
PHYSICAL REVIEW B 67, 245319 ~2003!
Weak localization and integer quantum Hall effect in a periodic potential
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We consider magnetotransport in a disordered two-dimensional electron gas in the presence of a periodic
modulation in one direction. Existing quasiclassical and quantum approaches to this problem account for Weiss
oscillations in the resistivity tensor at moderate magnetic fields, as well as a strong modulation-induced
modification of the Shubnikov–de Haas oscillations at higher magnetic fields. They do not account, however,
for the operation at even higher magnetic fields of the integer quantum Hall effect, for which quantum
interference processes are responsible. We introduce a field-theory approach, based on a nonlinears model,
which encompasses naturally both the quasiclassical and quantum-mechanical approaches, as well as providing
a consistent means of extending them to include quantum interference corrections. A perturbative
renormalization-group analysis of the field-theory shows how weak localization corrections to the conductivity
tensor may be described by a modification of the usual one-parameter scaling, such as to accommodate the
anisotropy of the bare conductivity tensor. We also show how the two-parameter scaling, conjectured as a
model for the quantum Hall effect in unmodulated systems, may be generalized similarly for the modulated
system. Within this model we illustrate the operation of the quantum Hall effect in modulated systems for
parameters that are realistic for current experiments.
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I. INTRODUCTION

The problem of electron motion in a disordered conduc
in a periodic potential and strong magnetic field display
rich combination of phenomena of both classical and qu
tum origin. The complexity arises from the appearance
two independent types of periodicities, of the potential a
of the cyclotron orbits, which may interplay in complicate
ways. Perhaps the most striking effect is known as We
oscillations,1 whereby very large oscillations in the resisti
ity are induced by even a weak periodic potential at mod
ate magnetic fields. At different magnetic fields or tempe
tures, other types of contributions to the resistivity beco
significant. For example, at very small fields, a positive m
netoresistance results from a classical mechanism of c
neling of orbits.2–4 At larger magnetic fields, the resistivit
develops Shubnikov–de Haas oscillations, which origin
from the onset of Landau quantization and may still be
fected by the periodic potential.1,5–8 At even higher fields,
the integer quantum Hall effect9 ~IQHE! becomes operative
due to the contribution of quantum interference processe

Much of the above phenomenology has been thoroug
analyzed theoretically, by a variety of techniques includ
quantum-mechanical approaches5,6 involving diagram-
matics7,10,11 or solution of a quantum Boltzmann equation8,
and quasiclassical approaches.2–4,12,13The experimental real
ization of these systems is also well advanced1,2,5,6,14,15with
precise confirmation of the theoretical predictions alrea
possible. So far, however, a theory for the influence of qu
tum interference processes in a periodic potential and h
magnetic field has been missing. Such processes lea
weak localization corrections to the conductivity which b
come significant at low temperatures~see, e.g., Refs. 16–1
for reviews!. At high magnetic fields, they are also respo
0163-1829/2003/67~24!/245319~12!/$20.00 67 2453
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sible for the operation of the IQHE,9,20 whereby the Hall
conductivity becomes quantized at low temperatures. At
same time, the observation of the IQHE in systems with
weak potential modulation is well within current experime
tal capability.14,21

This paper aims to fill this gap by showing how the sta
dard theory for weak localization and the IQHE may be ge
eralized so as to incorporate the presence of a periodic
tential. We employ a field-theory approach based on
nonlinears model,20,22–25 which is well established in the
study of mesoscopic disordered conductors. In deriving
appropriate field theory, we are able to show how previo
theoretical calculations of the conductivity, within bo
quasiclassical12,4 and quantum-mechanical approaches,7 may
be recovered in a natural way within the field-theory form
ism. This enables us to extend previous theoretical result
a consistent way so as to include the influence of quan
interference processes.

The experiments of Weisset al.1 employed weakly modu-
lated two-dimensional~2D! electron systems of high mobil
ity with a well-known period,a;300 nm, much less than
the mean free path,,;10 mm. Such samples were eng
neered using a holographic modulation technique, based
the persistent photoconductivity effect in GaAs/AlxGa12xAs
heterostructures at low temperatures;4.2 K. The Weiss os-
cillations appear in only one component of the resistiv
tensor,rxx , when the modulation is in thex direction. Fur-
thermore, they appear at magnetic fieldsB such that the cy-
clotron radiusRc5vF /vc ~wherevc5eB/mc is the cyclo-
tron frequency,2e is the electron charge, andvF is the
Fermi velocity! satisfies the commensurability conditio
2Rc5(n21/4)a, for integer n. Hence the oscillations are
periodic in 1/B. In addition they are relatively stable wit
respect to temperature, suggesting a quasiclassical origi
©2003 The American Physical Society19-1
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At even higher magnetic fields, such that the cyclotr
radius is much less than the period of modulation (Rc!a),
the quasiclassical theory predicts that therxx component
shows a large, nonoscillatory increase proportional toB2,
leading to a strong positive magnetoresistance. This re
has been confirmed in experiments14 for which the tempera-
ture was kept deliberately high so as to avoid the interv
tion of the IQHE.

A limitation of the quasiclassical approach is that it fa
to account for the renormalization of single-particle prop
ties, such as the density of states and scattering lifetime
the strong magnetic field according to Landau quantizat
Even in unmodulated samples, quantization leads to osc
tions in the density of states with respect to magnetic fie
and hence to Shubnikov–de Haas oscillations in the resis
ity. In samples with the periodic potential, the Shubnikov–
Haas oscillations start to appear at higher magnetic fie
than the Weiss oscillations~for Rc an integer multiple of the
Fermi wavelength!a). A quantum-mechanical approac
that does allow for such quantization effects has been
vided by Zhang and Gerhardts7 ~see also Peeters an
Vasilopoulos8!; it is a diagrammatic treatment that gener
izes the approach of Ando and co-workers26 to modulated
samples. The quantum-mechanical approach is then cap
of describing both Weiss oscillations and the Shubnikov–
Haas oscillations~also affected by the modulation! at higher
magnetic fields.

