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Fermions, strings, and gauge fields in lattice spin models
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We investigate the general properties of lattice spin models with emerging fermionic excitations. We argue
that fermions always come in pairs and their creation operator always has a stringlike structure with the newly
created particles appearing at the end points of the string. The physical implication of this structure is that the
fermions always couple to a nontrivial gauge field. We present exactly soluble examples of this phenomenon
in two and three dimensions. Our analysis is based on an algebraic formula that relates the statistics of a lattice
particle to the properties of its hopping operators. This approach has the advantage in that it works in any
number of dimensions—unlike the flux-binding picture developed in fractional quantum Hall theory.
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[. INTRODUCTION phases, these quasiparticles can carry fractional statifdics
the chiral spin stategRefs. 6—8 or Fermi statisticgfor the

For many years, it was thought that Fermi statistics wereZ, deconfined states*°
fundamental, in the sense that one could only obtain a theory Although it was less evident initially, a similar picture
with fermionic excitations by introducing them by hatdda  emerged from the study of RVB states and the associated
anticommuting fields Then, over the past two decades, thisquantum dimer models. The authors of Refs. 11 and 12 origi-
view began to change. A number of real world and theoretinally proposed that fermionspinons could emerge from a
cal examples showed that fermions and anyons could emergeearest-neighbor dimer model on a square lattice. Later, it
as low-energy collective modes of purely bosonic systemswas realized that the fermions couple td.agauge field, and
The first examples along these lines were the fractional quarthe fermionic excitations only appear when the field is in the
tum Hall (FQH) states:? Usually we think of the FQH states deconfined phas€. It turns out that the dimer liquid on a
as examples of anyonic excitations emerging from interactsquare lattice with only nearest-neighbor dimers is not in the
ing fermions. However, from a purely theoretical point of deconfined phaséexcept at a critical point?® However,
view, the same effects should occur in systems of interactingn a triangular lattice, the dimer liquid does hav&ade-
bosons in a magnetic fiekiThere were also indications of confined phasé&’ The results in Refs. 11 and 12 are valid in
emerging fermions in the slave-boson approach to $pin-this case and fermionic quasiparticles do emerge in a dimer
system$™° and in the study of resonating valence bondliquid on a triangular lattice.

(RVB) states'!~'* Unfortunately, the RVB picture and the In this paper, we attempt to clarify these observations and
slave-boson approach both rely on approximate or mearput them on firmer foundations. We give a general argument
field techniques to construct and analyze these exotic statethat shows that emerging fermions always occur together
More recently, a number of researchers have introduced exvith a nontrivial deconfined gauge field. In addition, we de-

actly soluble or quasiexactly soluble models with emergingive an algebraic formula that allows one to calculate the
fermions!*~?! These models allow for a more well- statistics of a lattice particle from the properties of its hop-

controlled analysis, albeit, in very specific cases. ping operators. We feel that this formula both elucidates the

The mean-field approach and the exactly soluble exfundamental meaning of statistics in a lattice system and
amples both provide clues to the structure and basic propesimplifies their computation. This approach has the added
ties of bosonic models with fermionic excitations. They in- advantage in that it works in any number of dimensions—
dicate, among other things, that fermions never appear alonglike the flux-binding picturé developed in FQH theory.
in lattice spin systems. Instead they always come togethéie would like to point out that all the previously mentioned
with a nontrivial gauge field and the emerging fermions areexamples of emerging fermions are two-dimensional models.
associated with the deconfined phase of the gauge’fel. The emerging fermions in those models are related to the
The deconfined phases always seem to contain a new kind @tix-binding picture in Ref. 3. Our algebraic approach allows
order—topological ordef®??and the emerging fermions and us to establish the emergence of fermions in an exactly
anyons are intimately related to the new order. soluble three-dimension&BD) bosonic model.

This was particularly apparent in the context of the slave- Our paper is organized as follows: in the first section, we
boson approach. In this technique, one expresses ajspingive a definition of the statistics of a lattice particle. In the
Hamiltonian in terms of fermion and gauge fieftRsClearly, ~ second section, we derive the algebraic statistics formula dis-
the presence of fermion fields does not, by itself, imply thecussed above. In the third section, we apply the formula to
existence of fermionic quasiparticles—the fermions appeathe case of fermioni¢or anyonig excitations in a lattice spin
only when the gauge field is in trdeconfinephase. Refer-  system. The formula demands that the fermions always come
ences 6-10 present constructions of several deconfingd pairs, and that their pair-creation operator has a stringlike
phases where the fermion fields do describe well-definedtructure with the newly created particles appearing at the
guasiparticles. Depending on the properties of the deconfineginds. We show that the strings represent gauge fluctuations,
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and the fermions carry the corresponding gauge charge. Aftdtach hopping amplitude in this expression involves one of
presenting the general argument, we devote the last two sethe two particles moving to a neighboring site while the
tions to exactly soluble examples of this phenomenon in twether particle remains fixed. At the end, the two particles
and three dimensions. have exchanged places;=s;, S,=r.

