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Delocalization in harmonic chains with long-range correlated random masses
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We study the nature of collective excitations in harmonic chains with masses exhibiting long-range corre-
lated disorder with a power spectrum proportional tk*1Avherek is the wave vector of the modulations on
the random masses landscape. Using a transfer-matrix method and exact diagonalization, we compute the
localization length and participation ratio of eigenmodes within the band of allowed energies. We find extended
vibrational modes in the low-energy region far>1. In order to study the time evolution of an initially
localized energy input, we calculate the second morives(t) of the energy spatial distribution. We show that
M,(t), besides being dependent of the specific initial excitation and exhibiting an anomalous diffusion for
weakly correlated disorder, assumes a ballistic spread in the reginie due to the presence of extended
vibrational modes.
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[. INTRODUCTION systems governed by a generalized Langevin equation with
long-range memory was recently reportéd.

The role played by disorder on the nature of collective The collective vibrational motion of one-dimensional dis-
excitations in condensed-matter physics has been the subjemtdered harmonic chains can also be mapped onto a one-
of intensive studies due to its relevance in defining generaglectron tight-binding modef. Most of the normal vibra-
transport characteristi¢sUsually, disorder induces localiza- tional modes are localized. However, there are a few
tion of collective excitations, thus degrading transport prop-delocalized low-frequency modes, whose number is of the
erties, an effect that is largely pronounced in low dimensionsorder of N, in which case the disordered chains behave like
In particular, the one-electron eigenstates in the onethe disorder-free system:'® Further, it was shown that cor-
dimensional Anderson model with site-diagonal uncorrelatedelations in the mass distribution produce a new set of non-
disorder are exponentially localized for any degree ofscattered modes in this systéft® The transport of energy
disordeF However, several one-dimensional models within mass-disordereduncorrelated and correlatetharmonic
correlated disorder have been proposed which exhibit deloshains is strongly dependent on nonscattered vibrational
calized stated=® It has been recently shown that the one-modes as well as on the initial excitatiGhFor impulse ini-
dimensional Anderson model with long-range correlated distial excitations, uncorrelated random chains have a superdif-
order presents a phase of extended electronic $tat@hese  fusive behavior for the second moment of the energy distri-
results have been confirmed by microwave transmissiofution [M(t)=t™%], while for initial displacement
spectra of single-mode waveguides with inserted correlatedxcitations a subdiffusive spread takes plabk,(t)ot%%].
scatters. More recently, it has been conjectured that long-The dependence of the second moment spread on the initial
range correlations may strongly affect the electronic transexcitation was also obtained in Ref. 20. Correlations induced
port properties in DNA, although in this case the metallicby thermal annealing have been shown to enhance the local-
phase is in fact induced by an order-disorder transitfon.  ization length of vibrational modes, although they still

The above results have motivated the study of furthepresent an exponential decay for distances larger than the
model systems that can be mapped onto the Anderson modiiermal correlation lengtht Recently the thermal conductiv-
and are, therefore, expected to present a similar transitioity of harmonic and anharmonic chains with uncorrelated
between localized and extended collective excitations. Rerandom masses, as well as that of a chain of hard-point
cently, studies concerning the one-dimensional quanturparticles with alternate masseshave been numerically in-
Heisenberg ferromagnet with exchange couplings exhibitingestigated in detail. In such cases, the main issue is whether
long-range correlated disorder reported the emergence of the systems display finite thermal conductivity in the thermo-
phase of extended spin waves? It was also shown that, dynamic limit, a question that remains controversfal.
associated with the emergence of extended spin waves in the In this paper we extend the study of collective modes in
low-energy region, the wave-packet mean-square displacdéhe presence of long-range correlated disorder for the case of
ment exhibits a long-time ballistic behavirThe effect of  vibrational excitations. We consider harmonic chains with
correlated disorder has also been studied in other randotong-range correlated random masses assumed to have spec-
magnets in which it was shown that long-range correlationgral power densitys=1/k“. By using a transfer-matrix calcu-
change the universality class of quantum critical potits lation, we obtain accurate estimates for the Lyapunov expo-
addition, a criterion for determining the kind of diffusion in nent, defined as the inverse of the degree of localization
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We show that, forw>1, this model also presents a phase of 2 3 2 ) 3
extended modes in the low-frequency region. This result is __ (a) N=2x10 15k N=2x10
confirmed by participation ratio measurements from an exact™ ' o=0.75 s || a=15
diagonalization procedure and finite-size scaling arguments = | -

; X - . oo o= 05 >a<l i
The spatial evolution of an initially localized excitation is 0.5
also studied by computing the spread of the second momer 0 r T r 0 r r r
of the energy distributionM,(t). We find that, associated 10'{{b) 7 10'He) ]
with the emergence of a phase of delocalized modes, a bal = 10" Y

listic energy spread takes place. o 10"

II. VIBRATIONAL MODES

We consider a disordered harmonic chaiNahasses, for
which the equation of motion for the Fourier transfoumof
the spatial displaceme®,=u,e "' of the nth mass with
vibrational frequency is*®8