In principle, the calculation of weak localization corre
tions in a strong magnetic field~unitary ensemble! is possible
even in the presence of a periodic potential, by a genera
tion of the diagrammatic approach of Zhang and Gerhard7

but the procedure would be complicated~although the sim-
pler orthogonal case has been examined diagrammatic
for a periodic magnetic field27,28!. Instead, the calculation o
high-order diagrams is more convenient in the field-the
formalism and, furthermore, with this method the possibil
exists of calculating contributions of diagrams to all orde
by the renormalization-group~RG! technique. We show how
the field-theory takes the form of a nonlinears model with a
topological term.20,22–25The effective Lagrangian is slightly
nonstandard since it contains an anisotropy in the coe
cients, corresponding to the difference between the long
dinal conductivities in thex andy directions, due to the pe
riodic potential.

The effect of weak localization corrections to the condu
tivity for unmodulated samples is accounted for by a scal
~one-parameter scaling! of the conductivity with the system
size. As a first step we derive the analog of the one-param
scaling, for the conductivity22–24,29in the modulated system
by means of a perturbative RG analysis of the effective
grangian. We then turn to the study of the IQHE, impleme
ing a generalization of a two-parameter scaling, which
been conjectured25,30,31as a model for the IQHE in unmodu
lated systems. We examine how the resistivity tensor sho
be affected at low temperatures by the IQHE in modula
samples for parameters that are realisable in actual ex
ments. We see, for example, how the Hall conductivity b
comes quantized under scaling at low temperatures, while
the regions between the plateaus, the longitudinal cond
24531
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tivities develop peaks of differing heights according to t
anisotropy in thex andy directions.

Model. In the following, we employ the Hamiltonian fo
the disordered conductor in a magnetic field and perio
potential in two dimensions:

H5H02V~r !,

H05
1

2m S p2
eA

c D 2

1U0cos~qx!. ~1!

Here A is the vector potential, so that“3A5(0,0,B),
whereB is the perpendicular, uniform magnetic field. Als
U0cos(qx)/(2e) is the periodic potential, which is taken to b
weak (U0!eF , where eF is the Fermi energy! and with
modulation perioda52p/q. V is the disorder potential
which we assume to bed correlated in space, with the ass
ciated scattering timet. We assume that the mean free pa
,5vFt greatly exceeds the modulation perioda.

The plan for the remainder of the paper is as follows.
Sec. II we describe the field-theory approach and derive
effective Lagrangian for the system. In Sec. III we show h
the field-theory provides the scaling of the conductivity te
sor under changes of length scale due to the contributio
quantum interference processes, and hence a descriptio
the IQHE in these samples. Section IV concludes with
summary and discussion.

II. FIELD-THEORY APPROACH

In this section we describe a field-theoretical approach
the description of a disordered conductor in the presence
periodic potential and a strong magnetic field. The appro
is based on a diffusive nonlinears model, which will serve
as a tool for the analysis of quantum interference effects
the remainder of this paper. In Sec. II A we discuss t
model and the relation to previous semiclassical12 and
quantum-mechanical7 approaches. Technical details of th
derivation are presented in Sec. II B.

A. Description of field-theory approach

The field-theory apparatus that we employ is by now w
established in the study of spectral and wave-function sta
tics of disordered conductors. It is based on a functio
integral expression of electron Green functions in the pr
ence of disorder, and in the diffusive regime takes the fo
of a nonlinears model in terms of aQ matrix.22–24 In two
dimensions, the field-theory technique provides a conven
means of calculating weak localization corrections to
conductivity, a task that may become very cumbersome
the more conventional technique of diagrammatics.32,29 The
field-theory may also provide a resummation of diagrams
all orders by a renormalization-group procedure.22–24,29

We show below that the effective Lagrangian for the d
ordered conductor in the presence of a periodic potential
strong magnetic field takes the form
9-2
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WEAK LOCALIZATION AND INTEGER QUANTUM HAL L . . . PHYSICAL REVIEW B 67, 245319 ~2003!
L@Q#5
1

16E dr Str$sxx
0 ~“xQ!21syy

0 ~“yQ!2

2sxy
0 t3Q@“xQ,“yQ#%, ~2!

wheres i j
0 is the classical conductivity tensor of the syste

in units of e2/h. The 838 supermatrix fieldQ(r ) satisfies
the nonlinear constraintQ(r )251. The supertrace operatio
is defined in Ref. 24.

In the absence of a strong magnetic field or modulation
renormalization-group analysis of the first two terms in E
~2! leads to the well-known one-parameter scaling22–24,29of
the conductivity with system size due to weak localizatio

The final term in Eq.~2! is known as a topological term
and appears in the theory of the IQHE proposed by Pruis
and collaborators.20,25 The influence of the extra term doe
not appear within perturbation theory, but becomes evid
only through a nonperturbative analysis. Such an anal
has been conjectured25,30,31 in the form of a two-paramete
renormalization-group procedure. The two parameters
the longitudinal and Hall conductivities that follow couple
scaling equations with respect to changes of length scal

While the validity of the two-parameter scaling has be
vigorously debated~see, e.g., Refs. 33,34!, it has remained a
valuable guide to experimental35 and numerical36 data for a
number of years. In the following, we take a pragmatic a
proach by not contesting the validity of the two-parame
scaling and its relation to the proposed field-theory. Inste
we assume its validity and explore how it may be gene
ized to take account of the periodic potential.

The main difference of the Lagrangian~2! from the un-
modulated case is the anisotropy in the diffusion coefficie
for the x and y directions. The Lagrangian, therefore, co
tains three, rather than two, parameters, which scale toge
under changes of length scale. A simple scale transforma
however, maps the Lagrangian to an isotropic version
which the usual two-parameter scaling may be applied.

This Lagrangian applies in the diffusive limit, that is,
configurations of theQ(r ) field that vary on scales muc
longer than the mean free path. This allows the calculatio
the contribution of low-momentum relaxational modes
weak localization corrections to the conductivity. Althoug
momentum relaxation is diffusive on large length scal
electron motion on the scale of the periodic potential is b
listic, since the modulation period is much less than the m
free path. To arrive at the above Lagrangian, it is theref
necessary to integrate over degrees of freedom corresp
ing to length much smaller than the mean free path.

One way to do so is to start from a description of ballis
electron motion on length scales much less than the m
free path. Such a description is provided by the ‘‘ballistics
model’’37,38which, as the name suggests, generalizes the
fusive s model to the ballistic regime. Starting from th
model, we show in Sec. II B how the contribution fro
short-length scales may be integrated out. The result is
Lagrangian of a diffusives model that describes the inte
action of diffusion modes on scales longer than the mean
path.

