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Green-function theory of confined plasmons in coaxial cylindrical geometries: Zero magnetic field
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A theoretical investigation is made of the plasmon propagation in the coaxial cylindrical geometries using
Green function(or response functiortheory in the absence of an applied magnetic field. The plasmon exci-
tations in such multiple interface structures are characterized by the electromadidiidields that are
localized at and decay exponentially away from the interfaces. The Green-function theory, generalized to be
applicable to such quasi-one-dimensioiaD) systems, enables us to derive explicit expressions for the
corresponding response functio@ssociated with EM fieldswhich can in turn be used to compute numerous
physical properties of the system at hand. A rigorous analytical diagnosis of the general results in diverse
situations leads us to reproduce exactly the previously well-established results on 2D and 1D systems, obtained
within the different theoretical frameworks. As an application, we present several illustrative examples on the
dispersion characteristics of the confined and extended plasmons in single- and double-interface structures.
These dispersive modes are also substantiated through the computation of local as well as total density of
states. Our theoretical framework can also serve as a powerful technique for studying the intrasubband plas-
mons in the emerging mutiple-walled carbon nanotubes. The elegance of theory lies in the fact that it does not
require the matching of the messy boundary conditions and in its simplicity and the compact form of the
desired results.
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[. INTRODUCTION the magnetotransport in quantum Hall regimes in a broad
range of mesoscopic systeri this context, Fodemt al?

The past two decades have seen a great deal of researcave reported results on the band structure and conductance
efforts focused on semiconducting systems of reduced dief axially symmetric, curved, non-interacting 2D electron
mensions and size. The ability to make progressively smallegas (2DEG), topologically equivalent to a Corbino disk, in
structures has allowed researchers to study how the chardiee presence of non-homogeneous magnetic field, arising as
carriers behave when confined to still lower dimensionsa result of an applied axial magnetic field.

Thus the advancement of research on electronic systems hasThe optical phenomena being investigated within the clas-
been predominantly toward more confinement—from quansical electrodynamics continues to receive a considerable at-
tum well (two degrees of freeedonto quantum wire(one  tention on the nanoscale cylindrical as well as spherical
degree of freedointo quantum dotgzero degree of free- structures. The cylindrical structures have generated perticu-
dom). The basic principle behind the growth mechanism oflar interest for their usefulness not just as electromagnetic
guantum wells, wires, and dots is the same: confine electronsaveguides, but also as atom guides, where the guiding
in a restricted region of a semiconductor by sandwiching itmechanism is governed mainly by the excited cavity modes.
within another semiconductor with a larger band gap, a meak is envisioned that the understanding of atom guides at such
sure of the amount of energy needed to get the electrons small scale would lead to much desirable advancements in
flowing. Theoretically, the reduced degrees of freedom allowatom lithography, which in turn should facilitate the atomic
detailed and often exact calculations. Practically, new anghysics research.

exotic electronic and optical phenomena have been observed. The present work is aimed at investigating the plasma
An extensive recent review of the subject, both theoreticamodes of a semiconductédielectrig shell embedded in the
and experimental, can be found in Ref. 1. two unidentical dielectric§semiconductopnsin the coaxial

The current status of the nanofabrication technology leadsylindrical geometries using a Green-function theory in the
us to imagine formation of not only two-dimension@D), absence of an applied magnetic field. Our theoretical
1D, and 0D structures, but also more complicated ones sucipproach is virtually the interface response theQRT)
as quantum pipes, snakes, balls, rings, and ribbons whef®ef. 4 generalized to be applicable to such quasi-one-
electrons are confined in the regions with quasi-dimensional systems. Ever since its inception, the IRT has
dimensionality between three and zero dimensi@es Ref. been extensively applied to study various quasi-particle ex-
1). The fabrication of essentially arbitrary geometries couldcitations(such as phonons, plasmons, magnons) atcet-
lead to dramatic control of the electronic and optical proper-erostructures and superlattice.Quite recently, it was gen-
ties of solids. Role of the boundaries—the inner and outeeralized to investigate diverse 2D systems, both with and
perimeters—in understanding several electronic and transwithout an applied magnetic fieftP
port phenomena in such nanostructures has been much ap-Such semiclassical theoriémcluding the hydrodynami-
preciated in the recent past. We refer, in particular, to theal model which can also accommodate the spatial disper-
importance of the edge states in understanding, for examplsjon in a simple manngrand the quantal theories such as
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Bohm-Pines’ random-phase approximatfbare supposed to It should be pointed out that we are interested in the non-
produce identical results for the intrasubband collective exmagnetic materials, so th&=H in the Maxwell curl-field
ciations for the corresponding quantum systems in the Iongéquations. After eliminating the magnetic field varialide
wavelength limit. In the limit that both radii of the inner and ¢ J "+ oce curl-field equations, we obtain

outer cylindersR; and R,—» but d=(R,—R;) remains a ’

finite quantity, we will show how we obtain exactly the dis- N = 2 =

persion relation for the intrasubband plasmons in an VX(VX E)—qer—O. 29
inversion-layer system, which represents the 2D geometriegyore the dielectric constantis a scalar quantity, since the
Similarly, in the limit that the radius of a plasma cylinder system we are concerned with is not subjected to any exter-

R—0, our theoretical results are shown to yield the disperyg| magnetic field and the physical system is assumed to be
sion relation for the intrasubband plasmons for a single quanizotropic. In EQ.(2.1) q = w/c is the vacuum wave vector
. . . O 1

tum wire. e\e(herec is the speed of light in vacuum. We will take the

The general results on the confined as well as extend . .
plasma modes, in both single and double-interface gec)msipatlal and temporal dependence of the electromagnetic

etries, are shown to be correctly substantiated by the locdields of the form ofA(p, ¢,2)~A(p,0)e!" ™'V, whereA
and/or total density of states. Apart from such tests of the=E or B. Recalling the standard definitions &f.A, V2¢
theory, we believe that it should prove to be a simple bufwith ¢ as any scalar andV XA in the cylindrical coordi-
powerful scheme of a theoretical framework needed to studyhates, one should be able to split £8.1) into the three
for example, the intrasubband plasmons in multiwalled carequations:
bon nanotubes, where theoretical research is gaining consid-
erable momentum recently. 2 19 1 2 9
The rest of the paper is organized as follows. In Sec. Il W?J—er ot = k? Ex—— =0
discuss some basic notions of the cylindrical geometry and 90> P 9P p® 90 ] P d
calculate the bulk response function. In Sec. Ill we present a
theoretical formalism to derive the final expressions for the
plasmon dispersion relations, discuss some interesting an "2 1 5
lytical diagnosis of the general expressions under spec%__,__ K2 E __Z(Ey_zﬁEx)_,_qﬁeEy

E +2

Ey) +02€E,

=0, (2.2

limits, and give some explicit analytical relationship between| 552  p dp +p2 962 ] y p
the response functions and the density of states. In Sec. IV

we report several illustrative examples of the numerical re- =0, (2.3
sults on the plasmon dispersion and density of states in a
variety of experimentally feasible situations. Finally, in Sec.
V we conclude our findings and list some interesting dimen-
sions worth adding to the problem in the future.

