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The exacin-body distribution functions are calculated for a two-dimensional, noninteracting quantum elec-
tron gas in an external magnetic field for any temperature and density. At low temperature and filled lowest
Landau level, these functions are identical to the exact distribution functions obtained by JajRloyiciRev.

Lett. 46, 386 (1981 ] for the classical two-dimensional one-component plag?R¥0OCB at the special plasma
parameted’=2. This establishes that the quantum state with filling facterl, associated with the integral
quantum Hall effect, is precisely described by an effective classical poteéi{tizl= —2 Inr, so that a classical
Boltzmann factor of 2DOCP form can replace the quantum Slater sum. Further, this Boltzmann factor exactly
matches that constructed by LaugHlfPhys. Rev. Lett50, 1395(1983] to account for the fractional quantum

Hall effect. Additional effective potentials for higher filling factors=2,3, . . . areobtained semianalytically

from the exact Yvon-Born-Green integral equation and numerically from the approximate hypernetted-chain
integral equation. They have the asymptotic fofifr)~ —(2/v)Inr.
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I. INTRODUCTION whereWy(rM) is the (antisymmetrizeg Slater sum,

A system of noninteracting electrons in a plajge subject to
an external magnetic field, first studied by Landau1930 _
to account for %iamagnetism, became tr)(e basis for under- WN(rN):AZNEP: (_1)|P‘§k: Wi (Prie T (M),
standing the integral quantum Hall efféadjscovered by von (2)
Klitzing et al2 50 years later. The discovery of the fractional
quantum Hall effeét not long after called for a different
explanation and an important contribution was made bywhich plays the role of Boltzmann factor. The conventional
Laughlin>® who invoked the classical two-dimensional one-introduction of the thermal de Broglie wavelength
component plasnidn constructing his solution. = (h%/27mekgT)Y2in Eq. (1) serves to make the Slater sum

In this work, we report a surprising connection betweendimensionless, but has no effect on the results reported be-
the same two-dimensional one-component plasdzOCP low. Here, theW, is a complete set dfl-particle states dis-
and theintegral quantum Hall effect, as modeled by the sim- tinguished by an indek representing R quantum numbers;
plest system, Landau’s noninteracting electrons in a planghe sum over permutatior® with even or odd parityP| and
The connection is made after calculating the exatiody  antisymmetric weighting, accounts for the Fermi-Dirac sta-
distribution functions of this system, carried out in Sec. Il,tistics of the indistinguishable electrons. The Hamiltoritén
and realizing that, in a regime of low temperature andfor noninteracting electrons in an external magnetic field is
Landau-level filling factorv=1, they are identicalto the
exact distribution functions of the 2DOCP found by
Jancovicft for plasma parametdf =2. This establishes that ] 5
the quantum state with filling factor=1 is precisely de- HN=5m 21 [~V +eA(r)]", 3
scribed by an equivalent classical potentfglr)=—2 Inr. el”

Effective potentials that apply to the integral quantum Hall
effect at Iarger fiIIing factorsy=2,3,... arethen found Whereme is the electron mass; e is its charge, an@\(r) is
semianalytically from the exact Yvon-Born-Green integrala vector potential that yields a uniform magnetic fiég

equation in Sec. Ill and numerically from the approximate (which we shall take to define thedirection),
hypernetted-chain integral equatioim Sec. IV. They have

the asymptotic formp(r)~—(2/v)Inr.

N

Bo=Bok=V X A(r). (4)
Il. GENERAL n-PARTICLE DISTRIBUTION FUNCTION

We considerN electrons at temperatur® in areaA. A aq ysual 8= 1/kgT is the inverse temperature, wikiy Bolt-
uniform magnetic fieldB, is applied perpendicular to the ;mann's constant. The system is taken to be fully spin polar-
plane ofA. The canonical partition functio®y for this sys- ized, so that spin degrees of freedom may be ignored.

