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Effective potentials in the integral quantum Hall effect
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The exactn-body distribution functions are calculated for a two-dimensional, noninteracting quantum elec-
tron gas in an external magnetic field for any temperature and density. At low temperature and filled lowest
Landau level, these functions are identical to the exact distribution functions obtained by Jancovici@Phys. Rev.
Lett. 46, 386~1981!# for the classical two-dimensional one-component plasma~2DOCP! at the special plasma
parameterG52. This establishes that the quantum state with filling factorn51, associated with the integral
quantum Hall effect, is precisely described by an effective classical potentialf(r )522 ln r, so that a classical
Boltzmann factor of 2DOCP form can replace the quantum Slater sum. Further, this Boltzmann factor exactly
matches that constructed by Laughlin@Phys. Rev. Lett.50, 1395~1983!# to account for the fractional quantum
Hall effect. Additional effective potentials for higher filling factorsn52,3, . . . areobtained semianalytically
from the exact Yvon-Born-Green integral equation and numerically from the approximate hypernetted-chain
integral equation. They have the asymptotic formf(r );2(2/n)ln r.

DOI: 10.1103/PhysRevB.67.245322 PACS number~s!: 73.43.2f, 71.10.Ca, 61.20.Gy
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I. INTRODUCTION

A system of noninteracting electrons in a plane subjec
an external magnetic field, first studied by Landau1 in 1930
to account for diamagnetism, became the basis for un
standing the integral quantum Hall effect,2 discovered by von
Klitzing et al.3 50 years later. The discovery of the fraction
quantum Hall effect4 not long after called for a differen
explanation and an important contribution was made
Laughlin,5,6 who invoked the classical two-dimensional on
component plasma7 in constructing his solution.

In this work, we report a surprising connection betwe
the same two-dimensional one-component plasma~2DOCP!
and theintegral quantum Hall effect, as modeled by the sim
plest system, Landau’s noninteracting electrons in a pla
The connection is made after calculating the exactn-body
distribution functions of this system, carried out in Sec.
and realizing that, in a regime of low temperature a
Landau-level filling factorn51, they are identical to the
exact distribution functions of the 2DOCP found b
Jancovici8 for plasma parameterG52. This establishes tha
the quantum state with filling factorn51 is precisely de-
scribed by an equivalent classical potentialf(r )522 ln r.
Effective potentials that apply to the integral quantum H
effect at larger filling factorsn52,3, . . . arethen found
semianalytically from the exact Yvon-Born-Green integ
equation9 in Sec. III and numerically from the approxima
hypernetted-chain integral equation9 in Sec. IV. They have
the asymptotic formf(r );2(2/n)ln r.

II. GENERAL n-PARTICLE DISTRIBUTION FUNCTION

We considerN electrons at temperatureT in areaA. A
uniform magnetic fieldB0 is applied perpendicular to th
plane ofA. The canonical partition functionQN for this sys-
tem can be written

QN5
1

N!L2NE WN~rN!dr1•••drN , ~1!
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whereWN(rN) is the ~antisymmetrized! Slater sum,

WN~rN!5L2N(
P

~21! uPu(
k

Ck* ~PrN!e2bHCk~rN!,

~2!

which plays the role of Boltzmann factor. The convention
introduction of the thermal de Broglie wavelengthL
5(h2/2pmekBT)1/2 in Eq. ~1! serves to make the Slater su
dimensionless, but has no effect on the results reported
low. Here, theCk is a complete set ofN-particle states dis-
tinguished by an indexk representing 2N quantum numbers
the sum over permutationsP, with even or odd parityuPu and
antisymmetric weighting, accounts for the Fermi-Dirac s
tistics of the indistinguishable electrons. The HamiltonianH
for noninteracting electrons in an external magnetic field

HN5
1

2me
(
j 51

N

@2 i\“ j1eA~r j !#
2, ~3!

whereme is the electron mass,2e is its charge, andA(r) is
a vector potential that yields a uniform magnetic fieldB0
~which we shall take to define thez direction!,

B05B0k̂5“3A~r!. ~4!

As usual,b51/kBT is the inverse temperature, withkB Bolt-
zmann’s constant. The system is taken to be fully spin po
ized, so that spin degrees of freedom may be ignored.