?# 19 1 &

— 4 + E,+q%€E,=0. (2.9
ap% P Ip  p? 962 2 Go€te

Equationq2.2—(2.4) demonstrate clearly that the cylindrical
IIl. BASIC NOTIONS AND BULK RESPONSE FUNCTIONS geometry does not allow the separation of the TM and TE
modes. We choose to work in terms Bf and B, compo-
First we consider it important to make a careful analysisnents. Then we first need to evaluétg, E,, By, andB, in
of the Maxwell equations before making their use for deriV-terms OfEZ and BZ from the Maxwell curl-field equations_
ing the response functions for the respective systems. Wehe results are
consider the electromagnetic waves propagating with an an-

gular frequencyw and wave vectok||2 in a medium defined 1
by the cylindrical coordinatesp(f,z). The plasma waves, Ex=—
here as well as in the later part of this work, will be assumed
to observe a spatial localization along the direction perpen-
dicular to the axis of the cylinder. Note that the situation is 1
totally unlike that in the Cartesian coordinate system where

one can safely and readily define the sagittal plaree, the

plane defined by the wave vector and the normal to thend similarly
surface/interfacgeand hence isolate the transverse magnetic

(TM) and the transverse electri€E) modes, at least in the 1
absence of an applied magnetic field. The only exception to Bx=—
this notion is the Voigt geometrfwith a magnetic field par- @
allel to the surface/interface and perpendicular to the propa-

gation vectoy that can still(i.e., even in the presence of an B _i
applied magnetic fieldallow the separation of the TM and Yo 2
TE modeg(see, for details, Ref.)1In the literature on optics

the TM and TE modes are also known by the namp ahd  With the aid of these equations, we simplify thecompo-
s polarizations, respectively. nents of the Maxwell curl-field equations:

19 9
—IqogﬁBz—lk%E , (25)

—B,—ik= —EZ}, (2.6)
p

i 18E 'k&B 2
|q06;ﬁ P % 7| (7)

) d
—Iqoe‘%

19
EZ—Ik; %BZ (28)
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Lo E Lo E,=iq B 2.9 i B
;%(P y)_;% x=1q B, (2.9 %(P y)
1 9 , & , d
and —} _IqOG%EZ+IqO€p&_p2EZ_Ik£%BZ
J J
19 190 _ —8(R—p)| —iq ep—EZ—ik—BZH. (2.13
;%(PBy)_; ZgBx= T1d,€E,, (2.10 °ap 90
Evidently, the step functiofiand hence the delta functipn
) dictates the kind of physical situation we will consider in
to write what follows. Then the differential equatiof®&9) and(2.10
satisfied byE,(p,0) and B,(p,6) assume the following
forms:
92 19 1, o
@Aﬁ;% 2t ?ﬁ_ A,=0, (2.1) “igel[( 2 19 12
—+—-—+——+p°]|E,
B2 ap? PP p? 36?

whereA, stands forE, or B, anda= (kz—qﬁe)l’2 is a mea-

sure of the decay constant in a medium concerned. - 5(R_P)<%Ez+ﬁ ﬁBZ)
Before we proceed further, it is important to define a char- 0

acteristic terminology of the interface response theory: thend

black-box surfacéBBS). By the BBS we mean an entirely

opaque surface through which electromagnetic fields cannot ( iqo)

=0 (2.19

propagate. The idea of introducing the BBS in the I({REf.
4) was conceived with two prominent advantages over the
contemporary semiclassical approaches in mind. First, it al- P
lows one to disconnect from the extra mathematical world _5(R_p)(_|32__ _Ez>
and hence to confine only within the truly building block of dp " Qup 0

the system concerned. Second, it implicitly provides a great

2 2_ 2 12 ;
opportunity to get rid of using the messy boundary condi-Where'B STl k®. The formal equation{2.14 and

tions one is so routinely accustomed to in dealing with the2.19 will be thg standard format for. all the galculations of
inhomogeneous systems. What results is a number of simplfhe Green fu[lcuons of Ehe system of interest in what follows.
fied and compact forms of the response functions which one Next, letr=(p,6), r'=(p',0'), and define the Green
only needs to sum up in order to proceed further for studyindunction

the desired physical property of the resultant system at hand. .. .

Conceptually, this is achieved by stressing théthe speed G(r,r")=G(|[r=r'[)=G(p,0;p",6") (2.16

of light) ande (the dielectric constant/functipnanish inside . .

the specific region. In order to create a medium bounded b§/0r the homogeneoutbulk) medium{see Eq.2.11]:

a black-box surface, we assume that E(55—(2.8 are
only valid for eitherp>R or p<R, with R as the radius of
the only cylinder in question by now. Then we multiply the
right-hand sides of Eqs(2.5—-(2.8) by the step function

=0, (2.15

3? +1 J +1 3? R P
—t-—t+t—— r,r
ap> P Ip  p? 96?

- - 4
0(p—R) or _0(R—p), as the case may be. We first calculate =—A47d(r—r')=— —775(p—p')5(0— 0. (217
the two derivatives needed to evaluate H@s9) and(2.10. p
The results are The solution of this equation is given ligee, for example,
Ref. 12:
d 1 d 92 d ”
oo (PEy)=—1 | 1d, =B, +iqp—B,~ik -5 - E, G(r,r)= 2 &M "Gmp,p"), (218
ap "V Q2| Tedp o gp? a6 dp ’ < o Rl '
.9 9 with
—8(R—p) m|0p5|3z—|k£EZ (2.12
S(Mip.p')=1 In(Bp)Hm(Bp") if p<p’
L ] =l ! H !
PP Hu(Bp)n(Bp') i p=p’,
and (2.19
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where J,(2) [Hy(2)] refers to the Bessel function of the where 6(x)=1(0) for x>0(x<0) is the Heaviside step

first (third) kind of (intege) orderm. We write function. It is a simple matter to verify that the Green func-
o , , tion in Eq.(2.19 represents the exact solution of Eg.18.
G(mip,p")=im{[1=0(p=p") 1 Im( Bp)Hm(Bp") We close this section by writing the bulk Green-function

+6(p—p Hm(Bp)Im(Bp' )}, (2.20  tensor for the field componenk, andB; as a 22 matrix:

_ A2
o 3
BZ

# 1o m
—+ +
ap? P Ip  p?

G.(mip,p") 0 2 1 0
X =——38(p—p' , 2.2
0 G mpp |~ #7701 229
|
where we use)/d6=im and[see Eq.(2.19] That means that the black-box cleavage operator
Vi(Ry,p")8(R,—p') is defined such thasee Eqs(2.14
q2e 2 and(2.19]
_<? G (m;p.p’)=~— —Z G (m;p,p")
! ! i k
_ [Jm(ﬂp)Hm(Bp ), p=p ) _Eli _ Im¥
=TT ’ ’
Hm(Bp)Im(Bp'), p=p'. ~ RO ap q,p
Vi(Ri.p) =5 | . SN CHY
(2.22 B1 imk d
d,p’ ap’

In what follows, we will consider three types of perturbative
operations to have the desired results for the resultant struc-

ture at hand. In doing so, we will abide by the conceptualyq the corresponding bulk Green function is writterises
scheme of the IRTsee Ref. % Egs.(2.22]

Ill. FORMALISM FOR INVERSE RESPONSE FUNCTIONS % Z! z

In this section, we will consider three perturbative opera-
tions represented geometrically by Fig. 1. Specifically, Figs.
1(A), 1(B), and 1C) correspond, respectively, to the plasma e el
cylinder of radiusR; surrounded by a black box surface, a ! R
black box cylinder of radiu®, surrounded by a plasma me- R gz(w)‘E;
dium, and a plasma shell sandwiched between the black box
cylinder of radiusR; and a semi-infinite black box surface
outside a cylinder of radiu®,. The plasma media in the
perturbations A, B, and C are, in general, characterized by
the local dielectric functiong;(w), e,(w), and es(w), re- D 5 —
spectively. We will consider the effect of retardation but ne- [A] [B] [C]
glect the absorption throughout. Any subsciiigtl, 2, or 3
on the physical quantities should be understood referring to £ 1. schematics of the concept of three perturbatiphg;
the respective perturbation until and unless stated otherwiseg] and[C]. The blank(shadei region refers to the material me-
dium (black box in the system. The sum of the first two perturba-
tions defines a plasm@ielectrig cylinder embedded in a dielectric
(plasma and the sum of all three perturbations specifies, say, a