tem can be written Since interactions between electrons are being neglected,
1 the Schrdinger equation for the energy eigenstates is readily
_ Wi (rN)ydr, - - -dry . 1 solved and_the sum over states in E2). can be carried out.
n N!AZNJ n(rdry N @ The result is
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Wy (rN) = (A4l 2sinh BugBy)V Y, (—1)IP
P
N
X exp{ — > [(rj—Prj)24i3tanhBugB,
=1

—i(x;Py;—y;Px)/2l 3]], (5)
wherer; locates electron in the xy plane, ug=ef/2m, is
the Bohr magneton, anig=(%/eBy)Y? is the characteristic
magnetic length. Letting the external fiel}) vanish recov-
ers the Slater sum of ideal fermions,

N
v
Wi(r™)Jg,=0= EP: (- 1)P|eXF{ a2 J.Zl (r=Pry)?
(6)

A derivation of Eq.(5) using the asymmetric Landau gauge

for A(r) is given in the Appendix.

PHYSICAL REVIEW B 67, 245322 (2003

Now the permutation® are among the root points only,
while mis the total number of field points in the rooted rings.
The sums over number of field poirksin individual chains
are collectively constrained by the requiremé}j‘leFm,
expressed by the Kronecker delédi,j) in the summand.
This constraint can be removed, and the individual sums
over thek; factored, by transforming these expressions from
particle numbeN to chemical potentiglt as an independent
variable using the grand canonical formalism. We have then

0
E= 2 eB”NQN
N=0

11
for the partition function and
p(n)(rlv e 1rn ZE 12 eBMNQNp(n)(rli st 1rn)
(12)

for the n-body distribution function. Using Eq10) in the

With the Slater sum in hand, we seek to determine thdatter, we now get simply

n-body distribution function

ngjn)(rl, NSNS fWN(r )drpq---dry
(7)

for any n. One notes that each permutatiénin Eq. (5)

(N— n)'AZNQN

p™(

M1y efn)

=2 (COPILL | 2 (— kel DB (1 Pry) |
j=1| k=0

P
(13

produces a disjoint set of ring-type integrands, with eaChStartmg fromlo(r; ,r;) =f(r;,r;), one finds by induction that
particle appearing in one and only one ring. Particle posi-

tions 1,2 ... ,n are not integrated out and will be calleabt

points. The remaining\ —n particle positions are variables

of integration, to be calledield points. The bond linking
adjacent particles andj in a ring is
f(r;,r))=(4mlgsinhBugBo) ~*

X exp — (r;—r;)2/4l 5tanhBugBg

+i(xiy;—YiX;)/215]. (8

Letl(r;,r;) be a chain of links beginning at root pointand
ending at root point; with k field points in between, i.e.,

Ik(ri ,I’j)=J f(ri arnl)f(rnlarnz)' ' 'f(rnkyrj)drnl' ’ 'drnk-
©)

The canonical distribution functlorp(”)(rl, ...,ry) then

become¥

E( 1)“"2( ™

pl(\ln)(rll 'rn)_(N n)lQ

(N—n)!
(N—n—m)! kl,k;..,kn 5(m'§j: kj)
Xl (11, Pro)li,(ra,Pra) - - - Iy (rn,Pry)
X(N=n=m)!'Qn-p-m- (10

L(r; 1) =[4ml §sinh((k+1) BugBo)]
xexd — (ri—rj)?/4l jtanh(k+ 1) BugBo)

0G4y~ Yix)I215] (14
so that finally,
prs =3 (DI {ndlr=Pry)
xexi(x,Py,—y;Px)/212]}, (15
with
B *° )j_lej:BM
(1= Z‘ Sinh(j B125Bo)
xexy —r?/43tanh(j fugBo)]. (16

This key result can be rewritten in a form that more directly
displays the familiar Fermi degeneracy at low temperatures.
We use the generating function of Laguerre polynomials,

—xZ(1-2) *

=2 L

e

17

Li(x)Z",
with x=r?/212 and z= exp(—2jBugBo) in Eq. (16) and then
sum overj to get
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FIG. 1. Pair distribution functions of a two-dimensional, nonin-  FIG. 2. Pair distribution functions of a two-dimensional, nonin-
teracting quantum electron gas in a magnetic field at a high temteracting quantum electron gas in a magnetic field at a low tempera-
perature and reduced densities;ﬂ3= 1,2,3,4,5, read from right to  ture and reduced densitiea-aIS: 1,2,3,4,5, read from right to left.
left.