The above result suggests a very interesting picture of Now we construct another path, which is the same locally,
emerging fermions. Fermions and gauge fields appear to Halt doesn’t exchange the two particles, and take a product of
two sides of the same coin: in some sense, fermions are tHPPINg amplitudes along this path. The claim is that the
ends of strings and gauge fields are the fluctuations offifference between the phases of these two expressions is

strings. Extended stringlike structures seem to be the key tg;erﬁi;:g g;g Sgggzggal fg?rif(fngf f)hre a%?/girflsesde-;gitdiizé trc]ﬁn
nderstandin h Fermi isti n fields. > 2 .
understanding both Fermi statistics and gauge fields whether the phase differencesl, —1, or something else.

One way to see this is to remember the derivation of the
IIl. DEFINITION OF STATISTICS path-integral formulation of quantum mechanics. According
What do we mean when we say that a particle is a “bo-{0 the standard derivation, the amplituge® for a two-
son” or a “fermion?” The most common way to define sta- Particle pathir (t),s(t)) is given by a product
tistics is to use the algebra of creation and annihilation opgiS« (r(t,),s(t,)|e ™Y r(t,_1),S(th_1))
erators. If these operators satisfy the bosonic algebra, the _
corresponding particles are said to be bosons; if they satisfy .- (r(t3),S(ts)|e ™4r(t,),s(t,))
the fermionic algebra, the particles are said to be fermions. —iHAt
In this paper?we will uspe another, equivalent, definition X(r(t2) s(ty)le Ir(t2).s(t))
based on the path integral formulation of quantum mechanin the limit thatAt=t,—t, ;—0.
ics. Given anym particle system with short-range interac-  Now, in the discretelattice) case, the above expression
tions, we can write down the corresponding multiparticle accan be further simplified. Sincét—0, we can rewrite it as

tion S The most general actiof has two components: €S o (r (ty),S(tn)| (L= IHAD|F(ty_1),S(tn_1))
n/» n n— ’ n—
S=Sioct Stop L {r(tg),s(tz)[(L—iHAD)|r(t,),s(ts))
The first term,S,,c, can be any local expression. Typically, X(r(ty),s(ty)[(L—iHAD)|r(ty),s(ty)).

it's just the usual classical action. The second tegy,, is
less familiar. In general, it can be any expression which onl
depends on the topolodge.g. homotopy clagof paths. In 3
or more dimensions, the form &, is highly constrained.

Successive statés(t;),s(t;)), |r(tiy1),S(tj+1)) must either

Y%e identical or must differ by a single-particle hop. The ma-
trix elements between identical states don’t contribute to the
phase. Thus, we can drop them without affecting our result.

The amplitude for a closed pathmust be of the form We are left with
el =(£1)", €S e (r (te), s(t) | (—IHAD|r (t_1),S(te 1))
wheren is the number of particle exchanges that occuP.n {1 (th),s(t5)|(—iHA)|r(th),s(th))

The statistics of the particles are defined by the sign in this
expression. If this sign is positive, we say the particles are X (r(t5),s(t3)|(—iHAt)|r(t),s(t7)),
bosons”, if the sign is negative, the particles are “fermi- C}Nhere thet]'s are all distinct.

ons”. In two dimensions, there are other, more complicated oy as we discussed earlier, the statistical phase can be
possibilities forS,,. These particles are called “anyons”.  gptained by comparing the phase of this product with another
According to this definition, the statistics are completelyproduct' which is the same locally, but doesn’t exchange the
determined by the topological ter, in the action. One  two particles. When we make this comparison, the phase
way to isolate this term is to compare the amplitude for twofactors of —i drop out(since they contribute equally to the
paths, which are the same locallthis will be made more two product$. Thus, it suffices to compare products of the
precise in the next sectignbut differ in their global proper- form
ties. In particular, we can compare the amplitude for a path, , , ,
which exchanges two particles with another path, which i (t),s(to) [Hr (te_1),8(tg_1))
the same locally, but doesn’t exchange the two particles. The , / / /
difference in phase is then precis@yor=(+ 1), the statis- {1 (ta) s(ta)|Hir (7). s(1))
tical phase. X (r(tg),s(th)[H|r(t]),s(t]))
We now reformulate thigtheoretical test of statistics so This is precisely the expression in Ed)
that it can be applied to particles on a lattice. The prescrip- IS 1S precisely xp lon in Bq).
tion is as follows: we take a tWO-pa.rtiCle Stdtq,S]_) and IIl. STATISTICS AND THE HOPPING OPERATOR
consider a product of hopping amplitudes along a lattice ALGEBRA

path, which exchanges the particles, ) ) ) ) )
In this section we derive a simple algebraic formula for

(ToSalHIMn-1,80- 1T a-1,Sn-1lHIrn-2,80-2) the statistics of a particle hopping on a lattice. This formula
is completely general and holds irrespective of whether the
(13,83 H|r2,5:0(r5,S,|H|r1S9). (1)  particles are fundamental or are low-energy excitations of an
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underlying condensed-matter systéeng., quasiparticles (a) (b)

