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Linear rate of grain growth in thin films during deposition
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Typical grain growth occurs in a polycrystalline phase under the constraint of constant volume, resulting in
reduction of the total surface~grain boundary! area and energy. The grain growth rate is parabolic. We present
here a different kind of grain growth in thin films during deposition, while the film is thickening. The grain
growth rate can be linear. In vapor-phase deposition of face-centered-cubic metals such as Al and Cu, the grain
size of the film is known to be nearly the same as the film thickness. A linear grain growth rate is expected if
the deposition rate is constant. If we assume the grain size to be the same as the thickness, the total surface
~grain boundary! area does not change. Under the constraint of a constant surface area, we present here a
simple kinetic model of linear rate of grain growth during film deposition. We define it as flux-driven grain
growth. A Monte Carlo simulation has been performed for comparison, and the results show a linear relation-
ship between grain size and film thickness.

DOI: 10.1103/PhysRevB.67.245408 PACS number~s!: 81.10.Bk, 64.70.Kb
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I. INTRODUCTION

In thin-film deposition, it is known experimentally1–4 that
the grain size in the film can be comparable to the film thi
ness. This is especially true for vapor deposition of fa
centered-cubic metal films such as Al and noble metals o
fused quartz substrate at a few hundred degrees of c
grade. The thicker the film, the larger the grains. It indica
that the very process of deposition somehow enables gr
to grow during deposition. The thickening of the film is a
companied by grain growth. It suggests a linear grain gro
rate if the deposition rate is constant. It is very different fro
most of the known two-dimensional~2D! and 3D models of
grain growth,5–10 providing the parabolic time dependen
for average grain size. In this linear mode of grain growth
we assume the grain radius to be the same as the film th
ness (r 5H), the total grain boundary area (SGB) remains
constant during grain growth:

SGB5N3
1

2
2prH 5N3pr 25Ssubstrate5const.

This is illustrated in Fig. 1, in which three sets of films
hexagonal grains with different grain size and thickness
shown on the same substrate area (Ssubstrate). If we assume
the edge of a hexagonal grain to be the same as the
thickness, the total grain boundary area in these three se
film is the same. This is also true if we assume the grain
be cylindrical. Hence we have a unique case of grain gro
in which the total surface area is constant but the volu
increases. We define it as flux-driven grain growth~FDGG!;
it depends on the incoming atomic flux of deposition. This
quite different from the classical or normal grain growth
which the total volume of the grains is constant, but the gr
boundary area decreases, and the grain growth rate is p
bolic.

Recently, we developed a kinetic theory of ripening, flu
driven ripening~FDR!, in which the ripening occurs under
constant surface area but growing volume. It is very differ
0163-1829/2003/67~24!/245408~5!/$20.00 67 2454
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from the classic Lifschtz–Slezov-Wagner~LSW! ripening
wherein the ripening phase, under the constraint of a c
stant volume, reduces its surface area. The flux-driven rip
ing has been applied to the growth of scallop-type interfac
intermetallic compound of Cu6Sn5 during the reaction be-
tween molten solder and copper.11 If we assume the scallop
are hemispheres, the total surface area between the mel
scallops is constant during the growth of the scallops. T
driving force of flux-driven ripening is the gain of bul
Gibbs free energy of intermetallic compound formation

FIG. 1. Schematic diagram to illustrate the conservation of to
surface of grain boundaries during grain growth in thin-film dep
sition.
©2003 The American Physical Society08-1
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stead of the decrease of surface energy. Clearly, there
strong similarity between flux-driven ripening and flu
driven grain growth; both of them are kinetic processes
der the conditions of constant surface but growing volum

II. EDGE EFFECT ON THE SURFACE
OF A PAIR OF GRAINS

In Fig. 2, the cross section of a pair of large~radiusr 1)
and small~radiusr 2) neighboring grains is shown. The to
surfaces of the grains are assumed to be spherical with ra
R1 and R2 , respectively, andR1.R2 . We demonstrate be
low that the deposition flux enables the larger grain to gr
by the so-called ‘‘edge or mushroom effect’’ and leads to
linear grain growth rate.

When atoms are being deposited onto the film surfa
adatoms remain on the surface for some time, migrate on
surface, and are looking for suitable place to join the latt
of one of the grains. We suppose that the migration length
adatoms is very short, and they tend to attach to the ‘‘hom
grain surface at the place of their ‘‘landing.’’ Furthermor
we suppose that the only place where a landing atom
choose its future ‘‘home’’ is in a narrow band in the vicini
of a junction where a grain boundary meets the surface.
note the width of this band as 2d, and takea<d,dsink ,
wherea is an interatomic distance, approximately equal
the spacing between atomic layers of the growing film,dsink
is a distance to nearest sink~surface step! for an adatom to
join the lattice.

We suppose that each atom, landing onto this nar
band, inevitably chooses the larger grain as its ‘‘home’’ a
joins the lattice of this grain with corresponding orientatio
There will be atoms landed actually at the edge of
smaller grain inside the 2d band, but they will join the lattice
of the larger neighbor. It means that the larger grain w
overlap its neighbor by a distanced during the building up of
a new atomic layer, leading to a linear grain growth rate
proportion to the thickening rate.