22 2/ 2 INE= E In{ 1+ eBln—(2k+1)ugBo] , (21)
e 174G L(r?/212) 8 2712 { }

M= 502 & 1re Ar @ Dugea’

. using the thermodynamic relatidn= kg Taln Z/du.
where now the summation is over Landau levels, of energy 11a dimensionless forms

Ek:(2k+ 1)/.LBBO
The first of the distribution functiongl5), 9M(ry, .. =p™(ry, )" (22)

pM(r)=7(0), (19 are preferable in writing out higher distribution functions.

. . . — . Explicitly, we have for the next three,
is just the uniform densitp=N/A expressed in terms of the PHCTLY,

chemical potential, 9@ (ry,r)=1-D(ryy), (23)
1 < 1
p= > . (20 g®(ry,r2,r3)=1-[D*(r15) + D*(r13) + D*(r3)]
2712 0 1+ e~ Alu—(2k+ LugBol 2D yD(rD (1
1 23 3
This result is more familiarly obtained directly from the par- )
tition function 2, where X cog|roXri4/215), (24)

g®(ry,15,15,1.)=1—[D?(r1p) + D?(r13) + D?(r 14) + D2(r 53 + D%(r 54) + D?(r34)]
+[D3(r 1) D?(r 39) + D3(r 15 D?(r 59) + D3(r 1) D?(r 53]
+2[D(r12)D(r 3)D(r 31)COK |r15X T13//213) + D (1 13) D (r 34) D(F 41) COK | 13X 114|121 2)
+D (1 15)D (1 2)D (1 41)COF 112X 114/ /21 5) + D (r 29) D(r 3) D (1 42) COL 125X 15 1217) ]
—2[D(r15)D(r23)D(r3) D (1 47)COS |F13X 154]/215) + D(r 1) D (1 2) D (1 43) D (137 COS 114X 155/ /215)
+D(r19)D(r50) D(r20) D (1 4p)cOs 115X 134 /215)], (25)

whereD(r) = 7(r)/ (0). Thethree-body distribution func- R 2

tion is the first to show correlations due to phase. 9N r_p=1-¢€"" ’2'0{— > Lk(rZIZIS)} . (26)
For low temperatures and large magnetic fields, i.e., for N k=0

BugBo>1, the summand in Eq20) acts like a discrete

unit-step function, so that faintege) n filled Landau levels  a result that has been obtained by Ciftja and Fahtdfand

one has 2rpl3=n; similarly, using Eq.(18), the pair distri-  Kamilla et al*®

bution function g‘®(r,,)=g®(r;,r,) simplifies in this More generally, the pair functiog'®)(r) from Eq.(23) is

limit to calculated for density and arbitrary temperaturg from
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FIG. 3. Chemical potential as a function of density calculated by ~ FIG. 4. Structure factorS(k) =1+ ph(k) of a two-dimensional,

numerical inversion of Eq.20) at high and low temperatures.

2

1< L(r2/212)
277p|§ k=0 1+ e Blu—(2k+1)ugBo]

(27)

with chemical potentiajx found by numerical inversion of
Eq. (20). The controlling free parameter is th@ugB,. Fig-
ure 1 displays g®(r) for reduced densities 2pl3
=1,2,3,4,5 aBugBy=1, while Fig. 2 shows the same func-
tions atBugBy=50. The latter are clearly longer ranged and
have more structur&hough neither set has muchror ref-
erence, Fig. 3 shows = u(p) from Eq. (20) for the two

g@(r)=1- e—r2/2|(2J

noninteracting quantum electron gas in a magnetic field at a high
temperature and reduced densities;):k(z): 1,2,3,4,5, read from left
to right.

