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Green-function theory of confined plasmons in coaxial cylindrical geometries: Zero magnetic field
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A theoretical investigation is made of the plasmon propagation in the coaxial cylindrical geometries using
Green function~or response function! theory in the absence of an applied magnetic field. The plasmon exci-
tations in such multiple interface structures are characterized by the electromagnetic~EM! fields that are
localized at and decay exponentially away from the interfaces. The Green-function theory, generalized to be
applicable to such quasi-one-dimensional~1D! systems, enables us to derive explicit expressions for the
corresponding response functions~associated with EM fields!, which can in turn be used to compute numerous
physical properties of the system at hand. A rigorous analytical diagnosis of the general results in diverse
situations leads us to reproduce exactly the previously well-established results on 2D and 1D systems, obtained
within the different theoretical frameworks. As an application, we present several illustrative examples on the
dispersion characteristics of the confined and extended plasmons in single- and double-interface structures.
These dispersive modes are also substantiated through the computation of local as well as total density of
states. Our theoretical framework can also serve as a powerful technique for studying the intrasubband plas-
mons in the emerging mutiple-walled carbon nanotubes. The elegance of theory lies in the fact that it does not
require the matching of the messy boundary conditions and in its simplicity and the compact form of the
desired results.

DOI: 10.1103/PhysRevB.67.245320 PACS number~s!: 52.35.Hr, 68.65.La, 78.67.Ch
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I. INTRODUCTION

The past two decades have seen a great deal of rese
efforts focused on semiconducting systems of reduced
mensions and size. The ability to make progressively sma
structures has allowed researchers to study how the ch
carriers behave when confined to still lower dimensio
Thus the advancement of research on electronic systems
been predominantly toward more confinement—from qu
tum well ~two degrees of freeedom! to quantum wire~one
degree of freedom! to quantum dots~zero degree of free
dom!. The basic principle behind the growth mechanism
quantum wells, wires, and dots is the same: confine elect
in a restricted region of a semiconductor by sandwiching
within another semiconductor with a larger band gap, a m
sure of the amount of energy needed to get the elect
flowing. Theoretically, the reduced degrees of freedom al
detailed and often exact calculations. Practically, new
exotic electronic and optical phenomena have been obser
An extensive recent review of the subject, both theoret
and experimental, can be found in Ref. 1.

The current status of the nanofabrication technology le
us to imagine formation of not only two-dimensional~2D!,
1D, and 0D structures, but also more complicated ones s
as quantum pipes, snakes, balls, rings, and ribbons w
electrons are confined in the regions with qua
dimensionality between three and zero dimensions~see Ref.
1!. The fabrication of essentially arbitrary geometries co
lead to dramatic control of the electronic and optical prop
ties of solids. Role of the boundaries—the inner and ou
perimeters—in understanding several electronic and tra
port phenomena in such nanostructures has been much
preciated in the recent past. We refer, in particular, to
importance of the edge states in understanding, for exam
0163-1829/2003/67~24!/245320~19!/$20.00 67 2453
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the magnetotransport in quantum Hall regimes in a bro
range of mesoscopic systems.1 In this context, Fodenet al.2

have reported results on the band structure and conduct
of axially symmetric, curved, non-interacting 2D electro
gas ~2DEG!, topologically equivalent to a Corbino disk, i
the presence of non-homogeneous magnetic field, arisin
a result of an applied axial magnetic field.

The optical phenomena being investigated within the cl
sical electrodynamics continues to receive a considerable
tention on the nanoscale cylindrical as well as spher
structures. The cylindrical structures have generated pert
lar interest for their usefulness not just as electromagn
waveguides, but also as atom guides, where the guid
mechanism is governed mainly by the excited cavity mod
It is envisioned that the understanding of atom guides at s
a small scale would lead to much desirable advancemen
atom lithography, which in turn should facilitate the atom
physics research.3

The present work is aimed at investigating the plas
modes of a semiconductor~dielectric! shell embedded in the
two unidentical dielectrics~semiconductors! in the coaxial
cylindrical geometries using a Green-function theory in t
absence of an applied magnetic field. Our theoreti
approach is virtually the interface response theory~IRT!
~Ref. 4! generalized to be applicable to such quasi-o
dimensional systems. Ever since its inception, the IRT
been extensively applied to study various quasi-particle
citations~such as phonons, plasmons, magnons, etc.! in het-
erostructures and superlattices.5–7 Quite recently, it was gen-
eralized to investigate diverse 2D systems, both with a
without an applied magnetic field.8,9

Such semiclassical theories~including the hydrodynami-
cal model which can also accommodate the spatial dis
sion in a simple manner! and the quantal theories such
©2003 The American Physical Society20-1
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Bohm-Pines’ random-phase approximation10 are supposed to
produce identical results for the intrasubband collective
ciations for the corresponding quantum systems in the lo
wavelength limit. In the limit that both radii of the inner an
outer cylindersR1 and R2→` but d5(R22R1) remains a
finite quantity, we will show how we obtain exactly the di
persion relation for the intrasubband plasmons in
inversion-layer system, which represents the 2D geomet
Similarly, in the limit that the radius of a plasma cylind
R→0, our theoretical results are shown to yield the disp
sion relation for the intrasubband plasmons for a single qu
tum wire.

The general results on the confined as well as exten
plasma modes, in both single and double-interface ge
etries, are shown to be correctly substantiated by the lo
and/or total density of states. Apart from such tests of
theory, we believe that it should prove to be a simple
powerful scheme of a theoretical framework needed to stu
for example, the intrasubband plasmons in multiwalled c
bon nanotubes, where theoretical research is gaining con
erable momentum recently.11

The rest of the paper is organized as follows. In Sec. II
discuss some basic notions of the cylindrical geometry
calculate the bulk response function. In Sec. III we prese
theoretical formalism to derive the final expressions for
plasmon dispersion relations, discuss some interesting
lytical diagnosis of the general expressions under spe
limits, and give some explicit analytical relationship betwe
the response functions and the density of states. In Sec
we report several illustrative examples of the numerical
sults on the plasmon dispersion and density of states
variety of experimentally feasible situations. Finally, in Se
V we conclude our findings and list some interesting dim
sions worth adding to the problem in the future.

II. BASIC NOTIONS AND BULK RESPONSE FUNCTIONS

First we consider it important to make a careful analy
of the Maxwell equations before making their use for der
ing the response functions for the respective systems.
consider the electromagnetic waves propagating with an
gular frequencyv and wave vectorki ẑ in a medium defined
by the cylindrical coordinates (r,u,z). The plasma waves
here as well as in the later part of this work, will be assum
to observe a spatial localization along the direction perp
dicular to the axis of the cylinder. Note that the situation
totally unlike that in the Cartesian coordinate system wh
one can safely and readily define the sagittal plane~i.e., the
plane defined by the wave vector and the normal to
surface/interface! and hence isolate the transverse magn
~TM! and the transverse electric~TE! modes, at least in the
absence of an applied magnetic field. The only exception
this notion is the Voigt geometry~with a magnetic field par-
allel to the surface/interface and perpendicular to the pro
gation vector! that can still~i.e., even in the presence of a
applied magnetic field! allow the separation of the TM an
TE modes~see, for details, Ref. 1!. In the literature on optics
the TM and TE modes are also known by the name ofp and
s polarizations, respectively.
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It should be pointed out that we are interested in the n
magnetic materials, so thatBW [HW in the Maxwell curl-field
equations. After eliminating the magnetic field variableBW
from these curl-field equations, we obtain

¹W 3~¹W 3EW !2q
0

2eEW 50. ~2.1!

Here the dielectric constante is a scalar quantity, since th
system we are concerned with is not subjected to any ex
nal magnetic field and the physical system is assumed to
isotropic. In Eq.~2.1! q

0
5v/c is the vacuum wave vector

wherec is the speed of light in vacuum. We will take th
spatial and temporal dependence of the electromagn
fields of the form ofAW (r,f,z);AW (r,u)e( ikz2 ivt), whereAW

[EW or BW . Recalling the standard definitions of¹W .AW , ¹2f

~with f as any scalar!, and¹W 3AW in the cylindrical coordi-
nates, one should be able to split Eq.~2.1! into the three
equations:

F ]2

]r2
1

1

r

]

]r
1

1

r2

]2

]u2
2k2GEx2

1

r2 S Ex12
]

]u
EyD1q

0

2eEx

50, ~2.2!

