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Fermions, strings, and gauge fields in lattice spin models

Michael Levin and Xiao-Gang Wen*
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

~Received 22 February 2003; revised manuscript received 7 April 2003; published 20 June 2003!

We investigate the general properties of lattice spin models with emerging fermionic excitations. We argue
that fermions always come in pairs and their creation operator always has a stringlike structure with the newly
created particles appearing at the end points of the string. The physical implication of this structure is that the
fermions always couple to a nontrivial gauge field. We present exactly soluble examples of this phenomenon
in two and three dimensions. Our analysis is based on an algebraic formula that relates the statistics of a lattice
particle to the properties of its hopping operators. This approach has the advantage in that it works in any
number of dimensions—unlike the flux-binding picture developed in fractional quantum Hall theory.
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I. INTRODUCTION

For many years, it was thought that Fermi statistics w
fundamental, in the sense that one could only obtain a the
with fermionic excitations by introducing them by hand~via
anticommuting fields!. Then, over the past two decades, th
view began to change. A number of real world and theor
cal examples showed that fermions and anyons could em
as low-energy collective modes of purely bosonic syste
The first examples along these lines were the fractional qu
tum Hall ~FQH! states.1,2 Usually we think of the FQH state
as examples of anyonic excitations emerging from intera
ing fermions. However, from a purely theoretical point
view, the same effects should occur in systems of interac
bosons in a magnetic field.3 There were also indications o
emerging fermions in the slave-boson approach to sp1

2

systems4–10 and in the study of resonating valence bo
~RVB! states.11–14 Unfortunately, the RVB picture and th
slave-boson approach both rely on approximate or me
field techniques to construct and analyze these exotic st
More recently, a number of researchers have introduced
actly soluble or quasiexactly soluble models with emerg
fermions.14–21 These models allow for a more wel
controlled analysis, albeit, in very specific cases.

The mean-field approach and the exactly soluble
amples both provide clues to the structure and basic pro
ties of bosonic models with fermionic excitations. They i
dicate, among other things, that fermions never appear a
in lattice spin systems. Instead they always come toge
with a nontrivial gauge field and the emerging fermions
associated with the deconfined phase of the gauge field.7,9,10

The deconfined phases always seem to contain a new kin
order—topological order,10,22and the emerging fermions an
anyons are intimately related to the new order.

This was particularly apparent in the context of the sla
boson approach. In this technique, one expresses a s1

2

Hamiltonian in terms of fermion and gauge fields.4,5 Clearly,
the presence of fermion fields does not, by itself, imply
existence of fermionic quasiparticles—the fermions app
only when the gauge field is in thedeconfinedphase. Refer-
ences 6–10 present constructions of several deconfi
phases where the fermion fields do describe well-defi
quasiparticles. Depending on the properties of the deconfi
0163-1829/2003/67~24!/245316~10!/$20.00 67 2453
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phases, these quasiparticles can carry fractional statistics~for
the chiral spin states! ~Refs. 6–8! or Fermi statistics~for the
Z2 deconfined states!.9,10

Although it was less evident initially, a similar pictur
emerged from the study of RVB states and the associa
quantum dimer models. The authors of Refs. 11 and 12 or
nally proposed that fermions~spinons! could emerge from a
nearest-neighbor dimer model on a square lattice. Late
was realized that the fermions couple to aZ2 gauge field, and
the fermionic excitations only appear when the field is in t
deconfined phase.13 It turns out that the dimer liquid on a
square lattice with only nearest-neighbor dimers is not in
deconfined phase~except at a critical point!.12,13 However,
on a triangular lattice, the dimer liquid does have aZ2 de-
confined phase.14 The results in Refs. 11 and 12 are valid
this case and fermionic quasiparticles do emerge in a di
liquid on a triangular lattice.

In this paper, we attempt to clarify these observations a
put them on firmer foundations. We give a general argum
that shows that emerging fermions always occur toget
with a nontrivial deconfined gauge field. In addition, we d
rive an algebraic formula that allows one to calculate
statistics of a lattice particle from the properties of its ho
ping operators. We feel that this formula both elucidates
fundamental meaning of statistics in a lattice system a
simplifies their computation. This approach has the ad
advantage in that it works in any number of dimensions
unlike the flux-binding picture3 developed in FQH theory
We would like to point out that all the previously mentione
examples of emerging fermions are two-dimensional mod
The emerging fermions in those models are related to
flux-binding picture in Ref. 3. Our algebraic approach allo
us to establish the emergence of fermions in an exa
soluble three-dimensional~3D! bosonic model.

Our paper is organized as follows: in the first section,
give a definition of the statistics of a lattice particle. In th
second section, we derive the algebraic statistics formula
cussed above. In the third section, we apply the formula
the case of fermionic~or anyonic! excitations in a lattice spin
system. The formula demands that the fermions always co
in pairs, and that their pair-creation operator has a string
structure with the newly created particles appearing at
ends. We show that the strings represent gauge fluctuat
©2003 The American Physical Society16-1
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and the fermions carry the corresponding gauge charge. A
presenting the general argument, we devote the last two
tions to exactly soluble examples of this phenomenon in
and three dimensions.

