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Linear rate of grain growth in thin films during deposition
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Typical grain growth occurs in a polycrystalline phase under the constraint of constant volume, resulting in
reduction of the total surfadgrain boundaryarea and energy. The grain growth rate is parabolic. We present
here a different kind of grain growth in thin films during deposition, while the film is thickening. The grain
growth rate can be linear. In vapor-phase deposition of face-centered-cubic metals such as Al and Cu, the grain
size of the film is known to be nearly the same as the film thickness. A linear grain growth rate is expected if
the deposition rate is constant. If we assume the grain size to be the same as the thickness, the total surface
(grain boundary area does not change. Under the constraint of a constant surface area, we present here a
simple kinetic model of linear rate of grain growth during film deposition. We define it as flux-driven grain
growth. A Monte Carlo simulation has been performed for comparison, and the results show a linear relation-
ship between grain size and film thickness.
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I. INTRODUCTION from the classic Lifschtz—Slezov-WagnérSW) ripening
wherein the ripening phase, under the constraint of a con-

In thin-film deposition, it is known experimentaly? that  stant volume, reduces its surface area. The flux-driven ripen-
the grain size in the film can be comparable to the film thick-ing has been applied to the growth of scallop-type interfacial
ness. This is especially true for vapor deposition of faceintermetallic compound of G®n; during the reaction be-
centered-cubic metal films such as Al and noble metals on aween molten solder and coppgéif we assume the scallops
fused quartz substrate at a few hundred degrees of centire hemispheres, the total surface area between the melt and
grade. The thicker the film, the larger the grains. It indicatesscallops is constant during the growth of the scallops. The
that the very process of deposition somehow enables grairdiving force of flux-driven ripening is the gain of bulk
to grow during deposition. The thickening of the film is ac- Gibbs free energy of intermetallic compound formation in-
companied by grain growth. It suggests a linear grain growth
rate if the deposition rate is constant. It is very different from
most of the known two-dimension&D) and 3D models of
grain growth3~° providing the parabolic time dependence
for average grain size. In this linear mode of grain growth, if
we assume the grain radius to be the same as the film thick-
ness (=H), the total grain boundary are&{g) remains
constant during grain growth:

1 2 bstrat:
SGB=N><§27rrH =NX 71 = S const.

This is illustrated in Fig. 1, in which three sets of films of
hexagonal grains with different grain size and thickness are
shown on the same substrate ar&t". If we assume
the edge of a hexagonal grain to be the same as the film
thickness, the total grain boundary area in these three sets of
film is the same. This is also true if we assume the grains to
be cylindrical. Hence we have a unique case of grain growth
in which the total surface area is constant but the volume
increases. We define it as flux-driven grain grodfidGG);
it depends on the incoming atomic flux of deposition. This is
quite different from the classical or normal grain growth in
which the total volume of the grains is constant, but the grain
boundary area decreases, and the grain growth rate is para-
bolic.

Recently, we developed a kinetic theory of ripening, flux-  FIG. 1. Schematic diagram to illustrate the conservation of total
driven ripening(FDR), in which the ripening occurs under a surface of grain boundaries during grain growth in thin-film depo-
constant surface area but growing volume. It is very differensition.
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FIG. 2. Schematic diagram of the cross section of a pair of
grains in thin-film deposition. The edge of the large grain will grow o ) )
over the small grain due to the “mushroom effect.” FIG. 3. Schematic diagram of the top view of grain growth

during deposition. Velocities of all boundaries are the same in ab-

stead of the decrease of surface energy. Clearly, there is sglute value and directed from larger grain to smaller one.
strong similarity between flux-driven ripening and flux- f C .

, , i T actor, which is known as a reason of abnormal grain growth
driven grain growth; both of them are kinetic processes un-

der the conditions of constant surface but growing volume. the absence of the deposition flux. Here we do not take
9 9 "this factor into account explicitly. Yet it is obvious that dur-

ing the initial stage of film formation or islands growth, those
Il. EDGE EFFECT ON THE SURFACE grains with less surface tension should grow faster, and after
OF A PAIR OF GRAINS the formation of the initial layer, they start as the larger
) ) ) ) grains. Thus adatoms tend to choose them as their “home”
In Fig. 2, the cross section of a pair of largadiusry)  grains.
and small(radiusr) neighboring grains is shown. The top — |n this simple model, the velocity of each grain boundary
surfaces of the grains are assumed to be spherical with radiys the same,
R; andR,, respectively, andR;>R,. We demonstrate be-
low that the deposition flux enables the larger grain to grow d
by the so-called “edge or mushroom effect” and leads to a v iﬁ’ @
linear grain growth rate.
When atoms are being deposited onto the film surfacewhereAt is the time of one atomic layer deposition, which is
adatoms remain on the surface for some time, migrate on th@etermined by the flux density:
surface, and are looking for suitable place to join the lattice _
of one of the grains. We suppose that the migration length of JSiAt=nSa, )
adatoms is very short, and they tend to attach to the *homeyyheren is atomic density of the film an@, is substrate or
grain surface at the place of their “landing.” Furthermore, fijjm surface area, so that
we suppose that the only place where a landing atom can