F ]2

]r2
1

1

r

]

]r
1

1

r2

]2

]u2
2k2GEy2

1

r2 S Ey22
]

]u
ExD1q

0

2eEy

50, ~2.3!

F ]2

]r2
1

1

r

]

]r
1

1

r2

]2

]u2
2k2GEz1q

0

2eEz50. ~2.4!

Equations~2.2!–~2.4! demonstrate clearly that the cylindrica
geometry does not allow the separation of the TM and
modes. We choose to work in terms ofEz and Bz compo-
nents. Then we first need to evaluateEx , Ey , Bx , andBy in
terms ofEz and Bz from the Maxwell curl-field equations
The results are

Ex5
1

a2 F2 iq
0

1

r

]

]u
Bz2 ik

]

]r
EzG , ~2.5!

Ey5
1

a2 F iq
0

]

]r
Bz2 ik

1

r

]

]u
EzG , ~2.6!

and similarly

Bx5
1

a2 F iq
0
e
1

r

]

]u
Ez2 ik

]

]r
BzG , ~2.7!

By5
1

a2 F2 iq
0
e

]

]r
Ez2 ik

1

r

]

]u
BzG . ~2.8!

With the aid of these equations, we simplify thez compo-
nents of the Maxwell curl-field equations:
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1

r

]

]r
~rEy!2

1

r

]

]u
Ex5 iq

0
Bz ~2.9!

and

1

r

]

]r
~rBy!2

1

r

]

]u
Bx52 iq

0
eEz , ~2.10!

to write

]2

]r2
Az1

1

r

]

]r
Az1S 1

r2

]2

]u2
2a2D Az50, ~2.11!

whereAz stands forEz or Bz anda5(k22q
0

2e)1/2 is a mea-

sure of the decay constant in a medium concerned.
Before we proceed further, it is important to define a ch

acteristic terminology of the interface response theory:
black-box surface~BBS!. By the BBS we mean an entirel
opaque surface through which electromagnetic fields can
propagate. The idea of introducing the BBS in the IRT~Ref.
4! was conceived with two prominent advantages over
contemporary semiclassical approaches in mind. First, it
lows one to disconnect from the extra mathematical wo
and hence to confine only within the truly building block
the system concerned. Second, it implicitly provides a gr
opportunity to get rid of using the messy boundary con
tions one is so routinely accustomed to in dealing with
inhomogeneous systems. What results is a number of sim
fied and compact forms of the response functions which
only needs to sum up in order to proceed further for study
the desired physical property of the resultant system at h
Conceptually, this is achieved by stressing thatc ~the speed
of light! ande ~the dielectric constant/function! vanish inside
the specific region. In order to create a medium bounded
a black-box surface, we assume that Eqs.~2.5!–~2.8! are
only valid for eitherr.R or r,R, with R as the radius of
the only cylinder in question by now. Then we multiply th
right-hand sides of Eqs.~2.5!–~2.8! by the step function
u(r2R) or u(R2r), as the case may be. We first calcula
the two derivatives needed to evaluate Eqs.~2.9! and~2.10!.
The results are

]

]r
~rEy!5

1

a2 H F iq
0

]

]r
Bz1 iq

0
r

]2

]r2
Bz2 ik

]

]u

]

]r
EzG

2d~R2r!F iq
0
r

]

]r
Bz2 ik

]

]u
EzG J ~2.12!

and
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]r
~rBy!

5
1

a2 H F2 iq
0
e

]

]r
Ez1 iq

0
er

]2

]r2
Ez2 ik

]

]u

]

]r
BzG

2d~R2r!F2 iq
0
er

]

]r
Ez2 ik

]

]u
BzG J . ~2.13!

Evidently, the step function~and hence the delta function!
dictates the kind of physical situation we will consider
what follows. Then the differential equations~2.9! and~2.10!
satisfied by Ez(r,u) and Bz(r,u) assume the following
forms:

S 2 iq
0
e

b2 D F S ]2

]r2
1

1

r

]

]r
1

1

r2

]2

]u2
1b2D Ez

2d~R2r!S ]

]r
Ez1

k

q
0
er

]

]u
BzD G50 ~2.14!

and

S iq
0

b2 D F S ]2

]r2
1

1

r

]

]r
1

1

r2

]2

]u2
1b2D Bz

2d~R2r!S ]

]r
Bz2

k

q
0
r

]

]u
EzD G50, ~2.15!

whereb252a25q
0

2e2k2. The formal equations~2.14! and
~2.15! will be the standard format for all the calculations
the Green functions of the system of interest in what follow

Next, let rW[(r,u), rW8[(r8,u8), and define the Green
function

G~rW,rW8![G~ urW2rW8u![G~r,u;r8,u8! ~2.16!

for the homogeneous~bulk! medium@see Eq.~2.11!#:

S ]2

]r2
1

1

r

]

]r
1

1

r2

]2

]u2
1b2D G~rW,rW8!

524pd~rW2rW8!52
4p

r
d~r2r8!d~u2u8!. ~2.17!

The solution of this equation is given by~see, for example,
Ref. 12!:

G~rW,rW8!5 (
m52`

`

eim(u2u8)G~m;r,r8!, ~2.18!

with

G~m;r,r8!5 ipH Jm~br!Hm~br8! if r<r8

Hm~br!Jm~br8! if r>r8,
~2.19!
0-3
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where Jm(z) @Hm(z)# refers to the Bessel function of th
first ~third! kind of ~integer! orderm. We write

G~m;r,r8!5 ip$@12u~r2r8!#Jm~br!Hm~br8!

1u~r2r8!Hm~br!Jm~br8!%, ~2.20!
ve
tru
ua

ra
gs
a
a
-
b
e

b

e

g
is
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where u(x)51(0) for x.0(x,0) is the Heaviside step
function. It is a simple matter to verify that the Green fun
tion in Eq. ~2.19! represents the exact solution of Eq.~2.18!.

We close this section by writing the bulk Green-functio
tensor for the field componentsEz andBz as a 232 matrix:
F S 2q
0

2e

b2 D F ]2

]r2
1

1

r

]

]r
2

m2

r2
1b2G 0

0 S 2q
0

2

b2 D F ]2

]r2
1

1

r

]

]r
2

m2

r2
1b2GG

3FG
E
~m;r,r8! 0

0 G
B
~m;r,r8!G52

2

r
d~r2r8!F1 0

0 1G , ~2.21!
tor

-
a-
c
, a
s

where we use]/]u5 im and @see Eq.~2.19!#

2S q
0

2e

b2 D G
E
~m;r,r8!52S q

0

2

b2D G
B
~m;r,r8!

5 ipH Jm~br!Hm~br8!, r<r8

Hm~br!Jm~br8!, r>r8.

~2.22!

In what follows, we will consider three types of perturbati
operations to have the desired results for the resultant s
ture at hand. In doing so, we will abide by the concept
scheme of the IRT~see Ref. 4!.

III. FORMALISM FOR INVERSE RESPONSE FUNCTIONS

In this section, we will consider three perturbative ope
tions represented geometrically by Fig. 1. Specifically, Fi
1~A!, 1~B!, and 1~C! correspond, respectively, to the plasm
cylinder of radiusR1 surrounded by a black box surface,
black box cylinder of radiusR2 surrounded by a plasma me
dium, and a plasma shell sandwiched between the black
cylinder of radiusR1 and a semi-infinite black box surfac
outside a cylinder of radiusR2. The plasma media in the
perturbations A, B, and C are, in general, characterized
the local dielectric functionse1(v), e2(v), ande3(v), re-
spectively. We will consider the effect of retardation but n
glect the absorption throughout. Any subscripti[1, 2, or 3
on the physical quantities should be understood referrin
the respective perturbation until and unless stated otherw

A. First perturbation

The first perturbation@represented by Fig. 1~A!# is speci-
fied by a step functionu(R12r) in front of Eqs.~2.5!–~2.8!.
c-
l

-
.

ox

y

-

to
e.

