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We consider magnetotransport in a disordered two-dimensional electron gas in the presence of a periodic
modulation in one direction. Existing quasiclassical and quantum approaches to this problem account for Weiss
oscillations in the resistivity tensor at moderate magnetic fields, as well as a strong modulation-induced
modification of the Shubnikov—de Haas oscillations at higher magnetic fields. They do not account, however,
for the operation at even higher magnetic fields of the integer quantum Hall effect, for which quantum
interference processes are responsible. We introduce a field-theory approach, based on a nomisly
which encompasses naturally both the quasiclassical and quantum-mechanical approaches, as well as providing
a consistent means of extending them to include quantum interference corrections. A perturbative
renormalization-group analysis of the field-theory shows how weak localization corrections to the conductivity
tensor may be described by a modification of the usual one-parameter scaling, such as to accommodate the
anisotropy of the bare conductivity tensor. We also show how the two-parameter scaling, conjectured as a
model for the quantum Hall effect in unmodulated systems, may be generalized similarly for the modulated
system. Within this model we illustrate the operation of the quantum Hall effect in modulated systems for
parameters that are realistic for current experiments.
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I. INTRODUCTION sible for the operation of the IQHE2® whereby the Hall
conductivity becomes quantized at low temperatures. At the
The problem of electron motion in a disordered conductorsame time, the observation of the IQHE in systems with a
in a periodic potential and strong magnetic field displays aveak potential modulation is well within current experimen-
rich combination of phenomena of both classical and quantal capability**2*
tum origin. The complexity arises from the appearance of This paper aims to fill this gap by showing how the stan-
two independent types of periodicities, of the potential anddard theory for weak localization and the IQHE may be gen-
of the cyclotron orbits, which may interplay in complicated €ralized so as to incorporate the presence of a periodic po-
ways. Perhaps the most striking effect is known as Weiséential. We employ a field-theory approach based on a
oscillations! whereby very large oscillations in the resistiv- nonlinears model?*#*~**which is well established in the
ity are induced by even a weak periodic potential at moderstudy of mesoscopic disordered conductors. In deriving the
ate magnetic fields. At different magnetic fields or tempera@ppropriate field theory, we are able to show how previous
tures, other types of contributions to the resistivity becomgheoretical calculations of the conductivity, within both
significant. For example, at very small fields, a positive magduasiclassicaf* and quantum-mechanical approachesay
netoresistance results from a classical mechanism of chafe recovered in a natural way within the field-theory formal-
neling of orbits>~* At larger magnetic fields, the resistivity iSm. This enables us to extend previous theoretical results in
develops Shubnikov—de Haas oscillations, which originaté consistent way so as to include the influence of quantum
from the onset of Landau quantization and may still be afinterference processes.
fected by the periodic potenti&P~8 At even higher fields, The experiments of Weisat al* employed weakly modu-
the integer quantum Hall efféc{lQHE) becomes operative lated two-dimensional2D) electron systems of high mobil-
due to the contribution of quantum interference processes. ity with a well-known period,a~300 nm, much less than
Much of the above phenomenology has been thoroughljhe mean free path{~10 um. Such samples were engi-
analyzed theoretically, by a variety of techniques includingneered using a holographic modulation technique, based on
quantum-mechanical approach®s involving diagram-  the persistent photoconductivity effect in GaAsfBé, _As
matics*%* or solution of a quantum Boltzmann equafion heterostructures at low temperatured.2 K. The Weiss os-
and quasiclassical approacted?**The experimental real- cillations appear in only one component of the resistivity
ization of these systems is also well advaricetf1*1with  tensor,p,,, when the modulation is in the direction. Fur-
precise confirmation of the theoretical predictions alreadythermore, they appear at magnetic fieRlsuch that the cy-
possible. So far, however, a theory for the influence of quanelotron radiusR.=vg/w, (Wherew.=eB/mc is the cyclo-
tum interference processes in a periodic potential and higkron frequency,—e is the electron charge, angk is the
magnetic field has been missing. Such processes lead feermi velocity satisfies the commensurability condition
weak localization corrections to the conductivity which be-2R.=(n—1/4)a, for integern. Hence the oscillations are
come significant at low temperaturésee, e.g., Refs. 16—19 periodic in 1B. In addition they are relatively stable with
for reviews. At high magnetic fields, they are also respon-respect to temperature, suggesting a quasiclassical origin.
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At even higher magnetic fields, such that the cyclotrontivities develop peaks of differing heights according to the
radius is much less than the period of modulatiBh<€a), anisotropy in thex andy directions.
the quasiclassical theory predicts that thg, component Model. In the following, we employ the Hamiltonian for
shows a large, nonoscillatory increase proportionaBfp ~ the disordered conductor in a magnetic field and periodic
leading to a strong positive magnetoresistance. This resuRotential in two dimensions:
has been confirmed in experimefitéor which the tempera-
ture was kept deliberately high so as to avoid the interven- H=Hy—V(r),
tion of the IQHE.

A limitation of the quasiclassical approach is that it fails
to account for the renormalization of single-particle proper- H _i _ %
ties, such as the density of states and scattering lifetime, by " 2m P
the strong magnetic field according to Landau quantization.
Even in unmodulated samples, quantization leads to oscilla-

tions in the density of states with respect to magnetic fields, Here A is the vector potential, so thdl XA=(0,0B),

and hence to Shubnikov—de Haas oscillations in the resisti\)a’hereB i7 ihe P‘at[]pe”d‘F’“é‘?‘“ u?ifotr_ml mﬁ_grr\]e_tict fLeId.tAlso
ity. In samples with the periodic potential, the Shubnikov—de 0€0s()/(—€) is the periodic potential, which is taken to be

Haas oscillations start to appear at higher magnetic field)é"e"("jkI(U_O< €F» _Worl]eieZEF/ is t\?e_ Fehrmidgneggyand Wit.hl
than the Weiss oscillation$or R; an integer multiple of the mo ulation perioda=2m/q. IS t. € disorder potential,
Fermi wavelength<a). A quantum-mechanical approach WhICh we ass_ume_to bé correlated in space, with the asso-
that does allow for such quantization effects has been proc-'fted scattelnng tlme(.j Wﬁ assu(rjmle t_hat the.n:jean free path
vided by Zhang and Gerhardigsee also Peeters and €_UhFT glrea:cy eﬁcee s the mo fur?tlon bera ol
vasilopoulo®); it is a diagrammatic treatment that general- 1 N€ Plan for the remainder of the paper is as follows. In
izes the approach of Ando and co-workdrto modulated Sec. I_I we descrlbe the field-theory approach and derive the
samples. The quantum-mechanical approach is then capa gegtlve Lagrang|an.for the system. In Sec. lll we shqw how
of describing both Weiss oscillations and the Shubnikov—dé"e field-theory provides the scaling of the conductivity ten-