choose its future “home” is in a narrow band in the vicinity an dj

of a junction where a grain boundary meets the surface. De- At= T V= o (3
note the width of this band asd? and takea<d<dg;y,

wherea is an interatomic distance, approximately equal toHence the rate of film thickening is

the spacing between atomic layers of the growing filigyy i

is a distance to nearest sifgurface stepfor an adatom to dh _a J_ E|V| (4

join the lattice. dt At n

We suppose that each atom, landing onto this narrow
band, inevitably chooses the larger grain as its “home” and Thus the velocity of grain boundary movement is approxi-
joins the lattice of this grain with corresponding orientation. mately equal to the thickening rate and independent of the
There will be atoms landed actually at the edge of thedbsolute value of the differences between the curvatures of
smaller grain inside the®band, but they will join the lattice Ri1 andR;, as shown in Fig. 2. The direction of motion is
of the larger neighbor. It means that the larger grain willalways from the larger grain to the smaller grain.
overlap its neighbor by a distandeduring the building up of
a new atomic layer, leading to a linear grain growth rate in  Ill. ANALYSIS OF FLUX-DRIVEN GRAIN GROWTH
proportion to the thickening rate.

The reason for an adatom to choose the larger grain is. .
simply a larger average radius of this grain, hence the Iowe\“’Ith Z neighbors. Then
potential energy of corresponding sites. Difference of curva-
tures is not the only reason of choice. Difference of surface g

; > only reason > LV, (5)
tensions of neighboring grains can well be a more powerful dt ¢

In Fig. 3, letS be the top surface area of a certain grain
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where L, is the length of boundary wittikth neighboring ng —
grain andV is its velocity, positive ifS>S, and negative if
S< S, (Fig. 3). Naturally, the smaller the neighboring grain, a
the shorter(in averagg should be the length of boundary -
with it. We take simply that the grain size and the boundary
length are proportional to each other:

Ly=ar, (6)
where
M= \/Sk/’7T.
On the other hand, the perimeter of the grEiiLlLk can be 02 — b
approximated as 2r andr=/S/7r. Thus,
2mr I -
= —— — C
q S L=2mr SZ o (7)
Substituting Eq(7) into Eq. (5), one obtains 0 . i k I \ [ , pl
l Li] z 4 & :] 10
z =D ARV o .
dr _ =MV dr _ z FIG. 4. Typical size distribution$(tt,p), calculated according
MG 2T S, At 1, to Eq. (19). (a) tt=0, (b) tt=10, and(c) tt=20. Herep=r/L, L
7 Zk-alk =2yQ/KT, andtt=t, (d’/a)j'/nL.
+IV], re<r Then Eq.(13) can be transformed into
k= _|V| > (8) £
;T I . Jo&'f(7,&")d¢’ . 12
That is the basic equation for the growth or shrinkage of one Tor 9 0E Jo&'f(r,&)d¢’ I
arbitrary grain. It can be expressed in terms of a size distri-
bution function if we neglect the “short-range order” effects: A factorized solution is possible by taking
dr_{r'v) H(r,6)=0(De(&). (13
dt  (r')
Then,
1
—([or'|V|f(t,rHdr'+ 7' (= VD (t,r)Hdr’ R
:N(fo | |( ) fr ( | |)( ) ) dlng:dlnqo(l+§_2f8§qo(§)d§)_ 2§(P
dint  d¢ Jo€'o(€)dE"]  [o& @(E)dE

%fﬁr’f(t,r’)dr’
=\=const. (14)
€)
[For a derivation of Eq(9) in the frame of the mean-field
approach, see the Appendix.
Since a distribution function should obey a continuity

We can determine the constant parametdrom the con-
straint of conserving surface area:

equation, we have const J mTrsz(t,R)dR
0
af 9 (fdr)_ v d <2f{)r’f(t,r’)dr’ )
gt or\ dt) ar or'f(t,r)dr’ ' =wg(¢)¢3j Ep(&)dé=g(r)=consx 7 3. (15
0

(10)
Equation(10) indicates the possibility of/t scaling. Indeed, |t leads to
we introduce the new variables

ding

r r 4 a &9 —— =\=-3. (16)
7'—|V|t, g—m—;ﬁﬁ—lvmz_ ;ﬂ_f)’ dinr

Equation(16) makes it possible to find the type of time de-
i _- 2 (11) pendence for the average grain size and for number of grains
' in the frame of our model:
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FIG. 5. Typical top viewgfragments, 10% of total argaf grain

structure evolution during deposition, obtained by Monte Carlo

simulation: (a) initial distribution obtained as an areal array of
Wigner-Seitz cells around randomly positioned centébg, after
deposition of 100 atomic layers, ar{d) after deposition of 300
layers.