That means that the black-box cleavage opera

Ṽ1(R1 ,r8)d(R12r8) is defined such that@see Eqs.~2.14!
and ~2.15!#

Ṽ1~R1 ,r8!5
R1

2

q
0

2

b1
2F 2e1

]

]r8
2

imk

q
0
r8

imk

q
0
r8

2
]

]r8

G , ~3.1!

and the corresponding bulk Green function is written as@see
Eqs.~2.22!#

FIG. 1. Schematics of the concept of three perturbations:@A#,
@B#, and@C#. The blank~shaded! region refers to the material me
dium ~black box! in the system. The sum of the first two perturb
tions defines a plasma~dielectric! cylinder embedded in a dielectri
~plasma! and the sum of all three perturbations specifies, say
plasma~dielectric! shell surrounded by two unidentical dielectric
~plasmas!.
0-4
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G̃1~r,r8!5 ip
q

0

2 F e1

0 2Hm~b1r!Jm~b1r8!
G . ~3.2!

It is noteworthy that although the operatorsṼ1 andÃ1 as well as the functionsG̃1 andg̃1 are all functions of the variables suc
asm, k, andv, we have suppressed them throughout for the sake of brevity and convenience. With this, we define the r
operator

Ã1~R1 ,R1!5Ṽ1~R1 ,r!G̃1~r,r8!ur5R15r85F ip

2
b1R1Hm8 ~b1R1!Jm~b1R1! 2

p

2

mk

q
0

Hm~b1R1!Jm~b1R1!

p

2

mk

q
0
e1

Hm~b1R1!Jm~b1R1!
ip

2
b1R1Hm8 ~b1R1!Jm~b1R1!

G . ~3.3!

The prime on the Bessel functions stands for the derivative of the respective quantity with respect to the full argume
we define an operator

D̃1~R1 ,R1!5 Ĩ 1Ã1~R1 ,R1!5F ip

2
b1R1Hm~b1R1!Jm8 ~b1R1! 2

p

2

mk

q
0

Hm~b1R1!Jm~b1R1!

p

2

mk

q
0
e1

Hm~b1R1!Jm~b1R1!
ip

2
b1R1Hm~b1R1!Jm8 ~b1R1!

G . ~3.4!
in

rs

sur-

or
It should be pointed out that in writing the second equality
Eq. ~3.4!, we have made use of the identity13

1

Jn~z!Hn~z!
5

pz

2i FHn8~z!

Hn~z!
2

Jn8~z!

Jn~z!
G . ~3.5!

Next, we calculate the inverse ofG̃1 to write

G̃1
21~R1 ,R1!5

q
0

2

ipb1
2

1

Hm~b1R1!Jm~b1R1! F2e1 0

0 21G .
~3.6!

As such, we have all that we need to calculate the inve
response function in the interface spaceM defined by

g̃1
21~R1 ,R1!5D̃1~R1 ,R1!G̃1

21~R1 ,R1!. ~3.7!

The result is that
24532
e

g̃1
21~R1 ,R1!

5
q

0

2

2b1
2F 2b1R1e1

Jm8 ~b1R1!

Jm~b1R1!
2

imk

q
0

imk

q
0

2b1R1

Jm8 ~b1R1!

Jm~b1R1!

G
~3.8!

represents the response function of a dielectric cylinder
rounded by a black box.

B. Second perturbation

The second perturbation@represented by Fig. 1~B!# is
specified by a step functionu(r2R2) in front of Eqs.~2.5!–
~2.8!. Then the black-box cleavage operat
Ṽ2(R2 ,r8)d(r82R2) is defined such that

Ṽ2~R2 ,r8!52
R2

2

q
0

2

b2
2F 2e2

]

]r8
2

imk

q
0
r8

imk

q
0
r8

2
]

]r8

G , ~3.9!

and the corresponding bulk Green function is written as
0-5
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G̃2~r,r8!5 ip
q

0

2 F e2

0 2Jm~b2r!Hm~b2r8!
G . ~3.10!

With this, we define the response operator

Ã2~R2 ,R2!5Ṽ2~R2 ,r!G̃2~r,r8!ur5R25r85F 2
ip

2
b2R2Jm8 ~b2R2!Hm~b2R2! 1

p

2

mk

q
0

Jm~b2R2!Hm~b2R2!

2
p

2

mk

q
0
e2

Jm~b2R2!Hm~b2R2! 2
ip

2
b2R2Jm8 ~b2R2!Hm~b2R2!

G .

~3.11!

Next we define an operator

D̃2~R2 ,R2!5 Ĩ 1Ã2~R2 ,R2!5F 2
ip

2
b2R2Jm~b2R2!Hm8 ~b2R2! 1

p

2

mk

q
0

Jm~b2R2!Hm~b2R2!

2
p

2

mk

q
0
e2

Jm~b2R2!Hm~b2R2! 2
ip

2
b1R2Jm~b2R2!Hm8 ~b2R2!

G . ~3.12!
n

d by

or
Again, in writing the second equality in Eq.~3.12!, we have
made use of the identity in Eq.~3.5!. Next, we calculate the
inverse ofG̃2 to write

G̃2
21~R2 ,R2!5

q
0

2

ipb2
2

1

Jm~b2R2!Hm~b2R2! F2e2 0

0 21G .
~3.13!

Now we need to calculate the inverse response functio
the interface spaceM defined by

g̃2
21~R2 ,R2!5D̃2~R2 ,R2!G̃2

21~R2 ,R2!. ~3.14!

The result is that
24532
in

g̃2
21~R2 ,R2!

5
q

0

2

2b2
2F b2R2e2

Hm8 ~b2R2!

Hm~b2R2!

imk

q
0

2
imk

q
0

b2R2

Hm8 ~b2R2!

Hm~b2R2!

G
~3.15!

represents the response function of black box surrounde
a dielectric medium.

C. Third perturbation

The third perturbation@represented by Fig. 1~C!# is speci-
fied by a step function@u(r2R1)2u(r2R2)# in front of
Eqs. ~2.5!–~2.8!. Then the black-box cleavage operat
Ṽ3(Ri ,r8)d(r82Ri)Pnn8 @with Pnn851(0) for n,n8<2
and>3 ~otherwise!; i 51 ~2! for n,n8<2 (>3)] is defined
such that
Ṽ3~Ri ,r8!5
1

2

q
0

2

b3
2 3

e3R1

]

]r8

imk

q
0
r8

R1 0 0

2
imk

q
0
r8

R1 R1

]

]r8
0 0

0 0 2e3R2

]

]r8
2

imk

q
0
r8

R2

0 0
imk

q
0
r8

R2 2R2

]

]r8

4 . ~3.16!
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The corresponding bulk Green function is written as

G̃3~M ,M !5 ip
b3

2

q
0

2 3
2

1

e3
Jm~b3r!Hm~b3r8! 0

0 2Jm~b3r!Hm~b3r8!

2
1

e3
Hm~b3r!Jm~b3r8! 0

0 2Hm~b3r!Jm~b3r8!

2
1

e3
Jm~b3r!Hm~b3r8! 0

0 2Jm~b3r!Hm~b3r8!

2
1

e3
Hm~b3r!Jm~b3r8! 0

0 2Hm~b3r!Jm~b3r8!

4 ,

~3.17!

where the interface spaceM will be referred to as (r5R1 , r85R1), (r5R1 , r85R2), (r5R2 , r85R1) and (r5R2 , r8
5R2), respectively, in the first, second, third, and fourth quadrants made up of 232 submatrices starting clockwise from th
top-left. With this, we define the response operator

Ã3~M ,M !5Ṽ3~M !G̃3~M ,M !

5
ip

2 3
2b3R1Jm8 ~b3R1!Hm~b3R1! 2

imk

q
0

Jm~b3R1!Hm~b3R1!

imk

q
0
e3

Jm~b3R1!Hm~b3R1! 2b3R1Jm8 ~b3R1!Hm~b3R1!

b3R2Hm8 ~b3R2!Jm~b3R1!
imk

q
0

Hm~b3R2!Jm~b3R1!

2
imk

q
0
e3

Hm~b3R2!Jm~b3R1! b3R2Hm8 ~b3R2!Jm~b3R1!