The first perturbatiofrepresented by Fig.(A)] is speci-  plasma(dielectrig shell surrounded by two unidentical dielectrics
fied by a step functio®(R,— p) in front of Eqs.(2.5—(2.8).  (plasmag

Z1
PLASMA RING

&, ()

A. First perturbation

245320-4
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1
~ 2l — —Hpn In(Bip’ 0
Gl(p,p'):i’ﬂﬁ—; € (B1P)In(B1p") . (3.2
% 0 ~Hm(B19)In( B1p)

It is noteworthy that although the operatégsandA; as well as the function§, andg; are all functions of the variables such
asm, k, andw, we have suppressed them throughout for the sake of brevity and convenience. With this, we define the response

operator

i T mk
7:81R1Hr,n(:81Rl)Jm(ﬁlRl) - E q_Hm(ﬁlRl)Jm(ﬁlRl)
0
. (3.3

Z‘l(Rlle):vl(Rl:P)él(l)ap’)|p=R1=p’: T mk i
2 g mBRDINBIRY S BIRH(BIR) In( B1Ry)
o1

The prime on the Bessel functions stands for the derivative of the respective quantity with respect to the full argument. Next
we define an operator

7 mk
~ 5 g Hn(B:ROIn(B1RY

i
- BiRH( BiR) T BiRy)
iRy R)=T+A(RR)=| . ’ . (3.4
EEHm(ﬁlRl)‘]m(ﬁlRl) — BiRiHm(B1R1)I(B1Ry)

It should be pointed out that in writing the second equality in 94 Ry,Ry)
Eq. (3.4), we have made use of the identity ! ’

In(B1R1) imk
-BiRie1—5—=~ -
2 | PRET aR) d,
1 wz|H(z) J(2) T o2 imk J(B:R
J,(H,(2) 2i|H(z2) 3 z)| @9 b a _ﬁlRl—m(lBl )
(2)H,(2) A(2) I a, In(B1Ry)
(3.9
Next, we calculate the inverse é‘l to write ) ] ) )
represents the response function of a dielectric cylinder sur-

rounded by a black box.

B. Second perturbation

— €1 O
0 _1}' The second perturbatiofrepresented by Fig. (B)] is
(3.6) specified by a step functiofp — R,) in front of Eqgs.(2.5—
(2.89. Then the black-box cleavage operator

V,(Ry,p")8(p' —Ry,) is defined such that

92 1

0

~ 1 _
Gl (RllRl) |7TB§ Hm(ﬂlRl)Jm(IBlRl)

As such, we have all that we need to calculate the inverse

response function in the interface spadelefined by -
K] im
o T2 T
2rep 2 g2 imk P

9; Y(Ry,R)=A4(R;,R)G (R, Ry). (3.7 mk 9

The result is that and the corresponding bulk Green function is written as

245320-5
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1
2
~ -—J H ! 0
Gz(P.P’):HTB—; € m(ﬁzp) m(BZP ) . (31@
% 0 ~Jn(B2p)Hee( B2p")
With this, we define the response operator
i 7 mk
- 7/32R23r/n(/32R2)Hm(32R2) T3 q_Jm(ﬁsz)Hm(,Bsz)
~ ~ ~ 0
AZ(RZ!RZ):VZ(RZ!p)GZ(pip/)|p=R22p’: o mk i
) @Jm(ﬂsz)Hm(Bsz) — 5 B2RaJn(B2R2)Hin( B2R)
(3.11
Next we define an operator
i 7 mk
- ?IBZRZJm(BZRZ)Hr’n(BZRZ) + 2 q—Jm(,Bsz)Hm(,Bsz)
~ ~ o~ 0
Ax(Ry,Ry)=1+A5(R;,Ry) = J - ) (3.12
) @Jm(ﬁZRZ)Hm(IBZRZ) - ?BlRZ‘]m(BZRZ)Hr’n(IB2R2)
|
Again, in writing the second equality in E¢3.12, we have 3 HRyuRy)
made use of the identity in E¢3.5). Next, we calculate the 2 e
inverse ofG, to write H/ (B2Ry) imk
2 Bszfzﬁ o
_ qO m(BZ 2) qo
C2p2 imk H! (B,R
é_l(R R )_ qg 1 — €y O :| BZ - q_ BZRZ—HméﬁzRZ;
2 B2 In(BoRIH(BoR) | O —1] ° mPee
(3.13 (3.19

represents the response function of black box surrounded by

] ~_adielectric medium.
Now we need to calculate the inverse response function in

the interface spachl defined by C. Third perturbation

The third perturbatiofirepresented by Fig.(C)] is speci-
fied by a step functionf 8(p—R1) — 6(p—R5)] in front of
05 1(Ry,Ry) =A5(R,,R)) G, Y(Ry,Ry). (314  Egs. (2.5—(2.8. Then the black-box cleavage operator
V3(Ri,p")8(p' —R)Pny [with P, =1(0) for n,n'<2
and =3 (otherwisg; i=1 (2) for n,n'<2 (=3)] is defined

The result is that such that
|
i 9 imk i
EgRl_ _,Rl 0 0
dp" A
imk 9
) -—R R — 0 0
ViR ") 195 a,p ap' 516
== — )
S 2 g2 P imk
O O _63R2_ __, 2
ap’ q,p
imk J
0 —R, ~R,—
L a,r ap’ |
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The corresponding bulk Green function is written as

[ 1
- G_Jm(B3P)Hm(:83p,)
3

0

1
T e Hin(B3p)Im(Bsp’)
3

0

1
0 = Im(Bap)Hm(Bap’)
3

—JIm(Bzp)Hm(Bsp") 0

1
0 _G_Hm(:B:%P)‘]m(BZBP,)
3

—Hm(B3p)Im(Bsp") 0

0

—JIm(Bap)Hm(Bsp")

0

—Hm(B3p)Im(Bsp")

PHYSICAL REVIEW B 67, 245320 (2003

(3.1

where the interface spadé@ will be referred to asg=R;, p'=R1), (p=R1, p'=Ry), (p=R,, p'=R;) and p=R,, p’
=R,), respectively, in the first, second, third, and fourth quadrants made up a8fubmatrices starting clockwise from the
top-left. With this, we define the response operator

Ag(M,M)=V5(M)G3(M,M)

imk
= B3RIn(BsR)HM(BsRy) — q—Jm(ﬁsRl)Hm(ﬁaRl) — B3R1In(BsRHm(B3R,)

B3RoH 1(B3R2)Im( BaR1)

imk
— —Hn(B3R)In(B3R1)  BzRH[M(B3R2)Im(B3R1)

0

g,€3

Now we define an operator

As(M,M)=T+Az(M,M)

0

mk
q 63‘Jm(:83R1)Hm(B3Rl) — B3R1Im(BsRHm(B3R1)
0

mk
H m(BSRZ)‘Jm( B3Rl)

imk
q_Est(:B3R1)Hm(B3R2)

0

B3RoH 1(B3R2)Im( BaR2)

imk
Tde Hm(B3R2)Im( B3R2)

0

imk
— BsRiH (B3R In(BsRy) — q_Jm(:BBRl)Hm(IB3R1) — B3R1In( B3R HM(B3R2)

0

mk mk
In(BsR)Hm(B3R1)  — BsRiH(B3R1) Im(B3Ry) Im(BzROHm(B3R2)
d,€3 d,€3
imk
BaRoH (B3R2) Im(B3R1) q_Hm(ﬁst)Jm(ﬁsRl) B3R2In(BsR2)Hm(B3Ry)

imk
— ——H(B3R2) Im(B3R1)  BaRoH(B3R2) Im(B3R1)

0

g,€3

imk
- EHm(BSRz)Jm(BBRZ)

0

imk
- q_Jm(ﬂsRl)Hm(,BaRz)

0

= BaR1In(BsR)Hm(B3Ry)

imk
C]_ Hm(ﬁ?,RZ)Jm(IBBRZ)

0

BaR2H 1 B3R2) Im( B3Rz)

(3.

imk
- q_Jm(53R1)Hm(B3R2)

0

= BaR1In(BsR)Hm(B3Ry)

imk
q—Hm(ﬁst)Jm(ﬁst)

0

B3Rz BaR2)Him( B3Ry)

(3.