We begin with a Hilbert space that describebard-core
particles hopping on a-dimensional lattice. The states can i i
be labeled by listing the positions of the particles: 1 1
li1,iz,....in). The particles are identical so the states

lii,iz,....in) do not depend on the order if,i,,...,i . For

example, 3 3 f
|i1,i2,...,in>:|i2,il,...,in>.
A typical Hamiltonian for this system is of the form 2 4 4 2
yp Yy — -
i 57 i 5 ¥

H= i +ti),

%’:) (t+ ) FIG. 1. (a) The path of the particles in the construction of the
swapped statg, j,swappe§l. The numbers label the order in which
the paths are traverse¢h) The path of the particles in the un-
- . swapped statf,j,unswappefl Notice that the two states only dif-
Fig,ein-1). 2 ferin the ordering of the paths. However, in one case the particles
switch places, while in the other, they do not.

wheret;; are “hopping operators” with the property that

tijlisiaseedno1)e
We assume that the hopping is local, i.e.,

Here, we've grouped the hopping operators into 5 terms.

[tij tal=0 ®) Each of these terms moves a particle along some path on the
if i, j, k, andl are all different. lattice. The cumulative effect of all 5 terms is to exchange
Our goal is to compute the statistics of the particles defhe particledsee Fig. 1a)]. ,
scribed by this hopping Hamiltonia. In the following, we Similarly, we can construct a path that doesn’t swap the

show that the statistical angle can be derived from the simpl&0 particles. One expression for the final “unswapped”
algebraic properties of the hopping operators. More preState is

cisely, we show that the particles obey statisttbif li,j,unswappeg
tiltkitij:emtijtkitil (4) :(tjj’)(tj’j)(tiltlm---tnj’)(tj’p---tqr)(trs---t[i)|i1ja--->-

for any three hopping operatots, t,;, andt; , wherej, k, ~ Once again, we've grouped the hopping operators into 5
and| are (distinct neighbors ofi (ordered in the clockwise terms. In this case, the cumulative effect of these terms is
direction in the case of two dimensionsThe orientation Simply to move the two particles along independent loops
convention in two dimensions is necessary for the anyonigvithout any swapping taking plagsee Fig. 1b)].

case. Intuitively, we expect that the phase difference between

The simplest examples for which we can apply this for-the swapped and unswapped states is related to the statistical
mula are the cases of noninteracting hard-core bosons or feghase of the particles. In fact, the special way we’ve con-
mions. In these cases theparticle Hamiltonian can be writ- Structed our states allows us to make a much stronger state-
ten as ment. Notice that the two states involve the same product of

hopping operators. The only difference is the order of these
operators. This means that, in the swapped and unswapped

H= —tZ (CiTCj+CjTCi)y states, the two particles trace out the same total path in con-

) figuration space. This is important because it implies that any

where thec;’s are the boson or fermion annihilation opera- Phase which comes from gauge fields or other Berry phases
tors. The hopping operators are jugt:—tc?cj. A little  contributes equally to the swapped and unswapped states.
algebra confirms that the boson and fermion hopping operal "€ phase difference between the swapped and unswapped
tors do indeed satisfy E@4) with €= +1 and—1, respec- States is therefore exactly equal to the statistical phase of the

tively. particles. . _

We now give a general derivation of the formula. We _ This intuitive argument can be made rigorous using the
begin with the statéi,,...), which contains particles at sites discussion in the previous section. Indeed, it's not hard to see
i,j and other particles far away. that the two space-time paths traced out by the swapped and

Imagine that we exchange the two particleg ptising an unswapped state; are exactly the same Iocally—they only
appropriate product of hopping operators. One expression igfiffer by a reordering. Furthermore, the phase difference be-

the final “swapped” state is tween the swapped and unswapped states can be written as a
phase difference between two expressions of the faim
P N\ (t A A Thus, taking the phase difference between the swapped and
1,],swappeg= (t torg . tgr) (Gt - - -thir X .
i PPEH= (1)) (tjp - Lar) (titim - aj) unswapped states is completely equivalent to the procedure
X () (trs - t)]iLj,..0) derived in the previous section.
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We now compute this phase difference. We use the adrivially on all the intermediate spins @t k,...,q and only

sumed algebraic relation have a nontrivial effect nearandr. In that caseW,, isn't
_ really a string at all.
tjptnj b =€t/ jtajtjrp. This is a legitimate concern, since the string operator typi-
Applying this relation to the swapped state and reorderin ally is trivial in thelcase obos.onicquasipart.icle.s. Consider,.
the hopping operators using locality, we find or example, a Ia;mce of noninteracting spéns in a magnetlc
field: H=—-BZ;0;7. The ground state has;=1 for all i.
li,j,swappep= el ,unswappeg The excitations are obtained by flipping one spirf?.: -1

for some j. If we perturb the Hamiltonian by a term
t2<ij>ailojl, these excitations acquire dynamics. The corre-

sponding hopping operators are thgp=t/207 0 and the
string operator is

The phase difference ig?, so the particles obey statistics
e'’ as claimed. A similar formula can be derived for the
relative statistics of distinguishable particles. This formula,
together with its derivation, is given in Appendix[&ee Eq.