2b3R1Jm8 ~b3R1!Hm~b3R2! 2
imk

q
0

Jm~b3R1!Hm~b3R2!

imk

q
0
e3

Jm~b3R1!Hm~b3R2! 2b3R1Jm8 ~b3R1!Hm~b3R2!

b3R2Hm8 ~b3R2!Jm~b3R2!
imk

q
0

Hm~b3R2!Jm~b3R2!

2
imk

q
0
e3

Hm~b3R2!Jm~b3R2! b3R2Hm8 ~b3R2!Jm~b3R2!

4 .

~3.18!

Now we define an operator

D̃3~M ,M !5 Ĩ 1Ã3~M ,M !

5
ip

2 3
2b3R1Hm8 ~b3R1!Jm~b3R1! 2

imk

q
0

Jm~b3R1!Hm~b3R1!

imk

q
0
e3

Jm~b3R1!Hm~b3R1! 2b3R1Hm8 ~b3R1!Jm~b3R1!

b3R2Hm8 ~b3R2!Jm~b3R1!
imk

q
0

Hm~b3R2!Jm~b3R1!

2
imk

q
0
e3

Hm~b3R2!Jm~b3R1! b3R2Hm8 ~b3R2!Jm~b3R1!

2b3R1Jm8 ~b3R1!Hm~b3R2! 2
imk

q
0

Jm~b3R1!Hm~b3R2!

imk

q
0
e3

Jm~b3R1!Hm~b3R2! 2b3R1Jm8 ~b3R1!Hm~b3R2!

b3R2Jm8 ~b3R2!Hm~b3R2!
imk

q
0

Hm~b3R2!Jm~b3R2!

2
imk

q
0
e3

Hm~b3R2!Jm~b3R2! b3R2Jm8 ~b3R2!Hm~b3R2!

4 .

~3.19!

Again, in writing the second equality in Eq.~3.19!, we have made use of the identity in Eq.~3.5!. Next, we calculate the
inverse of the bulk Green functionG̃3 to write
245320-7
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G̃3
21~M ,M !5

q
0

2

ipb3
2

1

D 3
2e3

Jm~b3R2!

Jm~b3R1!
0 e3 0

0 2
Jm~b3R2!

Jm~b3R1!
0 1

e3 0 2e3

Hm~b3R1!

Hm~b3R2!
0

0 1 0 2
Hm~b3R1!

Hm~b3R2!

4 , ~3.20!

where the symbolD is defined as

D5Hm~b3R1!Jm~b3R2!2Jm~b3R1!Hm~b3R2!. ~3.21!

Finally, we calculate the inverse response function of a cylindrical shell bounded by two black boxes

g̃3
21~M ,M !5D̃3~M ,M !G̃3

21~M ,M !, ~3.22!

to write

g̃3
21~M ,M !5

q
0

2

2b3
2 3

b3R1e3

Z1

D

imk

q
0

2
2i e3

pD
0

2
imk

q
0

b3R1

Z1

D
0 2

2i

pD

2
2i e3

pD
0 b3R2e3

Z2

D
2

imk

q
0

0 2
2i

pD

imk

q
0

b3R2

Z2

D

4 , ~3.23!
th

re

at

try
c

n a
i-

a
-

where

Z15Hm8 ~b3R1!Jm~b3R2!2Jm8 ~b3R1!Hm~b3R2!,

Z25Hm8 ~b3R2!Jm~b3R1!2Jm8 ~b3R2!Hm~b3R1!.
~3.24!

Having calculated the inverse response functions for
three perturbations, it becomes an easy task to deduce
dispersion relations for the plasmon propagation in the
physical systems. These are~i! a plasma~dielectric! cylinder
embedded in a dielectric~plasma! and ~ii ! a plasma~dielec-
tric! shell surrounded by two unidentical dielectrics~plas-
mas!, for example. This is what we intend to do in wh
follows.
24532
e
the
al

D. Plasma„dielectric… cylinder embedded
in dielectric „plasma…

Merger of perturbations A and B results into a geome
of a plasma~dielectric! cylinder embedded in a dielectri
~plasma!. As such, one can writeg̃215g̃1

211g̃2
21, where

g̃21 is the inverse response function of a single cylinder i
semi-infinite medium. That means that formally the determ
nant of the sum of inverse response functions in Eqs.~3.8!
and ~3.15!, with R15R5R2, equated to zero, i.e.,

ug̃21~M ,M !u5ug̃1
21~M ,M !1g̃2

21~M ,M !u50,
~3.25!

should yield the dispersion relation for plasmons with
mixed ~TM and TE! character in a single cylindrical geom
etry. The result is
0-8
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U b1 Jm~b1R! b2 Hm~b2R! R b1 b2

imk

R S 1

b1
2

2
1

b2
2D 2F q

0

b1

Jm8 ~b1R!

Jm~b1R!
2

q
0

b2

Hm8 ~b2R!

Hm~b2R!
GU50 ~3.26!
o
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im
se
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e
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n

e
tric,
-

he
in
he
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ters
or

F e1

b1

Jm8 ~b1R!

Jm~b1R!
2

e2

b2

Hm8 ~b2R!

Hm~b2R!
GF 1

b1

Jm8 ~b1R!

Jm~b1R!

2
1

b2

Hm8 ~b2R!

Hm~b2R!
G5S m

RD 2 k2

q
0

2 S 1

b1
2

2
1

b2
2D 2

.

~3.27!

This expression is exactly identical to Eq.~107! in Ref. 14,
which was obtained through the use of messy boundary c
ditions decades ago by Stratton. Only in the special limit
m50 can the TM~represented by the first square brack
equated to zero! and TE ~specified by the second squa
bracket equated to zero! modes become separable. We co
centrate on the TM modes for studying, for example, pl
mons in a slender wire made up of the cylinder in the lim
R→0.

Quantum wire in the electric quantum limit

For m50, the TM modes are characterized by the follo
ing dispersion law:

e1

b1

J1~b1R!

J0~b1R!
2

e2

b2

H1~b2R!

H0~b2R!
50, ~3.28!

sincez0852z1, with zm[Jm ,Hm . It is not difficult to prove
that Eq. ~3.28! is exactly identical to Eq.~18! in Ref. 15,
which was also derived through the use of boundary con
tions, and represents the plasmon dispersion for the clas
dielectric waveguide. It is a simple matter to understand t
in order to be able to deduce some expected results for
planar interface we need to employ the large-argument l
~i.e., R→`). Imposing asymptotic expansions of the Bes
functions for large arguments~i.e., when H1 /H05 i and
J1 /J052 i ), we obtaine1b21e2b150, which is a well-
known general dispersion law for the TM modes propagat
on an interface between two unidentical media character
by dielectric functionse1 ande2 ~see, for example, Ref. 1!;
hereb1 andb2 serve as the decay constants for the resp
tive media and have to be purely imaginary for the plasm
polaritons.

Intuitively, a macroscopic plasma cylinder with a vanis
ingly small radius should mimic a fashionable quantum w
and hence one would expect such a semiclassical metho
ogy as treated here to reproduce the correspondingintrasub-
bandplasmon dispersion. Using the lowest-order expansi
of the involved Bessel functions for the small arguments o
can cast Eq.~3.28! in the form
24532
n-
f
t

-
-

t

-

i-
cal
at
he
it
l

g
d

c-
-

-

ol-

s
e

e11
2e2

a2R

K1~a2R!

K0~a2R!
50, ~3.29!

wherea25(k22q
0

2e2)1/2 refers to the decay constant in th
outer background medium. For outer medium as a dielec
small radius (R→0), and long wavelength limit, the modi
fied Bessel functionsK0 andK1 are both positive. Therefore
in order to obtain a bonafide solution of this equation, t
dielectric functione1 must be negative. This means that
the local approximation only the frequencies below t
screened plasma frequency should make sense. In the
of a small radius, Eq.~3.28! can also be written as

v5v0•b2R•u ln~b2R!u1/2, ~3.30!