18

19

Again, in writing the second equality in E¢3.19, we have made use of the identity in E8.5. Next, we calculate the
inverse of the bulk Green functioB; to write
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where the symbaoD is defined as

D =Hu(B3R1)Im(B3R2) =Im(B3R1)Hm(B3RL).

_, In(BsRo)
33m(B3Ry)

0

€3

0

_ Jn(BsR2)
Jm(IB3R1)

0

PHYSICAL REVIEW B 67, 245320 (2003

Finally, we calculate the inverse response function of a cylindrical shell bounded by two black boxes

951 (M, M)=25(M,M)G3 (M, M),

to write
1
B3R1633
imk
) __
q q
~_1 0 0
g; (M\M)=— )
2B5|  2ies
7D
0
where

Z1=H(B3R1)Im(B3R2) = (B3R Hm(B3Ry),

Z,=H(B3R2)Im(BsR1) = In( B3R Him(B3Ry).

(3.29

63 0
0 1
Hun( BsR1) 0 : (3.20
“H(BaRy)
0 ~ Hm(BsRy)
Hm(B3R2)
(3.21)
(3.22
o -
_cles 0
7D
2i
0 _
D
Z, imk |’ (323
33R2635 - q_o
imk Z,
a, ﬁstﬁ_

Merger of perturbations A and B results into a geometry
of a plasma(dielectrio cylinder embedded in a dielectric
(plasma. As such, one can writg~
g~ 'is the inverse response function of a single cylinder in a
semi-infinite medium. That means that formally the determi-
nant of the sum of inverse response functions in E§X)
and(3.195, with R;=R=R,, equated to zero, i.e.,

Having calculated the inverse response functions for the
three perturbations, it becomes an easy task to deduce the

dispersion relations for the plasmon propagation in the real

physical systems. These di¢a plasmadielectrig cylinder
embedded in a dielectriplasma and (ii) a plasmadielec-

tric) shell surrounded by two unidentical dielectrigdas-

follows.

2

45320-8

D. Plasma(dielectric) cylinder embedded

in dielectric (plasma)

1_7—

=g;'+0, %, where

lg74(M,M)|=[g; (M, M)+, (M,M)|=0,

(3.29

should vyield the dispersion relation for plasmons with a
mag, for example. This is what we intend to do in what mixed (TM and TE character in a single cylindrical geom-
etry. The result is
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_[qoel In(BiR) 92 Hi(BR) _imk i_i)
B1 In(BiR) Bz Hm(BR) R\pl B3

. =0 (3.26

imk(1 1 ) _{qo In(BiR) Gy Hin( B2R)

RApE B3 B1 In(B1R) Bz Hm(B2R)

[
or
e, 1 22 KalazR) 0, (3.29

17 @R Ko(auR)

€ Jn(B1R) & Hr,n(,BzR)Hi Jn(B1R)
B1 Im(B1R) B2 Hu(B2R) || B1 Im(B1R)
1 H&(&R)}_(T)ZkZ( 11

B Hu(BR)| R g2\ g2 g3

where a,= (k*—2e;) " refers to the decay constant in the

outer background medium. For outer medium as a dielectric,

small radius R—0), and long wavelength limit, the modi-

fied Bessel function&, andK, are both positive. Therefore
(3.2 in order to obtain a bonafide solution of this equation, the
dielectric functione; must be negative. This means that in
r@e local approximation only the frequencies below the
1Lscreened plasma frequency should make sense. In the limit
of a small radius, Eq(3.28 can also be written as

2

This expression is exactly identical to E§.07) in Ref. 14,
which was obtained through the use of messy boundary co
ditions decades ago by Stratton. Only in the special limit o
m=0 can the TM(represented by the first square bracket
equated to zepoand TE (specified by the second square
bracket equated to zeronodes become separable. We con- w=wy- BoR- |In(,82R)|1/2, (3.30
centrate on the TM modes for studying, for example, plas-

mons in a slender wire made up of the cylinder in the limit

R—O0. 20 . ' . ' . ' ' |

Quantum wire in the electric quantum limit EIL=13'1’S7L=12'4

Form=0, the TM modes are characterized by the follow-
ing dispersion law:

& (BR) € Hi(BaR)
B1Io(BiR) Bz Ho(BR)

sincely=— ¢y, with {,=J,Hn,. Itis not difficult to prove

that Eq.(3.28 is exactly identical to Eq(18) in Ref. 15,
which was also derived through the use of boundary condi-
tions, and represents the plasmon dispersion for the classical
dielectric waveguide. It is a simple matter to understand that ]
in order to be able to deduce some expected results for the RPA
planar interface we need to employ the large-argument limit
(i.e., R—x). Imposing asymptotic expansions of the Bessel 05 L
functions for large argumenté.e., whenH,/Hy=i and SPE
J1/Jp=—1), we obtaine;8,+ €,8,=0, which is a well-
known general dispersion law for the TM modes propagating
on an interface between two unidentical media characterized
by dielectric functionse; and e, (see, for example, Ref.)1
here 8, and 3, serve as the decay constants for the respec- 0 ' ' ' ' ' ' '
tive media and have to be purely imaginary for the plasmon- 0 2 4 b 8
polaritons.

Intuitively, a macroscopic plasma cylinder with a vanish-
ingly small radius should mimic a fashionable quantum wire  FIG. 2. Computed plasmon dispersion in a quantum wire. The
and hence one would expect such a semiclassical methodajurve marked RPA and the hatched region labeled &fgle-
ogy as treated here to reproduce the corresponidingsub-  particle excitationsare based on the RPA with, | =0. The two
bandplasmon dispersion. Using the lowest-order expansionsurves marked with the specified values of the raéii=(10 and
of the involved Bessel functions for the small arguments on&0 nm are calculated using the present formalism. The parameters
can cast Eq(3.28 in the form used are given inside the figure.

m=06Tm,
15 K=100"

=0, (3.28
R=10 nm

R=50 nm

FREQUENCY (10'% sec™)

WAVEVECTOR K (105cm )

245320-9
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wherew0:(2wn8e2/m* €,)Y? e, the background dielec- the background dielectric constant ang, the screened

tric constant in the outer semiinfinite medium, angl the ~ Plasma frequency, until and unless stated otherwise.
effective 3D carrier density. In its present form, Eg§.30 is

an exact analog of Eq2.13 in Ref. 16, but includes the

retardation effect. We have solved E§.29 for the longitu- E. Plasma (dielectric) shell bounded by two unidentical
dinal plasmon modes with, replaced bye_, (k). Figure dielectrics (plasmag