The above result suggests a very interesting picture
emerging fermions. Fermions and gauge fields appear t
two sides of the same coin: in some sense, fermions are
ends of strings and gauge fields are the fluctuations
strings. Extended stringlike structures seem to be the ke
understanding both Fermi statistics and gauge fields.

II. DEFINITION OF STATISTICS

What do we mean when we say that a particle is a ‘‘b
son’’ or a ‘‘fermion?’’ The most common way to define st
tistics is to use the algebra of creation and annihilation
erators. If these operators satisfy the bosonic algebra,
corresponding particles are said to be bosons; if they sa
the fermionic algebra, the particles are said to be fermio

In this paper, we will use another, equivalent, definiti
based on the path integral formulation of quantum mech
ics. Given anym particle system with short-range intera
tions, we can write down the corresponding multiparticle
tion S. The most general actionS has two components:

S5Sloc1Stop.

The first term,Sloc , can be any local expression. Typicall
it’s just the usual classical action. The second term,Stop, is
less familiar. In general, it can be any expression which o
depends on the topology~e.g. homotopy class! of paths. In 3
or more dimensions, the form ofStop is highly constrained.
The amplitude for a closed pathP must be of the form

eiStop5~61!n,

wheren is the number of particle exchanges that occur inP.
The statistics of the particles are defined by the sign in
expression. If this sign is positive, we say the particles
‘‘bosons’’, if the sign is negative, the particles are ‘‘ferm
ons’’. In two dimensions, there are other, more complica
possibilities forStop. These particles are called ‘‘anyons’’.

According to this definition, the statistics are complete
determined by the topological termStop in the action. One
way to isolate this term is to compare the amplitude for t
paths, which are the same locally~this will be made more
precise in the next section!, but differ in their global proper-
ties. In particular, we can compare the amplitude for a pa
which exchanges two particles with another path, which
the same locally, but doesn’t exchange the two particles.
difference in phase is then preciselyeiStop5(61), the statis-
tical phase.

We now reformulate this~theoretical! test of statistics so
that it can be applied to particles on a lattice. The presc
tion is as follows: we take a two-particle stateur 1 ,s1& and
consider a product of hopping amplitudes along a latt
path, which exchanges the particles,

^r n ,snuHur n21 ,sn21&^r n21 ,sn21uHur n22 ,sn22&

...^r 3 ,s3uHur 2 ,s2&^r 2 ,s2uHur 1s1&. ~1!
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Each hopping amplitude in this expression involves one
the two particles moving to a neighboring site while t
other particle remains fixed. At the end, the two partic
have exchanged places:r n5s1 , sn5r 1 .

Now we construct another path, which is the same loca
but doesn’t exchange the two particles, and take a produc
hopping amplitudes along this path. The claim is that
difference between the phases of these two expression
precisely the statistical phase of the particles. That is,
particles are bosons, fermions, or anyons depending
whether the phase difference is11, 21, or something else.

One way to see this is to remember the derivation of
path-integral formulation of quantum mechanics. Accordi
to the standard derivation, the amplitudeeiS for a two-
particle pathur (t),s(t)& is given by a product

eiS } ^r ~ tn!,s~ tn!ue2 iHDtur ~ tn21!,s~ tn21!&

...^r ~ t3!,s~ t3!ue2 iHDtur ~ t2!,s~ t2!&

3^r ~ t2!,s~ t2!ue2 iHDtur ~ t1!,s~ t1!&

in the limit thatDt5tn2tn21→0.
Now, in the discrete~lattice! case, the above expressio

can be further simplified. SinceDt→0, we can rewrite it as

eiS } ^r ~ tn!,s~ tn!u~12 iHDt !ur ~ tn21!,s~ tn21!&

...^r ~ t3!,s~ t3!u~12 iHDt !ur ~ t2!,s~ t2!&

3^r ~ t2!,s~ t2!u~12 iHDt !ur ~ t1!,s~ t1!&.

Successive statesur (t i),s(t i)&, ur (t i 11),s(t i 11)& must either
be identical or must differ by a single-particle hop. The m
trix elements between identical states don’t contribute to
phase. Thus, we can drop them without affecting our res
We are left with

eiS } ^r ~ tk8!,s~ tk8!u~2 iHDt !ur ~ tk218 !,s~ tk218 !&

...^r ~ t38!,s~ t38!u~2 iHDt !ur ~ t28!,s~ t28!&

3^r ~ t28!,s~ t28!u~2 iHDt !ur ~ t18!,s~ t18!&,

where thetk8’s are all distinct.
Now, as we discussed earlier, the statistical phase ca

obtained by comparing the phase of this product with anot
product, which is the same locally, but doesn’t exchange
two particles. When we make this comparison, the ph
factors of2 i drop out~since they contribute equally to th
two products!. Thus, it suffices to compare products of th
form

^r ~ tk8!,s~ tk8!uHur ~ tk218 !,s~ tk218 !&

...^r ~ t38!,s~ t38!uHur ~ t28!,s~ t28!&

3^r ~ t28!,s~ t28!uHur ~ t18!,s~ t18!&

This is precisely the expression in Eq.~1!.