When derived in this way, the effective Lagrangian tak
24531
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the form of Eq.~2!, but with thes i j
0 coefficients replaced by

s i j
qc(h/e2). Heres i j

qc correspond precisely to the componen
of the quasiclassical conductivity tensor as derived fr
the Boltzmann equation for the modulated system.12 One
finds that, in the quasiclassical approach, only thexx com-
ponent of the quasiclassical resistivity tensor is affec
by the modulation, all other components being the same a
the unmodulated case, so thatrxx

qc5r05(2e2nD)21 and
rxy

qc52ryx
qc5vctr0 ~hereD5vF

2t/d is the diffusion coeffi-
cient in dimensiond). For details of the solution of the
Boltzmann equation, we refer the reader to Beenakke12

Here we only remark that for moderate magnetic fields, we
enough that the cyclotron radius is much larger than
modulation period (Rc@a), but strong enough thatvct
@1, the quasiclassical result simplifies to

rxx
qc

r0
511

1

2p S U0

eF
D 2

~vct!2Rcq cos2S Rcq2
p

4 D ~Rcq@1!.

~3!

Equation~3! demonstrates the oscillatory dependence of
resistivity known as Weiss oscillations. For strong magne
fields, such thatRc!a, a very large oscillatory increase i
rxx proportional toB2 is predicted and has been observ
experimentally, see, e.g., Geimet al.14

However, for high magnetic fields (vct@1), the quasi-
classical results are reliable only at sufficiently high tempe
tures (kBT@\/t), while at lower temperatures the effects
quantization on single-particle properties such as the den
of states must be taken into account by a quantu
mechanical approach. These effects are not taken into
count in the derivation via the ballistics model, since here
the magnetic field is treated only as a weak perturbati
Indeed, once temperatures are low enough for weak loca
tion corrections to be significant (kBT;\/t), then quantiza-
tion is already well established~as kBT!\vc , since vct
@1). Hence this method of deriving the Lagrangian is u
fortunately of no use in describing the effects of quantu
interference processes at high magnetic fields.

An improvement on this situation may be found by pr
ceeding instead along a second route to derive the effec
Lagrangian, following more closely the original lines o
Pruisken.20 He showed how to derive as model in the pres-
ence of a strong magnetic field, including the effects of qu
tization. The Lagrangian is applicable at high values of
Landau-level indexn, such that the fluctuations of the den
sity of states may be neglected. We show below in Sec.
how this method may be adapted to describe a disorde
conductor in a strong magnetic field and a periodic potent
This route bypasses the intermediate step of a ballistics
model, instead computing more directly the final diffusi
Lagrangian.

While the resulting Lagrangian takes again the form d
played in Eq.~2!, now thes i j

0 coefficients correspond pre
cisely tos i j

quh/e2, wheres i j
qu are the components of the con

ductivity tensor calculated in the fully quantum-mechanic
approach of Ref. 7. Since the effects of quantization are
cluded, this approach correctly describes certain features
are observed in experiment but are beyond the quasiclas
9-3
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approach. Some typical results for the resisitivity comp
nents (r i j

qu) calculated within the quantum-mechanical a
proach are shown in Fig. 1.

As well as the appearance of Weiss oscillations inrxx
qu at

moderate magnetic fields~up to;0.4T in Fig. 1!, we see that
both rxx

qu andryy
qu show strong, in-phase Shubnikov–de Ha

oscillations at higher magnetic fields. These in-phase osc
tions are essentially a consequence of the Shubnikov
Haas oscillations of the density of states. At weaker fie
for which the Weiss oscillations inrxx

qu are visible, weaker,
out-of-phase oscillations inryy

qu also appear. Again, the latte
oscillations inryy

qu are beyond the quasiclassical approach
The quasiclassical result~3! for the change inrxx

qc ~for
vct@1 andRcq@1) may be reproduced by the quantum
mechanical approach, as long as the temperature is
enough for the thermal broadening to be greater than
separation of the Landau levels,kBT@\vc ~see, e.g., Refs
7,8!. As the temperature is lowered, however, the region
applicability of the quasiclassical formula~3! shrinks to pro-
gressively lower magnetic fields: The sinusoidal Weiss os
lations start to interfere at low temperatures with t
Shubnikov–de Haas oscillations. Indeed, at vanishingly
temperatures, the quasiclassical result becomes unjus
for all magnetic fields.

The Lagrangian~2!, supplied with the values of the con
ductivities determined by the quantum-mechanical approa
may then be used for a reliable description of quantum in
ference processes at high magnetic fields, and hence th
eration of the IQHE.

B. Derivation of the Field Theory

In this section we describe in more detail the derivation
the effective Lagrangian~2!. In the field-theory approach, i
is necessary to average the functional integral expression
products of Green functions over the disorder configuratio
To perform the disorder average, several possible techniq
exist, including the use of either supersymmetry or the r
lica trick. Although we may use either of these two a
proaches, we choose here the supersymmetry approach,

FIG. 1. Resistivity components as a function of magnetic fieldB
for two different temperatures using the approximation scheme
Peeters and Vasilopoulos~Ref. 8!. Corrections to the Hall resistivity
are small in this regime~Refs. 7,8!. Parameters area5200 nm,
U050.3 meV,nel53.431011 cm22, \/t50.011 meV.
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it is free of certain technical problems regarding nonpert
bative calculations that appear for the replica approach.
starting point for both routes is a functional integral rep
sentation of the partition function,Z, in terms of ‘‘super-
fields’’ C,C̄:

Z5E D@V#P@V#D@C,C̄#exp2L~C,C̄,V!, ~4!

L5 i E drC̄~r !~E2H2 idL!C~r !. ~5!

Here the superfieldsC,C̄ contain eight components, co
responding to fermion/boson, retarded/advanced and ti
reversal sectors.24 Also L5diag(1,21) in advanced-
retarded space space,d is a positive infinitesimal andH is
the Hamiltonian~1! up to the substitutionA→t3A, where
t35diag(1,21) in time-reversal space. The short-range ra
dom potentialV(r ) is taken to be Gaussian distributed, a
cording to

P@V~r !#5
1

ZexpH 2
pnt

\ E drV~r !2J ,

whereZ provides the normalization.
Ballistic s model.The first route is to derive a ballistics

model from the Lagrangian in Eq.~5!. Andreevet al.38 have
suggested a derivation of the ballistics model by means of
an energy averaging procedure, leading to a Lagrangia
the same form as that originally proposed by Muzykants
and Khmelnitskii.37 Following the lines of Andreevet al.,38

one treats the disorder fieldV as a perturbation in Eq.~5!.
Performing an energy averaging on the clean Hamilton
leads to a term in the Lagrangian that is nonlocal and qua
in the C, C̄ fields. The quartic term is then decoupled by
Hubbard-Stratonovich field,Q(r1 ,r2), and theC, C̄ fields
are integrated out.