(A1)]. 11

Wi =t ...tquC(O'ila'jl)(O'jla'&)...(Uéarl)zoi o;.
IV. FERMIONS AND STRINGS The operatoWV;, clearly creates a particle at positiorand
destroys one at position However, as we see above, it is

In this section we consider the properties of a lattice Spifrivial and has no stringlike structure. The particle creation
SyStem with fermionic or anyonic excitations. We argue thatand annihilation Operators are Comp|ete|y local.

the excitations are always created in pairs, and the creation Qur claim is that this can never happen in the case of

operator for a pair of particles has a stringlike structure, withemerging fermions. That is, the string operafdf can never

the new particles located at the ends. One interpretation qfe written as a product

this is that fermions never appear alone—they always come

with some kind of gauge field. Wi, =AB,,

h We now make 'ghese statements more precise. S_uppose Where A;, B, are operators that act only within the local
ave a lattice spin system with fermionic excitatioftlse

anyonic case is completely analogpuZhe total Hilbert Hilbert spaces near sitesr. Physically, this means that the

. - - - fermion creation and annihilation operators are never local in
space of the lattice spin model is a direct product of local P

Hilbert spacesH, , each associated with an individual lattice the underlying bosonic degrees of freedom. Instead, they

sitel. We expect that the total Hilbert space contains a Iow-natlf{[]aelzsallppear In pairs, with a stringlike structure connect

. ing
energy subspace spanned byfermion states. The corre- Proof. We wish to use the algebraic formuid) from the

sponding low-energy effective Hamiltonian is given by previous section. That formula relied on the locality of the
Her=PHP, hopping operatorg3). Here, we would like to use a weaker

locality condition
whereP is a projection operator onto timefermion subspace.

Typically, He¢ can be written as a sum, [tj ta]=0 (5)

if i,] arefar from k,I. One can make a similar argument
Heffzz (tj+t5), using this weaker assumption. One arrives at a slightly
(ij) weaker algebraic relation

where the;; are hopping operators. We expect thattthare
local in theJunderIying spin degrees of freedom. Thajt is, they Wit Wi Wij = = Wi Wi Wiy
act only within the local Hilbert spaces near siteg® We  if i, I, and k are sufficiently far from each other. Since
would like point out that the lattice on which the fermion w,;W;;=W,;, we can rewrite this as
hops(labeledi) may not be the same as the lattice formed by
the local Hilbert spaceéabeledl). Wi Wi = — Wi Wy . (6)

Now, consider the stringlike product of hopping operators . ) ) o
Condition (6) is a direct consequence of the fermionic

Wir =ttt - togtyr - nature of the quasiparticles. We will now show that it implies
that the strings are nontrivial. Indeed, if thg, could be

This operator destroys a fermion at siteand creates one at written asW,, =A,B, , then

sitei:
W, W,;=AB/AB,,
Wi [r..)eclin.l), 1 R
where |r...),|i...) are low-energy states with fermions at WijWia=AiBjAB, -

r, i (and possibly other fermions far awajrurthermore, this gyt the A's and B's are local operators, so they commute
operator clearly has a stringlike structure: it is made up of &ith each other when they are well separated. We can there-

stringlike product of operators, each of which is local in thefore rearrange the operators in these two equations to obtain
underlying spin degrees of freedom. The only issue is that

this string operator might be trivial. That i8y;, might act Wi W= Wi; W .
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@ @ 1_
e 1

1~ N
. 1,,: ® or we can have a plaquette at which
® 10 ®
3 3
7 p
T ® ’\'3,’? Cp We call the first type of excitation a “charge” and the second

type of excitation a “flux.” Static charge and flux configura-

FIG. 2. Schematic diagram depicting Kitaev's model. Each SIDintlons are exact eigenstates of the above Hamiltonian. Thus,

is drawn as a dot. The patl® andC, are drawn as dotted dia- the charge and flux quasiparticles have no dynamics.

monds and are labeled with 1's or 3's according to whether the This lack of dynamics i_S a special_ feature of th? above
corresponding term in the Hamiltonian involve&'s or o®'s. model. However, we are interested in the properties of a

genericHamiltonian in the same quantum phase. Thus, we
This directly contradicts the fermion conditidf). We con-  N€€d to perturb the system and analyze the resulting dynam-

clude that the string operator is always nontrivial. ics. The simplest nontrivial perturbation is
The presence of this nontrivial string indicates that fermi-
ons always appear together with some kind of gauge field. H’=H+J12 o+ 332 o, (8)
I 1

One way to see this is to consider a closed loop of hopping

Operatorstjtjy .. tpglqi . This string can be interpreted as a g o harg to see that the first term allows the fluxes to hop
Wilson loop operator, since its phasg is precisely the acCliom plaguettes to adjacent plaquettes, while the second term
mulated phase of the particle when it traverses a loop. Theg, <o charges to hop from sites to neighboring sites
fact that it is nontrivial(that is, not equal to the identity We now calculate the statistics of the fluxes. To do th.is
operatoj means that the particle is coupled to a nontrivialwe restrict our Hamiltonian to the low-energy su.bspace witﬁ

gauge field. n fluxes and zero charges. Within this subspace, our Hamil-
tonian reduces to
V. A 2D EXAMPLE
In this section, we present an exactly soluble lattice spin Héﬁ:le o
I

model with fermionic excitations. The exactly soluble model
provides a concrete realization of the string picture discussed

above. The emerging fermions turn out to be coupledZo a To make contact with our previous formalism, we write

gauge field. this as
In this spin4 system, proposed by Kitaévthe spins live
on the links of a square lattiogig. 2). The Hamiltonian is E’,ﬁzz (tpgttap)
(pg)