III. STATISTICS AND THE HOPPING OPERATOR
ALGEBRA

In this section we derive a simple algebraic formula f
the statistics of a particle hopping on a lattice. This formu
is completely general and holds irrespective of whether
particles are fundamental or are low-energy excitations o
6-2
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underlying condensed-matter system~e.g., quasiparticles!.
We begin with a Hilbert space that describesn hard-core

particles hopping on ad-dimensional lattice. The states ca
be labeled by listing the positions of then particles:
u i 1 ,i 2 ,...,i n&. The particles are identical so the stat
u i 1 ,i 2 ,...,i n& do not depend on the order ofi 1 ,i 2 ,...,i n . For
example,

u i 1 ,i 2 ,...,i n&5u i 2 ,i 1 ,...,i n&.

A typical Hamiltonian for this system is of the form

H5(̂
i j &

~ t i j 1t j i !,

wheret i j are ‘‘hopping operators’’ with the property that

t i j u j ,i 1 ,...,i n21&}u i ,i 1 ,...,i n21&. ~2!

We assume that the hopping is local, i.e.,

@ t i j ,tkl#50 ~3!

if i, j, k, and l are all different.
Our goal is to compute the statistics of the particles

scribed by this hopping HamiltonianH. In the following, we
show that the statistical angle can be derived from the sim
algebraic properties of the hopping operators. More p
cisely, we show that the particles obey statisticseiu if

t i l tkit i j 5eiut i j tkit i l ~4!

for any three hopping operatorst i j , tki , and t i l , wherej, k,
and l are ~distinct! neighbors ofi ~ordered in the clockwise
direction in the case of two dimensions!. The orientation
convention in two dimensions is necessary for the anyo
case.

The simplest examples for which we can apply this f
mula are the cases of noninteracting hard-core bosons or
mions. In these cases then-particle Hamiltonian can be writ
ten as

H52t(̂
i j &

~ci
†cj1cj

†ci !,

where theci ’s are the boson or fermion annihilation oper
tors. The hopping operators are justt i j 52tci

†cj . A little
algebra confirms that the boson and fermion hopping op
tors do indeed satisfy Eq.~4! with eiu511 and21, respec-
tively.

We now give a general derivation of the formula. W
begin with the stateu i , j ,...&, which contains particles at site
i, j and other particles far away.

Imagine that we exchange the two particles ati, j using an
appropriate product of hopping operators. One expression
the final ‘‘swapped’’ state is

u i , j ,swapped&5~ t j j 8!~ t j 8p ...tqr!~ t i l t lm ...tn j8!

3~ t j 8 j !~ t rs ...t ti !u i , j ,...&.
24531
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Here, we’ve grouped the hopping operators into 5 term
Each of these terms moves a particle along some path on
lattice. The cumulative effect of all 5 terms is to exchan
the particles@see Fig. 1~a!#.

Similarly, we can construct a path that doesn’t swap
two particles. One expression for the final ‘‘unswappe
state is

u i , j ,unswapped&

5~ t j j 8!~ t j 8 j !~ t i l t lm ...tn j8!~ t j 8p ...tqr!~ t rs ...t ti !u i , j ,...&.

Once again, we’ve grouped the hopping operators into
terms. In this case, the cumulative effect of these term
simply to move the two particles along independent loo
without any swapping taking place@see Fig. 1~b!#.

Intuitively, we expect that the phase difference betwe
the swapped and unswapped states is related to the stati
phase of the particles. In fact, the special way we’ve c
structed our states allows us to make a much stronger s
ment. Notice that the two states involve the same produc
hopping operators. The only difference is the order of th
operators. This means that, in the swapped and unswa
states, the two particles trace out the same total path in c
figuration space. This is important because it implies that
phase which comes from gauge fields or other Berry pha
contributes equally to the swapped and unswapped sta
The phase difference between the swapped and unswa
states is therefore exactly equal to the statistical phase o
particles.

This intuitive argument can be made rigorous using
discussion in the previous section. Indeed, it’s not hard to
that the two space-time paths traced out by the swapped
unswapped states are exactly the same locally—they o
differ by a reordering. Furthermore, the phase difference
tween the swapped and unswapped states can be written
phase difference between two expressions of the form~1!.
Thus, taking the phase difference between the swapped
unswapped states is completely equivalent to the proce
derived in the previous section.

FIG. 1. ~a! The path of the particles in the construction of th
swapped stateu i , j ,swapped&. The numbers label the order in whic
the paths are traversed.~b! The path of the particles in the un
swapped stateu i , j ,unswapped&. Notice that the two states only dif
fer in the ordering of the paths. However, in one case the parti
switch places, while in the other, they do not.
6-3
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We now compute this phase difference. We use the
sumed algebraic relation

t j 8ptn j8t j 8 j5eiut j 8 j tn j8t j 8p .

Applying this relation to the swapped state and reorder
the hopping operators using locality, we find

u i , j ,swapped&5eiuu i , j ,unswapped&.

The phase difference iseiu, so the particles obey statistic
eiu as claimed. A similar formula can be derived for th
relative statistics of distinguishable particles. This formu
together with its derivation, is given in Appendix A@see Eq.
~A1!#.

IV. FERMIONS AND STRINGS

In this section we consider the properties of a lattice s
system with fermionic or anyonic excitations. We argue t
the excitations are always created in pairs, and the crea
operator for a pair of particles has a stringlike structure, w
the new particles located at the ends. One interpretatio
this is that fermions never appear alone—they always co
with some kind of gauge field.