The resulting Lagrangian is then simplified by subjecti
it to a saddle-point analysis, and performing a gradient
pansion around the saddle point. Note that, since at this s
we are neglecting the effects of quantization on sing
particle properties, we do not include the renormalization
this saddle-point solution by the magnetic field, instead
treat the magnetic field as a perturbation.

Following a Wigner transform, and after applying
semiclassical39 approximation, theQ matrix becomes a func
tion of position,r , and the direction of momentum,n, where
n is a unit vector. We do not repeat these steps here but r
to Refs. 37,38 for further details. The resulting Lagrang
~ballistic s model! corresponding to the Hamiltonian~1! is

L@Qn#5
pn\

4 E dr StrH 2
1

2tE dn

2p

dn8

2p
Qn~r !Qn8~r !

22E dn

2p
Lt3Tn

21L 0~n,r !TnJ . ~6!

In this equationL 0 is the Louiville operator defined by

of
9-4
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L 05v~r !n•“1vc]f2sinfv8~x!]f , ~7!

wheref is the polar angle ofn, n is the density of states pe
spin direction at the Fermi level, and

v~r !5vFS 12
U0

EF
cos~qx! D 1/2

is the electron velocity at the Fermi surface. The superma
Qn(r ) satisfies the nonlinear constraintQn(r )251, as a re-
sult of which it may be parametrized by

Qn~r !5Tn~r !LTn
21~r !.

Due to the presence of the magnetic field, theQn field satis-
fies unitary symmetry, that is,@Qn ,t3#50. TheQn(r ) field
also satisfies the further standard symmetriesQ̄n5Qn

5KQn
†K, where Q̄n[CQn

TCT. The matricesC and K, as
well as supertrace operation, are defined in Ref. 24.

The Lagrangian~6! is in its current form too complicated
for our purposes: it describes fluctuations ofQn(r ) on length
scales smaller than the mean free path~and longer than the
Fermi wavelength! and for any dependence onn. At the
same time, electron motion on length scales much lon
than the mean free path is diffusive. The strategy therefor
to integrate out the modes corresponding to fluctuations
length scales smaller than the mean free path, to produ
Lagrangian that describes the interaction of diffusion mo
on larger length scales.

To perform the integration, we isolate the the fluctuatio
of lowest mass~termed massless!, corresponding to matrice
Qn(r ) that are independent ofn and vary more slowly than
the mean free path,. We then integrate out all other fluctua
tions that preserveQn

251. A similar procedure has been ca
ried out by Wölfle and Bhatt40 to derive the diffusive La-
grangian for a disordered conductor with anisotropic mas
in the x and y directions ~see also Refs. 41,42 for furthe
examples!.

To perform integration over the weakly massive mod
we write

Qn5U~r !Qn
0~r !Ū~r !.

Here theU(r ) matrix, obeying the symmetriesŪU51
and Ū5KU†K, represents the massless fluctuations, wh
Qn

0(r ) contains the weakly massive fluctuations. The ma
Qn(r ) may, in turn, be parametrized by its generatorPn(r ),
for example, by24

Qn
05LS 11 iPn

12 iPn
D .

Here Pn is off-diagonal in retarded-advanced space a
satisfies the symmetryPn52 P̄n . Since the fluctuations rep
resented by theQn matrix are weakly massive, it is sufficien
to treat them within a Gaussian approximation:Qn5L(1
12iPn22Pn

2 . . . ). Inserting into the Lagrangian~6!, we
find
24531
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L5
pn\

2 E drStrH 2E dn

2p
Lt3PnL 0~r ,n!Pn1

1

tE dn

2p

3
dn8

2p
~Pn

22PnPn8!22i E dn

2p
Lt3Pnv~r !n•F�J ,

whereF[Ū“U, F'51/2@F,L#L. The next step is to in-
tegrate over matricesPn . This amounts to a set of Gaussia
integrals with a linear term inPn , and hence may be per
formed by means of a shift ofPn .

The resulting Lagrangian has the form

L@Q#5
h

16e2E dr Str$sxx
qc~“xQ!21syy

qc~“yQ!2

2sxy
qct3Q@“xQ,“yQ#%. ~8!

It is written in terms of a matrixQ(r )[U(r )LŪ(r ) that
depends only on position and varies on length scales m
longer than the mean free path~and hence the modulatio
period, a). The Q(r ) field also satisfies the nonlinear con
straint Q(r )251, as well as the symmetriesQ5Q̄
5KQ†K. We see that the Lagrangian takes the usual form
a diffusives model with a topological term,20 the only non-
standard feature being the anisotropy ofsxx

qcÞsyy
qc .

The coefficientss i j
qc are defined by

s i j
qc52e2n K E dr8

dn

2p

dn8

2p
v~r !v~r 8!ninj8G~n,n8,r ,r 8!L ,

~9!

where the averaging in Eq.~9! is over one period of the
modulationa @this averaging arises naturally in the Lagran
ian ~2! since theF matrix varies slowly on this scale#. Also,
G(n,n8,r ,r 8) is defined by the Boltzmann-like equation

@L 0~r ,n!2Ĉ#G~r ,r 8,n,n8![d~r2r 8!d~n2n8!. ~10!

Here, the collision operator is given as

Ĉ$F~f!%[2
1

t S F~f!2E df8

2p
F~f8! D .

As we will show now, thes i j
qc coefficients in the Lagrangian

~8! are the components of the quasiclassical conductivity t
sor as derived by Beenakker.12 In his approach the Boltz-
mann equation is expressed12 ~see also Refs. 2–4,13! in
terms of the distribution functionF(r ,n)

~L 02Ĉ!F~r ,n!52ev~r !E•n, ~11!

and the currentJ(r ) is given by

Ji~r !522en^F~r ,n!v~r !ni&, ~12!

where the averaging is over both the velocity directionn and
one period of the modulation,a. The relationJi5s i j

qcEj de-
fines the quasiclassical conductivity tensors i j

qc, whose inver-
sion gives the quasiclassical resistivity tensor,r i j

qc.
Comparing Eqs.~10! and ~11!, we see thatG(n,n8,r ,r 8)

is related to the distribution functionF(r ,n) by
9-5
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F~r ,n!52eE dr8
dn8

2p
v~r 8!E•n8G~r ,r 8,n,n8!.