g™(ry,...r,) of a classical two-dimensional one-
component plasma obtained by Jancdior the plasma pa-
rameter valud'=2. Working backwards, we may then con-
clude that the quantum state for the filled lowest Landau
level is precisely described by an effective classical pair po-
tential ¢(r)=—21In(r/l). More generally, in the following
section, we calculate effective potentials for a low-
temperature system with>1 Landau levels filled and find
that their long-range form ig(r)~ —(2/n)In(r/ly).

parameter values. Note that at low temperatures, the chemi-

cal potential computedt a discontinuity falls midway be-
tween its upper and lower limitsu/ugBo=2n when
2mpl3=n for BugB>1.

The structure factorS(k) =1+ ph(k) for the noninteract-

IIl. AN EFFECTIVE PAIR POTENTIAL

The Fermi statistics result in a well-known yet still curi-
ous “statistical repulsion” betweenoninteractingidentical
particles, as is evident in Figs. 1 and 2. The mathematical

ing electrons are now readily obtained by the Fourier transexpression of this property through antisymmetrization of the

formation of h(r)=g®(r)—1. For circularly symmetric

wave function, however, often makes it awkward to work

functions such as these, the two-dimensional Fourier transaith. An explicit effectiveinteraction between the fermions,

form h(k) and its inverséh(r) become Hankel transforms,

E(k):zwrdr rh(r)Jo(kr), (28
0

h(r) (29

1 (= -
ﬂfo dk kh(k)Jg(kr),

where Jy(x) is the Bessel function of order zero. Structure
factors for the pair distribution functions @ugBy=1 and

50 that appear in Figs. 1 and 2 are displayed, respectively, ir

Figs. 4 and 5. The vanishing &0) for all densities at low

temperatures, seen in Fig. 5, signals the incompressibility of
the quantum states with the filled Landau levels. The quadra

tures needed here for the transforh{k) are performed nu-
merically as described in Sec. IV.

We close this section by noting a remarkable fact. For

which could produce the same effects as antisymmetrization,
would considerably simplify the situation. This notion was
first discussed by Uhlenbeck and Gropfel® who carried

out calculations for quantum gases in three dimensions at

0.8

0.6

BupBo = 50

10
klg

physical conditions such that this noninteracting quantum g\ 5. structure factorS(k) =1+ ph(k) of a two-dimensional,
electron system just fills the lowest Landau level, i.e., forpgninteracting quantum electron gas in a magnetic field at a low

BugBo>1 and 2rpl3=1, so thatD(r)=exp(mpri/2),
the exact distribution functiong™(r, ... r,) displayed
above are identical to the exact distribution functions

temperature and reduced densitiesp2(2)= 1,2,3,4,5, read from left
to right. The vanishing o$(0) for all densities signals the onset of
the effective 2DOCP interaction.
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high temperatures and low densities. A more general proce
dure suitable for any temperature and density, based on th
exact Yvon-Born-Green hierarchyy BG), was proposed by
the authof® for the quantum gases with no external magnetic
field. Stevens and Pokrdftlater noted that other familiar
integral equations of classical liquidssuch as Percus-
Yevick and hypernetted-chaifHNC), though approximate,
could also be used for this purpose. In this section and the
next, we examine the extension of these techniques to thi
present case of a two-dimensional electron gas in a magneti
field.

The surprising conclusion of the preceding section is that
the quantum correlation effects of antisymmetrization of the
wave function can indeed be replicated by an effective clas- ) ) ) ) _
sical pair potential for at least the case of filled lowest Lan-_FIG: 6. Effective potentials obtained by numerical solution of
dau level »=2mpl2=1. at low temperatures. We continue the YBG equgtlon for a tlwol-dlmensmr)al, noninteracting quantum

; plo=41, p
. . - electron gas in a magnetic field at a high temperature and reduced
here by assuming that there exists, for any state, a pair fun%l'ensities 2rpl2=1,2,3,4,5, read from top to bottom.
tion ¢(r) such that the Slater sum, E@®), may be written

o(r)

T‘/lg

1 (=
W(r,s)= ;fo dé cosé| D?(t)