. @) where the sum is taken over adjacent plaquettes t, is
defined bytpqul/Zail; andi is the link joiningp andq.
To calculate the statistics, we need to compiget,s
Herei labels the links] the sites, ang the plaquettes of the with t,¢,tpy. It's obvious from the definition that all the
square lattice. AlsoC, denotes the loop connecting the four hopping operator,, commute with one another. Therefore,
spins adjacent to sitie while C,, the loop connecting the four
spins adjacent to plaquetpe(see Fig. 2 tpqtiptps™ tpstiptpg:

Th's ”.‘Ode' IS exactly_ soluble since all the terms in theWe conclude that the fluxes are bosons. In the same way, one
Hamiltonian commute with each other. The ground state sa

o %Fan show that the charges are also bosons.
Isfies Next, we consider the bound state of a flux and a charge.
That is, we consider excitations with a flux through some
ol=1 plaguettep and also a charge at one of the siteadjacent
to p.
These bound states are not actually stable for the above
for all sitesl and Hamiltonian(8)—the charge and flux will separate from one
another over time. However, one can imagine modifying the
H =1 Hamiltonian so thaf[ charges and fluxes prefer to be adjac;ent
Co i to Ieach other. In this case, the bound state is a true quasipar-
ticle.
for all plaquettesp. There are two types afiocalized ex- Suppose we've made such a modification. We can then
cited states. We can have a site at which consider the statistics of the bound state. If we restrict our

H=—u§|‘,

1] o3 {11
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same linki. It's easy to see that each of the flux operators
anticommutes with the corresponding charge operaioce
one involves ar!, while the other involves a3). However,
everything else commutdsee Fig. 3.

With these facts in mind, we can compatrg,t; with
tatot,. By our discussion above, any set of three hopping
operators involvingp,l) must contain exactly two that anti-
commute. Thus, exactly two df, t,, andt; anticommute.
This implies that

t1t2t3: _t3t2t1'

We conclude that the bound states are fermions. Of course,

this result is not that surprising once we notice that the
FIG. 3. Abound state of a charge, denoted by a dark circle, an¢harges and fluxes have relative statistitée= — 1.

a flux, denoted by a shaded square. The arrows illustrate the four \we can easily check that the charges and fluxes have rela-

Ways the bound state can h(_)p. The two charge hops are denoted BVe statistics—1. Normally, we would just use the formula

solid arrows and have hopping operatst. The flux hops are de-  (a1) derived in the appendix. However, this relation assumes

noted by dotted arrows and have hopping operaforNotice that 2+ e o types of particles both hop on the same lattice.

each charge hopping operator anticommutes with a correspondir"% our case, the charges hop on the square lattice, while the
flux hopping operator, but everything else commutes. fluxes hop c’)n the dual lattice !

It's not hard to see that in our case the form(#d) needs
to be modified to

Hamiltonian (8) to the low-energy subspace with bound
states, then our Hamiltonian reduces to

ttog=e€"%rel ot
Héﬁ:JlZ Ui1+J3§i: ol 13pq pat1s

where |,J are neighboring sitesp,q are neighboring

To understand the effect of these terms, we imagine that wgjaquettes, and the links connecting andp,q are the same.
have a bound state with a fluxptand a charge dt Its N0t From our previous calculations we know tha=J,/20
thard to see that the first term aI_Iows the flux to_hop to they 4 ty=Ja/20%. Therefore, tyg, ty; anticommute, and the
wo neighboring plaquettes, which are also adjacent.to o ciotistics areitei— —1

Similarly, the second term allows the charge to hop to the We now see why the two pérticles were called “charges”

ts\f[vr% le't%r;bcb)gﬂﬁ dsgfjt’eagﬁc?:ttg r’g‘:cloféhfeo rrl?iggglr?%ocrjeene rand “fluxes"—they have the same statistics and relative sta-
Y . . . tistics asZ, charges and fluxes. It turns out that this connec-
getic reasons. Thus, the perturbation gives rise to four type .
; . ion with Z, gauge theory extends beyond the low-energy
of hopping operators—two corresponding to fluxes and two . ; X .
. regime—in fact, it extends all the way to the lattice scale.

to chargeqsee Fig. 3.