2 shows the comparative study where we plot the dispersion

relations based purely on the zeros of the nonlocal, dynamic In this section we are motivated to study a physical sys-
dielectric functione__ (k,®) (see, for example, Ref,) and tem made up of two coaxial cylinders where we can have the

the preceding scheme. The relevant parameters are listed %asma shell bounded by two unidentical dielectrics or a di-

the figure. As one can notice the longer the wavelength, thglectrlc she_ll boundec_JI by two unl_dentlcal plas_masz In gen-
larger the deviation from the random phase approximatio ral. We WI!| study diverse situations of practical interest.
(RPA) results. At large propagation vectkrthe ratio of the etthoIoglcaIIy, .SUCh a geometry becomes realizable b_y
two modified Bessel functions approaches unity and the Se(séummlng up the inverse response functions calculated in
ond term, in Eq.(3.29, becomes gradually ineffective and qs.(3.8)L(3.15~), 3”9(3-2?):'” the |nte~rface spachl. One
hence the results of the two schemes begin to convergéan writteg™*=g; *+g;*+g;*, whereg™* is the response
Similar effects are manifested if we enhance the radius of théunction of the finite cylindrical shell surrounded by two, in
cylinder, as an alternative. For instance, the plasmon mod@eneral, unidentical media. The dispersion relation for plas-
corresponding toR=50 nm starts merging with the RPA Mmons in such a resultant structure is derived by equating the
plasmon at lowetk than the one foR=10 nm. We have determinant of the total inverse response function to zero,
ignored the higher order solutions because they corresporid?-:

to the unusually large carrier concentration and are irrrel-

evant for the eIeptric qu:_:mtum .Iim(li.e., where only the |§*1(M,M)|=|§Il(M,M)+§2’1(M,M)+§g1(M,M)|=0.
lowest subband is occupipdonsidered here. The hatched (3.31)
region, though does not make much sense in the present

context, refers to the intrasubband single-particle excitation

spectrum coming from the RPA scheme. Note that eaclifter some straightforward mathematical steps, we sim-
plasma medium in the system is characterized throughout bylify Eq. (3.31) to write explicitly in the compact form as

a local dilectric functione(w)=¢€ (1— wf,/wz), wheree is  follows:

R(flA EsC ) |mk 1 1 2i63 0
U8 Bt q, \ B2 B2 782D
imk/ 1 1 R ( 1 A 1 c ) 0 2i
9% \ B B BT BT 3D
2ieg 0 R (EZA egc ) imk/ 1 1 =0, (3:32
_ S2a 4 8 iy
mB3D 2B % By 2 a, \ B2 B3
0 2i imk/ 1 1 R ( 1 A 1 c )
62D d \gz g3 C\B " Bs
|
where the additional substitutions are defined as C,=2,/D,
A1 =J0(B1R1)Im(B1Ry), C,=27,I/D. (3.33
We are now interested to check how E®.32 can re-
, produce some well established results. For this purpose,
A;=Hy(B2R2)Hm(B2R,), we consider the limiR;~R,~R— but takeR,— R;=d as

245320-10
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a finite quantity and fixn=0. Naturally then, we need to xa;R)sinh(a,d), Z;=Z,=(2/mrazR)coshgd), and C;
make use of the asymptotic limits of the Bessel functions=C,=i coth(ad); here 8;=i a3 just as before. As a conse-
J,(2) andH ,(z). As such, we first simplify the substitutions quence, we simplify the general dispersion relation in Eq.

involved to obtain A;=—i, A,=i, D=-Q2lw (3.32 to write
|
€ € imk/( 1 1
R(—l —3c) —|5-5 ~R—S 0
@y asg 9, \a7 a3 as
imk[ 1 1 1 1 1
-—— == Rl —+—C 0 —-R—S
9, \ai a3 a;  ag as
€3 €) €3 |mk 1 1 :0’ (334)
-R—S 0 Rl —+ — ]
as ay as 4, \a5 a3
1 imk/[ 1 1 1
0 -R—S — = —+—C
as 4, \a; af az as

whereC=coth# andS™ 1=sinh#; with #=a4d. Now letus  This is now a well-known result that represents the plasma
carefully impose the limiR—o. Then it is a simple matter modes of a single 2DEG layer sandwiched between two di-

to prove that Eq(3.34) reduces to the form electrics(see, for example, Ref)1Furthermore, considering
the bounding media to be identicéle., e,=e,=¢ and
1 1 1\1 h 1\?][ €€, hencea;=a,=a) and imposing the non-retardation limit
ey Ny a) w0 o) || aas (i.e.,q,=0 and hencer=k) leaves us with
2
€ €\ € € 2_ 2 ok
+ —1+—2)—3coth0+ il }=o. (3.35 w”=(2mne’/m* o)k, (3.39
a; ) ag a3

whereng stands for the areal carrier density. This is a stan-
Either the first or the second factor is zero. It is not quitedard result for the intrasubband plasmon dispersion in a
difficult to prove that the firs¢secondl factor equated to zero quantum well, with the plasma frequenay,= JK.
yields the TE(TM) modes propagating in thelanar film
geometry. We focus on the second factor to study the 2D

. : . F. Local and total density of states
plasmons in a quantum well in the lindt—0.

The density of statedOS) is of fundamental importance
Quantum well in the electric quantum limit to the Understanding of many phySical phenomena in con-
densed matter physics. The interpretation of quite a number
of experimental excitation spectra in a wide variety of sys-
tems subjected to different physical conditions requires a de-
1 0 & 265 tailed knowledge of the DOS. Classiq textbooks an(_j mono-
COthf= =4 = — o (3.36 graphs reveal tha}t the standard algorithm of de_termlnlng the
6 3 45 945 density of states is founded on the Green-function approach.
) o Our purpose here is to calculate the local and total DOSs in
where 6= a3d. We consider the situation wheeg ande;  order to substantiate the computed plasmon modes in the
refer to the dielectric media anes to the plasma. A simple  cylindrical geometries at hand. Unless some numeric hurdle
mathematical analysi¢in the limit d—0 and hencees  comes in way, this is logical to expect that the peaks in the
—w) also leads us to deduce thatid’-~0 and ezd  DOS should coincide with the zeros of the inverse response
=4my, with x=-ng€’/m*w? referring to the zero- function, which determine the plasmon modes for a given
temperature polarizability function in the long wavelengthpropagation vector, of a system.
limit, remains a finite quantity. As such, retaining only the
first term in the approximation and equating the second fac- 1. Local density of states
tor in Eq. (3.35 to zero yields

The trignometrical factor coth in the limit of 6—0 can
be expanded in the following approximate form

The formal expression for the local density of states
(LDOS) in the framework of interface response theoiy
Ay + & + £ _ 0. (3.37) generally quite fussy and as the name suggests requires some

a;  az ' subtle details of the local physical conditions. These are, for

245320-11
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example, the basic definitions of the bulk Green functionsyive in the TDOS, all the positive peaks are seen to disap-
the spatial positions around the interface, the nature of thpear. This remains unfailingly true for all the cases we have
associated electromagnetic fields involved, etc. In the preseimivestigated both for single- and double-interface systems.
context, the simplest definition of the LDOS at the expensell the peaks in the LDOS are always positive. More specific
of a few negligible concerns but that which still contains thecomments will be made latésee Sec. IV.

important physics involved is given by

IV. ILLUSTRATIVE EXAMPLES

N ()= =2ZIm{Tr[gMM)]}, (3.39

As we have seen in the preceding section, our final results

~ ) ) for the dispersion charateristics are E¢3.26 and (3.32,
whereg refers to the response function whose inverse Wa$espectively, for the single cylinder embedded in some dif-

determined in the preceding subsections for diverse sitUgg ent material background and the coaxial cylindrical geom-
tions. The important thing is to understand which system thigries. Note that both of these equations are, in general, the
response functiog refers to in different physical situations. complex transcendental functions. Therefore, in principle,
We consider two such cases of our interest: a single-interfaoge need to search for zeros of such complex functions. De-

system(see Sec. IlID and a double-interface systefsee
Sec. IIlB). For a single-interface systerm, is simply the
inverse of the sum of; * andg, (see Sec. IlID. In the

spite much advancement in the software science, searching
for reliable zeros of such complex functions is not an easy
task. So, we had to strike a compromise among a few

case of a two-interface system, we need to study the LDO§hoices. We decided to ask the machine to produce those
at the two interface®, andR, independently. For the inter- Z€r0S where the real part of the function changes sign, irre-