FIG. 2. Computed plasmon dispersion in a quantum wire. T
curve marked RPA and the hatched region labeled SPE~single-
particle excitations! are based on the RPA withe

RPA
50. The two

curves marked with the specified values of the radii (R510 and
50 nm! are calculated using the present formalism. The parame
used are given inside the figure.
0-9
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wherev05(2pn
B
e2/m* e2L)1/2, e2L the background dielec

tric constant in the outer semiinfinite medium, andnB the
effective 3D carrier density. In its present form, Eq.~3.30! is
an exact analog of Eq.~2.13! in Ref. 16, but includes the
retardation effect. We have solved Eq.~3.29! for the longitu-
dinal plasmon modes withe1 replaced bye

RPA
(k,v). Figure

2 shows the comparative study where we plot the disper
relations based purely on the zeros of the nonlocal, dyna
dielectric functione

RPA
(k,v) ~see, for example, Ref. 1! and

the preceding scheme. The relevant parameters are liste
the figure. As one can notice the longer the wavelength,
larger the deviation from the random phase approxima
~RPA! results. At large propagation vectork, the ratio of the
two modified Bessel functions approaches unity and the
ond term, in Eq.~3.29!, becomes gradually ineffective an
hence the results of the two schemes begin to conve
Similar effects are manifested if we enhance the radius of
cylinder, as an alternative. For instance, the plasmon m
corresponding toR550 nm starts merging with the RP
plasmon at lowerk than the one forR510 nm. We have
ignored the higher order solutions because they corresp
to the unusually large carrier concentration and are irr
evant for the electric quantum limit~i.e., where only the
lowest subband is occupied! considered here. The hatche
region, though does not make much sense in the pre
context, refers to the intrasubband single-particle excita
spectrum coming from the RPA scheme. Note that e
plasma medium in the system is characterized throughou
a local dilectric functione(v)5e

L
(12vp

2/v2), wheree
L

is
24532
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the background dielectric constant andvp the screened
plasma frequency, until and unless stated otherwise.

E. Plasma „dielectric… shell bounded by two unidentical
dielectrics „plasmas…

In this section we are motivated to study a physical s
tem made up of two coaxial cylinders where we can have
plasma shell bounded by two unidentical dielectrics or a
electric shell bounded by two unidentical plasmas, in g
eral. We will study diverse situations of practical intere
Methodologically, such a geometry becomes realizable
summing up the inverse response functions calculated
Eqs. ~3.8!, ~3.15!, and ~3.23! in the interface spaceM. One
can writeg̃215g̃1

211g̃2
211g̃3

21, whereg̃21 is the response
function of the finite cylindrical shell surrounded by two,
general, unidentical media. The dispersion relation for pl
mons in such a resultant structure is derived by equating
determinant of the total inverse response function to ze
i.e.,

ug̃21~M ,M !u5ug̃1
21~M ,M !1g̃2

21~M ,M !1g̃3
21~M ,M !u50.

~3.31!

After some straightforward mathematical steps, we s
plify Eq. ~3.31! to write explicitly in the compact form as
follows:
U2R1S e1

b1
A12

e3

b3
C1D 2

imk

q
0

S 1

b1
2

2
1

b3
2D 2

2i e3

pb3
2D

0

imk

q
0

S 1

b1
2

2
1

b3
2D 2R1S 1

b1
A12

1

b3
C1D 0 2

2i

pb3
2D

2
2i e3

pb3
2D

0 R2S e2

b2
A21

e3

b3
C2D imk

q
0

S 1

b2
2

2
1

b3
2D

0 2
2i

pb3
2D

2
imk

q
0

S 1

b2
2

2
1

b3
2D R2S 1

b2
A21

1

b3
C2D
U50, ~3.32!
se,
where the additional substitutions are defined as

A15Jm8 ~b1R1!/Jm~b1R1!,

A25Hm8 ~b2R2!/Hm~b2R2!,
C15Z1 /D,

C25Z2 /D. ~3.33!

We are now interested to check how Eq.~3.32! can re-
produce some well established results. For this purpo
we consider the limitR1;R2;R→` but takeR22R15d as
0-10
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a finite quantity and fixm50. Naturally then, we need to
make use of the asymptotic limits of the Bessel functio
Jn(z) andHn(z). As such, we first simplify the substitution
involved to obtain A152 i , A25 i , D52(2i /p
r

ite

2

th
e

fa

24532
s
3a3R)sinh(a2d), Z15Z25(2/pa3R)cosh(a3d), and C1
5C25 i coth(a3d); hereb35 ia3 just as before. As a conse
quence, we simplify the general dispersion relation in E
~3.32! to write
U RS e1

a1
1

e3

a3
CD imk

q
0

S 1

a1
2

2
1

a3
2D 2R

e3

a3
S 0

2
imk

q
0

S 1

a1
2

2
1

a3
2D RS 1

a1
1

1

a3
CD 0 2R

1

a3
S

2R
e3

a3
S 0 RS e2

a2
1

e3

a3
CD 2

imk

q
0

S 1

a2
2

2
1

a3
2D

0 2R
1

a3
S

imk

q
0

S 1

a2
2

2
1

a3
2D RS 1

a2
1

1

a3
CD
U50, ~3.34!
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for
whereC5cothu andS215sinhu; with u5a3d. Now let us
carefully impose the limitR→`. Then it is a simple matte
to prove that Eq.~3.34! reduces to the form

F 1

a1a2
1S 1

a1
1

1

a2
D 1

a3
cothu1S 1

a3
D 2GF e1e2

a1a2

1S e1

a1
1

e2

a2
D e3

a3
cothu1S e3

a3
D 2G50. ~3.35!

Either the first or the second factor is zero. It is not qu
difficult to prove that the first~second! factor equated to zero
yields the TE~TM! modes propagating in theplanar film
geometry. We focus on the second factor to study the
plasmons in a quantum well in the limitd→0.

Quantum well in the electric quantum limit

The trignometrical factor cothu in the limit of u→0 can
be expanded in the following approximate form

cothu.
1

u
1

u

3
2

u3

45
1

2u5

945
2•••, ~3.36!

whereu5a3d. We consider the situation wheree1 and e2
refer to the dielectric media ande3 to the plasma. A simple
mathematical analysis~in the limit d→0 and hencee3

→`) also leads us to deduce thata3
2d2→0 and e3d

.4px, with x52nse
2/m* v2 referring to the zero-

temperature polarizability function in the long waveleng
limit, remains a finite quantity. As such, retaining only th
first term in the approximation and equating the second
tor in Eq. ~3.35! to zero yields

4px1
e1

a1
1

e2

a2
50. ~3.37!
D

c-

This is now a well-known result that represents the plas
modes of a single 2DEG layer sandwiched between two
electrics~see, for example, Ref. 1!. Furthermore, considering
the bounding media to be identical~i.e., e15e25e and
hencea15a25a) and imposing the non-retardation lim
~i.e., q

0
50 and hencea5k) leaves us with

v25~2pnse
2/m* e!k, ~3.38!

wherens stands for the areal carrier density. This is a sta
dard result for the intrasubband plasmon dispersion in
quantum well, with the plasma frequencyvp}Ak.

F. Local and total density of states

The density of states~DOS! is of fundamental importance
to the understanding of many physical phenomena in c
densed matter physics. The interpretation of quite a num
of experimental excitation spectra in a wide variety of sy
tems subjected to different physical conditions requires a
tailed knowledge of the DOS. Classic textbooks and mo
graphs reveal that the standard algorithm of determining
density of states is founded on the Green-function approa
Our purpose here is to calculate the local and total DOS
order to substantiate the computed plasmon modes in
cylindrical geometries at hand. Unless some numeric hu
comes in way, this is logical to expect that the peaks in
DOS should coincide with the zeros of the inverse respo
function, which determine the plasmon modes for a giv
propagation vector, of a system.

1. Local density of states

The formal expression for the local density of stat
~LDOS! in the framework of interface response theory4 is
generally quite fussy and as the name suggests requires
subtle details of the local physical conditions. These are,
0-11
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example, the basic definitions of the bulk Green functio
the spatial positions around the interface, the nature of
associated electromagnetic fields involved, etc. In the pre
context, the simplest definition of the LDOS at the expen
of a few negligible concerns but that which still contains t
important physics involved is given by

N
L
~v!522

v

p
Im$Tr @ g̃~M ,M !#%, ~3.39!

where g̃ refers to the response function whose inverse w
determined in the preceding subsections for diverse si
tions. The important thing is to understand which system
response functiong̃ refers to in different physical situations
We consider two such cases of our interest: a single-inter
system~see Sec. III D! and a double-interface system~see
Sec. III E!. For a single-interface system,g̃ is simply the
inverse of the sum ofg̃1

21 and g̃2
21 ~see Sec. III D!. In the

case of a two-interface system, we need to study the LD
at the two interfacesR1 andR2 independently. For the inter
faceR1 (R2) the g̃ in Eq. ~3.39! is the 232 submatrix in the
first ~fourth! quadrant of the inverse of the sum of thr
inverse response functions~see Sec. III E!.