We now make these statements more precise. Suppos
have a lattice spin system with fermionic excitations~the
anyonic case is completely analogous!. The total Hilbert
space of the lattice spin model is a direct product of lo
Hilbert spacesHI , each associated with an individual lattic
site I. We expect that the total Hilbert space contains a lo
energy subspace spanned byn fermion states. The corre
sponding low-energy effective Hamiltonian is given by

Heff5PHP,

whereP is a projection operator onto then fermion subspace
Typically, Heff can be written as a sum,

Heff5(̂
i j &

~ t i j 1t j i !,

where thet i j are hopping operators. We expect that thet i j are
local in the underlying spin degrees of freedom. That is, th
act only within the local Hilbert spaces near sitesi, j.30 We
would like point out that the lattice on which the fermio
hops~labeledi! may not be the same as the lattice formed
the local Hilbert spaces~labeledI!.

Now, consider the stringlike product of hopping operato

Wir 5t i j t jktkl ...tpqtqr .

This operator destroys a fermion at siter and creates one a
site i:

Wir ur ...&}u i ...&,

where ur ...&,u i ...& are low-energy states with fermions
r, i ~and possibly other fermions far away!. Furthermore, this
operator clearly has a stringlike structure: it is made up o
stringlike product of operators, each of which is local in t
underlying spin degrees of freedom. The only issue is t
this string operator might be trivial. That is,Wir might act
24531
s-

g

,

n
t
on
h
of
e

we

l

-

y

y

s

a

at

trivially on all the intermediate spins atj, k,...,q and only
have a nontrivial effect neari and r. In that case,Wir isn’t
really a string at all.

This is a legitimate concern, since the string operator ty
cally is trivial in the case ofbosonicquasiparticles. Consider
for example, a lattice of noninteracting spins in a magne
field: H52B( is i

3. The ground state hass i
351 for all i.

The excitations are obtained by flipping one spin:s j
3521

for some j. If we perturb the Hamiltonian by a term
t(^ i j &s i

1s j
1, these excitations acquire dynamics. The cor

sponding hopping operators are thent i j 5t/2s i
1s j

1 and the
string operator is

Wir 5t i j t jk ...tqr}~s i
1s j

1!~s j
1sk

1!...~sq
1s r

1!5s i
1s r

1.

The operatorWir clearly creates a particle at positioni and
destroys one at positionr. However, as we see above, it
trivial and has no stringlike structure. The particle creati
and annihilation operators are completely local.

Our claim is that this can never happen in the case
emerging fermions. That is, the string operatorWir can never
be written as a product

Wir 5AiBr ,

where Ai , Br are operators that act only within the loc
Hilbert spaces near sitesi, r. Physically, this means that th
fermion creation and annihilation operators are never loca
the underlying bosonic degrees of freedom. Instead, t
naturally appear in pairs, with a stringlike structure conne
ing them.31

Proof: We wish to use the algebraic formula~4! from the
previous section. That formula relied on the locality of t
hopping operators~3!. Here, we would like to use a weake
locality condition

@ t i j ,tkl#50 ~5!

if i, j are far from k, l. One can make a similar argume
using this weaker assumption. One arrives at a sligh
weaker algebraic relation

Wil WkiWi j 52Wi j WkiWil

if i, l, and k are sufficiently far from each other. Sinc
WkiWi j 5Wk j , we can rewrite this as

Wil Wk j52Wi j Wkl . ~6!

Condition ~6! is a direct consequence of the fermion
nature of the quasiparticles. We will now show that it impli
that the strings are nontrivial. Indeed, if theWir could be
written asWir 5AiBr , then

Wil Wk j5AiBlAkBj ,

Wi j Wkl5AiBjAkBl .

But the A’s and B’s are local operators, so they commu
with each other when they are well separated. We can th
fore rearrange the operators in these two equations to ob

Wil Wk j5Wi j Wkl .
6-4
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This directly contradicts the fermion condition~6!. We con-
clude that the string operator is always nontrivial.

The presence of this nontrivial string indicates that ferm
ons always appear together with some kind of gauge fi
One way to see this is to consider a closed loop of hopp
operatorst i j t jk ...tpqtqi . This string can be interpreted as
Wilson loop operator, since its phase is precisely the ac
mulated phase of the particle when it traverses a loop.
fact that it is nontrivial~that is, not equal to the identity
operator! means that the particle is coupled to a nontriv
gauge field.

V. A 2D EXAMPLE

In this section, we present an exactly soluble lattice s
model with fermionic excitations. The exactly soluble mod
provides a concrete realization of the string picture discus
above. The emerging fermions turn out to be coupled to aZ2
gauge field.

In this spin-12 system, proposed by Kitaev,15 the spins live
on the links of a square lattice~Fig. 2!. The Hamiltonian is

H52U(
I S )

CI8
s j

1D 2g(
p

S)
Cp

s j
3D . ~7!

Herei labels the links,I the sites, andp the plaquettes of the
square lattice. Also,CI8 denotes the loop connecting the fo
spins adjacent to siteI , while Cp the loop connecting the fou
spins adjacent to plaquettep ~see Fig. 2!.