Formallv. we can write our low-enerav Hamiltonian as One can show that the Kitaev model is exactly equivalent to
Y. ay standardZ, gauge theory coupled to 4, Higgs field.
We argued earlier that whenever fermions or anyons occur

Hep= 2 [tio,n@0 T+ taamnl: in a bosonic system, they are always created in pairs, and the
(D@, pair-creation operator has a stringlike structure. The above
where the hopping operators are defined by exactly soluble mode(7) provides a good example of this
phenomenon.
t —150 or ﬁag We begin with the charges. We can construct the string
(P.H(@IH ™ o i 2" operators associated with these particles by taking products

of their hopping operators along some pBthk1,...1, on the

depending on whethdp,l), (q,J) differ by a flux hop or a lattice. We find

charge hop. In the first cases defined to be the link joining
p andq, while in the second casg,is the link joining |
andJ. W(P):t'l'zt'z's"'t'n—z'n—lt'n—l'nxoigi”'O-i?:wfza-i?;fl’

To calculate the statistics we need to compare a product of 9)
the form t t,t; with the producttstoty, where thet, are
hopping operators involving a single bound state at positionherei,...i,_; are the links along the pattsee Fig. 4.
(p,1). (We could write out these expressions precisely, bulNotice thatW(P) is nontrivial; it acts nontrivially on the
they are lengthy and not very enlightening. spin degrees of freedom along the string

Now, as we discussed above, there are four different ways It is also a pair-creation operator: If we apph(P) to the
that a bound state dp,l) can hop: two charge hops and ground state, the resulting state is an exact eigenstate with
two flux hops. Each of the flux hopping operators can bewo charges, one located at each end poir.oDne way to
paired with a corresponding charge operator that involves theee this is to notice thA/(P) commutes with everything in
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unobservable. That is, in each case, the excited state
W(P)|0) is independent of the position &f it only depends
on the position of theend pointsof P.

VI. EXACTLY SOLUBLE 3D MODEL

In two-dimensional systems, one can create a fermion by
binding aZ, vortex to aZ, charge. This is how we obtained
the fermion in the above spifimodel on the square lattice.
Since both th&, vortex andZ, charge appear as the ends of
open strings, the fermions also appear as the ends of strings.
However, in three dimensions, we cannot change a boson
into a fermion by attaching & flux. Thus one may wonder if
fermions still appear as the ends of strings in+(B) dimen-
sions. In this section, we study an exactly soluble spin-
model on a cubic lattice. We will show that the creation
operator for fermions does indeed have a stringlike structure.
This example demonstrates that the string picture for fermi-

FIG. 4. Three examples of stringlike creation operators. Thepns is more general then the flux-charge picture.
string operators are drawn together with the particles they create at oyr model has four states for each site of a cubic lattice.
their end points. The thick solid lingdrawn on the latticeis an Thus we call it a spirﬁ- model. Let yab, ab

example of a charge string operator. The dotted (g@wn on the e{X,X,y,y,2.Z}, a#b, be 4x4 Hermitian matrices that sat-
dual lattice is an example of a flux string operator. At the bottom, : fy

we give an example of a string operator for the bound state of a

charge and flux. It is essentially a combination of a charge string ab_ _  ba_,abyt
: YP=—yt=(y")

and a flux string.

e 1 1 . . [¥%®,y°4=0, if a,b,c,d are all different,
the Hamiltonian exceriﬂcl/ ] andHCIr oj. The string anti-
1 n

commutes with these two operators, so when we apply it to y2PyPe=i42%  a#c,
the ground state, we get a state with two charges located at
Il (y*?)?=1. (12)

The case of the flux quasiparticles is very similar. We take
the product of the flux hopping operators along some pat
P’=p;...p, on the dual lattice. We find

solution to the above algebra can be constructed by taking
pairwise products of Majorana fermion operator, a

e{X,X,y,y,z,z}:
i Ny — 11 1 1
W'(P )_tplpztp2p3"'tpnfzpnfltpnflpnoco-ila-iz'"O-in—za-infl' yab:i)\a)\b
(10) ’
wherei; ...i,_4 are the links along the patisee Fig. 4. Just (NP} =26,,. (13
as before, one can show that the strifig(P’) is a creation
operator that creates two fluxes at the end point® ‘of The six Majorana fermion operators naturally require a

Finally, consider the case of the bound state of the chargspace of dimension®=8, but if we restrict them to the
and the flux. The hopping operator for the bound state is apacell A®=1, we obtain the desired>44 Hermitian ma-
combination of the charge and flux hopping operators, so theices. Alternatively, a more concrete description of §#38 is
string turns out to be a combination of the charge and fluxgiven in Appendix B, where we express th&” in terms of
strings. LetP=(p4,l1)...(Pn,l,) be a path in bound-state Dirac matrices.
configuration space. Then the associated bound-state string In terms of y2®, the exactly soluble spi#-Hamiltonian
operator is can be written as

w(P)=[] o (11) H=—g§ Fo, (14

wherei; ...i, -, are the links along the path asg=1 or 3 \yherep labels all the square plaguettes in the cubic lattice
depending on whetherp,l,) differs by a flux hop or a g4 theF. are “flux” operators defined by
charge hop, respectivelisee Fig. 4 Once again, one can P

show that the stringV(P) is a creation operator for a pair of ,y_yxy_?yAy_yAxA Ay_x?ﬂ or
bound states located at the endsPof XXy Ty
In each of these examples, the crer_:ltion operator for fe.r- Fp= 'yizy'yiyiy'yiziwi’y?/fi or (15
mions or anyons has an extended stringlike structure. It is 2 X T 7y
important to note that the position of this string is completely Vi ViezVirzrxYitx
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depending on the orientation of the plaquettdust as in the
Kitaev model;® all the F, commute with each other and all

the F, have only two eigenvaluest1. Thus, we can solve 10
the Hamiltonian by simultaneously diagonalizing all thg.
If [{f,}) is a common eigenstate df, with F,|{f,}) 7/