Comparing also Eqs.~9! and ~12!, we see that thes i j
qc coef-

ficients in the Lagrangian~8! calculated by this method co
incide precisely with the components of the quasiclass
conductivity as derived12 from the Boltzmann equation~11!.
In this way we see that we have rederived the quasiclass
results within the field-theory formalism.

As discussed above, the inadequacy of the Lagrangian~8!
is that it neglects the renormalization of the single-parti
properties by the strong magnetic field. At high magne
fields (vct@1), once the temperature is low enough for t
weak localization corrections to be significant (kBT;\/t),
the quasiclassical results for the conductivity12 have already
become unreliable due to their neglect of quantization.
order to include these effects, and hence account for w
localization effects reliably, we need to follow a differe
route to derive the Lagrangian. Such a route for unmodula
systems has been provided by Pruisken,20 whose method
may be adapted~as we show here! to include a periodic
potential. This method includes the renormalization of
saddle-point equation for theQ matrix by the strong mag
netic field. It does not require a derivation of a ballistics
model as an intermediate step, but provides more directly
final form of the Lagrangian. While the first route contai
certain parallels with the quasiclassical approach,12 the sec-
ond route contains closer parallels with the quantu
mechanical approach.7

Generalization of Pruisken derivation.We now present
the second route to the derivation of the effective Lagrang
~2!, starting again from form~5! for the Lagrangian. The
approach now is to average over the short-range disor
This produces a term in the Lagrangian that is quartic in
C, C̄ fields. The quartic term may then be decoupled b
~now local! Hubbard-Stratonovich fieldQ(r ). After integrat-
ing out theC, C̄ fields, one finds

L@Q#5E drH \pn

8t
StrQ22

1

2
Str lnF2 i @pmpm2E

1U0cos~qx!#1dL1
\Q

2t G J , ~13!

wherepm[2 i\“m2et3Am /c. HereQ satisfies the symme
try Q5Q̄.

The Lagrangian~13!, in principle, provides an exact de
scription of the system, although in its current form it is t
general to be useful. Instead, one proceeds by finding
saddle-point value ofQ that minimizes the Lagrangian, an
by performing a gradient expansion about this minimu
The saddle-point equation may be written as

Q5
i

pn
^r uS pmpm1U0cos~qx!2E1 idL1

i\Q

2t D 21

ur &.

~14!

In order to find the matrix inverse of the operator in Eq.~14!,
we make use of the eigenvalues and eigenfunctions of
24531
al

al

e
c

n
ak

d

e

e

-

n

er.
e
a

e

.

e

operatorH05pmpm1U0cos(qx). Using the Landau gauge
A5(0,Bx,0), one may write the eigenfunctions ofH0 in the
form ck,n(x,y)5Ly

21/2exp(it3ky)fn,x0
(x), whereLy is a nor-

malization length. The center coordinatex05 l B
2k remains a

good quantum number despite modulation, wherel B
5(\c/eB)1/2 is the magnetic length. Thefn,x0

(x) are eigen-
functions of the Hamiltonian

Hx052
\2

2m

d2

dx2
1

1

2
mvc

2~x2x0!21U0cos~qx!. ~15!

In the absence of modulation (U050), Eq. ~15! repre-
sents the Hamiltonian of a harmonic oscillator. We proce
by a first-order perturbative expansion in modulationU0.
This turns out to be a very good approximation for typic
parameters that we consider, such as a weak periodic po
tial. It is very difficult to improve on this approximation
analytically, although exact numerical diagonalizations ha
been performed for the density of states.5,7 Within the per-
turbative expansion, the eigenvaluesen(x0)5en(x01a) of
the Hamiltonian~15! are given by

en~x0!.En~x0![En1uncos~qx0!, ~16!

whereEn5\vc(n11/2) are the unperturbed Landau ene
gies, andun5U0exp(21/2X)Ln(X), whereX5q2l B

2/2 and
Ln are the Laguerre polynomials.43

We see that the modulation lifts the degeneracy of
Landau levels, and discrete levels are broadened into ba
whose width depends on the band indexn in an oscillatory
manner~due to the behavior of the Laguerre polynomials
large n). It is this oscillatory dependence that leads to t
Weiss oscillations in the resistivity. The validity of the pe
turbation theory depends only on the smallness of theun
parameter, which is assured for large values of the Land
level index n. We refer the reader to, e.g., Refs. 5–8 f
further details of this perturbative expansion.

We also make the assumption that in this basis,
saddle-point value ofQ is independent of the Landau indice
and x0: this approximation is analogous to theC-number
approximation CNA introduced by Zhang and Gerhardts7 for
the self-energy matrix in the presence of modulation, and
valid as long as the magnetic field is not too high. In order
go beyond the CNA, one would need to generalize
saddle-pointQ to include a matrix structure in the space
Landau indices and a dependence onx0: such a task is of
interest for future work but is beyond the scope of this pap

The saddle-point equation~14! may now be written as

i\Q

2t
5G0

2(
n

1

aE0

a

dx0

1

E2En~x0!2 idL2
i\Q

2t

, ~17!

whereG0 is the width of the Landau level in the absence
modulation and

G0
25

1

2p
\vc

\

t
. ~18!
9-6
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The saddle-point equation~17! coincides with the self-
energy equation derived in the self-consistent Born appr
mation~SCBA! by Zhang and Gerhardts,7 under the replace
ment i\Q1,2/(2t)→SR,A, where indices refer to advance
retarded space andS denotes the self-energy. The solutio
for Q is then of the formiQ5e01 iLr0, wherer0 is pro-
portional to the density of states. In the absence of mod
tion, the density of states reduces to that determined by A
and co-workers26 within the SCBA~as shown by Pruisken20!.

Having identified the saddle-point valueQ, we proceed by
performing a gradient expansion of the Lagrangian~13!
around the saddle point. We follow very closely the calcu
tion of Pruisken,20 although we use the supersymmet
rather than the replica formulation. We use the representa

Q~r !5T~r !P~r !T21~r !,

where theP fields are diagonal in retarded/advanced sp
and represent the massive modes. The procedure is to
grate overP andT separately. To do so, we split the fields
integration,

E DQ5E DPE DT exp$Str ln~ I @P# !%,

in the process acquiring the associated JacobianI @P# ~as
discussed in Ref. 20!. L becomes

L@P,T#5E drH 2Str ln~ I @P# !1
\pn

8t
StrP22

1

2
Str lnF i S E

2T21pmpmT2U0cos~qx!2
i\P

2t D G J .