Haas oscillationgalso affected by the modulatipat higher sor under.changes of length scale due to the contribgtiqn of
magnetic fields. guantum interference processes, and hence a description of

In principle, the calculation of weak localization correc- € IQHE in these samples. Section IV concludes with a

tions in a strong magnetic fieldinitary ensembleis possible  Summary and discussion.

even in the presence of a periodic potential, by a generaliza-

tion of the diagrammatic approach _of Zhang and Gerh_e(rdts, Il. FIELD-THEORY APPROACH

but the procedure would be complicat@though the sim-

pler orthogonal case has been examined diagrammatically In this section we describe a field-theoretical approach to
for a periodic magnetic fiefd?3. Instead, the calculation of the description of a disordered conductor in the presence of a
high-order diagrams is more convenient in the field-theoryperiodic potential and a strong magnetic field. The approach
formalism and, furthermore, with this method the possibilityis based on a diffusive nonlinear model, which will serve
exists of calculating contributions of diagrams to all ordersas a tool for the analysis of quantum interference effects in
by the renormalization-groufRG) technique. We show how the remainder of this paper. In Sec. Il A we discuss this
the field-theory takes the form of a nonlineamodel witha model and the relation to previous semiclassicaind
topological ternf®?-?5The effective Lagrangian is slightly quantum-mechanicalapproaches. Technical details of the
nonstandard since it contains an anisotropy in the coeffiderivation are presented in Sec. Il B.

cients, corresponding to the difference between the longitu-
dinal conductivities in thex andy directions, due to the pe-
riodic potential.

The effect of weak localization corrections to the conduc- The field-theory apparatus that we employ is by now well
tivity for unmodulated samples is accounted for by a scalingestablished in the study of spectral and wave-function statis-
(one-parameter scalingf the conductivity with the system tics of disordered conductors. It is based on a functional
size. As a first step we derive the analog of the one-parameténtegral expression of electron Green functions in the pres-
scaling, for the conductivif?2*?°in the modulated system ence of disorder, and in the diffusive regime takes the form
by means of a perturbative RG analysis of the effective Laof a nonlinearc model in terms of & matrix??=2*In two
grangian. We then turn to the study of the IQHE, implement-dimensions, the field-theory technique provides a convenient
ing a generalization of a two-parameter scaling, which hasneans of calculating weak localization corrections to the
been conjecturéd>*3'as a model for the IQHE in unmodu- conductivity, a task that may become very cumbersome by
lated systems. We examine how the resistivity tensor shoulthe more conventional technique of diagrammatics. The
be affected at low temperatures by the IQHE in modulatedield-theory may also provide a resummation of diagrams to
samples for parameters that are realisable in actual experl orders by a renormalization-group procedtfré*2°
ments. We see, for example, how the Hall conductivity be- We show below that the effective Lagrangian for the dis-
comes quantized under scaling at low temperatures, while, inrdered conductor in the presence of a periodic potential and
the regions between the plateaus, the longitudinal conducstrong magnetic field takes the form

2
+Uqcogqgx). 1)

A. Description of field-theory approach
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1 0 5 0 ) the form of Eq.(2), but with theaﬂ coefficients replaced by
LIQ]= TgJ dr Stio,(V,Q)*+ 0, (V,Q) olf(h/e®). Hereol° correspond precisely to the components
o of the quasiclassical conductivity tensor as derived from
—0xym3Q[V,Q,V,Ql}, (2)  the Boltzmann equation for the modulated systén®ne

finds that, in the quasiclassical approach, only xixecom-
Whereoﬂ is the classical conductivity tensor of the system,ponent of the quasiclassical resistivity tensor is affected
in units of e2/h. The 8x8 supermatrix fieldQ(r) satisfies by the modulation, all other components being the same as in
the nonlinear constrair®(r)2=1. The supertrace operation the unmodulated case, so thafs=p,=(2€?*»D) ! and
is defined in Ref. 24. Pry= — Pyx=DcTPo (hereD=v27/d is the diffusion coeffi-

In the absence of a strong magnetic field or modulation, @&ient in dimensiond). For details of the solution of the
renormalization-group analysis of the first two terms in Eq.Boltzmann equation, we refer the reader to Beenakker.
(2) leads to the well-known one-parameter scaifin@**of  Here we only remark that for moderate magnetic fields, weak
the conductivity with system size due to weak localization. enough that the cyclotron radius is much larger than the

The final term in Eq(2) is known as a topological term modulation period R.>a), but strong enough thab.7

and appears in the theory of the IQHE proposed by Pruiskes-1, the quasiclassical result simplifies to
and collaboratord®?® The influence of the extra term does

not appear within perturbation theory, but becomes evidenp3’ 1 (Ug)\? 5 T
only through a nonperturbative analysis. Such an analysis, =175 -« (we7)?Req cOS Rea— 7| (Ra>1).
has been conjectur&f®3in the form of a two-parameter &)