This model is exactly soluble since all the terms in t
Hamiltonian commute with each other. The ground state
isfies

)
CI8

s j
151

for all sitesI and

)
Cp

s j
351

for all plaquettesp. There are two types of~localized! ex-
cited states. We can have a site at which

FIG. 2. Schematic diagram depicting Kitaev’s model. Each s
is drawn as a dot. The pathsCI8 and Cp are drawn as dotted dia
monds and are labeled with 1’s or 3’s according to whether
corresponding term in the Hamiltonian involvess1’s or s3’s.
24531
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)
CI8

s j
1521

or we can have a plaquette at which

)
Cp

s j
3521.

We call the first type of excitation a ‘‘charge’’ and the seco
type of excitation a ‘‘flux.’’ Static charge and flux configura
tions are exact eigenstates of the above Hamiltonian. T
the charge and flux quasiparticles have no dynamics.

This lack of dynamics is a special feature of the abo
model. However, we are interested in the properties o
genericHamiltonian in the same quantum phase. Thus,
need to perturb the system and analyze the resulting dyn
ics. The simplest nontrivial perturbation is

H85H1J1(
i

s i
11J3(

i
s i

3. ~8!

It’s not hard to see that the first term allows the fluxes to h
from plaquettes to adjacent plaquettes, while the second t
allows the charges to hop from sites to neighboring sites

We now calculate the statistics of the fluxes. To do th
we restrict our Hamiltonian to the low-energy subspace w
n fluxes and zero charges. Within this subspace, our Ha
tonian reduces to

Heff8 5J1(
i

s i
1.

To make contact with our previous formalism, we wri
this as

Heff8 5(
^pq&

~ tpq1tqp!,

where the sum is taken over adjacent plaquettesp,q; tpq is
defined bytpq5J1/2s i

1; and i is the link joiningp andq.
To calculate the statistics, we need to comparetpqt rptps

with tpst rptpq . It’s obvious from the definition that all the
hopping operatorstpq commute with one another. Therefor

tpqt rptps5tpst rptpq.

We conclude that the fluxes are bosons. In the same way,
can show that the charges are also bosons.

Next, we consider the bound state of a flux and a cha
That is, we consider excitations with a flux through som
plaquettep and also a charge at one of the sitesI adjacent
to p.

These bound states are not actually stable for the ab
Hamiltonian~8!—the charge and flux will separate from on
another over time. However, one can imagine modifying
Hamiltonian so that charges and fluxes prefer to be adja
to each other. In this case, the bound state is a true quas
ticle.

Suppose we’ve made such a modification. We can t
consider the statistics of the bound state. If we restrict

n

e

6-5
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Hamiltonian ~8! to the low-energy subspace withn bound
states, then our Hamiltonian reduces to

Heff8 5J1(
i

s i
11J3(

i
s i

3.

To understand the effect of these terms, we imagine that
have a bound state with a flux atp and a charge atI . It’s not
hard to see that the first term allows the flux to hop to
two neighboring plaquettes, which are also adjacent toI .
Similarly, the second term allows the charge to hop to
two neighboring sites, adjacent top. All other hopping de-
stroys the bound state and is therefore forbidden for e
getic reasons. Thus, the perturbation gives rise to four ty
of hopping operators—two corresponding to fluxes and t
to charges~see Fig. 3!.

Formally, we can write our low-energy Hamiltonian as

Heff8 5 (
^~p,I !~q,J!&

@ t ~p,I !~q,J!1t ~q,J!~p,I !#,

where the hopping operators are defined by

t ~p,I !~q,J!5
J1

2
s i

1 or
J3

2
s i

3,

depending on whether~p,I !, ~q,J! differ by a flux hop or a
charge hop. In the first case,i is defined to be the link joining
p and q, while in the second case,i is the link joining I
andJ.

To calculate the statistics we need to compare a produc
the form t1t2t3 with the productt3t2t1 , where thetk are
hopping operators involving a single bound state at posi
~p,I !. ~We could write out these expressions precisely,
they are lengthy and not very enlightening.!

Now, as we discussed above, there are four different w
that a bound state at~p,I ! can hop: two charge hops an
two flux hops. Each of the flux hopping operators can
paired with a corresponding charge operator that involves

FIG. 3. A bound state of a charge, denoted by a dark circle,
a flux, denoted by a shaded square. The arrows illustrate the
ways the bound state can hop. The two charge hops are denot
solid arrows and have hopping operators3. The flux hops are de-
noted by dotted arrows and have hopping operators1. Notice that
each charge hopping operator anticommutes with a correspon
flux hopping operator, but everything else commutes.
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same linki. It’s easy to see that each of the flux operato
anticommutes with the corresponding charge operator~since
one involves as1, while the other involves as3). However,
everything else commutes~see Fig. 3!.

With these facts in mind, we can comparet1t2t3 with
t3t2t1 . By our discussion above, any set of three hopp
operators involving~p,I ! must contain exactly two that anti
commute. Thus, exactly two oft1 , t2 , and t3 anticommute.
This implies that

t1t2t352t3t2t1.

We conclude that the bound states are fermions. Of cou
this result is not that surprising once we notice that
charges and fluxes have relative statisticseifrel521.