To integrate over theP modes, we splitL into two parts:

L0@P#5E drH 2Str ln~ I @P# !1
\pn

8t
StrP2

2
1

2
Str lnFE2pmpm2U0cos~qx!2

i\P

2t G J ,

dL@P,T#5L@P,T#2L0@P#.

Integration over theP fields then proceeds by cumulan
expanding dL@P,T# with respect to L0@P#. In turn,
dL@P,T# is computed by a gradient expansion of the Str
term up to second order in the combinationDm[T21

“mT.
The propagators for the latter expansion are of the form

g~r ,r 8!5^r uS E2pmpp2U0cos~qx!2
i\P

2t
~r ! D 21

ur 8&,

weighted with respect toL0@P#. A typical second-order term
is

Ltyp5E drE dr8Str@Dm~r !#@Dn~r 8!#

3^g~r 8,r !pmg~r ,r 8!pn&,
24531
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where the averaging is overP with respect toL0. At this
point, we now exploit the assumption that theT(r ) matrices
vary in space more slowly than the modulation. Thus
averages of the products of the Green functions are s
ranged with respect to theT matrices, and are translationall
invariant after averaging over one cycle of the modulatio
This allows us to perform a gradient expansion in the pro
gator averages:

^g~r 8,r !pmg~r ,r 8!pn&

5K~r2r 8!

5K (0)d~r2r 8!1K (2)d~r2r 8!“m“n1•••,

here the averaging includes that over a cycle of the mod
tion. A series of Ward identities may now be used as in R
20 to simplify the resulting expressions up to second orde
Dm . The final Lagrangian is then of the form displayed
Eq. ~2!, whereQ5TLT21.

Again, we have the standard form of a nonlinears model
with a topological term, although with the anisotropysxx

0

Þsyy
0 . Again, Q satisfiesQ251 and the symmetriesQ5Q̄

5KQ†K. Also the bare coefficientss i j
0 are the components

of the conductivity tensor at zero temperature in units
e2/h, according to the formulas

sxx,yy
0 52

\2

mE dr8^px,y@g1~r ,r 8!2g2~r ,r 8!#

3px,y@g1~r 8,r !2g2~r 8,r !#&,

sxy
0 5sxy

0,I1sxy
0,II ,

sxy
0,II 5

i\c

e H E
2`

E

dE1
]

]B1
^g1~r ,r !&

2E
2`

E

dE2
]

]B2
^g2~r ,r !&J ,

sxy
0,I5

\2

mE dr8$^pxg
1~r ,r 8!pyg

2~r 8,r !&

2^pyg
1~r ,r 8!pxg

2~r 8,r !&%, ~19!

here the averaging is overP as well as over one cycle of th
modulation with respect tor . The propagator averages ma
now be evaluated by their saddle-point values with respec
P.

The bare coefficientss i j
0 are the components of the con

ductivity tensor, in units ofe2/h, calculated in the SCBA a
zero temperature. In the absence of modulation, the exp
sions ~19! for the bare conductivity then reduce to tho
computed in the SCBA by Ando and co-workers.26 In the
presence of modulation, they reduce to the conductivity t
sor computed in the SCBA by Zhang and Gerhardts:7 s i j

0

5s i j
qu ~the equivalence of may be seen by following t

working of Streda44!. Therefore, in contrast to those derive
via the ballistics model, the bare conductivities in the La
9-7
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grangian ~2! represent the values calculated by a fu
quantum-mechanical approach.

III. WEAK LOCALIZATION
AND QUANTUM HALL EFFECT

Having derived the final form of the Lagrangian~2!, we
are now in a position to use it to calculate weak localizat
corrections to the conductivity tensor. The effect of the c
rections may be expressed as a scaling of the conduct
tensor under changes of length scale. A perturbative tr
ment of the Lagrangian~2! is valid in the limit of large
longitudinal conductivity (sxx

0 @1). Within perturbation
theory, however, the Hall conductivity is not renormalized
weak localization corrections. Instead, the effect of the to
logical term in the Lagrangian may only be made appar
through a nonperturbative analysis. Such an analysis
been conjectured25,30,31 in the form of a two-paramete
renormalization-group procedure. The two parameters
the longitudinal and Hall conductivities that follow couple
scaling equations with respect to changes of length sc
The derivation of the scaling equations presented in R
25,31 is based on approximating configurations of the fie
theory parameter as a gas of instantons. While the validit
this derivation is being vigorously debated~see, e.g., Refs
33,34!, it has remained a valuable guide to experimenta35

and numerical36 data for a number of years. In the following
we take a pragmatic approach by not contesting the vali
of the two-parameter scaling and its relation to the propo
field-theory. Instead, we assume its validity and explore h
it may be generalized to take account of the periodic pot
tial.

A. Weak localization

First we subject the Lagrangian to a perturbative R
analysis. The perturbation theory is valid in the limit ofsxx

0

@1. The topological term in the Lagrangian does not co
tribute at any perturbative order and hencesxy is unrenor-
malised. For an unmodulated system,sxx5syy and the per-
turbative RG procedure has been explained in detail, e.g
Ref. 24.

In the presence of modulation, thes model is slightly
nonstandard due to the anisotropy of the longitudinal c
ductivities, sxxÞsyy . However, quantum interference pro
cesses in a diffusive, anisotropic conductor have been c
sidered before, for example by Wo¨lfle and Bhatt,40 where the
origin of the anisotropy was envisaged as due to a differe
in effective electron masses in the two directions. In the
ter paper, a diffusives model was derived with the sam
form as Eq.~2!, although without the topological term.

When sxxÞsyy , the two parameters,sxx and syy , fol-
low coupled flow equations under changes of length sc
While it is straightforward to derive and solve the two flo
equations, it is also instructive to follow a different strate
whereby we perform a scale transformation after which
Lagrangian~2! maps to an isotropic form: we scale

x85x~syy
0 /sxx

0 !1/4, y85y~sxx
0 /syy

0 !1/4, ~20!
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under which the Lagrangian~2! transforms to an isotropics
model,

L@Q#5
1

16E dr8Str$s̃0~“Q!22sxy
0 t3Q@“x8Q,“y8Q#%,

~21!

where s̃0[Asxx
0 syy

0 . The perturbative scaling fors̃ may
now be derived in the standard way:24 the flow equation is
~to leading order!

ds̃

d ln L
52

1

2p2s̃
.