renormalization-group procedure. The two parameters are ) )
the longitudinal and Hall conductivities that follow coupled Equation(3) demonstrates the oscillatory dependence of the
While the validity of the two-parameter scaling has beerfields, such thaR <a, a very large oscillatory increase in
vigorously debatedsee, e.g., Refs. 33,84t has remained a Pxx Proportional toB? is predicted and has been observed
valuable guide to experimentaland numericaf data for a  €xperimentally, see, e.g., Geiet al
number of years. In the following, we take a pragmatic ap- However, for high magnetic fieldsw7>1), the quasi-
proach by not Contesting the Va||d|ty of the tWO_parameteﬁlaSSical results are reliable Only at SUfﬁCiently hlgh tempera-
scaling and its relation to the proposed field-theory. Insteadiures kgT>#/7), while at lower temperatures the effects of
we assume its validity and explore how it may be generalguantization on single-particle properties such as the density
ized to take account of the periodic potential. of states must be taken into account by a quantum-
The main difference of the Lagrangid) from the un- mechanical approach. These effects are not taken into ac-
modulated case is the anisotropy in the diffusion coefficient§ount in the derivation via the ballistie model, since here
for the x andy directions. The Lagrangian, therefore, con-the magnetic field is treated only as a weak perturbation.
tains three, rather than two, parameters, which scale togethétdeed, once temperatures are low enough for weak localiza-
under changes of length scale. A simple scale transformatioion corrections to be significankgT~7/7), then quantiza-
however, maps the Lagrangian to an isotropic version fotion is already well establisheths kgT<fiw., since w.r
which the usual two-parameter scaling may be applied. ~ >1). Hence this method of deriving the Lagrangian is un-
This Lagrangian applies in the diffusive limit, that is, to fortunately of no use in describing the effects of quantum
configurations of theQ(r) field that vary on scales much interference processes at high magnetic fields.
longer than the mean free path. This allows the calculation of An improvement on this situation may be found by pro-
the contribution of low-momentum relaxational modes toceeding instead along a second route to derive the effective
weak localization corrections to the conductivity. Although Lagrangian, following more closely the original lines of
momentum relaxation is diffusive on large length scalesPruisker’® He showed how to derive @ model in the pres-
electron motion on the scale of the periodic potential is balence of a strong magnetic field, including the effects of quan-
listic, since the modulation period is much less than the meafization. The Lagrangian is applicable at high values of the
free path. To arrive at the above Lagrangian, it is thereford-andau-level indexn, such that the fluctuations of the den-
necessary to integrate over degrees of freedom correspongity of states may be neglected. We show below in Sec. Il B
ing to length much smaller than the mean free path. how this method may be adapted to describe a disordered
One way to do so is to start from a description of ballistic conductor in a strong magnetic field and a periodic potential.
electron motion on length scales much less than the meahhis route bypasses the intermediate step of a ballistic
free path. Such a description is provided by the “ballistic model, instead computing more directly the final diffusive
model”3"*8which, as the name suggests, generalizes the di.agrangian.
fusive o model to the ballistic regime. Starting from this ~ While the resulting Lagrangian takes again the form dis-
model, we show in Sec. Il B how the contribution from played in Eq.(2), now theo'?j coefficients correspond pre-
short-length scales may be integrated out. The result is theisely tOcri‘}“h/ez, whereaiqju are the components of the con-
Lagrangian of a diffusiver model that describes the inter- ductivity tensor calculated in the fully quantum-mechanical
action of diffusion modes on scales longer than the mean freapproach of Ref. 7. Since the effects of quantization are in-
path. cluded, this approach correctly describes certain features that
When derived in this way, the effective Lagrangian takesare observed in experiment but are beyond the quasiclassical
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it is free of certain technical problems regarding nonpertur-

bative calculations that appear for the replica approach. The
starting point for both routes is a functional integral repre-

sentation of the partition functiory, in terms of “super-

fields” W, W:

0.01

0.005 |
zzf D[V]P[VID[¥,¥]exp— L(¥,¥,V), (4

£=if dr(r)(E—H—i8A)W(r). (5)

FIG. 1. Resistivity components as a function of magnetic field ~ Here the superfield¥’, W contain eight components, cor-
for two different temperatures using the approximation scheme ofeésponding to fermion/boson, retarded/advanced and time-
Peeters and Vasilopoul¢Bef. 8. Corrections to the Hall resistivity reversal sectord! Also A=diag(1-1) in advanced-
are small in this regimeéRefs. 7,8. Parameters ara=200 nm, retarded space spacé,is a positive infinitesimal andH is
Up=0.3 meV, ng=3.4x10" cm™2, #/7=0.011 meV. the Hamiltonian(1) up to the substitutiolA— 3A, where

m3=diag(1l,—1) in time-reversal space. The short-range ran-
approach. Some typical results for the resisitivity compo-dom potentialV(r) is taken to be Gaussian distributed, ac-
nents p{l") calculated within the quantum-mechanical ap-cording to
proach are shown in Fig. 1.

As well as the appearance of Wejss .oscillation$jb at P[V(r)]= iexpl’ _ ﬂf drV(r)Z],
moderate magnetic fieldsp to~0.4T in Fig. 1), we see that Z h

both pds and p§ly show strong, in-phase Shubnikov-de Haas h ides th lizat
oscillations at higher magnetic fields. These in-phase oscilla®f ere Z provides the normalization. . I
Ballistic o model.The first route is to derive a ballisti¢

tions are essentially a consequence of the Shubnikov—de 2 38

Haas oscillations of the density of states. At weaker fields',ﬂc’del from the ITagr'ang|an in E@)' Andreevet al*"have
suggested a derivation of the ballisticmodel by means of
an energy averaging procedure, leading to a Lagrangian of

for which the Weiss oscillations ipJy are visible, weaker,
v . . qu .
out-of-phase oscillations ipy, also appear. Again, the latter the same form as that originally proposed by Muzykantskii
and Khmelnitski®’ Following the lines of Andreewet al,*

oscillations inpgl; are beyond the quasiclassical approach.
The quasiclassical resuiB) for the change inpyy (for e treats the disorder fieM as a perturbation in Eq(5).

wcr>1 andR.q>1) may be reproduced by the quantum- performing an energy averaging on the clean Hamiltonian

mechanical approach, as long as the temperature is higBads to a term in the Lagrangian that is nonlocal and quartic

enough for the thermal broadening to be greater than th =& : :
separation of the Landau levelesT> %, (see, e.g., Refs. f theWw, V¥ fields. The quartic term is then deco_upled by a

7,9). As the temperature is lowered, however, the region offubbard-Stratonovich field(ry,r2), and thew, W fields
applicability of the quasiclassical formu(@) shrinks to pro- &€ integrated out.

gressively lower magnetic fields: The sinusoidal Weiss oscil- 1h€ resulting Lagrangian is then simplified by subjecting
lations start to interfere at low temperatures with thelt {0 @ saddle-point analysis, and performing a gradient ex-

Shubnikov—de Haas oscillations. Indeed, at vanishingly lowPansion around the saddle point. Note that, since at this stage

temperatures, the quasiclassical result becomes unjustifiéde aré neglecting the effects of quantization on single-
for all magnetic fields. particle properties, we do not include the renormalization of