_ of 'f(t,r)dr’ _ 79[ € o(¢')d¢’
Jof(t,rHdr’ m9foe(¢)d¢’
=(&)r=cons}V|t,

(r)

const
7'2 1

N=Tgf:<p<§'>df’= 17)
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FIG. 6. Dependence of average grain si#e units of inter-
atomic distance,;) vs number of deposited laye(s is film thick-
ness, and _ is interlayer spacing obtained by Monte Carlo simu-
lation of flux-driven grain growth.

nearly the same size, the procedure could be stochastic.
Therefore we use a Boltzmann distribution of probabilities
between two neighboring grains, taking into account the en-
ergy difference as 20 (1/r,—1/r4).

Then, instead of Eq(3), the velocity of grain boundary
between these two grains will be

d ] 2yQ(1 1

Tan r, Iy
This equation resembles the well-known Potts mbrdsir
normal grain growth, but deals only with adatoms arriving at
the surface and choosing their host grain. In the mean-field
approximation the corresponding equation for size distribu-
tion will have the following form:
2y (1 1
n )

[ f tan?‘{ﬁ

Numerical solution of Eq.19) has been made for non-
dimensional time and space scalegp=r/L, L=2yQ/KT,
tt=t(d/a)j/nL. The typical evolution of the size distribu-
tion from a Gaussian form presented initially is shown in
Fig. 4. The time dependence of the average size appears to
be almost linear.

Y . (18)

of
at

dj o

anar (19

Thus the average size in our model is indeed increasing lin-

early with time and, hence, it is proportional to the film
thickness.
So far the choice of a “host” grain by adatoms within a

IV. MONTE CARLO SIMULATION OF FLUX-DRIVEN
GRAIN GROWTH

narrow Al band around the surface area of a grain boundary The above analytical and numeric results were checked by

was considered as totally deterministic:

adatoms choos®lonte Carlo simulations. A full Monte CarlGMC) model

the larger grain, independent of difference of size of the twaaking into account the rate of deposition, diffusion of ada-
grains. It is physically evident that for a pair of grains havingtoms, their distribution among sinks leading to grain growth,
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and possible changes of host grains at the free surface will bidickness. A Monte Carlo simulation has been performed and

presented elsewhere. Here we present a simplified M@he results are in good agreement with the analysis.

model, which almost directly corresponds to the above ana-

lytical model, with the following assumptiongl) Only ACKNOWLEDGMENT

those atoms arriving at the surface near a grain boundary can ) )

choose their host graif2) If an atom arrived at the surface __ The project is supported by NSF Contract No. DMR-

near a grain boundary and if it is above the larger grain, i©987484.

inevitably chooses this larger grain as its h@3}.If an atom

arrived at the surface near a grain boundary, but is above the APPENDIX: PROOF OF THE EXPRESSION

smaller grain, it can nevertheless choose the larger grain as FOR THE AVERAGE GROWTH RATE IN FDGG

its host(edge effedt with probability p=pn (n=0,1,2,3 in

the case of square latticedepending on the number of

nearest-neighbor atoms of the smaller gréemcluding the ds

atom just below qi fﬁ dlv(l). (A1)
Figure 5 demonstrates the typical top view of grain struc-

ture for the cas@3=0.1,p2=0.3, andp1=p0=1. Figure 6 The velocity of the grain boundary at intenlis deter-

shows the average grain siZm units of interatomic dis- mined by the probabilities of this interval to be shared with a

tance versus the number of deposited atomic layers. In fu”neighboring grain of size’. First, f(r')dr’ is the number
correspondence with the analytical model, the relation apgy grains with sizes within the intervaldr’. Then

pears to be linea(The initial nonmonotonic dependence is 2 7f(r')dr’ is a length of boundaries of all these grains.

evidently due to random initial size distribution.More-  The probability for certain boundary point to belong to this
over, the proportionality coefficient, obtained by numeric so-yery class is a ratio of

lution of Eq.(10) and calculation ofr) versush, appears to
be 0.406, which is rather close to the MC reg0i390. ar'f(r")dr’

Jarr f(r")dr’

Then the average velocity will be
The linear rate of grain growth in thin-film deposition has

The growth rate of the area of an arbitrary grain is

=p(r’,r’+dr’). (A2)
V. SUMMARY

been analyzed under the constraints of a constant rate of , ., ,

deposition and constant grain boundary area. Assuming that V(I):J V(r.rp(r',r'+dr’)

those adatoms deposited on the film surface near a grain

boundary tend to choose the larger grain to grow, we have v rrfedr (') (A3)
obtained a linear relationship between grain size and film Jr'f(r")dr’ (r'y -
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