We can easily check that the charges and fluxes have
tive statistics21. Normally, we would just use the formul
~A1! derived in the appendix. However, this relation assum
that the two types of particles both hop on the same latt
In our case, the charges hop on the square lattice, while
fluxes hop on the dual lattice.

It’s not hard to see that in our case the formula~A1! needs
to be modified to

t IJtpq5eifrel
pqt IJ ,

where I ,J are neighboring sites,p,q are neighboring
plaquettes, and the links connectingI ,J andp,q are the same.
From our previous calculations we know thattpq5J1/2s i

1

and t IJ5J3/2s i
3. Therefore,tpq , t IJ anticommute, and the

relative statistics areeifrel 521.
We now see why the two particles were called ‘‘charge

and ‘‘fluxes’’—they have the same statistics and relative s
tistics asZ2 charges and fluxes. It turns out that this conne
tion with Z2 gauge theory extends beyond the low-ener
regime—in fact, it extends all the way to the lattice sca
One can show that the Kitaev model is exactly equivalen
standardZ2 gauge theory coupled to aZ2 Higgs field.

We argued earlier that whenever fermions or anyons oc
in a bosonic system, they are always created in pairs, and
pair-creation operator has a stringlike structure. The ab
exactly soluble model~7! provides a good example of thi
phenomenon.

We begin with the charges. We can construct the str
operators associated with these particles by taking prod
of their hopping operators along some pathP5I1 ...In on the
lattice. We find

W~P!5t I1I2
t I2I3

...t In22In21
t In21In

}s i1
3 s i2

3 ...s in22

3 s in21

3 ,

~9!

where i1 ...in21 are the links along the path~see Fig. 4!.
Notice thatW(P) is nontrivial; it acts nontrivially on the
spin degrees of freedom along the stringP.

It is also a pair-creation operator: If we applyW(P) to the
ground state, the resulting state is an exact eigenstate
two charges, one located at each end point ofP. One way to
see this is to notice thatW(P) commutes with everything in
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the Hamiltonian except)CI1
8 s j

1 and)CIn
8 s j

1. The string anti-

commutes with these two operators, so when we apply i
the ground state, we get a state with two charges locate
I1 ,In .

The case of the flux quasiparticles is very similar. We ta
the product of the flux hopping operators along some p
P85p1 ...pn on the dual lattice. We find

W8~P8!5tp1p2
tp2p3

...tpn22pn21
tpn21pn

}s i1
1 s i2

1 ...s in22

1 s in21

1 ,

~10!

wherei1 ...in21 are the links along the path~see Fig. 4!. Just
as before, one can show that the stringW8(P8) is a creation
operator that creates two fluxes at the end points ofP8.

Finally, consider the case of the bound state of the cha
and the flux. The hopping operator for the bound state
combination of the charge and flux hopping operators, so
string turns out to be a combination of the charge and fl
strings. LetP5(p1 ,I1)...(pn ,In) be a path in bound-stat
configuration space. Then the associated bound-state s
operator is

W~P!})
k

s ik

ak, ~11!

where i1 ...in21 are the links along the path andak51 or 3
depending on whether (pk ,I k) differs by a flux hop or a
charge hop, respectively~see Fig. 4!. Once again, one ca
show that the stringW(P) is a creation operator for a pair o
bound states located at the ends ofP.

In each of these examples, the creation operator for
mions or anyons has an extended stringlike structure.
important to note that the position of this string is complet

FIG. 4. Three examples of stringlike creation operators. T
string operators are drawn together with the particles they crea
their end points. The thick solid line~drawn on the lattice! is an
example of a charge string operator. The dotted line~drawn on the
dual lattice! is an example of a flux string operator. At the botto
we give an example of a string operator for the bound state
charge and flux. It is essentially a combination of a charge st
and a flux string.
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unobservable. That is, in each case, the excited s
W(P)u0& is independent of the position ofP: it only depends
on the position of theend pointsof P.

VI. EXACTLY SOLUBLE 3D MODEL

In two-dimensional systems, one can create a fermion
binding aZ2 vortex to aZ2 charge. This is how we obtaine
the fermion in the above spin-1

2 model on the square lattice
Since both theZ2 vortex andZ2 charge appear as the ends
open strings, the fermions also appear as the ends of str
However, in three dimensions, we cannot change a bo
into a fermion by attaching ap flux. Thus one may wonder if
fermions still appear as the ends of strings in (311) dimen-
sions. In this section, we study an exactly soluble spi3

2

model on a cubic lattice. We will show that the creatio
operator for fermions does indeed have a stringlike struct
This example demonstrates that the string picture for fer
ons is more general then the flux-charge picture.

Our model has four states for each site of a cubic latti
Thus we call it a spin-32 model. Let gab, a,b
P$x,x̄,y,ȳ,z,z̄%, aÞb, be 434 Hermitian matrices that sat
isfy

gab52gba5~gab!†,

@gab,gcd#50, if a,b,c,d are all different,

gabgbc5 igac, aÞc,

~gab!251. ~12!

A solution to the above algebra can be constructed by tak
pairwise products of Majorana fermion operatorsla, a
P$x,x̄,y,ȳ,z,z̄%:

gab5 ilalb,

$la,lb%52dab . ~13!