The Lagrangiarn(2), supplied with the values of the con- this saddle-point solution by the magnetic field, instead we
ductivities determined by the quantum-mechanical approacfréat the magnetic field as a perturbation. _
may then be used for a reliable description of quantum inter- Following a Wigner transform, and after applying a

ference processes at high magnetic fields, and hence the Oiemiclassi_c_é? approximation, thé& matrix becomes a func-
eration of the IQHE. tion of position,r, and the direction of momentum, where

n is a unit vector. We do not repeat these steps here but refer
to Refs. 37,38 for further details. The resulting Lagrangian
(ballistic o mode) corresponding to the Hamiltonigd) is

In this section we describe in more detail the derivation of
the effective LagrangiafR). In the field-theory approach, it wvh 1 (dndn’
is necessary to average the functional integral expression for £lQn]= TJ’ dr Str( - E.f 57 25 Qn(NQun ()
products of Green functions over the disorder configurations.
To perform the disorder average, several possible techniques
exist, including the use of either supersymmetry or the rep-
lica trick. Although we may use either of these two ap-
proaches, we choose here the supersymmetry approach, sirieethis equationZ © is the Louiville operator defined by

B. Derivation of the Field Theory

dn -1,0
=2 | 5o AT T L) Ty (6)

245319-4



WEAK LOCALIZATION AND INTEGER QUANTUM HALL ... PHYSICAL REVIEW B 67, 245319 (2003

LO=v(r)n-V+wdy—singv’ (x)dy, 7 h dn 1(dn
v(1In-V+ wedy=sindv(X)d, D — JdrStr[—jz—AmPnﬁo(r,n)Pﬁ —fz—
whered is the polar angle ofi, v is the density of states per & TSoem

spin direction at the Fermi level, and

an’ P2—P,P 2'fdnA P ot
172 XE( n ™ PoPn) =2 2773 v (1N '

v(r)=v,:

Uo
1= E—Fcos{qx) where®=UVU, &' =1/4®,A]A. The next step is to in-

tegrate over matriceB,,. This amounts to a set of Gaussian
fntegrals with a linear term i®,,, and hence may be per-
formed by means of a shift d?,,.

The resulting Lagrangian has the form

is the electron velocity at the Fermi surface. The supermatri
Qy(r) satisfies the nonlinear constrai@t,(r)?=1, as a re-
sult of which it may be parametrized by

Qu(N=To(NAT,(r).

Due to the presence of the magnetic field, @efield satis-
fies unitary symmetry, that i$Q,,,73]=0. TheQ,(r) field

h
L[Q]= @f dr St{o(V,Q) %+ oy(V,Q)?

L _ aC
also satisfies the further standard symmetri@s=Q, oy m3Q[VQ,V,Ql}. 8
=KQJK, where Q,=CQ[C. The matricesC andK, as It is written in terms of a matrixQ(r)=U(r)AU(r) that
well as supertrace operation, are defined in Ref. 24. depends only on position and varies on length scales much

The Lagrangiar{6) is in its current form too complicated longer than the mean free pathnd hence the modulation
for our purposes: it describes fluctuations@f(r) on length  period,a). The Q(r) field also satisfies the nonlinear con-
scales smaller than the mean free pathd longer than the giraint Q(r)2=1, as well as the symmetrieQ=Q
Fermi wavelengthand for any dependence an At the  _KQ'K. We see that the Lagrangian takes the usual form of

same time, electron motion on length scales much longey giffusive o model with a topological terr® the only non-
than the mean free path is diffusive. The strategy therefore igi;nqard feature being the anisotropyodf+ 0%
to integrate out the modes corresponding to fluctuations on - : e

9 P 9 The coefficientss{|° are defined by

length scales smaller than the mean free path, to produce a

Lagrangian that describes the interaction of diffusion modes dn dn’
on larger length scales. ol’=2e%v f dr'>— ——v(nu(r’)nnT(n,n’,r,r') ),
- . . . 2m 27
To perform the integration, we isolate the the fluctuations 9)

of lowest masstermed masslegscorresponding to matrices

Qx(r) that are independent af and vary more slowly than Wwhere the averaging in Ed9) is over one period of the
the mean free path. We then integrate out all other fluctua- modulationa [this averaging arises naturally in the Lagrang-
tions that preserv@2=1. A similar procedure has been car- ian (2) since the® matrix varies slowly on this scaleAlso,
ried out by Wdfle and Bhatt® to derive the diffusive La- I'(n,n’,r,r") is defined by the Boltzmann-like equation
grangian for a disordered conductor with anisotropic masses

in the x and y directions(see also Refs. 41,42 for further [£Or,n)—=CIT(r,r',n,n")=8(r—r")8(n—n"). (10
examples , , , Here, the collision operator is given as
To perform integration over the weakly massive modes,
we write . 1 do’
StF(on=—1[Fo- [ Sorn)

Qn=U(NQN(NU(r). . o .
As we will show now, thezriqj coefficients in the Lagrangian
Here theU(r) matrix, obeying the symmetrie@U -1 (8) are the components of the quasiclassical conductivity ten-
' sor as derived by BeenakKgrln his approach the Boltz-
Snann equation is expressédsee also Refs. 2—4,13n
*terms of the distribution functiof(r,n)

andU=KU'K, represents the massless fluctuations, whil
QY(r) contains the weakly massive fluctuations. The matri
Q. (r) may, in turn, be parametrized by its genera®y(r),

for example, by’ (L°—C)F(r,n)=—ev(r)E-n, (11
1+iP,
1P,/

and the currend(r) is given b
Q- A (Nisg y

Ji(r)=—2ew(F(r,n)u(r)n), (12)

Here P, is off-diagonal in retarded-advanced space andvhere the averaging is over both the velocity directioand
satisfies the symmetry,, = — P,. Since the fluctuations rep- one period of the modulatiom. The relation)'= o{E; de-
resented by th€, matrix are weakly massive, it is sufficient fines the quasiclassical conductivity tensgf, whose inver-
to treat them within a Gaussian approximatidp,= A (1 sion gives the quasiclassical resistivity tenﬁf,.
+2iPn—2Pﬁ ...). Inserting into the Lagrangiai6), we Comparing Eqs(10) and(11), we see that'(n,n’,r,r")
find is related to the distribution functiof(r,n) by
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,an’ , , , , operatorHq=m, 7"+ Uycos(x). Using the Landau gauge
F(r,n)=—ef dr Ev(r JE-n"T'(r,r',n,n"). A=(0,Bx,0), one may write the eigenfunctions ldf, in the
form i n(X,y) = Ly‘”zeprTsky)%xo(x), whereL, is a nor-