2. Total density of states

For thez components of the electromagnetic fields co
sidered here, the analytical expression for the variation of
total density of states~TDOS! within the interface respons
theory4 is given by

N
T
~v!52

1

p

d

dv S Arg detF g̃
i
~M ,M !

g̃
f
~M ,M !

G D . ~3.40!

By the variation of TDOS we mean the difference betwe
the TDOS of the final~physical! system and an initial sys
tem. Hereg̃

i
(g̃

f
) stands for the response function of th

initial ~final! system in question. For the single-interface s
tem,g̃i is a product ofg̃1 andg̃2; andg̃f is the inverse of the
sum of g̃1

21 and g̃2
21. In the case of a two-interface system

g̃i5g̃1 f•g̃2 f , where g̃1 f is the inverse of the sum of a 4
34 matrix comprised of theg̃1

21 and g̃2
22, and g̃2 f is the

inverse of g̃3
21 that corresponds to perturbation 3 for th

shell alone; andg̃f is the inverse of the sum ofg̃1
21, g̃2

21,

and g̃3
21. It should be pointed out that both local and to

DOSs are computed for every value of integerm.
It is also worth mentioning that in the course of studyi

the total DOS we have the finite~or bounded! parts of the
system automatically incorporated. Therefore, we are bo
to find some discrete modes in the TDOS, which usua
apppear as the negative peaks in the DOS2v space and do
not bear any physical significance if one is only interested
studying the confined or extended plasmon-polaritons. Mo
over, if we are interested to understand all the existing pe
in the TDOS, we need to explore, for example, each of
three perturbations involved individually. We have found th
while the negative peaks in the individual perturbations s
24532
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vive in the TDOS, all the positive peaks are seen to dis
pear. This remains unfailingly true for all the cases we ha
investigated both for single- and double-interface syste
All the peaks in the LDOS are always positive. More spec
comments will be made later~see Sec. IV!.

IV. ILLUSTRATIVE EXAMPLES

As we have seen in the preceding section, our final res
for the dispersion charateristics are Eqs.~3.26! and ~3.32!,
respectively, for the single cylinder embedded in some d
ferent material background and the coaxial cylindrical geo
etries. Note that both of these equations are, in general,
complex transcendental functions. Therefore, in princip
we need to search for zeros of such complex functions.
spite much advancement in the software science, searc
for reliable zeros of such complex functions is not an ea
task. So, we had to strike a compromise among a
choices. We decided to ask the machine to produce th
zeros where the real part of the function changes sign, i
spective of whether or not the imaginary part is zero. W
believe this has resulted in a reliable scheme for studying
dispersion characteristics of plasmons in the present syst
This is because all the plasmon modes~confined or ex-
tended! are found to have an excellent correspondence w

FIG. 3. Plasmon dispersion for a GaAs plasma cylinder (e1L

513.1) embedded in a Ga12xAl xAs dielectric (e2L512.4). The
dimensionless plasma frequency used in the computation is sp
fied byvpR/c5A2. The dashed curve refers to the planar interfa
plasmon polaritons and the dashed horizontal line labeled aj
50.7167 indicates the corresponding asymptotic frequency.
solid straight line is the light line in the dielectric background.
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the peaks in the local and total density of states. We cons
mostly a GaAs plasma, a Ga12xAl xAs dielectric, and a SiO2
dielectric with background dielectric constantseL513.1,
12.4, and 4.5, respectively. We will later assign an additio
numeral to the suffix of the background dielectric consta
corresponding to the region in the geometry concern
Other parameters such as the ratio of the radii of the cy
dersR2 /R1, the normalized plasma frequencyvpR/c, and
the azimuthal index of the Bessel functionsm will be given
at the appropriate places during the discussion. We
present our results in terms of the dimensionless propaga
vectorz5ck/vp and frequencyj5v/vp , wherevp stands
for the screened plasma frequency. Both local and t
DOSs will be shown in arbitrary units throughout.

A. Plasma „dielectric… cylinder embedded in dielectric„plasma…

Figure 3 shows the plasmon dispersion for a GaAs plas
cylinder in a Ga12xAl xAs dielectric form50, 2, 3, and 5
and vpR/c5A2. The dotted curve refers to the plasmo
polariton mode for the planar interface, and the dashed h
zontal line marked asj50.7167 indicates the correspondin
asymptotic frequency in the nonretardation limit@i.e., j
5(11e2L /e1L)21/2]. The straight line marked as LL stand
for the light line in the dielectric background. It is observ

FIG. 4. Local~total! density of states in the upper~lower! panel
for various values ofm andz52.5. The rest of the parameters us
are the same as in Fig. 3. The arrow in the lower panel refers
small invisible peak atj50.70995 whereb250.
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that there are two modes for everym: one starts in the radia
tive region ~towards the left of the light-line whereb2 is
purely real! with a finite frequency and the other at the orig
along and towards the right of the light line in the nonra
ative region~towards the right of the light line whereb2 is
purely imaginary!. The former ends up merging with th
light line while the latter becomes asymptotic toj
50.7167. Even at considerably largez, all modes retain
their character: the largerm, the higher the frequency.

Figure 4 illustrates the local~total! density of states in the
upper~lower! panel forz52.5 in the nonradiative region in
thej2z space form50, 2, 3, and 5. The rest of the param
eters are the same as in Fig. 3. The sharp peaksj
50.5098, 0.5486, 0.5837, and 0.6422 are seen to be c
mon to both local and total DOSs. The negative peaks
coming from the second perturbation~see Sec. III! which
produces one positive and another negative peak for everm.
The positive peak disappears and the negative one surv
in the total DOS. The arrow atj50.70995 indicates an in
discernibly small negative peak form50 whereb2 vanishes.
We observe a pile up of rather small DOS, both local a
total, at j>0.7167. Every positive peak in the local/tot
DOS shows an excellent correspondence with the respec
confined plasmon mode~in the nonradiative region! in
Fig. 3.

Figure 5 depicts the plasmon dispersion for a Ga12xAl xAs
cylinder embedded in a GaAs plasma forvpR/c5A2. The
solid, dashed, dash-dotted, and dash-dot-dotted curves s

a

FIG. 5. The same as in Fig. 3 but for the plasmon dispers
for a Ga12xAl xAs dielectric (e1L512.4) in GaAs plasma
(e2L513.1). There are four groups of curves for four different v
ues ofm.
0-13



f
lin
in
e

f

t
is
tin

f
m
a

-
a
S

itiv
p
th

rst
aks

the

he
m-

a
r

we
.
r the
er
re-

LL
a

on

am
t

of
he
are
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for the plasmon modes, respectively, form50, 1, 2, and 3.
The dotted curve represents the plasmon polariton mode
the corresponding planar interface, and the dashed
marked asj50.7167 refers to its asymptotic frequency
the nonretardation limit. Unlike Fig. 3, we observe a larg
number of radiative modes~in the region towards the left o
the light line marked as LL! for every m, even though the
number of confined plasmon modes at largez is still the
same~i.e., one for everym). It is interesting to note that in
the present case there is almost a smooth transition of
plasmon propagation in the vicinity of the light line. Th
contrasts the corresponding behavior in Fig. 3. Also dis
guishable is the fact that all the confined modes seem
merge together and lose their identity at smaller values oz
as compared to the same in Fig. 3. Furthermore, the plas
mode for the corresponding planar interface is seen to rem
the lowest mode in the wholej2z space in Fig. 5, unlike the
one in Fig. 3.