~ : o spective of whether or not the imaginary part is zero. We
f.aCERl (Rp) theg in Eq. (3.39 IS the 2x2 submatrix in the believe this has resulted in a reliable scheme for studying the
first (fourth) quadrant of the inverse of the sum of three

inverse response functiorisee Sec. Ill E dispersion characteristics of plasmons in the present systems.
P ' This is because all the plasmon mode®nfined or ex-

2. Total density of states tended are found to have an excellent correspondence with

For thez components of the electromagnetic fields con-
sidered here, the analytical expression for the variation of the
total density of stateSTDOS) within the interface response
theory* is given by

1.0 L [l N 1 " 1 3 1

0.8

9.(M,M)
Argdef ——
9,(M,M)

1
N(0)===—

7 dw

(3.40

By the variation of TDOS we mean the difference between
the TDOS of the finalphysica) system and an initial sys-

tem. Here§i (ﬁf) stands for the response function of the
initial (final) system in question. For the single-interface sys-
tem,g; is a product ofy; andg,; andg; is the inverse of the
sum ofﬁ[l andagl. In the case of a two-interface system,
0i=01¢-0»¢, Wheregy is the inverse of the sum of a 4
X 4 matrix comprised of thg; * andg,?, andg, is the
inverse ofﬁgl that corresponds to perturbation 3 for the
shell alone; andy; is the inverse of the sum af; *, g%,

andg;’. It should be pointed out that both local and total
DOSs are computed for every value of integer

It is also worth mentioning that in the course of studying
the total DOS we have the finit@r bounded parts of the
system automatically incorporated. Therefore, we are bound
to find some discrete modes in the TDOS, which usually

apppear as the negative peaks in the B@Sspace and do  [FiG, 3. Plasmon dispersion for a GaAs plasma cylindey, (

not bear any physical significance if one is only interested in- 13.1) embedded in a Ga,Al As dielectric (e, =12.4). The
studying the confined or extended plasmon-polaritons. Moregimensionless plasma frequency used in the computation is speci-
over, if we are interested to understand all the existing peakfed by w,R/c= 2. The dashed curve refers to the planar interface
in the TDOS, we need to explore, for example, each of thglasmon polaritons and the dashed horizontal line labeled as
three perturbations involved individually. We have found that=0.7167 indicates the corresponding asymptotic frequency. The
while the negative peaks in the individual perturbations sursolid straight line is the light line in the dielectric background.

o
o
]

REDUCED FREQUENCY ¢
o
~
1

02 e, =13.1
e, =124

copR/c=(2)O'5

0.0 f——F——F——7——
o 1 2 3 4

REDUCED WAVEVECTOR ¢
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06 o2 o4 08 o8 10 FIG. 5. The same as in Fig. 3 but for the plasmon dispersion

for a Ga_,Al,As dielectric (€, =12.4) in GaAs plasma
(e,.=13.1). There are four groups of curves for four different val-
FIG. 4. Local(total) density of states in the uppdpwer) panel ~ ues ofm.

for various values ofnand{=2.5. The rest of the parameters used ) )
are the same as in Fig. 3. The arrow in the lower panel refers to Eat there are two modes for every one starts in the radia-

small invisible peak at=0.70995 wherg3,=0. tive region (towards the left of the light-line wher@, is
purely real with a finite frequency and the other at the origin
the peaks in the local and total density of states. We considéfong and towards the right of the light line in the nonradi-
mosﬂy a GaAs p|asma, a @L@AIXAS dielectric, and a S|9 ative re'gion(.towards the rlght of the ||ght line Whelﬁz is
dielectric with background dielectric constanég=13.1,  Purely imaginary. The former ends up merging with the
12.4, and 4.5, respectively. We will later assign an additionalight line while the latter becomes asymptotic t§
numeral to the suffix of the background dielectric constants=0.7167. Even at considerably large all modes retain
corresponding to the region in the geometry concernedtheir character: the largen, the higher the frequency.
Other parameters such as the ratio of the radii of the cylin- Figure 4 illustrates the locatotal) density of states in the
dersR,/R,, the normalized plasma frequeney,R/c, and ~ upper(lower) panel for{=2.5 in the nonradiative region in
the azimuthal index of the Bessel functiomswill be given ~ the&—{ space fom=0, 2, 3, and 5. The rest of the param-
at the appropriate places during the discussion. We wileters are the same as in Fig. 3. The sharp peak§ at
present our results in terms of the dimensionless propagatiori 0.5098, 0.5486, 0.5837, and 0.6422 are seen to be com-
vector {=ck/w, and frequency=w/w,, wherew, stands mon to both local and total DOSs. The negative peaks are
for the screened plasma frequency. Both local and tota¢oming from the second perturbatidgeee Sec. 1)l which

DOSs will be shown in arbitrary units throughout. produces one positive and another negative peak for every
The positive peak disappears and the negative one survives

in the total DOS. The arrow af=0.70995 indicates an in-

discernibly small negative peak for=0 wheref, vanishes.
Figure 3 shows the plasmon dispersion for a GaAs plasm&/e observe a pile up of rather small DOS, both local and

cylinder in a Ga_,Al,As dielectric form=0, 2, 3, and 5 total, at £=0.7167. Every positive peak in the local/total

and o R/c= J2. The dotted curve refers to the plasmon-DOS shows an excellent correspondence with the respective

polariton mode for the planar interface, and the dashed horiconfined plasmon modéin the nonradiative regionin

zontal line marked a§=0.7167 indicates the corresponding Fig. 3.

asymptotic frequency in the nonretardation linjite., & Figure 5 depicts the plasmon dispersion for g GaAl,As

=(1+ €, /€1,) 3. The straight line marked as LL stands cylinder embedded in a GaAs plasma togR/c= J2. The

for the light line in the dielectric background. It is observed solid, dashed, dash-dotted, and dash-dot-dotted curves stand

REDUCED FREQUENCY ¢&

A. Plasma (dielectric) cylinder embedded in dielectric (plasma)
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e
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204 B REDUCED WAVEVECTOR ¢
o0 o2 o4 o6 08 10 FIG. 7. Plasmon dispersion in a GaAs plasnag & 13.1) shell
REDUCED FREQUENCY & sandwiched between identical GaAl,As dielectrics €; =12.4

=¢€,.). There are five groups of curves for five different values of
FIG. 6. Local(total) density of states in the uppéower) panel M. The solid straight line labeled as LL refers to the light line in the

for m=1 and{=0.5. The rest of the parameters used are the sam&a —xAlxAs dielectric. The parameters used in the computation are
as in Fig. 5. The negative peaks in the lower panel emerge from th@s listed in the picture.
first perturbation alone and bear no physical significance.

frequencies of the three radiative plasmon mode&s=d.5 in
for the plasmon modes, respectively, fo=0, 1, 2, and 3. Fig. 5. The existence of the two negative peaks &at
The dotted curve represents the plasmon polariton mode for 0.3190 and 0.4381 in the total DOS is attributed to the first
the corresponding planar interface, and the dashed linperturbation alone. It is found that both of the negative peaks

marked asf=0.7167 refers to its asymptotic frequency in are the exact solutions ¢f; *|=0. Moreover, the positive

the nonretardation limit. Unlike Fig. 3, we observe a largerpeaks occurring ag=0.14199 and 0.7824@vhereJ; van-

number of radiative mode(én the region towards the left of jsheg in the first perturbation are seen to disappear from the
the light line marked as LLfor everym, even though the ota] DOS.