Since interactions between electrons are being neglec
the Schro¨dinger equation for the energy eigenstates is rea
solved and the sum over states in Eq.~2! can be carried out.
The result is
©2003 The American Physical Society22-1
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WN~rN!5~L2/4p l 0
2sinhbmBB0!N(

P
~21! uPu

3expH 2(
j 51

N

@~r j2Pr j !
2/4l 0

2tanhbmBB0

2 i ~xj Pyj2yj Pxj !/2l 0
2#J , ~5!

wherer j locates electronj in the xy plane,mB5e\/2me is
the Bohr magneton, andl 05(\/eB0)1/2 is the characteristic
magnetic length. Letting the external fieldB0 vanish recov-
ers the Slater sum of ideal fermions,

WN~rN!cB0505(
P

~21! uPuexpF2
p

L2 (
j 51

N

~r j2Pr j !
2G .

~6!

A derivation of Eq.~5! using the asymmetric Landau gaug
for A(r) is given in the Appendix.

With the Slater sum in hand, we seek to determine
n-body distribution function

rN
(n)~r1 , . . . ,rn!5

1

~N2n!!L2NQN
E WN~rN!drn11•••drN

~7!

for any n. One notes that each permutationP in Eq. ~5!
produces a disjoint set of ring-type integrands, with ea
particle appearing in one and only one ring. Particle po
tions 1,2, . . . ,n are not integrated out and will be calledroot
points. The remainingN2n particle positions are variable
of integration, to be calledfield points. The bond linking
adjacent particlesi and j in a ring is

f ~r i ,r j !5~4p l 0
2sinhbmBB0!21

3exp@2~r i2r j !
2/4l 0

2tanhbmBB0

1 i ~xiyj2yixj !/2l 0
2#. ~8!

Let I k(r i ,r j ) be a chain of links beginning at root pointr i and
ending at root pointr j with k field points in between, i.e.,

I k~r i ,r j !5E f ~r i ,rn1
! f ~rn1

,rn2
!••• f ~rnk

,r j !drn1
•••drnk

.

~9!

The canonical distribution functionrN
(n)(r1 , . . . ,rn) then

becomes10

rN
(n)~r1 , . . . ,rn!5

1

~N2n!!QN
(
P

~21! uPu (
m50

N2n

~21!m

3
~N2n!!

~N2n2m!! (
k1 ,k2 , . . . ,kn

dS m,(
j

kj D
3I k1

~r1 ,Pr1!I k2
~r2 ,Pr2!•••I kn

~rn ,Prn!

3~N2n2m!!QN2n2m . ~10!
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Now the permutationsP are among then root points only,
while m is the total number of field points in the rooted ring
The sums over number of field pointskj in individual chains
are collectively constrained by the requirement( j 51

n kj5m,
expressed by the Kronecker deltad( i , j ) in the summand.
This constraint can be removed, and the individual su
over thekj factored, by transforming these expressions fro
particle numberN to chemical potentialm as an independen
variable using the grand canonical formalism. We have th

J5 (
N50

`

ebmNQN ~11!

for the partition function and

r (n)~r1 , . . . ,rn!5J21 (
N5n

`

ebmNQNrN
(n)~r1 , . . . ,rn!

~12!

for the n-body distribution function. Using Eq.~10! in the
latter, we now get simply

r (n)~r1 , . . . ,rn!

5(
P

~21! uPu)
j 51

n F (
k50

`

~21!ke(k11)bmI k~r j ,Pr j !G .

~13!

Starting fromI 0(r i ,r j )5 f (r i ,r j ), one finds by induction tha

I k~r i ,r j !5@4p l 0
2sinh~~k11!bmBB0!#21

3exp@2~r i2r j !
2/4l 0

2tanh„~k11!bmBB0…

1 i ~xiyj2yixj !/2l 0
2# ~14!

so that finally,

r (n)~r1 , . . . ,rn!5(
P

~21! uPu)
j 51

n

$h~ ur j2Pr j u!

3exp@ i ~xj Pyj2yj Pxj !/2l 0
2#%, ~15!

with

h~r !5
1

4p l 0
2 (

j 51

`
~21! j 21ej bm

sinh~ j bmBB0!

3exp@2r 2/4l 0
2tanh~ j bmBB0!#. ~16!

This key result can be rewritten in a form that more direc
displays the familiar Fermi degeneracy at low temperatu
We use the generating function of Laguerre polynomials,

e2xz/(12z)

12z
5 (

k50

`

Lk~x!zk, ~17!

with x5r 2/2l 0
2 andz5exp(22jbmBB0) in Eq. ~16! and then

sum overj to get
2-2
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h~r !5
e2r 2/4l 0

2

2p l 0
2 (

k50

` Lk~r 2/2l 0
2!