=f,[{fo}), fp==1, then it is also an energy eigenstate with

2 3
energy —O—x<—@—

Yz i
E({fp}):_ng fp- A

1
The one subtlety is that thig, are not all independent. € is z K

the surface of a unit cube, then we have the operator identity _._xvlgyx_._
5 y 4

p];[C Fo=1. Ayfj

It follows that

FIG. 5. A fermion on link 1 can hop onto ten different links:
2-11. The hopping &2 is generated by;*, the hopping +10
for all cubgsg This constraint means that the spectrum ofby 472, and the hopping 4+4 by 2.
our model is identical to @, gauge theory on a cubic lattice.

The ground state can be thought of as a state with no flux:

f,=1 for all p. Similarly, the elementary excitations are Héﬁ=2b [teici+a)ici+by) T id+by)ici+a)]s
small flux loops where b,

f o1 Wheret(i(i+a)><i(i+t3)>:UZ_?’fb-

p To calculate the statistics we need to compare a product of
for the four plaguettep adjacent to some linkij). We can  the formtytots with the producttstyty, where thet, are
think of these excitations as quasiparticles that live on thd'0PPINg operators involving a single linfj). (As in the
links of the cubic lattice. Kitaev model, we could write out these expressions explic-

We would like to compute the statistics of these excita-tly, but the results are not very enlightening.
tions. It is tempting to assume that they are bosons since the Note that a quasiparticle on the ligk) can hop to any of
model is almost the same aZa gauge theory. However, as the te_n nelgh_b(_)rlng Imk_s, five of which are adjacent to site
we will show, this superficial similarity is misleading: the @nd five to sitg (see Fig. 5. Using the algebra12) or the
flux loops are actually fermions. Majorana fermion representation, we find that the five hop-

As in the Kitaev model, the quasiparticles are exact eigenPiNg operators associated with sitall anticommute with
states of our Hamiltonian. Thus, they have no dynamics an§ach other and similarly for sife On the other hand, each of
it is difficult to compute their statistics. However, this is a e operators associated wittcommutes with each of the
special feature of our model. We need to perturb the theorfPerators associated with

to understand generic states in the same quantum phase. TheWith these facts in mind, we can now compégst; with
simplest perturbation is tat,ot,. There are essentially two cases: either all three of the

t,'s are associated with a single siter j, or two involve one
ab site and one involves the other. In the first case, alltjhe
H’:HHEb Yio- anticommute; in the second case, a pair oftifie anticom-
he mute and everything else commutes. In either case, we have
To compute the statistics, we need to restrict ourselves to the

low-energy subspace with quasiparticles. In this subspace, tiloty= —tslats.
H' reduces to We conclude that the quasiparticles are indeed fermions.
Next, we construct the associated string operator. Taking a
Héﬁ=t2 yielb_ pro_dgct qf. hopping .ope_rators along a patf links) P
iab =(iqio), (inig)...(in_1in) gives
The effect of each term? is to allow the quasiparticles to W(P)oc y21P1y32P2 ) anbn (16)
I i h

hop between the two link&(i+4)) and(i(i+b)) adjacent to
sitei. Herea=xX if a=x, a= —X if a=Xx, etc. (See Fig. 5.  whereb,,,a,. 1 is the pair of indices associated with the link
Thus, our Hamiltonian can be written in the standard hop{imim.1). (See Fig. 6. Notice that the string operator com-
ping form: mutes with the Hamiltonian, except at the ends. Thus, when
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(a) . ®

FIG. 7. (a) The path of the particles in the construction of the
wound statdi;j,wound. The dotted line is the path of particle 1,
and the solid line is the path of particle 2. The numbers label the
order in which the paths are traversé¢o). The path of the particles
in the unwound statg;j,unwound. Notice that the two states only
differ in the ordering of the paths. However, in one case the par-

FIG. 6. An example of a string in the 3D model. This string ticles wind around each other, while in the other, they do not.

corresponds to the operatdf(P) = y,* vy ;%15 5v

i+y-*
= il i¢24¢2
we applyW(P) to the ground state, the only effect is to flip H _<i2j> (G L 4+ 150),
the signs off, for the plaquettegp adjacent to the links 12 _
(i4in),(in_1i,). This means that the open string operator cre\Vheretjj,tjj are hopping operators for the two types of par-

ates a pair of fermions at its two ends. ticles. . o
We wish to calculate the relative statistics of the two types

of particles. As before, the statistics are related to the simple
algebraic properties of the hopping operators. Specifically,
In this paper we have derived a genera| re'aﬁié)'] be- we will ShOW that the partiC|eS haVe I’e|a'[ive Statis% if

tween the statistics of a lattice particle and the algebra of its 5 211 el o1 g2 2

hopping operators. This relation allows us to analyze emerg- (tiptp)) (tiptp) = €' “(tiptp) (tiptp)- (A1)

N9 fe'rm|ons in three d|'men3|ons. We have also shqwn thalt-|ere,i, k, j, andl are(distinc) neighbors op oriented in the

there is a close connection between strings and fermions. Th(—f . oo
g . . . . clockwise direction.

statistical algebr&4) is fundamental to this connection since

it allows us to determine the statistics of the ends of strings We begin \.N'th the statfi;j..) W't.h a type-1 particle at
; a type-2 particle af, and other particles that are far away.
from the structure of the string operator.