Figure 6 shows the local~total! density of states in the
upper~lower! panel form51 andz50.5. The other param
eters are the same as in Fig. 5. All three positive peaks
pearing atj50.3111, 0.6434, and 0.8695 in the local DO
are seen to be consistent with the corresponding pos
peaks in the total DOS. These positive peaks showing u
the local and total DOSs are in very good agreement with

FIG. 6. Local~total! density of states in the upper~lower! panel
for m51 andz50.5. The rest of the parameters used are the s
as in Fig. 5. The negative peaks in the lower panel emerge from
first perturbation alone and bear no physical significance.
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frequencies of the three radiative plasmon modes atz50.5 in
Fig. 5. The existence of the two negative peaks atj
50.3190 and 0.4381 in the total DOS is attributed to the fi
perturbation alone. It is found that both of the negative pe
are the exact solutions ofug̃1

21u50. Moreover, the positive
peaks occurring atj50.14199 and 0.78243~whereJ1 van-
ishes! in the first perturbation are seen to disappear from
total DOS.

B. Plasma„dielectric… shell bounded
by two dielectrics „plasmas…

Figure 7 illustrates the dispersion relations of t
plasmon-polariton modes for the coaxial cylindrical geo
etry made up of GaAs plasma shell bounded by
Ga12xAl xAs dielectric both in the inner cylinder and oute
semi-infinite media. As for other relevant parameters,
considervpR1 /c5A3.5 andR2 /R152.2. The solid, dashed
dash-dotted, dash-dot-dotted, and dotted curves stand fo
values ofm50, 2, 3, 5, and 8. Since the inner and out
media are identical, we still have a single asymptotic f
quency in the nonretardation limitj50.7167 assigned to the
dashed horizontal line. The straight solid line marked as
is the light line in the dielectric media enclosing the plasm
shell. Note that while the number of the confined plasm
modes at large value ofz ~in the nonradiative region! is still

e
he

FIG. 7. Plasmon dispersion in a GaAs plasma (e3L513.1) shell
sandwiched between identical Ga12xAl xAs dielectrics (e1L512.4
5e2L). There are five groups of curves for five different values
m. The solid straight line labeled as LL refers to the light line in t
Ga12xAl xAs dielectric. The parameters used in the computation
as listed in the picture.
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two in conformation with the two interfaces in questio
there can be any number of extended modes in the radia
region for a givenm depending upon the ratioR2 /R1.

Figure 8 shows the local density of states at the interf
R1 (R2) in the lower ~upper! panel for m50 and z50.3.
The rest of the parameters are the same as in Fig. 7. We
that there are four well defined sharp DOS peaks aj
50.3252, 0.5107, 0.7213, and 0.9023 at the interfaceR1,
whereas the interfaceR2 captures only two low DOS peak
at j50.0835 and 0.9023. That means that the two interfa
in the coaxial cylindrical geometry have different prefe
ences. This is the case even though one may argue q
contrarily in view of the fact that the plasma shell is sym
metrically bounded by the identical dielectrics. However
seems that the two interfaces are more sensitive to the ge
etry and less to the materials in the bounding media. Tha
to say that the situation is altogether different from a pla
geometry with a thin film symmetrically bounded by iden
cal dielectrics. It is noteworthy that only the highest peak
the local DOS is shared by both interfaces, albeit with
difference of magnitude. Moreover, except for the lowest o
at the interfaceR2 which corresponds to the confined pla
mon mode, all the higher resonances explain the radia
modes at this value ofz.

FIG. 8. Local density of states at the interfaceR1 (R2) in the
lower ~upper! panel form50 andz50.3. We call attention to the
smaller DOS resonances, indicated by arrows, corresponding t
interface R2. The rest of the parameters used are the same
in Fig. 7.
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Figure 9 presents the total density of states for the sa
system as studied in Figs. 7 and 8 form50 andz50.3. One
can notice at once that there are five positive resonance p
lying at the same frequencies as those in the local D
~summing up all the peaks at both interfaces; see above!. In
addition, there are two negative peaks atj50.08519 and
0.5878. We explore that the lower~upper! negative peak
comes from the second~first! perturbation alone where th
Bessel functionJ1 vanishes. That is to say that the positio
of the lower~upper! negative peak refers to the first~second!
zero of J1. Both positive peaks of the first perturbatio
which were seen to correspond to the first two zeros ofJ0
have disappeared in the total DOS. A careful look at
dispersion relations in Fig. 7 reveals that there is an excel
correspondence between the resonance peaks in the DOS
the plasmon dispersion for a givenz, except for the lowest
extended mode in the radiative region~towards the left of the
light line! that could be reproduced neither in the local nor
the total DOS. This is not surprising, however, given t
distinct nature of searching the zeros of the determinant
the dispersion spectrum in Fig. 7. We believe that in so
better way of searching the zeros of the complex transc
dental function for this purpose, such mode~s! may either
disappear once and for all or will not yield a good correspo
dence with the resonance in the DOS.

Figure 10 illustrates the plasmon dispersion for the Ga
plasma shell asymmetrically bounded by unidentical diel
trics (Ga12xAl xAs in the inner cylinder and SiO2 in the outer

he
as

FIG. 9. Total density of states form50 andz50.3. The higher
~lower! negative peak emerges from the first~second! perturbation
and has no physical significance. The rest of the parameters
are the same as in Fig. 8.
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semi-infinite medium!. For other parameters involved in th
computation, we considervpR1 /c5A5 and R2 /R152.0.
The solid, dashed, dash-dotted, dash-dot-dotted, and d
curves represent, respectively, the cases form50, 2, 3, 5
and 8. The two solid straight lines marked as LL1 and L
refer to the light lines in the dielectric media SiO2 and
Ga12xAl xAs, respectively. The two dashed horizontal lin
labeled asj50.7167 andj50.8627 stand for the asymptoti
frequencies for the plasmon polaritons propagating at
interfaceR1 andR2, respectively. Unlike the symmetric cas
~see Fig. 7!, the two plasma modes at a large propagat
vectorz approach the different asymptotic limits. Compari
Fig. 10 with Fig. 7 reveals that the asymmetric case yield
relatively richer spectrum at least for the radiative modes
a givenm. Interesting, but not unexpected, is the fact th
only the lowest pair of modes for everym crosses the right-
most lightline and attains the character of a pure plasm
polariton before becoming asymptotic to the respective
quencies. It is also noteworthy that each pair of such mo
~for a givenm) observes an intersection between its branc
in the radiative region towards the left of the leftmost lig
line. This remains true at least for the lower values ofm ~see,
e.g.,m50, 2, 3, and 5!. After such an intersection, originall
lower ~upper! branch becomes asymptotic to the upp
~lower! frequency at largez.

FIG. 10. Plasmon dispersion in a GaAs plasma (e3L513.1)
shell sandwiched between unidentical Ga12xAl xAs (e1L512.4) and
SiO2 (e2L54.5) dielectrics. There are five groups of curves for fi
different values ofm. The solid straight line labeled LL1~LL2!
refers to the light line in the SiO2 (Ga12xAl xAs). The dashed hori-
zontal line labeledj50.7167 (j50.8627) indicates the asymptoti
frequency for the interfaceR1 (R2). The parameters used in th
computation are as listed in the picture.
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Figure 11 depicts the local density of states at interfaceR1
(R2) in the lower~upper! panel form50 andz50.2. Other
parameters are the same as those used in Fig. 10. One ca
five clear resonances lying atj50.2759, 0.4351, 0.6199
0.7815, and 0.9441 at interfaceR1, whereas the interfaceR2
observes only three atj50.09284, 0.7815, and 0.9441. Thu
the two interfaces share only the two highest resonance
the local DOS and with a difference of magnitude. Again, t
two interfaces pose different preferences, and that ma
more sense here because of the asymmetric configura
Note that only the lowest resonance at interfaceR2 belongs
to the confined plasmon mode; the rest of the higher o
correspond to the radiative modes.