11e2b[m2(2k11)mBB0]
, ~18!

where now the summation is over Landau levels, of ene
ek5(2k11)mBB0.

The first of the distribution functions~15!,

r (1)~r1!5h~0!, ~19!

is just the uniform densityr5N̄/A expressed in terms of th
chemical potentialm,

r5
1

2p l 0
2 (

k50

`
1

11e2b[m2(2k11)mBB0]
. ~20!

This result is more familiarly obtained directly from the pa
tition function J, where

FIG. 1. Pair distribution functions of a two-dimensional, noni
teracting quantum electron gas in a magnetic field at a high t
perature and reduced densities 2pr l 0

251,2,3,4,5, read from right to
left.
fo

24532
y

ln J5
A

2p l 0
2 (

k50

`

ln$11eb[m2(2k11)mBB0]%, ~21!

using the thermodynamic relationN̄5kBT] ln J/]m.
The dimensionless forms

g(n)~r1 , . . . ,rn![r (n)~r1 , . . . ,rn!/rn ~22!

are preferable in writing out higher distribution function
Explicitly, we have for the next three,

g(2)~r1 ,r2!512D2~r 12!, ~23!

g(3)~r1 ,r2 ,r3!512@D2~r 12!1D2~r 13!1D2~r 23!#

12D~r 12!D~r 23!D~r 31!

3cos~ ur123r13u/2l 0
2!, ~24!

-
FIG. 2. Pair distribution functions of a two-dimensional, noni

teracting quantum electron gas in a magnetic field at a low temp
ture and reduced densities 2pr l 0

251,2,3,4,5, read from right to left
g(4)~r1 ,r2 ,r3 ,r4!512@D2~r 12!1D2~r 13!1D2~r 14!1D2~r 23!1D2~r 24!1D2~r 34!#

1@D2~r 12!D
2~r 34!1D2~r 13!D

2~r 24!1D2~r 14!D
2~r 23!#

12@D~r 12!D~r 23!D~r 31!cos~ ur123r13u/2l 0
2!1D~r 13!D~r 34!D~r 41!cos~ ur133r14u/2l 0

2!

1D~r 12!D~r 24!D~r 41!cos~ ur123r14u/2l 0
2!1D~r 23!D~r 34!D~r 42!cos~ ur233r24u/2l 0

2!#

22@D~r 12!D~r 23!D~r 34!D~r 41!cos~ ur133r24u/2l 0
2!1D~r 12!D~r 24!D~r 43!D~r 31!cos~ ur143r23u/2l 0

2!

1D~r 13!D~r 32!D~r 24!D~r 41!cos~ ur123r34u/2l 0
2!#, ~25!
whereD(r )5h(r )/h(0). Thethree-body distribution func-
tion is the first to show correlations due to phase.

For low temperatures and large magnetic fields, i.e.,
bmBB0@1, the summand in Eq.~20! acts like a discrete
unit-step function, so that for~integer! n filled Landau levels
one has 2pr l 0

25n; similarly, using Eq.~18!, the pair distri-
bution function g(2)(r 12)5g(2)(r1 ,r2) simplifies in this
limit to
r
g(2)~r !cT50512e2r 2/2l 0

2F1

n (
k50

n21

Lk~r 2/2l 0
2!G2

, ~26!

a result that has been obtained by Ciftja and Fantoni11,12 and
Kamilla et al.13

More generally, the pair functiong(2)(r ) from Eq. ~23! is
calculated for densityr and arbitrary temperatureT from
2-3
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g(2)~r !512e2r 2/2l 0
2F 1

2pr l 0
2 (

k50

` Lk~r 2/2l 0
2!

11e2b[m2(2k11)mBB0]G 2

,

~27!

with chemical potentialm found by numerical inversion o
Eq. ~20!. The controlling free parameter is thenbmBB0. Fig-
ure 1 displays g(2)(r ) for reduced densities 2pr l 0

2

51,2,3,4,5 atbmBB051, while Fig. 2 shows the same func
tions atbmBB0550. The latter are clearly longer ranged a
have more structure~though neither set has much!. For ref-
erence, Fig. 3 showsm5m(r) from Eq. ~20! for the two
parameter values. Note that at low temperatures, the ch
cal potential computedat a discontinuity falls midway be-
tween its upper and lower limits:m/mBB052n when
2pr l 0

25n for bmBB0@1.