By integrating the flow equation from microscopic
macroscopic length scales~of the order of the system siz
L), we find the conductivity

s̃~L !5s̃0S 12
1

p2

1

~ s̃0!2
ln

L

, D 1/2

. ~22!

Using the fact that the ratiossxx,yy /s̃ are invariant under
the scaling, we may recoversxx,yy(L) from s̃(L) as follows:

sxx~L !5s̃~L !Asxx
0 /syy

0 ,

syy~L !5s̃~L !Asyy
0 /sxx

0 . ~23!

We remark that the perturbative scaling derived from
field-theory as above in the presence of anistropy in the c
ductivities in thex andy directions~due to an anisotropy in
the electron mass! has been confirmed by direct diagramma
ics ~in the orthogonal ensemble! by Wölfle and Bhatt.40

Equation ~22! shows how weak localization correction
affect the longitudinal conductivity within perturbatio
theory. We can see how the conventional scaling applies ts̃
in the presence of the periodic potential. By inputting t
SCBA values forsxx

0 andsyy
0 weak localization corrections

are obtained; according to Eq.~22! they depend onbothbare
valuessxx

0 and syy
0 . Corrections tosxx , for example, are

influenced by the strong oscillatory behavior ofsyy
0 . Upon

inverting the conductivity tensor to find the resistivity tens
the weak localization corrections will therefore give rise
additional oscillatory corrections to the resistivity tensor a
function of the magnetic field. As mentioned earlier, stro
Weiss oscillations inrxx are accompanied by weak out-o
phase oscillations inryy as long as quantum interferenc
effects may be neglected. It is interesting to notice that w
localization corrections toryy oscillate in phase with the
~dominant! oscillations inrxx .

In practice,35 rather than changing the system sizeL, one
varies the temperature to change the effective system s
which is given by the diffusion length,@\D/(kBT)#1/2. The
perturbative result~22! is only valid when the corrections ar
much smaller than the bare conductivities, and hence ma
difficult to verify experimentally. A potentially more promis
9-8
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ing strategy is to illustrate the effect of weak localizati
corrections when their contribution is relatively large, as
the case for the IQHE.

B. Quantum Hall effect

We now generalize from the perturbative analysis to d
cuss the nonperturbative scaling that would follow from t
Lagrangian~2!. Again, we are able to make the scale tran
formation ~20! as above, which maps the Lagrangian to t
isotropic version, Eq.~21!. The coupled flow of the two cou
pling constants,s̃ andsxy , may written in a general form,

ds̃

d ln L
5b̃~ s̃,sxy!

dsxy

d ln L
5bxy~ s̃,sxy!. ~24!

The above beta functions,b̃ andbxy , would take precisely
the same form as the beta-functions that describe the flo
sxx andsxy in the equivalent, unmodulated system.

The starting point of the flow is determined by the ba
conductivity tensors̃ i j . In general, the coupled flow equa
tions ~24! for s̃ andsxy need to be integrated up to leng

FIG. 2. Plot of bare conductivities, providing a starting point f
scaling, for a modulated vs homogeneous system. Parametea
5140 nm, U050.2 meV, G050.048AB@T# meV, and nel51
31011 cm2.

FIG. 3. Evolution of the conductivity tensor for the modulat
system with system sizeL under the two-parameter scaling. Th
bold curves are the bare conductivities (L5L0), and the thin
curves are the scaled conductivities for ln(L/L0)52. Parameters as
in Fig. 2.
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scales of the system size. The values ofsxx(L) andsyy(L)
may then be recovered froms̃(L) by Eqs.~23!. As a conse-
quence of Eq.~23!, we see that the ratiosxx(L)/syy(L) re-
mains constant under the scaling. This conclusion is furth
more independent of the form of the beta-functions,b̃ and
bxy , in Eq. ~24!.

In the absence of modulation, the SCBA values26 of the
bare conductivities correspond to an approximate semici
lar dependence ofsxx

0 on sxy
0 . In the presence of modula

tion, the dependence ofs̃0 on sxy
0 is modified from the semi-

circle in a complicated way; a typical dependence, calcula
using the scheme proposed in Ref. 7, is shown in Fig. 2

The corresponding dependency of the bare conducti
tensor on magnetic field for the same parameters is par
Fig. 3 below ~thick curves!. We remark that for the peak
centered aroundB51.5 T one may already expect verte
corrections to become effective, although they are not
cluded in the CNA approach that we have employed. S
corrections have the general tendency10,11 to enhancesyy

0 in
comparison tosxx

0 .
In order to provide an illustration of the IQHE in th

modulated sample, it is necessary to assume a partic
form of the scaling equations~24!. The following scaling
equations25,31,45,36were derived~originally in the replica for-
mulation! within a dilute gas approximation of the instan
tonic configurations of theQ matrix from the Lagrangian~2!:

ds̃

d ln L
52

1

2p2s̃
2s̃3Dccos~2psxy!exp~22ps̃!,

dsxy

d ln L
52s̃3Dcsin~2psxy!exp~22ps̃!. ~25!

The dimensionless constantDc is of order unity and is re-
lated to the density of instantons. It may be seen immedia
from the form of Eq.~25!, that along the linessxy5(n
11/2), wheren is an integer, the Hall conductance is u
renormalized. It may also been seen that the po
(sxy ,s̃)5(n,0), for integern, are ~attractive! fixed points.
Upon scaling the system from microscopic to macrosco
length scales, the coordinates (sxy ,s̃) scale from the bare
nonuniversal values towards the quantized values (n,0), for
integern. This tendency reflects the quantization of the H
conductivity under scaling at low temperatures.

:

FIG. 4. Focus on the evolution of the longitudinal conductiviti
with system sizeL under the two-parameter scaling. Parameters
in Fig. 3, and ln(L/L0)50–4, from the broader to the narrowe
peaks.
9-9
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As mentioned before, the validity of the approximatio
underlying Eq.~25! has long been the subject of debate34,33.
Keeping this in mind we use these equations to provide
illustration of the operation of the IQHE in the modulate
system in Figs. 3 and 4.