Y A . - malization length. The center coordinat@=|§k remains a

_f|cu_ants n the Lagr_angla(S) calculated by this methpd €0- good quantum number despite modulation, whegge

incide p_rgusely Wl.th the components of the quq&classma_(ﬁcleB 12is the magnetic length. Thé, , (x) are eigen-

conductivity as derivetd from the Boltzmann equatiofil). . o o

In this way we see that we have rederived the quasiclassicélltmCtIcmS of the Hamiltonian

results within the field-theory formalism. 1
As discussed above, the inadequacy of the Lagran@an Y T2, )2

is that it neglects the renormalization of the single-particle x0 2m gx? * mec(x Xo)"+ Uocodax). (15)

properties by the strong magnetic field. At high magnetic

fields (w.7>1), once the temperature is low enough for the In the absence of modulatiorJg=0), Eq. (15 repre-

weak localization corrections to be significakgT~7%/7), sents the Hamiltonian of a harmonic oscillator. We proceed

the quasiclassical results for the conductititiave already by a first-order perturbative expansion in modulatidp.

become unreliable due to their neglect of quantization. IrfThis turns out to be a very good approximation for typical

order to include these effects, and hence account for weakarameters that we consider, such as a weak periodic poten-

localization effects reliably, we need to follow a different tial. It is very difficult to improve on this approximation

route to derive the Lagrangian. Such a route for unmodulatednalytically, although exact numerical diagonalizations have

systems has been provided by Pruisk®myhose method been performed for the density of statdswithin the per-

may be adaptedas we show hejeto include a periodic turbative expansion, the eigenvaluggx,) = e,(Xo+a) of

potential. This method includes the renormalization of thethe Hamiltonian(15) are given by

saddle-point equation for th® matrix by the strong mag-

netic field. It does not require a derivation of a ballistic €n(Xo) =En(Xo) =En+u,c08qXp), (16)

model as an intermediate step, but provides more directly theh _ h
final form of the Lagrangian. While the first route contains WN€ré En="wc(n+1/2) are the unperturbed Landau ener-

i — _ 212
certain parallels with the quasiclassical approfictne sec- 918, andu,=Ueexp(=1/2X)Ln(X), whereX=q“l/2 and

ond route contains closer parallels with the quantumln are the Laguerre polynomials.
mechanical approach. We see that the modulation lifts the degeneracy of the

Generalization of Pruisken derivatioWe now present Landau levels, and discrete levels are broadened into bands,

the second route to the derivation of the effective Lagrangia¥’hose width depends on the band indein an oscillatory

This produces a term in the Lagrangian that is quartic in théNeiSS oscillations in the reSiStiVity. The Val|d|ty of the per-

¥, V¥ fields. The quartic term may then be decoupled by aturbation theory depends only on the smaliness of upe

) 0 . ~° “parameter, which is assured for large values of the Landau-
(now loca) Hubbard-Stratonovich fiel@(r). After integrat level indexn. We refer the reader to, e.g., Refs. 5-8 for

ing out the', V" fields, one finds further details of this perturbative expansion.

We also make the assumption that in this basis, the
saddle-point value of is independent of the Landau indices
and Xq: this approximation is analogous to tt@number
] approximation CNA introduced by Zhang and Gerhérétis

Comparing also Eqg9) and(12), we see that the-l° coef-

c —fd T swror— Lsurl
[Q]= r . trQ 3 trin

—i[7,m™—E

hQ

+Uycoggx)]+ A + > (13)  the self-energy matrix in the presence of modulation, and is
r

valid as long as the magnetic field is not too high. In order to
go beyond the CNA, one would need to generalize the
saddle-pointQ to include a matrix structure in the space of
try Q=Q. . . o . Landau indices and a dependencexgn such a task is of
The Lagrangian(13), in principle, provides an exact de- jiares for future work but is beyond the scope of this paper.

scription of the system, although in its current form it is too The saddle-point equatioil4) may now be written as
general to be useful. Instead, one proceeds by finding the

wherewﬁE —ihV ,—er3A,/c. HereQ satisfies the symme-

saddle-point value of) that minimizes the Lagrangian, and i7Q 1 ra 1
by performing a gradient expansion about this minimum. 2—:1“32 —f dxg 70" (17)
The saddle-point equation may be written as T n aJo _ —i _ﬁ
E—E,(Xg)—id P
i _ ihQ\| ! _ _ .
Q= —(r|| m,m*+Uocodqx) —E+iSA+ ——| |r). wherel’y is the width of the Landau level in the absence of
™y 27 modulation and
(14
In order to find the matrix inverse of the operator in E), Fzzihw ﬁ (18)
we make use of the eigenvalues and eigenfunctions of the O 27
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The saddle-point equatiofil7) coincides with the self- where the averaging is ové? with respect toL,. At this
energy equation derived in the self-consistent Born approxipoint, we now exploit the assumption that thé) matrices
mation(SCBA) by Zhang and Gerhardfsynder the replace- vary in space more slowly than the modulation. Thus the
mentizQY%(27)—3RA where indices refer to advanced/ averages of the products of the Green functions are short
retarded space andl denotes the self-energy. The solution ranged with respect to tHE matrices, and are translationally
for Q is then of the formiQ=ey+iApg, wWherepq is pro- invariant after averaging over one cycle of the modulation.
portional to the density of states. In the absence of modulaFhis allows us to perform a gradient expansion in the propa-
tion, the density of states reduces to that determined by Andgator averages:
and co-worker® within the SCBA(as shown by Pruiskéf).