. (30

WN<rN>~exp[—iE<j b(rij)

Given that assumption, the YBG hieraréhnen offers an
exact route to such a function. The second member of this
hierarchy, connecting the two-body and three-body distributq. (32) becomes an integral equation
tion functions, reads

—2D(r)D(s)D(t)c05< %sin 0) 1 (35

0

)= +Zﬂjmd W(rs)  (36)
u(r)y=u(r) a0 o ssuys)W(r,s

Viln 9(2)("1"'2) ==V14(r)

g®(ry,r,,13) that can be solved iteratively far(r); a final integration

—p | drgV
Pf r3Vié(rig) 0@(r,.1,)

¢(r>=fdsu(s> 37

(31
yields the effective potential. The integral for the array
W(r,s) in Eqg. (35) is evaluated using the Gauss-Chebyshev
quadrature.

For the high-temperature states displayed in Fig. 1, this
straightforward procedure works well. The effective poten-
tials found in this way for the states of Fig. 1 BiugBg
=1 are shown in Fig. 6. As the density increases, the ampli-
tude of the effective potential decreases, but the changes are
not large.

When applied at low temperatures, however, the simple
procedures, both here and in the HNC solutions of the fol-
lowing section, become problematical as divergences make
an appearance. Their source is not hard to fiitie isother-

where nowd¢(r) is the only unknown. Dottinjlz into Eq.
(31) gives a scalar equation,

de(r) ding(r)
- dr  dr

p de(s)
_g(r)f dscosﬁT

X

rs .
Dz(t)—ZD(r)D(s)D(t)cos< Psma) 1

0
(32

1/2

where cog=r-s, t=(r2+s?—2rscos)*? and we have
dropped those terms @f®)(r,,r,,r3) that do not contribute

because of symmetry. The superscript on the pair function is 1

also omitted for simplicity. Then, with the substitutions

d

u(r)=— ‘Z(r”, (33
|

m:%, (34)

mal compressibilityyt, given exactly by

= o Blu—(2k+1)ugBo]

>

27Tp|(2)k 0 (1+efﬁ[“*(2k+l),uBBo])2' (39

pkeTx=

is relevant here and is plotted in Fig.) Z/Expanding the
Bessel functionJy(kr) in Eq. (28) and evaluating term by
term, we get

~ 1
PR = =14 S (Klg)+ - (39)
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! ' ' ' ' B(r)~—(2n)In(r/ly), (42)
o e 50 o i u(r)~2/nr. (42)
pkBTXTO'G i These are troublesome functions for any numerical proce-
dure restricted to a finite range. Fortunately, it turns out that,
04r in this low-temperature regime, many needed integrals can
be evaluated analytically. Thus, using
02 -
1 2 2n71 r?
0 D(r)=—e ' 144 L. — ,
0 1 2 3 4 5 (r) n go Kl 9|2
2mpl? 0
FIG. 7. Isothermal compressibility; at high and low tempera- 1 r2
tures, calculated from Eq38). The vanishing ofy at low tem- :_efr2/4lé|_17l —1, (43)
perature for integral values of the reduced densiﬁ;p% is linked n " ZIS
to S(0)=0 in Fig. 5.
we find, for example,
for BugBp>1 and 277p|§=n, physical conditions that will
hold for the remaining section. TheB(0)=1+ ph(0)=0, W(r,s)=e "+ 2] (F§)—F5]/2 (44)
the compressibilityyt=8S(0)/p vanishes, and the trans-
form of the direct correlation functioa(r),® forn=1,
po(k) = —phik) , (40) W(r,s)=e" 3+ 38— 472— 482+ 67282+ 14
1+ ph(k) g . ) ap an
. . - +5%)141(rs)+128&s(3—r“—s)lg(rs)—rs(4
acquires & 2 divergence at the origin. The long-range be- Mh(rs) ( No(rs) (
havior of ¢(r) follows that of —c(r) and so p(k) —12)(4—5%)(32—4r2—452+12s?)]/512 (45)
~2/(klo)? for a smallk, independent of density, and we fi-
nally get the asymptotic forms forn=2, and