Figure 3 shows the evolution of the conductivity for th
modulated system under the two-parameter scaling. We
how the Hall conductivity becomes quantized under sca
in the modulated system. Between the plateaus in the
conductivity, the longitudinal conductivities develop pea
under scaling of differing heights, due to the anisotropy
the system. Figure 4 shows in more detail how these peak
the longitudinal conductivities develop, while the ratio b
tween the two conductivities remains constant under scal

We remark that the behavior described above should
within current experimental capabilities: for example, Ge
et al.14 have studied the high magnetic field (Rc!a) regime,
although they kept the temperature high to avoid the effec
quantum interference processes. Bagwellet al.21 have also
studied the IQHE in modulated samples; in their work, ho
ever, they have not focused on the regime of a weak perio
potential or effects that are independent of the device bou
aries.

IV. SUMMARY AND DISCUSSION

In this paper we have considered transport properties
disordered conductor in a periodic potential and strong m
netic field. We focused on the contribution of quantum int
ference processes, whose influence at high fields is mis
from previous approaches despite being responsible fo
whole class of phenomena. For example, they lead to w
localization corrections to the conductivity and the operat
of the IQHE at high magnetic fields. To this end, we intr
duced a field-theory approach, which is well established
the study of unmodulated disordered conductors.

The effective Lagrangian of the field-theory takes t
form of a nonlinears model, which describes the interactio
of diffusion modes on large length scales. The presenc
the strong magnetic field leads to an extra, topological te
in the Lagrangian. The form of the Lagrangian is the same
for unmodulated systems, except for an anisotropy in
coefficients corresponding to the bare longitudinal cond
tivities in thex andy directions.

We provided two different routes to deriving the Lagran
ian. The first route was via a so-called ‘‘ballistic’’s model,
and demonstrated how the results of the quasiclass
approach12 may be recovered within the field-theory forma
ism. The drawback of this route, in common with the qua
classical approximation, is that it neglects the renormali
tion of single-particle properies by Landau quantizatio
Consequently the resulting Lagrangian was too approxim
to be useful in determining weak localization properties
low temperatures. The second route improved on this si
tion by including the effects of Landau quantization. It b
passes a derivation of a ballistics model and instead follows
more closely the original derivation of Pruisken20 for un-
modulated systems. Indeed, while the first route contai
more parallels with the quasiclassical approach, the sec
24531
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route contained more parallels with the quantum-mechan
approach7 for the bare conductivity tensor.

Having derived the effective Lagrangian, we showed h
it leads to the scaling of the conductivity tensor und
changes of length scale~and hence temperature!. A perturba-
tive renormalization-group analysis of the free energy le
to a generalization, to modulated systems, of one-param
scaling for the longitudinal conductivities. Perturbatively, t
Hall conductivity is unrenormalized. In the regime of Wei
oscillations,1 weak localization corrections give rise to a
additional oscillatory dependence of the longitudinal cond
tivities as a function of the magnetic field. Due to the
smallness, these corrections may, however, be hard to d
experimentally.

In order to describe the IQHE, whereby the Hall condu
tivity becomes quantized at low temperatures, a nonper
bative analysis of the Lagrangian is necessary. This is p
vided by the conjecture of the two-parameter scaling
unmodulated systems. Assuming the validity of this conj
ture and the underlying instanton gas approximation,
have shown how the two-parameter scaling may be gene
ized to the case of the modulated system. This has allowe
to illustrate the evolution of the resistivity tensor under t
IQHE for parameters that are realistic for experiments.
find, for example, that the ratio of the two longitudinal com
ponents of the conductivity remains constant under sca
~an observation that does not itself depend on the assu
tions used to derive the flow equations!. While the Hall con-
ductivity still becomes quantized under scaling in the mod
lated system, between the plateaus the longitud
conductivities develop peaks of differing heights due to
anisotropy in the system.

There are several directions in which our analysis may
generalized. A simple generalization is to consider a perio
magnetic field, rather than potential, a situation that lead
a similar phenomenology.46,4,47 The derivation of the field-
theory for this case follows very similar lines to the case o
periodic potential, with similar results.

Another direction in which the analysis may be extend
straightforwardly is to the study of the low magnetic fie
regime, in which a positive magnetoresistance has b
observed1,2 and explained within a quasiclassic
approach.2–4 As long asvct!1, one may derive the field
theory for this regime according to the first route of Sec.
neglecting quantization; the coefficients of the field-theo
then coincide with the components of the conductivity ten
derived within the Boltzmann approach. The weak localiz
tion to the conductivity~or related quantities such as th
dephasing time28! may then be calculated using the Lagran
ian for either the orthogonal or the unitary ensemble, or
the crossover between the pure symmetry classes.

A less straightforward generalization is to improve on t
CNA approximation of the quantum-mechanical approa
and its analog in the field-theory formalism. According
this approximation, the self-energy matrix~and the saddle-
point solution of theQ matrix! are assumed to have a trivia
structure in the space of Landau indices and coordinatex0.
While this simplifies the analysis considerably, we have s
already how this approximation breaks down for very hi
9-10
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magnetic fields, such that the cyclotron radius is much l
than the period of modulation,Rc!a. Improvement on the
CNA is necessary, not only for such high fields, but also
study models of disorder with long-range correlations,
which vertex corrections are not negligible. Such mod
have been analyzed in the quasiclassical approach13 and
shown to represent experimental data more closely in cer
respects.

Very recently it has been shown how to improve on t
CNA ~Refs. 10,11! within the quantum-mechanical approac
so as to analyze models at high magnetic fields or with lo
range disorder correlations. In the field-theory formalis
improvement on the CNA approximation would require e
larging the space of theQ matrix even further to include the
additional matrix structure in the space of Landau indices
well as a dependence onx0. Inclusion of such a structure
within the Q field is to our knowledge a novel direction t
pursue, although this task is left as a future project.

A further area to explore is the case of a strong perio
s.
r
in

.
n

r.,
y
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potential, for which the first-order perturbative expansion
the potential that we use is no longer valid. While an an
lytical approach would be very difficult, a numerical trea
ment would be better suited to this regime. For a stro
enough potential thatU0 is of the order ofvc , the smearing
of the Landau levels is so great that they can no longer
individually resolved even at low temperatures. This leads
a quenching of the Shubnikov–de Haas oscillations~as noted
by Betonet al.2! and hence one would expect the quantu
Hall effect to be destroyed.
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