The structure factorsS(k)511rh̃(k) for the noninteract-
ing electrons are now readily obtained by the Fourier tra
formation of h(r )5g(2)(r )21. For circularly symmetric
functions such as these, the two-dimensional Fourier tra
form h̃(k) and its inverseh(r ) become Hankel transforms,

h̃~k!52pE
0

`

dr rh~r !J0~kr !, ~28!

h~r !5
1

2pE0

`

dk kh̃~k!J0~kr !, ~29!

whereJ0(x) is the Bessel function of order zero. Structu
factors for the pair distribution functions atbmBB051 and
50 that appear in Figs. 1 and 2 are displayed, respectivel
Figs. 4 and 5. The vanishing ofS(0) for all densities at low
temperatures, seen in Fig. 5, signals the incompressibilit
the quantum states with the filled Landau levels. The qua
tures needed here for the transformsh̃(k) are performed nu-
merically as described in Sec. IV.

We close this section by noting a remarkable fact. F
physical conditions such that this noninteracting quant
electron system just fills the lowest Landau level, i.e.,
bmBB0@1 and 2pr l 0

251, so thatD(r )5exp(2prr2/2),
the exact distribution functionsg(n)(r1 , . . . ,rn) displayed
above are identical to the exact distribution function

FIG. 3. Chemical potential as a function of density calculated
numerical inversion of Eq.~20! at high and low temperatures.
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g(n)(r1 , . . . ,rn) of a classical two-dimensional one
component plasma obtained by Jancovici8 for the plasma pa-
rameter valueG52. Working backwards, we may then con
clude that the quantum state for the filled lowest Land
level is precisely described by an effective classical pair
tential f(r )522 ln(r/l0). More generally, in the following
section, we calculate effective potentials for a low
temperature system withn.1 Landau levels filled and find
that their long-range form isf(r );2(2/n)ln(r/l0).

III. AN EFFECTIVE PAIR POTENTIAL

The Fermi statistics result in a well-known yet still cur
ous ‘‘statistical repulsion’’ betweennoninteractingidentical
particles, as is evident in Figs. 1 and 2. The mathemat
expression of this property through antisymmetrization of
wave function, however, often makes it awkward to wo
with. An explicit effectiveinteraction between the fermions
which could produce the same effects as antisymmetrizat
would considerably simplify the situation. This notion wa
first discussed by Uhlenbeck and Gropper,14,15 who carried
out calculations for quantum gases in three dimension

y FIG. 4. Structure factorsS(k)511rh̃(k) of a two-dimensional,
noninteracting quantum electron gas in a magnetic field at a h
temperature and reduced densities 2pr l 0

251,2,3,4,5, read from left
to right.

FIG. 5. Structure factorsS(k)511rh̃(k) of a two-dimensional,
noninteracting quantum electron gas in a magnetic field at a
temperature and reduced densities 2pr l 0

251,2,3,4,5, read from left
to right. The vanishing ofS(0) for all densities signals the onset o
the effective 2DOCP interaction.
2-4



c
t

ti
r
-
,
th
t
e

ha
th
la
n
e

un

th
bu

n

ay
ev

this
n-

pli-
are

ple
fol-
ake

of
um
uced

EFFECTIVE POTENTIALS IN THE INTEGRAL . . . PHYSICAL REVIEW B 67, 245322 ~2003!
high temperatures and low densities. A more general pro
dure suitable for any temperature and density, based on
exact Yvon-Born-Green hierarchy~YBG!, was proposed by
the author10 for the quantum gases with no external magne
field. Stevens and Pokrant16 later noted that other familia
integral equations of classical liquids,9 such as Percus
Yevick and hypernetted-chain~HNC!, though approximate
could also be used for this purpose. In this section and
next, we examine the extension of these techniques to
present case of a two-dimensional electron gas in a magn
field.

The surprising conclusion of the preceding section is t
the quantum correlation effects of antisymmetrization of
wave function can indeed be replicated by an effective c
sical pair potential for at least the case of filled lowest La
dau level,n52pr l 0

251, at low temperatures. We continu
here by assuming that there exists, for any state, a pair f
tion f(r ) such that the Slater sum, Eq.~2!, may be written

WN~rN!'expF2(
i , j

f~r i j !G . ~30!