Having identified the saddle-point val@ we proceed by (9(r’,r)ymkg(r,r")m")
performing a gradient expansion of the Lagrangidr®) —K(r—r")
around the saddle point. We follow very closely the calcula-
tion of Pruiskerf® although we use the supersymmetric —KO§(r—r")+KDs(r—r")\V,V +-- -,
rather than the replica formulation. We use the representation :

here the averaging includes that over a cycle of the modula-
Q(r)=T(r)P(r)T (r), tion. A series of Ward identities may now be used as in Ref.
20 to simplify the resulting expressions up to second order in
where theP fields are diagonal in retarded/advanced spac® . The final Lagrangian is then of the form displayed in
and represent the massive modes. The procedure is to intgq_ (2), whereQ=TAT 1.

integration, with a topological term, although with the anisotropy,
a&agy. Again, Q satisfiesQ?=1 and the symmetrie®=Q
f DQ=J DPJ DT exp{Strin(I1[P])}, =KQ'K. Also the bare coefficientsioj are the components

of the conductivity tensor at zero temperature in units of
in the process acquiring the associated Jacobj@] (as €°/h, according to the formulas
discussed in Ref. 20L becomes

0 ﬁ2 ’ 1 ’ 2 ’
hmv 1 ) Uxx,yy:_m dr <7Tx,y[g (r,r")y—g“(r,r")]
E[P,T]=fdr —Stl‘|n(|[P])+?Stl'P2— EStrInl E
Xy [gh(r',r)—g?(r',n)]),
—T 17, 7*T—Uqcog x)—iﬁ—P 0_ 0l, o0l
w 0C0sq 2 . Tgy=0Oxyt 0%y
To integrate over th® modes, we splitZ into two parts: i%e

o ="t | aE @)
hav Yooe —o Bt '
co[P]=f dr{—StrIn(I[P])vL Wsm:*2

8 2 J 2
1 inP —deE preaCRULNE
- EStrIn E—m,m—Uycogqgx)— 7” :
ﬁZ
SLIP,T]=L[P,T]~Ly[P]. 02§=EJdr’{<wxgl(r.r')wygz(r’,r»
Integration over the® fields then proceeds by cumulant- —(mygt(r,r")mg?(r', )}, (19

expanding SL[P,T] with respect to Lg[P]. In turn,
SL[P,T] is computed by a gradient expansion of the Str In
term up to second order in the combinatingT*VMT.
The propagators for the latter expansion are of the form

here the averaging is ovéras well as over one cycle of the
modulation with respect to. The propagator averages may
now be evaluated by their saddle-point values with respect to
P.

iAP 1 The bare coefficientx?r?j are the components of the con-
g(r,r’)=<r|( E—m,m"—Uocogqx) — Z—(r) Ir'y, ductivity tensor, in units 0&?/h, calculated in the SCBA at
T zero temperature. In the absence of modulation, the expres-
sions (19) for the bare conductivity then reduce to those
computed in the SCBA by Ando and co-worké?sin the
presence of modulation, they reduce to the conductivity ten-
sor computed in the SCBA by Zhang and Gerha?dté}

weighted with respect tdy[ P]. A typical second-order term
is

Etyp:f drj dr’'St{D () ][D,(r")] =oil" (the equivalence of may be seen by following the
working of Stred&"). Therefore, in contrast to those derived
x{g(r',rymtg(r,r')m"y, via the ballisticc model, the bare conductivities in the La-
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grangian (2) represent the values calculated by a fully under which the Lagrangiaf2) transforms to an isotropic

guantum-mechanical approach. model,
1
IIl. WEAK LOCALIZATION _ ) a0 2_ 0
= dr’St A" — V,Q, V., ,
AND QUANTUM HALL EFFECT LIQ]= 15) dr'St{o(VQ)"= 03 msQ[V«Q.Vy Ql}

. . , . 21)
Having derived the final form of the Lagrangi&®), we (
are now in a position to use it to calculate weak localizationyhere %= ‘/Uxuxgyoy. The perturbative scaling fos may

corrections to the conductivity tensor. The effect of the cor-now be derived in the standard w&{the flow equation is
rections may be expressed as a scaling of the conductivitity |eading order

tensor under changes of length scale. A perturbative treat-

ment of the Lagrangiari2) is valid in the limit of large do 1

longitudinal conductivity ¢2,51). Within perturbation =

theory, however, the Hall conductivity is not renormalized by dinL 270

weak localization corrections. Instead, the effect of the topo-

logical term in the Lagrangian may only be made apparent By integrating the flow equation from microscopic to
through a nonperturbative analysis. Such an analysis ha®acroscopic length scalésf the order of the system size
been conjecturéd®*3! in the form of a two-parameter L), we find the conductivity

renormalization-group procedure. The two parameters are

the longitudinal and Hall conductivities that follow coupled ~ ~0 L\

scaling equations with respect to changes of length scale. o(L)=0"| 1= — =z | . (22
The derivation of the scaling equations presented in Refs. ™ (o)

25,31 is based on approximating configurations of the field- ) _ - ) _

theory parameter as a gas of instantons. While the validity of USing the fact that the ratios,, /o are invariant under
this derivation is being vigorously debatésee, e.g., Refs. the scaling, we may recover,, ,,(L) from o(L) as follows:
33,34, it has remained a valuable guide to experiméntal

and numericaf data_\ for a number of years. In t_he followin_g,_ o(L)=0(L) ‘/ng/ggy,

we take a pragmatic approach by not contesting the validity

of the two-parameter scaling and its relation to the proposed o~ 50

field-theory. Instead, we assume its validity and explore how ayy(L)=a(L)Voy/ oy (23

it may be generalized to take account of the periodic poten- ) . )
tial. We remark that the perturbative scaling derived from a

field-theory as above in the presence of anistropy in the con-
ductivities in thex andy directions(due to an anisotropy in
the electron magsas been confirmed by direct diagrammat-

First we subject the Lagrangian to a perturbative RGics (in the orthogonal ensembléy Wolfle and Bhatt®
analysis. The perturbation theory is valid in the Iimita:&X Equation(22) shows how weak localization corrections
>1. The topological term in the Lagrangian does not con-affect the longitudinal conductivity within perturbation
tribute at any perturbative order and hengg, is unrenor-  theory. We can see how the conventional scaling applies to
malised. For an unmodulated system,= o, and the per- in the presence of the periodic potential. By inputting the
turbative RG procedure has been explained in detail, e.g., IBCBA values fora$, and o2, weak localization corrections
Ref. 24. are obtained; according to E@2) they depend obothbare