W(r,s)=e ("+$972[1152192— 194 2— 192+ 688 282+ 96+ 965% — 27 482 — 272 28% — 16r5— 168
+ 28852+ 28258+ 70r *s* + 18+ 8)1 1 (r'S) + 9216 S(96— 72r2— 7252+ 50r 252+ 15r 4+ 158*
— 71482~ 7r28*— 18— 581 o(rs) —rs(24— 12r2+ 1) (24— 125%+ 5%

X (1728-480r2— 48052+ 192 252+ 24+ 245* — 12r*s?— 12r 2%+ r*s*)1/663 552 (46)

for n=3, wherel(x) is the modified Bessel function of < R 2mp (= R

order k and we are using=r/l, and s=s/l, for brevity. v(r=v(r)-u “HWL ds stT(s)W(r,s)
Even with analytic kernels, however, E¢36) cannot be (48)
handled within a finite numerical range without first analyti-

cally extracting the asymptotfétong-rangg(LR)] behavior of  must be evaluated analytically. We fiedR(r)=0 for n=1
u(r). For this purpose, we set-R(r)=2/nr, so that with [so thatuSR(r)=0, u(r)=2/r, and¢(r)=—2In(/ly) is the
u(r)=uSXr)+u"R(r), Eq.(36) becomes an equation for the anticipated exact solution for this cgse

short-ranggSR) part,

vSR(r)=e "% (32— 1472+ T4)/329(r) (49)
27p [
uSR(r)=vSR(r)+g(—rl;f dsstR(s)W(r,s), (470 forn=2, and
0
vSR(r)=e "% (1728 144G 2+ 360+
which contains only well-behaved, short-range functions.

Here, —34r5+18)/864y(r) (50)
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3 . . . . In this approach, one uses the equations
25 BreBo = 50 8 T2
~ ph<(k)
(k)= ———, (53
2 1+ ph(k)
ru) 17 i ¢(r)=y(r)=Ing(r)+B(r), (54)
1 which are exact, to first obtain the indirect correlation func-
tion y(r) from the known pair functiom(r)=g(r)—1 and
051 ] then to arrive at a solution for the effective potenti(r)
0 . . . . after an approximation is made for the so-called bridge func-

0 2 4 6 8 10 tion B(r). In the HNC approximationB(r) is simply ne-
7/l glected, so that

FIG. 8. Logarithmic derivative of the effective potentials, _ _
ru(r)= —d¢(r)§/]dln r, obtained from the YBG equation ?or a two- Prnc(r)=r(r)=Ing(). ®9
dimensional, noninteracting quantum electron gas in a magnetithe calculation involves computing only transforms of pair
field at a low temperature and reduced densitieplZ=1,2,3, read  functions and is noniterative. The HNC effective potentials
from top to bottom. obtained in this way aBugBy=1 are graphically not very

distinct from the YBG solutions of Fig. 6 and are not dis-
for n=3. The computed results for these three cases arglayed.
shown in Fig. 8 asru(r); for n=1, the solution is, of As with the YBG calculation, numerical problems arise at
course, a constantu(r)=2, while forn=2 and 3,ru(r)  low temperatures, where we have already found that the ef-
makes a smooth transition from 2 at the origin to its long-fective potential for the filled Landau levels evolves asymp-
range constant value ofr2bver a distance~5l,, by which  totically into the 2DOCP interaction. Hansen and Leve$Que
point particle pairs are essentially uncorrelated. have reported numerical solutions of the HNC equation for

Evidently, equations for higher indicesquickly become the 2DOCP, specifically adapted to its long-range potential.
intricate to solve by this route, but these results are readilyve follow a similar procedure of extracting the divergence
supplemented with the approximate HNC equation describegnalytically with a long-range function
in the following section. We show in Fig. 9 the effective

potentials ¢(r) obtained with both these methods, at R 1 r r2
BueBo="50. Agreement between the approximatgyc(r) () =—|2In~|+E, o) | (56)
and the exacthypg(r) solutions forn=1, 2, and 3 is rea- 0 0
sonably good, especially at a large whose dimensionless transform is
Adapting to the present notation the total potentéal
quoted by Jancovitifor 2DOCP particles confined to a disk - 2 1
of radiusR, we get a system potential, for large interparticle pd (k)= " zexp[ §(k|o)2}, (57
separations;; , (klo)

5 so that numerical routines deal only with well-behaved
+ 1 D (ﬂ) + —(InE— E) functions?! In Eq. (56), E;(x) is the exponential integral.