Given that assumption, the YBG hierarchy9 then offers an
exact route to such a function. The second member of
hierarchy, connecting the two-body and three-body distri
tion functions, reads

“1ln g(2)~r1 ,r2!52“1f~r 12!

2rE dr3“1f~r 13!
g(3)~r1 ,r2 ,r3!

g(2)~r1 ,r2!
,

~31!

where nowf(r ) is the only unknown. Dottingr̂12 into Eq.
~31! gives a scalar equation,

2
df~r !

dr
5

d ln g~r !

dr
2

r

g~r !
E dscosu

df~s!

ds

3FD2~ t !22D~r !D~s!D~ t !cosS rs

2l 0
2
sinu D G ,

~32!

where cosu5r̂• ŝ, t5(r 21s222rs cosu)1/2, and we have
dropped those terms ofg(3)(r1 ,r2 ,r3) that do not contribute
because of symmetry. The superscript on the pair functio
also omitted for simplicity. Then, with the substitutions

u~r !52
df~r !

dr
, ~33!

v~r !5
d ln g~r !

dr
, ~34!
24532
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W~r ,s!5
1

pE0

p

du cosuFD2~ t !

22D~r !D~s!D~ t !cosS rs

2l 0
2
sinu D G , ~35!

Eq. ~32! becomes an integral equation

u~r !5v~r !1
2pr

g~r !
E

0

`

ds su~s!W~r ,s! ~36!

that can be solved iteratively foru(r ); a final integration

f~r !5E
r

`

ds u~s! ~37!

yields the effective potential. The integral for the arr
W(r ,s) in Eq. ~35! is evaluated using the Gauss-Chebysh
quadrature.

For the high-temperature states displayed in Fig. 1,
straightforward procedure works well. The effective pote
tials found in this way for the states of Fig. 1 atbmBB0
51 are shown in Fig. 6. As the density increases, the am
tude of the effective potential decreases, but the changes
not large.

When applied at low temperatures, however, the sim
procedures, both here and in the HNC solutions of the
lowing section, become problematical as divergences m
an appearance. Their source is not hard to find.~The isother-
mal compressibilityxT , given exactly by

rkBTxT5
1

2pr l 0
2 (

k50

`
e2b[m2(2k11)mBB0]

~11e2b[m2(2k11)mBB0] !2
, ~38!

is relevant here and is plotted in Fig. 7.! Expanding the
Bessel functionJ0(kr) in Eq. ~28! and evaluating term by
term, we get

rh̃~k!5211
1

2
~kl0!21••• ~39!

FIG. 6. Effective potentials obtained by numerical solution
the YBG equation for a two-dimensional, noninteracting quant
electron gas in a magnetic field at a high temperature and red
densities 2pr l 0

251,2,3,4,5, read from top to bottom.
2-5
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for bmBB0@1 and 2pr l 0
25n, physical conditions that will

hold for the remaining section. Then,S(0)511rh̃(0)50,
the compressibilityxT5bS(0)/r vanishes, and the trans
form of the direct correlation functionc(r ),9

r c̃~k!5
rh̃~k!

11rh̃~k!
, ~40!

acquires ak22 divergence at the origin. The long-range b
havior of f(r ) follows that of 2c(r ) and so rf̃(k)
'2/(kl0)2 for a smallk, independent of density, and we fi
nally get the asymptotic forms

FIG. 7. Isothermal compressibilityxT at high and low tempera
tures, calculated from Eq.~38!. The vanishing ofxT at low tem-
perature for integral values of the reduced density 2pr l 0

2 is linked
to S(0)50 in Fig. 5.
f

ti-

e

ns
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-

f~r !;2~2/n!ln~r / l 0!, ~41!

u~r !;2/nr. ~42!