The six Majorana fermion operators naturally require
space of dimension 26/258, but if we restrict them to the
space)ala51, we obtain the desired 434 Hermitian ma-
trices. Alternatively, a more concrete description of thegab is
given in Appendix B, where we express thegab in terms of
Dirac matrices.

In terms ofg i
ab , the exactly soluble spin-3

2 Hamiltonian
can be written as

H52g(
p

Fp , ~14!

wherep labels all the square plaquettes in the cubic latt
and theFp are ‘‘flux’’ operators defined by

Fp5H g i
yxg i1 x̂

x̄y g i1 x̂1 ŷ
ȳx̄ g i1 ŷ

xȳ or

g i
zyg i1 ŷ

ȳz g i1 ŷ1 ẑ
z̄ȳ g i1 ẑ

yz̄ or

g i
xzg i1 ẑ

z̄x g i1 ẑ1 x̂
x̄z̄ g i1 x̂

zȳ

~15!
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depending on the orientation of the plaquettep. Just as in the
Kitaev model,15 all the Fp commute with each other and a
the Fp have only two eigenvalues:61. Thus, we can solve
the Hamiltonian by simultaneously diagonalizing all theFp .
If u$ f p%& is a common eigenstate ofFp with Fpu$ f p%&
5 f pu$ f p%&, f p561, then it is also an energy eigenstate w
energy

E~$ f p%!52g(
p

f p .

The one subtlety is that thef p are not all independent. IfC is
the surface of a unit cube, then we have the operator iden

)
pPC

Fp51.

It follows that

)
pPC

f p51

for all cubesC. This constraint means that the spectrum
our model is identical to aZ2 gauge theory on a cubic lattice
The ground state can be thought of as a state with no fl
f p51 for all p. Similarly, the elementary excitations a
small flux loops where

f p521

for the four plaquettesp adjacent to some link̂ij &. We can
think of these excitations as quasiparticles that live on
links of the cubic lattice.

We would like to compute the statistics of these exci
tions. It is tempting to assume that they are bosons since
model is almost the same as aZ2 gauge theory. However, a
we will show, this superficial similarity is misleading: th
flux loops are actually fermions.

As in the Kitaev model, the quasiparticles are exact eig
states of our Hamiltonian. Thus, they have no dynamics
it is difficult to compute their statistics. However, this is
special feature of our model. We need to perturb the the
to understand generic states in the same quantum phase
simplest perturbation is

H85H1t (
i,a,b

g i
ab .

To compute the statistics, we need to restrict ourselves to
low-energy subspace withn quasiparticles. In this subspac
H8 reduces to

Heff8 5t (
i,a,b

g i
ab .

The effect of each termg i
ab is to allow the quasiparticles to

hop between the two linkŝi( i1â)& and^ i( i1b̂)& adjacent to
site i. Hereâ5 x̂ if a5x, â52 x̂ if a5 x̄, etc. ~See Fig. 5.!
Thus, our Hamiltonian can be written in the standard h
ping form:
24531
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Heff8 5 (
i,a,b

@ t ^ i~ i1â!&^ i~ i1b̂!&1t ^ i~ i1b̂!&^ i~ i1â!&#,

wheret ^ i( i1â)&^ i( i1b̂)&5t/2g i
ab .

To calculate the statistics we need to compare a produc
the form t1t2t3 with the productt3t2t1 , where thetk are
hopping operators involving a single link̂ij &. ~As in the
Kitaev model, we could write out these expressions exp
itly, but the results are not very enlightening.!

Note that a quasiparticle on the link^ij & can hop to any of
the ten neighboring links, five of which are adjacent to sitei,
and five to sitej ~see Fig. 5!. Using the algebra~12! or the
Majorana fermion representation, we find that the five ho
ping operators associated with sitei all anticommute with
each other and similarly for sitej . On the other hand, each o
the operators associated withi commutes with each of the
operators associated withj .

With these facts in mind, we can now comparet1t2t3 with
t3t2t1 . There are essentially two cases: either all three of
tk’s are associated with a single sitei or j , or two involve one
site and one involves the other. In the first case, all thetk’s
anticommute; in the second case, a pair of thetk’s anticom-
mute and everything else commutes. In either case, we h

t1t2t352t3t2t1 .

We conclude that the quasiparticles are indeed fermions
Next, we construct the associated string operator. Takin

product of hopping operators along a path~of links! P
5^ i1i2&, ^ i2i3&...^ in21in& gives

W~P!}g i1

a1b1g i2

a2b2...g in

anbn, ~16!

wherebm ,am11 is the pair of indices associated with the lin
^ imim11&. ~See Fig. 6.! Notice that the string operator com
mutes with the Hamiltonian, except at the ends. Thus, w

FIG. 5. A fermion on link 1 can hop onto ten different links
2–11. The hopping 1→2 is generated byg i

x̄z̄ , the hopping 1→10
by g i

zz̄, and the hopping 1→4 by g j
xz .
6-8
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we applyW(P) to the ground state, the only effect is to fl
the signs of f p for the plaquettesp adjacent to the links
^ i1i2&,^ in21in&. This means that the open string operator c
ates a pair of fermions at its two ends.