295 lo 4)’ Then, starting with the known functiom(r)=g(r)—1, the
(51  steps of the solution are the following:

2
(M)~ > In

or, equivalently, a Boltzmann factaW=exp(—®) given by

" ) (1) ﬁ(k)zzwf drrh(r)Jo(kr), (58
rii 1 r 0
n)( N ij _ i
WM ~I1 (— exg — 5 —) . (52
i<]‘ IO 2 i IO ~5

. o . .y ~q ph2(k) - .
neglecting multiplicative constants, whatres the radial dis- (2) ySRk)=——=——¢R(k), (59
tance from the disk center. The noninteracting electron gas in 1+ph(k)
two dimensions is the basis for understanding the integral 1
guantum Hall effect we find that for the relevant incom- s _ _J"” ~g
pressible states at low temperatures, this system is asymptoti- (3) 70 21 )0 dk ky> k) Jo(kr), (60)
cally described by the effective Boltzmann factor written
above. Fom=1, the Boltzmann factor is exact for al; . (4) dunc(r) =R+ dR(r)—Ing(r). (61)

The numerical calculations now proceed smoothly. The HNC
potentials aBugBy=50 have already been displayed in Fig.

As noted earlier, the HNC integral equation of classical9, along with the YBG potentials from the preceding section.
liquids has been used to model an effective potential for thdhe deviations between the two for a smalire a measure
free electron gas in three dimensibhas well as in twd®®  of the missingB(r), a short-range function, igyne(r).

IV. HNC APPROACH TO THE EFFECTIVE POTENTIAL
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¢(r)~—(2n)In(r/ly), (66)

for filling factors v=n>1. The physical condition8wgBg

>1 and 27pl3=n apply to theintegral quantum Hall effect,
and so we find that, fow=1, the noninteracting electron
model for the integral quantum Hall effect maps into the
classical two-dimensional one-component plasma through an
effective Boltzman factor

rii| 2 1 ri\2
lexg-z> (| |. (67
IO 2 i Io
It is, of course, well known that the 2DOCP has previ-
ously been invoked by Laughfifi to construct arN-particle

WP =TT

<]

FIG. 9. Effective potentials for a two-dimensional, noninteract-wave functiony,, that accounts for the principal features of
ing quantum electron gas in a magnetic field at a low temperaturehe fractional quantum Hall effect. Expressed as an equiva-

obtained from the YBG equation at reduced densitiezspl?é
=1,2,3 and the HNC equation at reduced densitiespl2
=1,2,3,4,5, read from bottom to top.

The Hankel transforms needed in these calculations are

evaluated numerically. The discrete versfonsf the inte-
grals (28) and(29) used in this work,

~ 4 Nt Jo(kjri)
hk)=-73 ; h“‘)Jg(Kriy (62
N, —1
_ = Jolkjri)
= e 121 h(kJ)Ji(ij)’ ©9

lent Boltzman factoW= |2, Laughlin’s solution is

ez ()

with m an odd integer, includingh=1.

The coincidence of form in these effective Boltzmann fac-
tors forv=n=1/m=1 in mathematical models for the inte-
gral and fractional quantum Hall effects is remarkable and
nontrivial, since the two results arise from quite distinct ori-
gins.