These are troublesome functions for any numerical pro
dure restricted to a finite range. Fortunately, it turns out th
in this low-temperature regime, many needed integrals
be evaluated analytically. Thus, using

D~r !5
1

n
e2r 2/4l 0

2

(
k50

n21

LkS r 2

2l 0
2D ,

5
1

n
e2r 2/4l 0

2
Ln21

1 S r 2

2l 0
2D , ~43!

we find, for example,

W~r ,s!5e2( r̂ 21 ŝ2)/2@2I 1~ r̂ ŝ!2 r̂ ŝ#/2 ~44!

for n51,

W~r ,s!5e2( r̂ 21 ŝ2)/2@32~824r̂ 224ŝ216r̂ 2ŝ21 r̂ 4

1 ŝ4!I 1~ r̂ ŝ!1128r̂ ŝ~32 r̂ 22 ŝ2!I 0~ r̂ ŝ!2 r̂ ŝ~4

2 r̂ 2!~42 ŝ2!~3224r̂ 224ŝ21 r̂ 2ŝ2!#/512 ~45!

for n52, and
W~r ,s!5e2( r̂ 21 ŝ2)/2@1152~1922192r̂ 22192ŝ21688r̂ 2ŝ2196r̂ 4196ŝ42272r̂ 4ŝ22272r̂ 2ŝ4216r̂ 6216ŝ6

128r̂ 6ŝ2128r̂ 2ŝ6170r̂ 4ŝ41 r̂ 81 ŝ8!I 1~ r̂ ŝ!19216r̂ ŝ~96272r̂ 2272ŝ2150r̂ 2ŝ2115r̂ 4115ŝ4

27r̂ 4ŝ227r̂ 2ŝ42 r̂ 62 ŝ6!I 0~ r̂ ŝ!2 r̂ ŝ~24212r̂ 21 r̂ 4!~24212ŝ21 ŝ4!

3~17282480r̂ 22480ŝ21192r̂ 2ŝ2124r̂ 4124ŝ4212r̂ 4ŝ2212r̂ 2ŝ41 r̂ 4ŝ4!#/663 552 ~46!
for n53, where I k(x) is the modified Bessel function o
order k and we are usingr̂[r / l 0 and ŝ[s/ l 0 for brevity.
Even with analytic kernels, however, Eq.~36! cannot be
handled within a finite numerical range without first analy
cally extracting the asymptotic@long-range~LR!# behavior of
u(r ). For this purpose, we setuLR(r )52/nr, so that with
u(r )5uSR(r )1uLR(r ), Eq.~36! becomes an equation for th
short-range~SR! part,

uSR~r !5vSR~r !1
2pr

g~r !
E

0

`

ds suSR~s!W~r ,s!, ~47!

which contains only well-behaved, short-range functio
Here,
.

vSR~r ![v~r !2uLR~r !1
2pr

g~r !
E

0

`

ds suLR~s!W~r ,s!

~48!

must be evaluated analytically. We findvSR(r )50 for n51
@so thatuSR(r )50, u(r )52/r , andf(r )522 ln (r/l0) is the
anticipated exact solution for this case#,

vSR~r !5e2 r̂ 2/2r̂ ~32214r̂ 21 r̂ 4!/32g~r ! ~49!

for n52, and

vSR~r !5e2 r̂ 2/2r̂ ~172821440r̂ 21360r̂ 4

234r̂ 61 r̂ 8!/864g~r ! ~50!
2-6
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for n53. The computed results for these three cases
shown in Fig. 8 asru(r ); for n51, the solution is, of
course, a constant,ru(r )52, while for n52 and 3,ru(r )
makes a smooth transition from 2 at the origin to its lon
range constant value of 2/n over a distancer'5l 0, by which
point particle pairs are essentially uncorrelated.

Evidently, equations for higher indicesn quickly become
intricate to solve by this route, but these results are rea
supplemented with the approximate HNC equation descri
in the following section. We show in Fig. 9 the effectiv
potentials f(r ) obtained with both these methods,
bmBB0550. Agreement between the approximatefHNC(r )
and the exactfYBG(r ) solutions forn51, 2, and 3 is rea-
sonably good, especially at a larger.

Adapting to the present notation the total potentialV
quoted by Jancovici8 for 2DOCP particles confined to a dis
of radiusR, we get a system potential, for large interpartic
separationsr i j ,

FN
(n)~rN!;2

2

n (
i , j

lnS r i j

l 0
D1

1

2 (
i

S r i

l 0
D 2

1
N2

n S ln
R

l 0
2

3

4D ,

~51!

or, equivalently, a Boltzmann factorW5exp(2F) given by

WN
(n)~rN!;)

i , j
S r i j

l 0
D 2/n

expF2
1

2 (
i

S r i

l 0
D 2G , ~52!

neglecting multiplicative constants, wherer i is the radial dis-
tance from the disk center. The noninteracting electron ga
two dimensions is the basis for understanding the inte
quantum Hall effect;2 we find that for the relevant incom
pressible states at low temperatures, this system is asymp
cally described by the effective Boltzmann factor writt
above. Forn51, the Boltzmann factor is exact for allr i j .