(ﬁn71+ﬁn_wzmn)un:anlunfl+ﬁnun+l- (1)

Here m, is the mass at thath site andp, is the spring
constant that couples the massesandm, ;. In what fol-
lows, we use units in whiclg,,=1. In the present harmonic
chain model, we take the masses following a random
sequence describing the trace of a fractional Brownial
motionZ®

FIG. 1. (a) Lyapunov coefficienty versusw? for «=0.75 and
N=2x 10’ sites.(b) Scaled participation rati¢/N as a function of
w? for «=0.75. From top to bottord\ =200, 400, 800, and 1600.
(c) 6(w,2N,N) function (see text versusw? for N=200 (solid
rfine), 400 (dashed ling and 800(dot-dashed ling In spite of y
being very small in the bottom of the band, all modes with 0

N/2 2k are localized.(d)—(f) The same as infa)—(c) for «=1.5. The

_ ™ Lyapunov coefficient vanishes within a finite range of frequency

m“_k; Mk)cos{ N b @ values, thus revealing the presence of extended vibrational modes.

The phase of extended vibrational modes is confirmed byéthe
wherek is the wave vector of the modulations on the randomsize-independent plateau in the low-frequency region and the scale
mass landscape angi, are N/2 random phases uniformly invariance ofg(w,2N,N).
distributed in the interval0,27]. The amplitude of each
Fourier component can be written ap(k)=[S(k) tially localized ones. ¢ is defined by &(w)
X(2m/N)~ 9112 where S(k) is the power spectrum. A =sN_ u¥sN_ u? 72l where the Fourier transforms, are
long-range correlated mass sequence can be generated #se associated with an eigenmadef a chain ofN masses
imposing the power spectrum to obey a power 18(k)  and are obtained by direct diagonalization of Nv& N secu-
=Ck™ ¢, whereC=C(N/2m)*"® andCis chosen to give a |ar matrix A defined by A ;=2/m, A i 1=Aiq;
unitary mass variancAm,=1. The exponent is directly  =1/(mm;,;)*? and all other, ; =0.1518The participation
related to the Hurst exponehtof the rescaled range analysis ratio calculations were averaged over 100 samples.
a=2H+1.%In order to avoid vanishing masses we shiftall  To investigate the effect of weak long-range correlated

masses generated by E@) to have an average valen,)  disorder, we present in Fig(d) the Lyapunov coefficient as

=5. Using matrix formalism, Eq(1) can be rewritten as  a function ofw? for a=0.75 andN=2x1C°. In spite of y

) being very small in the bottom of the banéfN for >0

Uppp| (27 Mpe® —1)( Uy | Un 3 vanishes in the thermodynamic limit. This trend can be ob-

u, | 1 0/ \ury)  Mupq) served in Fig. (b) where the participation ratio continuously
o decreases as longer chains are considered. A more quantita-

Once the initial values fony andu, are known, the value of  tjye scaling analysis of such a trend can be derived by intro-

u, can be obtained by repeated iterations along the chain, afucing the set of auxiliary functions

described by the product of transfer matricddy

=II\_,T,. The localization length of each vibrational mode B N, N, ‘
is taken as the inverse of the Lyapunov exponegrmtefined 0(w,Ny,Np)=exp — & w,Ny) E(w,Ny)| |’ ®)
by16’18’26‘27
which is a measure of the difference between data from two
y=(1/N) lim log[|Myc(0)|/|c(0)|], (4)  consecutive chain sizes investigated, wNh=2N, in our
N—o simulations. For extended stat@s-1 for large chain sizes.

Upy o . For localized state8— 0 in the thermodynamic limit. In Fig.
wherec(0)=( ) is a generic initial condition. The nature of 1(¢) one sees clearly the increasing tendency of localization
the vibrational modes can also be investigated by computings longer chains are considered. Therefore, all modes with
the participation raticf, since it displays a dependence on w>0 are still localized, a feature that holds for any @
the chain size for extended states and is finite for exponern<=1. However, the nature of the low-frequency modes
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changes qualitatively forr>1. In Fig. 1(d) we showvy ver-
susw? for a=1.5 andN=2x 10" sites. The Lyapunov co-
efficient vanishes within a finite range of frequency values,
thus revealing the presence of extended vibrational modes.
The scaled participation rati&N [see Fig. 1e)] displays a
well-defined data collapse in the low-frequency region. In

——— -
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2 1.5
M, O/ M,(1)/

. =2
Fig. 1(f) we can see that th@ versusw? data suggest that the 005} 7smsoon oI TTIIII I
phase of extended low-frequency vibrational modes is stable o=1.5
in the thermodynamic limit. 0 o0 3000 3090 2000

t
I1l. ENERGY TRANSPORT
FIG. 2. (a) Scaled energy second momévs(t)/t*°versus time

In order to study the time evolution of a localized energyt for «=0 (dotted liné and a=0.75 (dashed lingwith initial im-
pulse, we calculate the second moment of the energpulse excitation. For €a<1 only superdiffusive behavior is
distribution!®?° This quantity is related to the thermal con- found for long times(b) Scaled second momeM ,(t)/t? versus
ductivity by Kubo's formula'®?® The classical Hamiltonian timet for o= 1.5 (dotted ling and = 2.0 (dashed lingwith initial
H for a harmonic chain can be written apgr’:':lhn(t), impulse excitation showing long-time ballistic behavior.