It is interesting to put this string picture of emerging fer- Imagine that we wind particle 1 around particle 2 using an

mions in context. Indeed, it is well-known that gauge theo_appropnate product of hopping operators. One expression for

ries and strings are closely related—the strings correspond tt(r)]e final "wound” state is

electric flux lines in the associated gauge thedrg Thus, it 22 1 a1

appears that the fundamental concepts of Fermi statistics, |"J'Wound_(tiw)(taj’)(t”"'tma)
gauge theory, and strings are all connected. They are all just X (2. ! tl')(tlZ )2 iz )
different aspects of a kind of order—topological order—in anrPAral Rt ra A d e

VII. CONCLUSION

bosonic lattice systems. Here, we've grouped the hopping operators into 6 terms. The
cumulative effect of these terms is to wind one particle
ACKNOWLEDGMENTS around the othéfisee Fig. 7a)]. Similarly, we can construct a

] . state where the two particles don’t wind around each other
This research is supported by NSF Grant No. DMR-01{see Fig. 0)]:

23156 and by NSF-MRSEC Grant No. DMR-02-13282.
Ji5], unwound = (tf...t5,) (tan. - tagta) (t7,)
APPENDIX A: RELATIVE STATISTICS 2

X (1)1, ) (E]is) ).

In this section, we derive an algebraic formula, analogous
to Eq. (4), for the relative statistics of distinguishable par- As before, the two states involve the same path in con-
ticles. We begin with a Hilbert space that describes two typefiguration space. Thus, the phase difference between the
of hard-core particles hopping on a 2D lattice. For concretestates is precisely the relative statistics of the particles. This
ness, say that there ameparticles of type 1 and particles of  can be made rigorous using an argument similar to the ex-
type 2. The states can be labeled by listing the positions ofhange statistics case.
the two types of particlediy,....im; j1,---sjn)- We now calculate this phase difference. We use the as-

A typical Hamiltonian for this system is of the form sumed algebraic relation
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Yt y=el?(td tln)(tjz tzj/). Comparing this with the relative statistics formula, E41),
a”al o a-w |¢, _2i6 .
we see thage'“rel= e stat as claimed.

Applying this relation, and reordering the hopping operators

(12 t2

jetaj’

using locality, we find

li;j,wound=e'?|i;j,unwound.

APPENDIX B: DIRAC MATRIX REPRESENTATION
OF 520

This establishes the desired result: the particles have rela- !N the following, we represeng™™s in terms of the Dirac

tive statisticse'?.

A good consistency check for this formula can be ob-

tained by considering the relative statisticsteb particles

matrices. Note that Eq12) implies that

{®, ,yb(:}: 20,p-

of the same typeln this case, we expect the angle for the Thys 12, YYZ, Y2 and 7,72 satisfy the algebra of Dirac
relative statistics to be exactly twice the angle for the exmatrices. Introducing four Dirac matrices
change statistics:

— 1 1 2 1
ei¢’reI: eZi Bstat_ ’yX—O' ®o, ’yX—O' ®o,
One way to see this is that exchanging the particles twice in Y=o, 77= o'® 02,
the same direction is topologically equivalent to winding oneW N writ
particle around the other. eca €
This result, which h topological character to it, can -, =
s result, which has a topological character to it, can be Y= a=x XYY (B1)

derived algebraically from our two formulas. We start with T o
the expressiont(yt,;) (tit,). Applying the exchange statis-  Similarly, y*% y*%, yY% andY* satisfy the algebra of Dirac

tics formula, Eq.(4), we find
(tiptpj)(tkptpl):tip(tpjtkptpl):tip(eiosmtpltkptpj)-
Applying the formula again gives
tip(tpltkptpj):(tiptpltkp)tpj: (ei 6]Statkptpltip)tpj .
Combining these two equations gives

(tiptpj)(tkptpl) =e? ()Sta(tkptpl)(tiptpj)-

matrices. We can express those operators as

Y7=iy%5,  a=xXy.y, (B2)

where y°= yxyyyyyy. Finally, for a,b=x,X,y,y, we have
(B3)
a,b

,yab: i ,ya,yb_
In this way, we can express all they?®
e{X,X,y,y,z,z}, a#b, in terms of Dirac matrices.
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%OMore precisely, the;; arelocal at low energiesthe t;; can be
written ast;; = Pt;;P, wheret;; is local and commutes with the
projection operatoP.

31A more precise statement of our claim is tHat, cannot be
written as a producP A;B, Py, wherePg is the projection op-
erator onto then fermion subspace with no particles at any of the
intermediate siteg,k,...,q, andA,;, B, are local operators com-
muting with P. This statement is slightly stronger than the one
made in the text, but the same proof applies.
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