IV. HNC APPROACH TO THE EFFECTIVE POTENTIAL

As noted earlier, the HNC integral equation of classi
liquids has been used to model an effective potential for
free electron gas in three dimensions17 as well as in two.18,19

FIG. 8. Logarithmic derivative of the effective potential
ru(r )52df(r )/dln r, obtained from the YBG equation for a two
dimensional, noninteracting quantum electron gas in a magn
field at a low temperature and reduced densities 2pr l 0

251,2,3, read
from top to bottom.
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In this approach, one uses the equations9

g̃~k!5
rh̃2~k!

11rh̃~k!
, ~53!

f~r !5g~r !2 ln g~r !1B~r !, ~54!

which are exact, to first obtain the indirect correlation fun
tion g(r ) from the known pair functionh(r )5g(r )21 and
then to arrive at a solution for the effective potentialf(r )
after an approximation is made for the so-called bridge fu
tion B(r ). In the HNC approximation,B(r ) is simply ne-
glected, so that

fHNC~r !5g~r !2 ln g~r !. ~55!

The calculation involves computing only transforms of p
functions and is noniterative. The HNC effective potentia
obtained in this way atbmBB051 are graphically not very
distinct from the YBG solutions of Fig. 6 and are not di
played.

As with the YBG calculation, numerical problems arise
low temperatures, where we have already found that the
fective potential for the filled Landau levels evolves asym
totically into the 2DOCP interaction. Hansen and Levesqu20

have reported numerical solutions of the HNC equation
the 2DOCP, specifically adapted to its long-range poten
We follow a similar procedure of extracting the divergen
analytically with a long-range function

fLR~r !52
1

n F2lnS r

l 0
D1E1S r 2

2l 0
2D G , ~56!

whose dimensionless transform is

rf̃LR~k!5
2

~kl0!2
expF2

1

2
~kl0!2G , ~57!

so that numerical routines deal only with well-behav
functions.21 In Eq. ~56!, E1(x) is the exponential integral
Then, starting with the known functionh(r )5g(r )21, the
steps of the solution are the following:

~1! h̃~k!52pE
0

`

dr rh~r !J0~kr !, ~58!

~2! g̃SR~k!5
rh̃2~k!

11rh̃~k!
2f̃LR~k!, ~59!

~3! gSR~r !5
1

2pE0

`

dk kg̃SR~k!J0~kr !, ~60!

~4! fHNC~r !5gSR~r !1fLR~r !2 ln g~r !. ~61!

The numerical calculations now proceed smoothly. The H
potentials atbmBB0550 have already been displayed in Fi
9, along with the YBG potentials from the preceding sectio
The deviations between the two for a smallr are a measure
of the missingB(r ), a short-range function, infHNC(r ).

tic
2-7
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The Hankel transforms needed in these calculations
evaluated numerically. The discrete versions22 of the inte-
grals ~28! and ~29! used in this work,

h̃~kj !5
4p

K2 (
i 51

Nr21

h~r i !
J0~kj r i !

J1
2~Kr i !

, ~62!

h~r i !5
1

pR2 (
j 51

Nr21

h̃~kj !
J0~kj r i !

J1
2~kjR!

, ~63!

preserve the orthogonality of the continuous Hankel tra
forms. In these expressions,Jn(x) is the Bessel function o
the order n and the numerical grids are defined byr i
5j i /K, kj5j j /R, where j j is the j th root of J0(x), K
[kNr

, andR[r Nr
; the rangeR and number of grid pointsNr

are free choices. In the present calculations, we have u
R/ l 0520 andNr51000.

V. CONCLUSIONS

The electric potential due to an infinite line charge23 is, in
Gaussian units,v(r )522l ln(r/L), where l is the linear
charge density andL is an arbitrary length. Then, withL
5 l 0, the energyw(r ) associated with lengthsl 0, containing
chargeq5l l 0, of each of the two interacting infinite line
charges is

w~r !52~2q2/ l 0!ln~r / l 0!52G ln~r / l 0!, ~64!

which is the defining potential of the 2DOCP.7

In this work, we have found that the two-dimension
one-component plasma interaction also functions as an e
tive potentialf(r ) for the simple quantum model of nonin
teracting electrons in a plane, subject to an external magn
field, when they are taken to low temperatures and fo
incompressible states. The potential model is exact,

f~r !522 ln~r / l 0!, ~65!