Figure 12 shows the total density of states for the sa
system as discusssed in Figs. 10 and 11 form50 and z
50.2. We find that there are six well defined positive res
nances lying at the same frequencies as those specifying
resonance peaks in the local DOS~summing up all the peaks
at both interfaces in Fig. 11!. In addition, there are three
negative peaks occurring atj50.09428, 0.4899, and 0.8928
which have no physical significance. While the first o
comes from the second perturbation , the pair of the sec
and third negative peaks emerges from the first perturba
~i.e., ug̃1

21u50); their positions in frequency correspond

FIG. 11. Local density of states at the interfaceR1 (R2) in the
lower ~upper! panel form50 andz50.2. We call attention to the
smaller DOS resonances, indicated by arrows, correspondin
the interfaceR2. The rest of the parameters used are the same
in Fig. 10.
0-16
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the first three zeros of the Bessel functionJ1. The two posi-
tive resonances observed in the first perturbation, which
respond to the first two zeros ofJ0, have disappeared from
the total DOS. It is found that all the six resonances in
DOS reproduce exactly the frequencies of the plasm
modes of Fig. 10 at the givenz, with the exception for the
lowest radiative mode above the left light line. However, t
mode is found to have the same story as the correspon
one in Fig. 7 and hence our comments made in relation
Fig. 9 remain valid.

Finally, we take up the case of a dielectric (Ga12xAl xAs)
shell symmetrically bounded by two identical GaAs plasm
for vpR1 /c5A2 andR2 /R152.5. The results for the plas
mon dispersion in terms of dimensioless frequency (j) and
wave vector (z) are plotted in Fig. 13. The solid, dashe
dash-dotted, dash-dot-dotted, and dotted curves corres
to m50, 2, 3, 5, and 8, respectively. The solid straight li
marked as LL refers to the light-line in the dielectric sh
and the dashed horizontal line labeled asj50.7167 indicates
the asymptotic frequency for the plasmon polariton at
large value ofz. One can easily notice that while the numb
of the modes in the nonradiative region is still two, the nu
ber of radiative modes~towards the left of the light line! is
larger for anym as compared to that in Figs. 7 and 10. Als
it is evident that no such nasty mode~as the lowest radiative
mode encountered in Figs. 7 and 10! is seen to be emergin
in this case.

FIG. 12. Total density of states form50 andz50.2. The rest of
the parameters used are the same as in Fig. 10. While the lo
negative peak emerges from the second perturbation, the two h
peaks come from the first perturbation. Such negative peaks
no physical significance.
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Figure 14 illustrates the local density of states at interfa
R1 (R2) in the lower~upper! panel form50 andz50.5. It
is found that there are seven well-defined resonances lyin
j50.1229, 0.3433, 0.3765, 0.6582, 0.6793, 0.9380,
0.9594 shared by both interfaces, of course with a differe
of magnitude. In that sense, this case is much different t
the previous ones of plasma shell between two dielect
~see, e.g., Figs. 8 and 11!. Again, it is only the lowest reso
nance that substantiates the confined plasmon mode b
the light line, the rest correspond to the radiative modes
this value ofz.

Figure 15 shows the total density of states for the sa
system as investigated in Figs. 13 and 14 form50 andz
50.5. We observe that there are seven well-defined pos
resonances located at the same frequencies as those sp
ing the similar resonance peaks in the local DOS~see Fig.
14!. Moreover, two negative resonances are seen to em
at j50.4557 and 0.8598. These negative peaks are a co
quence of the third perturbation alone that produces th
positive peaks lying atj50.14199⇒b350, 0.4398, and
0.8507 and the two negative peaks as mentioned ab
While all three positive peaks disappear from the total DO
the two negative peaks survive. The surviving negative pe
are seen to be the exact solutions ofug̃3

21u50. The case
studied in Figs. 13 –15 for the coaxial cylindrical geome

est
er
ve

FIG. 13. Plasmon dispersion in a Ga12xAl xAs dielectric (e3L

512.4) shell sandwiched between identical GaAs plasmas (e1L

513.15e2L). There are five groups of curves for five differe
values ofm. The solid straight line labeled as LL refers to the lig
line in the Ga12xAl xAs dielectric. The parameters used in the co
putation are as listed in the picture.
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seems to be the clearest one where there is no conflict a
between the DOS resonances and the plasmon dispersi

We would like to stress that all the negative peaks in
variation of the total DOS showing up, for example, in Fig
6, 9, 12, and 15 originate from the initial systems~or the
so-called initial perturbations! comprising the resultant sys
tem. As noticed before, these are seen to be obtainable
the zeros ofug̃i

21u ~with i[1, 2, or 3! wherever a dielectric
medium is bounded by one~in the case of a single-interfac
system! or two ~in the case of a double-interface syste!
black boxes. Since the black box does not represent a
physical system, though it is an essential ingredient of
theoretical scheme,4 these peaks have, in fact, no physic
significance. However, they do exist with a negative sign
the TDOS, irrespective of the dimensionality, the size, a
the shape of the system concerned.

It would not be out of place to mention that most of t
modes covered by our results on the DOS correspond
those that fall in the radiative regime~i.e., towards the left of
the leftmost light line in, for example, Figs. 5, 7, 10, and 1!.
The LDOSs in Figs. 6, 8, and 11 indicate that these mo
are actually those of the Ga12xAl xAs dielectric bounded by
the GaAs plasma, confined on the dielectric side, and pro
ited from propagation in the GaAs plasma. This is true
spite the fact that depending on the thickness of the pla
shell the radiative modes in Figs. 8 and 11 can interact w
the surrounding dielectric in the outer medium and he
may differ slightly from those in Fig. 6. Similarly, the mode
in Fig. 14 are essentially those of the Ga12xAl xAs shell that

FIG. 14. Local density of states form50 andz50.5. The rest
of the parameters used are the same as in Fig. 13.
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are prohibited from propagation in the neighboring plasm
This also explains why such peaks are so strong. The mo
in the non-radiative regime~towards the right of the right-
most light line! tend to bear a different story. They origina
from the dielectric-plasma heterointerface~s! and are
plasmon-polariton-like.

V. CONCLUDING REMARKS

In summary, we investigated the plasmon dispersion
the density of states in the coaxial cylindrical geometries
the absence of any applied magnetic field. We derived
general dispersion relations using a Green-function theor
the framework of a IRT,4 which has now found widesprea
use to study numerous excitations in various compo
systems.5–9 In doing so, we not only clarify some basic no
tions in the use of the cylindrical geometries but also dia
nose our general analytical results under special limits
reproduce some well-known results on 2D and 1D plasm
dispersion in quantum wells and quantum wires. We ha
also successfully attempted to substantiate our results
plasmon dispersion through the computation of the local
total density of states. While we considered the effect
retardation, the absorption was neglected throughout, ex
for a small imaginary part needed to be added to the frequ
cies for the purpose of computing the DOS. The pres
methodology for coaxial cylindrical geometries is expect
to prove to be a powerful theoretical framework for studyin
for example, the intrasubband plasmons in the multi- wal
carbon nanotubes.

FIG. 15. Total density of states form50 andz50.5. The rest of
the parameters used are the same as in Fig. 13. Both of the neg
peaks emerge from the third perturbation alone and have no ph
cal significance. The DOSs are shown in arbitrary units through
0-18
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We believe that an experimental observation of the rad
tive as well as non-radiative plasmon modes in such coa
cylindrical geometries would be of great interest. Such
periments could possibly involve the well known attenua
total reflection, scattering of high energy electrons, or e
Raman spectroscopy. Electron energy loss spectroscop
already becoming known as a powerful technique for stu
ing the electronic structure, dielectric properties, and p
mon excitations in carbon nanotubes and carbon onions
example. Our preference for plotting the numerical results
terms of the dimensionless frequency and propagation ve
leaves free an option of choosing the plasma frequency lo
or higher, just as the radii of the cylinders.

Several important problems remain open in the contex
the present investigation. The issues which need to be
sidered, and which could give better insight into the proble
include the role of absorption, the effects of the spatial d
persion, the plasmons coupling to the optical phonons, ef
of an applied electric field that may create the drifted cha
op
tu
s

un

r

tte

24532
-
al
-
d
n
is
-
-

or
n
or
er

f
n-
,
-
ct
e

carriers and help study the instability mechanism, and m
importantly the effect of an applied magnetic field in order
study, for example, the edge magnetoplasmons in the c
centric cylindrical geometries, to name a few. Currently,
have been investigating the effects of an applied magn
field in the Faraday geometry on the plasmon dispersion
such concentric cylindrical structures and the results will
reported shortly.
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