(1) Laughlin presents Eq68) in the context of a system
of electrons interacting through the Couloretir potential.
Further, the result is constructed as the squared amplitude of
a single ground-state wave function, which requires an ex-

W =]

i<j

. (69

preserve the orthogonality of the continuous Hankel transpicit antisymmetrization, so thah must be an odd integer in

forms. In these expression,(x) is the Bessel function of
the ordern and the numerical grids are defined by
=& /K, kj=¢§/R, where¢; is the jth root of Jo(x), K
EkNr' andRErNr; the rangeR and number of grid pointhl,

general.

(2) In this paper, Eq(67) is obtained explicitly and ex-
actly for anoninteractingsystem of electrons. Further, it is a
sum over states, rather than the amplitude squared of a single

are free choices. In the present calculations, we have usedave function. The fact, that the quantum numberl is

R/l y=20 andN, = 1000.

V. CONCLUSIONS

The electric potential due to an infinite line ch&is, in
Gaussian unitsp(r)=—2AIn(r/L), where \ is the linear
charge density andl is an arbitrary length. Then, with
=14, the energyw(r) associated with lengthg, containing
chargeq=A\Il,, of each of the two interacting infinite line
charges is

w(r)=—(29%1)In(r/1g)=—=TIn(r/ly),
which is the defining potential of the 2DOCP.

(64)

odd has here nothing to do with antisymmetrization; this
property is built into the Slater sum from the very beginning,
Eg. (2), and is reflected in its vanishing whenever two par-
ticles approach each other, which is the signature of “fermi-
onicity.”

One concludes that, at least for the filled lowest Landau
level, v=1, Laughlin’s variational wave function actually
describes a noninteracting system. This is consistent with the
fact that the electronic charge does not appear in these
solutions unless multiplying the magnetic field, @By, re-
flecting just the magnetic force on the electron.
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APPENDIX: THE ONE-BODY SLATER SUM

65 -
9 The vector potential in the Landau gaugeAis — By,

so the one-electron Hamiltonian becomes
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1 [/ 9 2 [ 9)\? Using this in Eq(A3) with a=2BugBg and simplifying, we
H1:2me ('ﬁ5+650y + lﬁw) . (Al arrive at
The Schrdinger equatior; = ey is then solved b
A, _ (y—w122] (y—«l2 Wi (x,y)=[ A% (272sinha) 2L, 1>, exfik(x—PX)
l,bKn(X,y): LT/ZeX I KX— 2|2 n |0 ) “
X 0 A2) — (y—Py)?/23tanha — tanh a/2) (y — k13)
with k=2mj/L, for j=0,21,%2, ..., lo=(f/eBy) "2 and X (Py—«I§)/15]. (A5)

An=(ml3)~Y42"n1) ~Y2. Further, H,(x) is the Hermite
polynomial of the orden andL, is the edge length of the . .
rectangular ared in the x direction. The corresponding en- ;I'he T_ecosgéum, gverl;sdeffecged as in integral. For a
ergy eigenvalues aree,=(2n+1)ugBy, n=0,1,2..., 'aQ9€kx Lx «—(2m)""fdx and we ge
where ug=ef/2m, is the Bohr magneton.

We seek to determine the one-body Slater sum

1 0
—f drexfdik(x—Px)—tani a/2)

A2 2m) -
Wi(x,y)= A2, e Pyt (PXPY) han(X,Y) = —5 , -
xn (l5) "Ly X (y—kl2)(Py—«l2)/12]
xS i K(X—PX) o= (Py— x13)2/21 25~ (y— 1 2) /213 =[4wl3tanh @/2)]~ Y%exd — (x— Px)?/4l 3tank /2)
) ) ) +tanH a/2)(y— Py)2/413+i(x—Px)(y+ Py)/213],
g (@n+1)BugBo Py—«l -kl
y H, Y~ klo H, Y~ «klo . (A6)
n 2"n! lo lo

(A3) and so finally,
First we note thaf

= gna Wy (X,y) =[ A%/4al3sinh «/2)]
H,(x)H
ngo 2! () X exd — (r— Pr)?/412tani a/2)
e 2 [—(x+yde *+2xy +i(x—Px)(y+Py)/213] (A7)
| 2 sinha 2 sinha '
(A4)  after some further simplification.
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