for the filling factorn52pr l 0
251, and asymptotic,

FIG. 9. Effective potentials for a two-dimensional, nonintera
ing quantum electron gas in a magnetic field at a low temperat
obtained from the YBG equation at reduced densities 2pr l 0

2

51,2,3 and the HNC equation at reduced densities 2pr l 0
2

51,2,3,4,5, read from bottom to top.
24532
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f~r !;2~2/n!ln~r / l 0!, ~66!

for filling factors n5n.1. The physical conditionsbmBB0

@1 and 2pr l 0
25n apply to theintegral quantum Hall effect,

and so we find that, forn51, the noninteracting electron
model for the integral quantum Hall effect maps into t
classical two-dimensional one-component plasma through
effective Boltzman factor

WN
(1)~rN!5)

i , j
S r i j

l 0
D 2

expF2
1

2 (
i

S r i

l 0
D 2G . ~67!

It is, of course, well known that the 2DOCP has pre
ously been invoked by Laughlin5,6 to construct anN-particle
wave functioncm that accounts for the principal features
the fractional quantum Hall effect. Expressed as an equiv
lent Boltzman factorW5ucu2, Laughlin’s solution is

WN
(1/m)~rN!5)

i , j
S r i j

l 0
D 2m

expF2
1

2 (
i

S r i

l 0
D 2G , ~68!

with m an odd integer, includingm51.
The coincidence of form in these effective Boltzmann fa

tors for n5n51/m51 in mathematical models for the inte
gral and fractional quantum Hall effects is remarkable a
nontrivial, since the two results arise from quite distinct o
gins.

~1! Laughlin presents Eq.~68! in the context of a system
of electrons interacting through the Coulombe2/r potential.
Further, the result is constructed as the squared amplitud
a single ground-state wave function, which requires an
plicit antisymmetrization, so thatm must be an odd integer in
general.

~2! In this paper, Eq.~67! is obtained explicitly and ex-
actly for anoninteractingsystem of electrons. Further, it is
sum over states, rather than the amplitude squared of a s
wave function. The fact, that the quantum numbern51 is
odd has here nothing to do with antisymmetrization; t
property is built into the Slater sum from the very beginnin
Eq. ~2!, and is reflected in its vanishing whenever two p
ticles approach each other, which is the signature of ‘‘ferm
onicity.’’

One concludes that, at least for the filled lowest Land
level, n51, Laughlin’s variational wave function actuall
describes a noninteracting system. This is consistent with
fact that the electronic chargee does not appear in thes
solutions unless multiplying the magnetic field, aseB0, re-
flecting just the magnetic force on the electron.
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APPENDIX: THE ONE-BODY SLATER SUM

The vector potential in the Landau gauge isA52B0y ı̂,
so the one-electron Hamiltonian becomes

-
e,
2-8
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H15
1

2me
F S i\

]

]x
1eB0yD 2

1S i\
]

]yD 2G . ~A1!

The Schro¨dinger equationH1c5ec is then solved by2

ckn~x,y!5
An

Lx
1/2

expF ikx2
~y2k l 0

2!2

2l 0
2 GHnS y2k l 0

2

l 0
D ,

~A2!

with k52p j /Lx for j 50,61,62, . . . , l 05(\/eB0)1/2, and
An5(p l 0

2)21/4(2nn!) 21/2. Further, Hn(x) is the Hermite
polynomial of the ordern and Lx is the edge length of the
rectangular areaA in the x direction. The corresponding en
ergy eigenvalues areen5(2n11)mBB0 , n50,1,2, . . . ,
wheremB5e\/2me is the Bohr magneton.

We seek to determine the one-body Slater sum

W1~x,y!5L2(
k,n

e2benckn* ~Px,Py!ckn~x,y!5
L2

~p l 0
2!1/2Lx

3(
k

eik(x2Px)e2(Py2k l 0
2)2/2l 0

2
e2(y2k l 0

2)2/2l 0
2

3(
n

e2(2n11)bmBB0

2nn!
HnS Py2k l 0

2

l 0
DHnS y2k l 0

2

l 0
D .

~A3!

First we note that24

(
n50

`
e2na

2nn!
Hn~x!Hn~y!

5S ea

2 sinha D 1/2

expF2~x21y2!e2a12xy

2 sinha G .
~A4!
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