The reason for an adatom to choose the larger grai
simply a larger average radius of this grain, hence the lo
potential energy of corresponding sites. Difference of cur
tures is not the only reason of choice. Difference of surfa
tensions of neighboring grains can well be a more powe

FIG. 2. Schematic diagram of the cross section of a pair
grains in thin-film deposition. The edge of the large grain will gro
over the small grain due to the ‘‘mushroom effect.’’
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factor, which is known as a reason of abnormal grain grow
in the absence of the deposition flux. Here we do not ta
this factor into account explicitly. Yet it is obvious that du
ing the initial stage of film formation or islands growth, tho
grains with less surface tension should grow faster, and a
the formation of the initial layer, they start as the larg
grains. Thus adatoms tend to choose them as their ‘‘hom
grains.

In this simple model, the velocity of each grain bounda
is the same,

V56
d

Dt
, ~1!

whereDt is the time of one atomic layer deposition, which
determined by the flux density:

jStDt5nSta, ~2!

wheren is atomic density of the film andSt is substrate or
film surface area, so that

Dt5
an

j
, V56

d

a

j

n
. ~3!

Hence the rate of film thickening is

dh

dt
5

a

Dt
5

j

n
5

a

d
uVu. ~4!

Thus the velocity of grain boundary movement is appro
mately equal to the thickening rate and independent of
absolute value of the differences between the curvature
R1 and R2 , as shown in Fig. 2. The direction of motion
always from the larger grain to the smaller grain.

III. ANALYSIS OF FLUX-DRIVEN GRAIN GROWTH

In Fig. 3, letS be the top surface area of a certain gra
with Z neighbors. Then

dS

dt
5 (

k51

Z

LkVk , ~5!

f

FIG. 3. Schematic diagram of the top view of grain grow
during deposition. Velocities of all boundaries are the same in
solute value and directed from larger grain to smaller one.
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where Lk is the length of boundary withkth neighboring
grain andVk is its velocity, positive ifS.Sk and negative if
S,Sk ~Fig. 3!. Naturally, the smaller the neighboring grai
the shorter~in average! should be the length of boundar
with it. We take simply that the grain size and the bound
length are proportional to each other:

Lk5qrk , ~6!

where

r k5ASk /p.

On the other hand, the perimeter of the grain(k51
Z Lk can be

approximated as 2pr and r 5AS/p. Thus,

q5
2pr

(r k
, Lk52pr

r k

( i 51
Z r i

. ~7!

Substituting Eq.~7! into Eq. ~5!, one obtains

2pr
dr

dt
52pr

(k51
Z r kVk

(k51
Z r k

⇒ dr

dt
5

1

Z
(k51

Z r kVk

1

Z
(k51

Z r k

,

Vk5H 1uVu, r k,r ,

2uVu, r k.r .
~8!

That is the basic equation for the growth or shrinkage of o
arbitrary grain. It can be expressed in terms of a size dis
bution function if we neglect the ‘‘short-range order’’ effect

dr

dt
5

^r 8V&

^r 8&

5

1

N
~*0

r r 8uVu f ~ t,r 8!dr81* r
`r 8~2uVu! f ~ t,r 8!dr8!

1

N
*0

`r 8 f ~ t,r 8!dr8

.

~9!

@For a derivation of Eq.~9! in the frame of the mean-field
approach, see the Appendix.#

Since a distribution function should obey a continu
equation, we have

] f

]t
52

]

]r S f
dr

dt D52uVu
]

]r F f S 2
*0

r r 8 f ~ t,r 8!dr8

*0
`r 8 f ~ t,r 8!dr8

21D G .
~10!

Equation~10! indicates the possibility ofr /t scaling. Indeed,
we introduce the new variables

t5uVut, j5
r

uVut
5

r

t
⇒ ]

]t
5uVuS ]

]t
2

j

t

]

]j D ,

]

]r
5

1

t

]

]j
. ~11!
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Then Eq.~13! can be transformed into

t
] f

]t
5j

] f

]j
2

]

]j F f S 2
*0

jj8 f ~t,j8!dj8

*0
`j8 f ~t,j8!dj8

21D G . ~12!

A factorized solution is possible by taking

f ~t,j!5g~t!w~j!. ~13!

Then,

d ln g

d ln t
5

d ln w

dj S 11j22
*0

jj8w~j8!dj8

*0
`j8w~j8!dj8

D 2
2jw

*0
`j8w~j8!dj8

5l5const. ~14!

We can determine the constant parameterl from the con-
straint of conserving surface area:

const5E
0

`

pR2f ~ t,R!dR

5pg~t!t3E
0

`

j2w~j!dj⇒g~t!5const3t23. ~15!

It leads to

d ln g

d ln t
5l523. ~16!

Equation~16! makes it possible to find the type of time d
pendence for the average grain size and for number of gr
in the frame of our model:

FIG. 4. Typical size distributionsf (tt,r), calculated according
to Eq. ~19!. ~a! tt50, ~b! tt510, and~c! tt520. Herer5r /L, L
52gV/kT, andtt5t, (d8/a) j 8/nL.
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^r &5
*0

`r 8 f ~ t,r 8!dr8

*0
` f ~ t,r 8!dr8

5
t2g*0

`j8w~j8!dj8

tg*0
`w~j8!dj8

5^j&t5constuVut,

N5tgE
0

`

w~j8!dj85
const

t2 , ~17!