number of confined plasmon modes at lages still the
same(i.e., one for everym). It is interesting to note that in
the present case there is almost a smooth transition of the
plasmon propagation in the vicinity of the light line. This
contrasts the corresponding behavior in Fig. 3. Also distin- Figure 7 illustrates the dispersion relations of the
guishable is the fact that all the confined modes seem tplasmon-polariton modes for the coaxial cylindrical geom-
merge together and lose their identity at smaller valueg of etry made up of GaAs plasma shell bounded by a
as compared to the same in Fig. 3. Furthermore, the plasmdsa, _,Al,As dielectric both in the inner cylinder and outer
mode for the corresponding planar interface is seen to remaisemi-infinite media. As for other relevant parameters, we
the lowest mode in the wholg- ¢ space in Fig. 5, unlike the ~ considerw,R; /c= /3.5 andR,/R;=2.2. The solid, dashed.
one in Fig. 3. dash-dotted, dash-dot-dotted, and dotted curves stand for the

Figure 6 shows the locdtotal) density of states in the values ofm=0, 2, 3, 5, and 8. Since the inner and outer
upper(lower panel form=1 and{=0.5. The other param- media are identical, we still have a single asymptotic fre-
eters are the same as in Fig. 5. All three positive peaks agjuency in the nonretardation limit=0.7167 assigned to the
pearing att=0.3111, 0.6434, and 0.8695 in the local DOS dashed horizontal line. The straight solid line marked as LL
are seen to be consistent with the corresponding positivis the light line in the dielectric media enclosing the plasma
peaks in the total DOS. These positive peaks showing up ishell. Note that while the number of the confined plasmon
the local and total DOSs are in very good agreement with thenodes at large value df (in the nonradiative regigns still

B. Plasma(dielectric) shell bounded
by two dielectrics (plasmag
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-100_0 " a2 04 o 08 1o FIG. 9. Total density of states fon=0 and{=0.3. The higher

(lower negative peak emerges from the fitsecondl perturbation
and has no physical significance. The rest of the parameters used

FIG. 8. Local density of states at the interfaRe (R,) in the ~ are the same as in Fig. 8.
lower (upped panel form=0 and{=0.3. We call attention to the
smaller DOS resonances, indicated by arrows, corresponding to the Figure 9 presents the total density of states for the same
interface R,. The rest of the parameters used are the same asystem as studied in Figs. 7 and 8 for=0 and{=0.3. One
in Fig. 7. can notice at once that there are five positive resonance peaks

lying at the same frequencies as those in the local DOS

two in conformation with the two interfaces in question, (summing up all the peaks at both interfaces; see ghdwe
there can be any number of extended modes in the radiativaddition, there are two negative peaksé&t0.08519 and
region for a giverm depending upon the ratig, /R;. 0.5878. We explore that the lowduppe) negative peak

Figure 8 shows the local density of states at the interfaceomes from the secondirst) perturbation alone where the
R: (Ry) in the lower (uppep panel form=0 and{=0.3.  Bessel function]; vanishes. That is to say that the position
The rest of the parameters are the same as in Fig. 7. We noté the lower(uppe) negative peak refers to the firstecondl
that there are four well defined sharp DOS peakséat zero of J;. Both positive peaks of the first perturbation
=0.3252, 0.5107, 0.7213, and 0.9023 at the interfRge  which were seen to correspond to the first two zerosdpf
whereas the interfac®, captures only two low DOS peaks have disappeared in the total DOS. A careful look at the
at £=0.0835 and 0.9023. That means that the two interfacedispersion relations in Fig. 7 reveals that there is an excellent
in the coaxial cylindrical geometry have different prefer- correspondence between the resonance peaks in the DOS and
ences. This is the case even though one may argue quitee plasmon dispersion for a given except for the lowest
contrarily in view of the fact that the plasma shell is sym- extended mode in the radiative regi@awards the left of the
metrically bounded by the identical dielectrics. However, itlight line) that could be reproduced neither in the local nor in
seems that the two interfaces are more sensitive to the geortike total DOS. This is not surprising, however, given the
etry and less to the materials in the bounding media. That idistinct nature of searching the zeros of the determinant for
to say that the situation is altogether different from a planathe dispersion spectrum in Fig. 7. We believe that in some
geometry with a thin film symmetrically bounded by identi- better way of searching the zeros of the complex transcen-
cal dielectrics. It is noteworthy that only the highest peak indental function for this purpose, such méglemay either
the local DOS is shared by both interfaces, albeit with adisappear once and for all or will not yield a good correspon-
difference of magnitude. Moreover, except for the lowest onalence with the resonance in the DOS.
at the interfaceR, which corresponds to the confined plas-  Figure 10 illustrates the plasmon dispersion for the GaAs
mon mode, all the higher resonances explain the radiativplasma shell asymmetrically bounded by unidentical dielec-
modes at this value of. trics (Ga _, Al As in the inner cylinder and SiQn the outer
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FIG. 10. Plasmon dispersion in a GaAs plasneg, €13.1) 00 02 o4 06 08 10

shell sandwiched between unidentical; GaAl, As (e, =12.4) and
SiO, (e, =4.5) dielectrics. There are five groups of curves for five
different values ofm. The solid straight line labeled LL1LL2) FIG. 11. Local density of states at the interfd&e (R,) in the
refers to the light line in the Si(Ga, _,Al,As). The dashed hori- lower (uppe) panel form=0 and{=0.2. We call attention to the
zontal line labeled=0.7167 ¢=0.8627) indicates the asymptotic smaller DOS resonances, indicated by arrows, corresponding to
frequency for the interfac®,; (R,). The parameters used in the the interfaceR,. The rest of the parameters used are the same as
computation are as listed in the picture. in Fig. 10.

REDUCED FREQUENCY &

semi-infinite medium For other parameters involved in the

Figure 11 depicts the local density of states at interface
computation, we considempRl/c=\/§ and R,/R;=2.0. éR 9 P Y £

,) in the lower(uppe)p panel form=0 and{=0.2. Other
rameters are the same as those used in Fig. 10. One can see
five clear resonances lying &= 0.2759, 0.4351, 0.6199,

The solid, dashed, dash-dotted, dash-dot-dotted, and dott
curves represent, respectively, the casesnfierO, 2, 3, 5

and 8. The two solid straight lines marked as LL1 and LL2 . )
refer to the light lines in the dielectric media SiGnd 0.7815, and 0.9441 at interfady, whereas the interfade,

Ga _,Al,As, respectively. The two dashed horizontal "nesobserve§ only three gt=0.09284, 0'7815_’ and 0.9441. Thus_
labeled ag = 0.7167 and:=0.8627 stand for the asymptotic the two interfaces share o_nly the two hlghe_st resonances in
frequencies for the plasmon polaritons propagating at th&€ local DOS and with a difference of magnitude. Again, the
interfaceR; andR,, respectively. Unlike the symmetric case WO interfaces pose different preferences, and that makes
(see Fig. 7, the two plasma modes at a large propagatior"ore sense here because of the asymmetric configuration.
vector approach the different asymptotic limits. Comparing Note that only the lowest resonance at interfégebelongs

Fig. 10 with Fig. 7 reveals that the asymmetric case yields & the confined plasmon mode; the rest of the higher ones
relatively richer spectrum at least for the radiative modes foforrespond to the radiative modes.

a givenm. Interesting, but not unexpected, is the fact that Figure 12 shows the total density of states for the same
only the lowest pair of modes for every crosses the right- Systém as discusssed in Figs. 10 and 11rfo+0 and {
most lightline and attains the character of a pure plasmon=0-2. We find that there are six well defined positive reso-
polariton before becoming asymptotic to the respective frenances lying at the same frequencies as those specifying the
quencies. It is also noteworthy that each pair of such mode&sonance peaks in the local DQ&imming up all the peaks
(for a givenm) observes an intersection between its branchedt both interfaces in Fig. 111In addition, there are three

in the radiative region towards the left of the leftmost light N€gative peaks occurring &t=0.09428, 0.4899, and 0.8928,

line. This remains true at least for the lower valuesiee, ~ Which have no physical significance. While the first one
e.g..m=0, 2, 3, and & After such an intersection, originally COmMes from the second perturbation , the pair of the second

lower (uppe) branch becomes asymptotic to the upper@nd third negative peaks emerges from the first perturbarion
(lower) frequency at largé. (i.e., |E]Il|=0)2 their positions in frequency correspond to
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FIG. 12. Total density of states fon=0 and{=0.2. The rest of FIG. 13. Plasmon dispersion in a GaAl,As dielectric (e3.