VII. CONCLUSION

In this paper we have derived a general relation~4! be-
tween the statistics of a lattice particle and the algebra o
hopping operators. This relation allows us to analyze em
ing fermions in three dimensions. We have also shown
there is a close connection between strings and fermions.
statistical algebra~4! is fundamental to this connection sinc
it allows us to determine the statistics of the ends of stri
from the structure of the string operator.

It is interesting to put this string picture of emerging fe
mions in context. Indeed, it is well-known that gauge the
ries and strings are closely related—the strings correspon
electric flux lines in the associated gauge theory.23–29Thus, it
appears that the fundamental concepts of Fermi statis
gauge theory, and strings are all connected. They are all
different aspects of a kind of order—topological order—
bosonic lattice systems.
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APPENDIX A: RELATIVE STATISTICS

In this section, we derive an algebraic formula, analog
to Eq. ~4!, for the relative statistics of distinguishable pa
ticles. We begin with a Hilbert space that describes two ty
of hard-core particles hopping on a 2D lattice. For concre
ness, say that there aremparticles of type 1 andn particles of
type 2. The states can be labeled by listing the position
the two types of particles:u i 1 ,...,i m ; j 1 ,...,j n&.

A typical Hamiltonian for this system is of the form

FIG. 6. An example of a string in the 3D model. This strin
corresponds to the operatorW(P)}g i2 ẑ

x̄z g i
z̄zg i1 ẑ

z̄y g i1 ẑ1 ŷ
ȳz̄ g i1 ŷ

zx .
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H5(̂
i j &

~ t i j
1 1t j i

1 1t i j
2 1t j i

2 !,

wheret i j
1 ,t i j

2 are hopping operators for the two types of pa
ticles.

We wish to calculate the relative statistics of the two typ
of particles. As before, the statistics are related to the sim
algebraic properties of the hopping operators. Specifica
we will show that the particles have relative statisticseif if

~ t ip
2 tp j

2 !~ tkp
1 tpl

1 !5eif~ tkp
1 tpl

1 !~ t ip
2 tp j

2 !. ~A1!

Here,i, k, j, andl are~distinct! neighbors ofp oriented in the
clockwise direction.

We begin with the stateu i ; j ...& with a type-1 particle ati,
a type-2 particle atj, and other particles that are far away

Imagine that we wind particle 1 around particle 2 using
appropriate product of hopping operators. One expression
the final ‘‘wound’’ state is

u i ; j ,wound&5~ t j a
2 !~ ta j 8

2
!~ t i l

1 ...tma
1 !

3~ tan
1 ...tpq

1 tqi
1 !~ t j 8a

2
!~ ta j

2 !u i ; j ...&.

Here, we’ve grouped the hopping operators into 6 terms.
cumulative effect of these terms is to wind one partic
around the other@see Fig. 7~a!#. Similarly, we can construct a
state where the two particles don’t wind around each ot
@see Fig. 7~b!#:

u i ; j ,unwound&5~ t i l
1 ...tma

1 !~ tan
1 ...tpq

1 tqi
1 !~ t j a

2 !

3~ ta j 8
2

!~ t j 8a
2

!~ ta j
2 !u i ; j ...&.

As before, the two states involve the same path in c
figuration space. Thus, the phase difference between
states is precisely the relative statistics of the particles. T
can be made rigorous using an argument similar to the
change statistics case.

We now calculate this phase difference. We use the
sumed algebraic relation

FIG. 7. ~a! The path of the particles in the construction of th
wound stateu i ; j ,wound&. The dotted line is the path of particle 1
and the solid line is the path of particle 2. The numbers label
order in which the paths are traversed.~b! The path of the particles
in the unwound stateu i ; j ,unwound&. Notice that the two states only
differ in the ordering of the paths. However, in one case the p
ticles wind around each other, while in the other, they do not.
6-9
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~ t j a
2 ta j 8

2
!~ tma

1 tan
1 !5eif~ tma

1 tan
1 !~ t j a

2 ta j 8
2

!.

Applying this relation, and reordering the hopping operat
using locality, we find

u i ; j ,wound&5eifu i ; j ,unwound&.

This establishes the desired result: the particles have
tive statisticseif.

A good consistency check for this formula can be o
tained by considering the relative statistics oftwo particles
of the same type. In this case, we expect the angle for t
relative statistics to be exactly twice the angle for the
change statistics:

eifrel5e2iustat.

One way to see this is that exchanging the particles twic
the same direction is topologically equivalent to winding o
particle around the other.

This result, which has a topological character to it, can
derived algebraically from our two formulas. We start wi
the expression (t iptp j)(tkptpl). Applying the exchange statis
tics formula, Eq.~4!, we find

~ t iptp j!~ tkptpl!5t ip~ tp jtkptpl!5t ip~eiustattpltkptp j!.

Applying the formula again gives

t ip~ tpltkptp j!5~ t iptpltkp!tp j5~eiustattkptplt ip!tp j .

Combining these two equations gives

~ t iptp j!~ tkptpl!5e2iustat~ tkptpl!~ t iptp j!.
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APPENDIX B: DIRAC MATRIX REPRESENTATION
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gx5s1
^ s1, g x̄5s2

^ s1,

gy5s3
^ s1, g ȳ5s0

^ s2,
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gab5 igagb. ~B3!

In this way, we can express all thegab, a,b
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