In the presence of modulation, the model is slightly  valueso?, and o,. Corrections tooy,, for example, are
nonstandard due to the anisotropy of the longitudinal conyfiyenced by the strong oscillatory behavior«q?y. Upon
ductivities, oy oy, . However, quantum interference pro- jnyerting the conductivity tensor to find the resistivity tensor,
cesses in a diffusive, anisotropic conductor rgave been conpe weak localization corrections will therefore give rise to
sidered before, for example by Wie and Bhatf] where the  aqgitional oscillatory corrections to the resistivity tensor as a
origin of the anisotropy was envisaged as due to a differencg,nciion of the magnetic field. As mentioned earlier, strong
in effective electron masses in the two directions. In the IatWeiss oscillations irp,, are accompanied by weak out-of-
ter paper, a diffusiver model was derived with the same phase oscillations i,y as long as quantum interference
form as Eq.(2), although without the topological term. effects may be neglected. It is interesting to notice that weak

When oy, # ayy, the two parametersr,, and ayy, fol- |5calization corrections tgyy oscillate in phase with the
low coupled flow equations under changes of length Scale(dominanl oscillations inp
XX+

While it is straightforward to derive and solve the two flow |, practice®® rather than changing the system sizeone

equations, it is also instructive to follow a different strategy, aries the temperature to change the effective system size,
whereby we perform a scale transformation after which the,nich is given by the diffusion lengtfizD/(ksT)]*2 The

A. Weak localization

Lagrangian(2) maps to an isotropic form: we scale perturbative resul22) is only valid when the corrections are
’ 0 014 ) 0, 0.1 much smaller than the bare conductivities, and hence may be
X'=x(oy o)™ Y =Y (onloy) ™, (200 difficult to verify experimentally. A potentially more promis-
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FIG. 4. Focus on the evolution of the longitudinal conductivities

with system sizd. under the two-parameter scaling. Parameters as
o, [e’/h] in Fig. 3, and In(/Ly)=0-4, from the broader to the narrower
peaks.
FIG. 2. Plot of bare conductivities, providing a starting point for
scaling, for a modulated vs homogeneous system. Paramaters:scales of the system size. The valuesrQf(L) and o, (L)

:13101 nmz. Uo=0.2 meV, I';=0.048/B[T] meV, and ng=1  may then be recovered from(L) by Egs.(23). As a conse-
X 10 cn?.

quence of Eq(23), we see that the ratio,(L)/ oy (L) re-
_ ) ) ~mains constant under the scaling. This conclusion is further-
ing strategy is to illustrate the effect of weak localization

; . L ; "' more independent of the form of the beta-functiofsand
corrections when their contribution is relatively large, as is P Asa

Bxy, in EQ. (24).
the case for the IQHE. In the absence of modulation, the SCBA vafiesf the

bare conductivities correspond to an approximate semicircu-
lar dependence of?, on o—gy. In the presence of modula-
We now generalize from the perturbative analysis to distion, the dependence of’ on 0'2 is modified from the semi-
cuss the nonperturbative scaling that would follow from thecircle in a complicated way; a typical dependence, calculated
Lagrangian(2). Again, we are able to make the scale trans-using the scheme proposed in Ref. 7, is shown in Fig. 2.
formation (20) as above, which maps the Lagrangian to the The corresponding dependency of the bare conductivity
isotropic version, Eq(21). The coupled flow of the two cou- tensor on magnetic field for the same parameters is part of
pling constantsg and oy, May written in a general form, Fig. 3 below (thick curves. We remark that for the peaks
centered around8=1.5 T one may already expect vertex
do . _ doyy _ corrections to become effective, although they are not in-
dinL ~Plooy) G~ Polo.oxy). (24)  cluded in the CNA approach that we have employed. Such
corrections have the general tendefidy to enhancergy in
The above beta functiong and B,,, would take precisely ~comparison tar -
the same form as the beta-functions that describe the flow of In order to provide an illustration of the IQHE in the
oy and o,y in the equivalent, unmodulated system. modulated sample, it is necessary to assume a particular
The starting point of the flow is determined by the bareform of the scaling equation&4). The following scaling
conductivity tensofo; . In general, the coupled flow equa- equations>***>*4ere derivedoriginally in the replica for-

. ~ . mulation within a dilute gas approximation of the instan-
tions (24) for o and oy need to be integrated up to length tonic configurations of th® matrix from the Lagrangiat®):

B. Quantum Hall effect

4

\ — do 73D (Co8 270y Xyl — 275)
=—- ~ — 0 mTo —270),
- AL~ g7y ¢ Deo82mo
< N\ N
I 9% _ G sin2 275 2
> = — —
2, S anL o°Dsin(2moyy)exp(—2mo). (25
Q \\::\
é - \\:::\\ The dimensionless constaby; is of order unity and is re-
° 7 T ated to the density of instantons. It may be seen immediately
- lated to the density of instant It b diatel
VAT [l ST from the form of Eq.(25), that along the linesr,,=(n
7N TN, +1/2), wheren is an integer, the Hall conductance is un-
0.5 1.0 15 2.0 renormalized. It may also been seen that the points
BT

(oxy,B)z(n,O), for integern, are (attractive fixed points.

FIG. 3. Evolution of the conductivity tensor for the modulated Upon scaling the system from microscopic to macroscopic
system with system size under the two-parameter scaling. The length scales, the coordinates,(,o) scale from the bare
bold curves are the bare conductivitietk={L,), and the thin nonuniversal values towards the quantized valug8)( for
curves are the scaled conductivities forllfi)=2. Parameters as integern. This tendency reflects the quantization of the Hall
in Fig. 2. conductivity under scaling at low temperatures.
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As mentioned before, the validity of the approximationsroute contained more parallels with the quantum-mechanical
underlying Eq.(25) has long been the subject of def4€  approach for the bare conductivity tensor.
Keeping this in mind we use these equations to provide an Having derived the effective Lagrangian, we showed how
illustration of the operation of the IQHE in the modulated it leads to the scaling of the conductivity tensor under
system in Figs. 3 and 4. changes of length scaland hence temperature perturba-

Figure 3 shows the evolution of the conductivity for the tiye renormalization-group analysis of the free energy leads
modulated system under the two-parameter scaling. We sqg a generalization, to modulated systems, of one-parameter
how the Hall conductivity becomes quantized under scalingcajing for the longitudinal conductivities. Perturbatively, the
in the modulated system. Between the plateaus in the Halliy| conductivity is unrenormalized. In the regime of Weiss
conductivity, the longitudinal conductivities develop peaksqscijations! weak localization corrections give rise to an

under scaling of differing heights, due to the anisotropy inyqgitional oscillatory dependence of the longitudinal conduc-
the system. Figure 4 shows in more detail how these peaks ifyities as a function of the magnetic field. Due to their

the longitudinal conductivities develop, while the ratio be-gmg|iness, these corrections may, however, be hard to detect
tween the two conductivities remains constant under sca“”gexperimentally.

