
long-range correlated case. In such a case we also find
perdiffusive behavior for long times. On the other hand,
the strong correlated regime,a.1, a breakdown in the su
perdiffusive behavior becomes apparent. Figure 2~b! shows
the time dependence of the scaled energy second mom
M2(t)/t2, for a51.5 ~dotted line! anda52.0 ~dashed line!.
Associated with the emergence of extended vibratio
modes in the low-energy region, the second momentM2(t)
displays a long-time ballistic behavior.

B. Displacement excitation

The long-time behavior of the second momentM2(t) in
uncorrelated random chains with initial displacement exc
tion is significantly different from the corresponding beha
ior with initial impulse excitation.19,20Analytical calculations
and numerical techniques predict thatM2(t)}t0.5.19 For a
50 we indeed reproduce this behavior, as shown in F
3~a!, for the scaled second momentM2(t)/t0.5 versus timet
with initial displacement excitationQn0

(t50)5dn0 ,N/2 . We
find that this asymptotic subdiffusive behavior remains tr
for 0<a,1 @dashed line in Fig. 3~a!#. Similarly to the pre-

FIG. 2. ~a! Scaled energy second momentM2(t)/t1.5 versus time
t for a50 ~dotted line! anda50.75 ~dashed line! with initial im-
pulse excitation. For 0<a<1 only superdiffusive behavior is
found for long times.~b! Scaled second momentM2(t)/t2 versus
time t for a51.5 ~dotted line! anda52.0 ~dashed line! with initial
impulse excitation showing long-time ballistic behavior.

FIG. 3. ~a! The scaled second momentM2(t)/t0.5 versus timet
for a50 ~dotted line! and a50.75 ~dashed line! with initially
given displacement excitation. The subdiffusive behavior is fou
for long times.~b! The scaled second momentM2(t)/t2 versus time
t for a51.5 ~dotted line! and a52.0 ~dashed line! with initially
given displacement excitation showing long-time ballistic behav
2-3



ow
u
n

a
te

lo
ela

o

t

the
finite
r-

nce
of
rther

for
S,
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vious case, for strong correlations (a.1), which induce the
emergence of new extended vibrational modes in the l
energy region, the energy transport is faster than in the s
diffusive regime and assumes a ballistic nature, as show
Fig. 3~b!.

IV. SUMMARY

In summary, we studied the nature of collective vibr
tional modes in harmonic chains with long-range correla
random massesmn , with spectral power densityS}1/ka. We
found that, associated with the emergence of a phase of
energy extended collective excitations in the strong corr
tions regime,a.1, the energy second momentM2(t) dis-
plays a crossover from an anomalous subdiffusive
a

, J

,

s

.L
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superdiffusive regime~depending on the initial displacemen
or impulse excitation, respectively! to an asymptotic ballistic
behavior. Indeed, this can be understood by the fact that
number of such extended modes is extensive and has a
width in k space.19 The above findings indicate that the the
mal conductivity can be strongly influenced by the prese
of long-range correlations in the random distribution
masses and we hope that the present work stimulates fu
studies along this direction.
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