Thus the average size in our model is indeed increasing
early with time and, hence, it is proportional to the fil
thickness.

So far the choice of a ‘‘host’’ grain by adatoms within
narrow 2d band around the surface area of a grain bound
was considered as totally deterministic: adatoms cho
the larger grain, independent of difference of size of the t
grains. It is physically evident that for a pair of grains havi

FIG. 5. Typical top views~fragments, 10% of total area! of grain
structure evolution during deposition, obtained by Monte Ca
simulation: ~a! initial distribution obtained as an areal array
Wigner-Seitz cells around randomly positioned centers,~b! after
deposition of 100 atomic layers, and~c! after deposition of 300
layers.
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nearly the same size, the procedure could be stocha
Therefore we use a Boltzmann distribution of probabiliti
between two neighboring grains, taking into account the
ergy difference as 2gV(1/r 221/r 1).

Then, instead of Eq.~3!, the velocity of grain boundary
between these two grains will be

V5
d

a

j

n
tanhF2gV

kT S 1

r 2
2

1

r 1
D G . ~18!

This equation resembles the well-known Potts model12 for
normal grain growth, but deals only with adatoms arriving
the surface and choosing their host grain. In the mean-fi
approximation the corresponding equation for size distri
tion will have the following form:

] f

]t
52

d

a

j

n

]

]r H f tanhF2gV

kT S 1

^r &
2

1

r D G J . ~19!

Numerical solution of Eq.~19! has been made for non
dimensional time and space scales:r5r /L, L52gV/kT,
tt5t(d/a) j /nL. The typical evolution of the size distribu
tion from a Gaussian form presented initially is shown
Fig. 4. The time dependence of the average size appea
be almost linear.

IV. MONTE CARLO SIMULATION OF FLUX-DRIVEN
GRAIN GROWTH

The above analytical and numeric results were checked
Monte Carlo simulations. A full Monte Carlo~MC! model
taking into account the rate of deposition, diffusion of ad
toms, their distribution among sinks leading to grain grow

FIG. 6. Dependence of average grain size~in units of inter-
atomic distanceai) vs number of deposited layers~h is film thick-
ness, anda2 is interlayer spacing!, obtained by Monte Carlo simu
lation of flux-driven grain growth.
8-4
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and possible changes of host grains at the free surface wi
presented elsewhere. Here we present a simplified
model, which almost directly corresponds to the above a
lytical model, with the following assumptions.~1! Only
those atoms arriving at the surface near a grain boundary
choose their host grain.~2! If an atom arrived at the surfac
near a grain boundary and if it is above the larger grain
inevitably chooses this larger grain as its host.~3! If an atom
arrived at the surface near a grain boundary, but is above
smaller grain, it can nevertheless choose the larger grai
its host~edge effect! with probability p5pn (n50,1,2,3 in
the case of square lattice!, depending on the number o
nearest-neighbor atoms of the smaller grain~excluding the
atom just below!.

Figure 5 demonstrates the typical top view of grain str
ture for the casep350.1,p250.3, andp15p051. Figure 6
shows the average grain size~in units of interatomic dis-
tance! versus the number of deposited atomic layers. In
correspondence with the analytical model, the relation
pears to be linear.~The initial nonmonotonic dependence
evidently due to random initial size distribution.! More-
over, the proportionality coefficient, obtained by numeric s
lution of Eq. ~10! and calculation of̂r& versush, appears to
be 0.406, which is rather close to the MC result~0.390!.

V. SUMMARY

The linear rate of grain growth in thin-film deposition h
been analyzed under the constraints of a constant rat
deposition and constant grain boundary area. Assuming
those adatoms deposited on the film surface near a g
boundary tend to choose the larger grain to grow, we h
obtained a linear relationship between grain size and
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thickness. A Monte Carlo simulation has been performed
the results are in good agreement with the analysis.
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APPENDIX: PROOF OF THE EXPRESSION
FOR THE AVERAGE GROWTH RATE IN FDGG

The growth rate of the area of an arbitrary grain is

dS

dt
5 R dl V~ l !. ~A1!

The velocity of the grain boundary at intervaldl is deter-
mined by the probabilities of this interval to be shared with
neighboring grain of sizer 8. First, f (r 8)dr8 is the number
of grains with sizes within the intervaldr8. Then
2pr 8 f (r 8)dr8 is a length of boundaries of all these grain
The probability for certain boundary point to belong to th
very class is a ratio of

pr 8 f ~r 8!dr8

*pr 8 f ~r 8!dr8
5p~r 8,r 81dr8!. ~A2!

Then the average velocity will be

V~ l !5E V~r ,r 8!p~r 8,r 81dr8!

5
*V~r ,r 8!r 8 f ~r 8!dr8

*r 8 f ~r 8!dr8
5

^r 8V&

^r 8&
. ~A3!
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