We remark that the behavior described above should be |, order to describe the IQHE, whereby the Hall conduc-

withi&current experimental capabilities: for example, Geimyyity hecomes quantized at low temperatures, a nonpertur-
et al™ have studied the high magnetic fiel{<a) regime,  pative analysis of the Lagrangian is necessary. This is pro-
although they kept the temperature high to a‘z’?'d the effect ofjged by the conjecture of the two-parameter scaling for
quantum interference processes. Bagvetlal™ have also  nmodulated systems. Assuming the validity of this conjec-
studied the IQHE in modulated samples; in their work, how-yyre and the underlying instanton gas approximation, we
ever, they have not focused on the regime of a weak periodiggye shown how the two-parameter scaling may be general-
potential or effects that are independent of the device boundzeq 1o the case of the modulated system. This has allowed us

ares. to illustrate the evolution of the resistivity tensor under the
IQHE for parameters that are realistic for experiments. We
IV. SUMMARY AND DISCUSSION find, for example, that the_ ratio of _the two longitudinal com-
ponents of the conductivity remains constant under scaling
In this paper we have considered transport properties of éan observation that does not itself depend on the assump-
disordered conductor in a periodic potential and strong magtions used to derive the flow equationgvhile the Hall con-
netic field. We focused on the contribution of quantum inter-ductivity still becomes quantized under scaling in the modu-
ference processes, whose influence at high fields is missingted system, between the plateaus the longitudinal
from previous approaches despite being responsible for eonductivities develop peaks of differing heights due to the
whole class of phenomena. For example, they lead to weadnisotropy in the system.
localization corrections to the conductivity and the operation There are several directions in which our analysis may be
of the IQHE at high magnetic fields. To this end, we intro- generalized. A simple generalization is to consider a periodic
duced a field-theory approach, which is well established inmagnetic field, rather than potential, a situation that leads to
the study of unmodulated disordered conductors. a similar phenomenolody:**” The derivation of the field-
The effective Lagrangian of the field-theory takes thetheory for this case follows very similar lines to the case of a
form of a nonlineat model, which describes the interaction periodic potential, with similar results.
of diffusion modes on large length scales. The presence of Another direction in which the analysis may be extended
the strong magnetic field leads to an extra, topological ternstraightforwardly is to the study of the low magnetic field
in the Lagrangian. The form of the Lagrangian is the same asegime, in which a positive magnetoresistance has been
for unmodulated systems, except for an anisotropy in th@bserve4? and explained within a quasiclassical
coefficients corresponding to the bare longitudinal conducapproact As long asw.7<1, one may derive the field-
tivities in thex andy directions. theory for this regime according to the first route of Sec. Il,
We provided two different routes to deriving the Lagrang-neglecting quantization; the coefficients of the field-theory
ian. The first route was via a so-called “ballistie model,  then coincide with the components of the conductivity tensor
and demonstrated how the results of the quasiclassicalerived within the Boltzmann approach. The weak localiza-
approacf? may be recovered within the field-theory formal- tion to the conductivity(or related quantities such as the
ism. The drawback of this route, in common with the quasi-dephasing tim&) may then be calculated using the Lagrang-
classical approximation, is that it neglects the renormalizaian for either the orthogonal or the unitary ensemble, or in
tion of single-particle properies by Landau quantization.the crossover between the pure symmetry classes.
Consequently the resulting Lagrangian was too approximate A less straightforward generalization is to improve on the
to be useful in determining weak localization properties atCNA approximation of the quantum-mechanical approach
low temperatures. The second route improved on this situaand its analog in the field-theory formalism. According to
tion by including the effects of Landau quantization. It by- this approximation, the self-energy matiiand the saddle-
passes a derivation of a ballisicmodel and instead follows point solution of theQ matrix) are assumed to have a trivial
more closely the original derivation of Pruisk8rfor un-  structure in the space of Landau indices and coordirgte
modulated systems. Indeed, while the first route containetlVhile this simplifies the analysis considerably, we have seen
more parallels with the quasiclassical approach, the secoralready how this approximation breaks down for very high
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magnetic fields, such that the cyclotron radius is much lespotential, for which the first-order perturbative expansion in
than the period of modulatiolR,<a. Improvement on the the potential that we use is no longer valid. While an ana-
CNA is necessary, not only for such high fields, but also tdlytical approach would be very difficult, a numerical treat-
study models of disorder with long-range correlations, forment would be better suited to this regime. For a strong
which vertex corrections are not negligible. Such modelsenough potential thdll, is of the order ofw., the smearing
have been analyzed in the quasiclassical apprdaahd of the Landau levels is so great that they can no longer be
shown to represent experimental data more closely in certaimdividually resolved even at low temperatures. This leads to
respects. a quenching of the Shubnikov—de Haas oscillati@ssnoted
Very recently it has been shown how to improve on theby Betonet al?) and hence one would expect the quantum
CNA (Refs. 10,11 within the quantum-mechanical approach, Hall effect to be destroyed.
so as to analyze models at high magnetic fields or with long-
range disorder correlations. In the field-theory formalism,
improvement on the CNA approximation would require en-
larging the space of th® matrix even further to include the We would like to thank B. Huckestein and M. Langen-
additional matrix structure in the space of Landau indices, abuch for helpful discussions during the course of this work.
well as a dependence ogy. Inclusion of such a structure The authors gratefully acknowledge the financial support of
within the Q field is to our knowledge a novel direction to Trinity College, CambridgéD.T.-S), the Graduiertenkolleg
pursue, although this task is left as a future project. 384 (G.S), the Schwerpunktprogramm “Quanten Hall Sys-
A further area to explore is the case of a strong periodideme,” and theSonderforschungsbereict9dl.
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