where the energh,(t) at the siten is given by (8,=1) )
ergy second momeril ,(t)/t*® typically represents a weak

Pﬁ 1 1 long-range correlated case. In such a case we also find su-

ha(D) =5+ Z(Qn+1_Qn)2+ Z(Qn_anl)z . (6)  perdiffusive behavior for long times. On the other hand, in

" the strong correlated regime,>1, a breakdown in the su-
HereP, andQ, define the momentum and displacement ofperdiffusive behavior becomes apparent. Figuf® 3hows
the mass at thath site. The fraction of the total ener¢iyat  the time dependence of the scaled energy second moment,
the siten is given byh,(t)/H and the second moment of the M,(t)/t?, for a=1.5 (dotted ling and a= 2.0 (dashed ling
energy distributionM ,(t), is defined by’ Associated with the emergence of extended vibrational
modes in the low-energy region, the second monip(t)
N displays a long-time ballistic behavior.
Ma(t)= 2, (n=no)Z[ha(t)/H], (7)
B. Displacement excitation

where an initial excitation is introduced at the sitg at t ) ) _
=0. Using the fourth-order Runge-Kutta method, we solve The long-time behavior of the second momémj(t) in
Hamilton's _differential equationsPn(t)z — 9H/4Q, and uncorrelated random chains with initial displacement excita-

. B tion is significantly different from the corresponding behav-
Qn(t)=dH/oP,, and calculateM(t). The second moment o \yith initial impulse excitatiort*2°Analytical calculations

of the energy distributiotM»(t) has the same status of the g4 numerical techniques predict tHeb(t)>t%52° For «
mean-square displacement of the wave packet of an electrany e indeed reproduce this behavior, as shown in Fig.
in a c_rystal?9 We calcul_atel_\/l Z(t) for several_a \(alues and_ 3(a), for the scaled second momeMit,(t)/t°5 versus timet

two kinds of initial excitation: impulse excitation and dis- \,ith initial displacement excitatianO(t=0)=5nO,N,2. We

lacement excitation. , . : e . .
P find that this asymptotic subdiffusive behavior remains true

o for 0<a<1 [dashed line in Fig. @]. Similarly to the pre-
A. Impulse excitation

In Fig. 2 we present the scaled second monépt)/t1> e

versus timet for «=0 (dotted ling, which corresponds to g

the uncorrelated random chain, and=0.75 (dashed ling =

These results have been obtained after an initial impulse ex- 2“ . =

Ni—l

S~
=
S’
E(\I

-

citation, P, (t=0)= 6, nj2- In our calculations fora=0, .
the self-expanded chain mettfdd with initial chain sizeN
=1000 was used to minimize end effects. Throughout the
numerical integration process we kept the fraction of the to-
tal energyH at the ends of the chalrhy(t)/H andhy(t)/H] L L L
smaller than 103 for all times. As shown in Fig. @), we 0 2000 4000 6000

find a long-time superdiffusive behavior far=0, in agree- t

ment with Ref. 19. In contrast, far>0 we cannot use the FIG. 3. (@) The scaled second momeNt,(t)/t%5 versus timet
self-expanded chain method due to the long-range charactg; 4=0 (dotted ling and «=0.75 (dashed ling with initially

of the mass correlations. Therefore, chains wWitls 10000  gjven displacement excitation. The subdiffusive behavior is found
masses were considered, and the runs stopped whenever tBelong times.(b) The scaled second momevit,(t)/t? versus time
fraction of the total energy at the chain ends achieved for «=1.5 (dotted ling and «=2.0 (dashed ling with initially

10 3% For «=0.75 the time dependence of the scaled engiven displacement excitation showing long-time ballistic behavior.
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vious case, for strong correlationa® 1), which induce the superdiffusive regimédepending on the initial displacement
emergence of new extended vibrational modes in the lower impulse excitation, respectiveljo an asymptotic ballistic
energy region, the energy transport is faster than in the sulidehavior. Indeed, this can be understood by the fact that the
diffusive regime and assumes a ballistic nature, as shown inumber of such extended modes is extensive and has a finite
Fig. 3(b). width in k space'® The above findings indicate that the ther-
mal conductivity can be strongly influenced by the presence
IV. SUMMARY of long-range correlations in the random distribution of

. . ) masses and we hope that the present work stimulates further
In summary, we studied the nature of collective vibra-gydies along this direction.

tional modes in harmonic chains with long-range correlated
random masses,, , with spectral power densitge 1/k*. We
found that, associated with the emergence of a phase of low-
energy extended collective excitations in the strong correla- We thank Professors Kalyan Kundu and Ferenc Igloi for
tions regime,a>1, the energy second momeMi,(t) dis-  useful information. Work was supported by CNPq, CAPES,
plays a crossover from an anomalous subdiffusive ofFINEP, and FAPEAL(Brazilian agencigs
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