the parameters used are the same as in Fig. 10. While the lowest12.4) shell sandwiched between identical GaAs plasmags (
negative peak emerges from the second perturbation, the two higher13.1=¢,,). There are five groups of curves for five different
peaks come from the first perturbation. Such negative peaks havglues ofm. The solid straight line labeled as LL refers to the light
no physical significance. line in the Ga_,Al,As dielectric. The parameters used in the com-
putation are as listed in the picture.
the first three zeros of the Bessel functibn The two posi-
tive resonances observed in the first perturbation, which Cor- g, re 14 illustrates the local density of states at interface
respond to the first two zeros df, have disappeared from R

) . . 1 (Ry) in the lower(uppe) panel form=0 and{=0.5. It
the total DOS. Itis found that all the six resonances in theg ¢ that there are seven well-defined resonances lying at
DOS reproduce exactly the frequencies of the plasmo

) . . . %20_1229 0.3433, 0.3765, 0.6582, 0.6793, 0.9380, and
modes of Fig. 10 at the givef with the exception for the ' o ' ' ! e
lowest radiative mode above the left light line. However, thiso'g‘r’94 shared by both interfaces, of course with a difference

mode is found to have the same story as the correspondi magnitude. In that sense, this case is much different than
one in Fig. 7 and hence our comments made in relation t e previous ones of plasma shell between two dielectrics
Fig. 9 remain valid. (see, e.g., Figs. 8 and JLJAgain, it is only the lowest reso-

Finally, we take up the case of a dielectric (GgAl,As) nance that substantiates the confined plasmon mode below

shell symmetrically bounded by two identical GaAs plasma§h? light line, the rest correspond to the radiative modes for
for w,Ry/c=12 andR,/R,=2.5. The results for the plas- this value of¢. _

mon dispersion in terms of dimensioless frequengy gnd Figure 1_5 shoyvs the _tota! density of states for the same
wave vector () are plotted in Fig. 13. The solid, dashed, System as investigated in Figs. 13 and 14 1ior0 and{
dash-dotted, dash-dot-dotted, and dotted curves correspon_do-5- We observe that there are seven well-defined positive
tom=0, 2, 3, 5, and 8, respectively. The solid straight linefésonances located at the same frequencies as those specify-
marked as LL refers to the light-line in the dielectric shelliNg the similar resonance peaks in the local D@8e Fig.

and the dashed horizontal line labeledtas0.7167 indicates  14). Moreover, two negative resonances are seen to emerge
the asymptotic frequency for the plasmon polariton at thedt §=0.4557 and 0.8598. These negative peaks are a conse-
large value of’. One can easily notice that while the number duénce of the th|rd perturbation alone that produces three
of the modes in the nonradiative region is still two, the num-POSitive peaks lying ag=0.14198=p;=0, 0.4398, and

ber of radiative modegowards the left of the light lineis ~ 0-8507 and the two negative peaks as mentioned above.
larger for anym as compared to that in Figs. 7 and 10. Also, While all three positive peaks disappear from the total DOS,
it is evident that no such nasty moés the lowest radiative the two negative peaks survive. The surviving negative peaks
mode encountered in Figs. 7 and) 1§ seen to be emerging are seen to be the exact solutions[gf*|=0. The case

in this case. studied in Figs. 13 —15 for the coaxial cylindrical geometry
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_ the parameters used are the same as in Fig. 13. Both of the negative
FIG. 14. Local density of states fon=0 and{=0.5. The rest  peaks emerge from the third perturbation alone and have no physi-
of the parameters used are the same as in Fig. 13. cal significance. The DOSs are shown in arbitrary units throughout.

seems to be the clearest one where there is no conflict at &f€ Prohibited from propagation in the neighboring plasmas.
between the DOS resonances and the plasmon dispersion. NiS @lso explains why such peaks are so strong. The modes

We would like to stress that all the negative peaks in thdn the non-radiative regimetowards the right of the right-
variation of the total DOS showing up, for example, in Figs_most light Im@ tend.to bear a dlfferent_ story. They originate
6, 9, 12, and 15 originate from the initial systerfes the from the dle_zlectr_lc-plasma heterointerfé®e and are
so-called initial perturbationscomprising the resultant sys- Plasmon-polariton-like.
tem. As noticed before, these are seen to be obtainable from

the zeros ofg; | (with i=1, 2, or 3 wherever a dielectric
medium is bounded by orgn the case of a single-interface  In summary, we investigated the plasmon dispersion and
system or two (in the case of a double-interface sysiem the density of states in the coaxial cylindrical geometries in
black boxes. Since the black box does not represent a truke absence of any applied magnetic field. We derived the
physical system, though it is an essential ingredient of thgeneral dispersion relations using a Green-function theory in
theoretical schem&these peaks have, in fact, no physical the framework of a IRT,which has now found widespread
significance. However, they do exist with a negative sign inuse to study numerous excitations in various composite
the TDOS, irrespective of the dimensionality, the size, andsystems:® In doing so, we not only clarify some basic no-
the shape of the system concerned. tions in the use of the cylindrical geometries but also diag-

It would not be out of place to mention that most of the nose our general analytical results under special limits to
modes covered by our results on the DOS correspond teeproduce some well-known results on 2D and 1D plasmon
those that fall in the radiative regintee., towards the left of dispersion in quantum wells and quantum wires. We have
the leftmost light line in, for example, Figs. 5, 7, 10, and.13 also successfully attempted to substantiate our results on
The LDOSs in Figs. 6, 8, and 11 indicate that these modeplasmon dispersion through the computation of the local and
are actually those of the Ga,Al,As dielectric bounded by total density of states. While we considered the effect of
the GaAs plasma, confined on the dielectric side, and prohibretardation, the absorption was neglected throughout, except
ited from propagation in the GaAs plasma. This is true defor a small imaginary part needed to be added to the frequen-
spite the fact that depending on the thickness of the plasmeies for the purpose of computing the DOS. The present
shell the radiative modes in Figs. 8 and 11 can interact wittmethodology for coaxial cylindrical geometries is expected
the surrounding dielectric in the outer medium and henceo prove to be a powerful theoretical framework for studying,
may differ slightly from those in Fig. 6. Similarly, the modes for example, the intrasubband plasmons in the multi- walled
in Fig. 14 are essentially those of the (GgAl,As shell that  carbon nanotubes.

V. CONCLUDING REMARKS
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We believe that an experimental observation of the radiaearriers and help study the instability mechanism, and most
tive as well as non-radiative plasmon modes in such coaxiamportantly the effect of an applied magnetic field in order to
cylindrical geometries would be of great interest. Such exstudy, for example, the edge magnetoplasmons in the con-
periments could possibly involve the well known attenuatedcentric cylindrical geometries, to name a few. Currently, we
total reflection, scattering of high energy electrons, or everhave been investigating the effects of an applied magnetic
Raman spectroscopy. Electron energy loss spectroscopy field in the Faraday geometry on the plasmon dispersion in
already becoming known as a powerful technique for studysuch concentric cylindrical structures and the results will be
ing the electronic structure, dielectric properties, and plasreported shortly.
mon excitations in carbon nanotubes and carbon onions, for
example. Our preference for plotting the numerical results in
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