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Role of impurities in stabilizing quantum Hall effect plateaus

Alejandro Cabo Montes de Oca and Danny Martinez-Pedrera
Instituto de Cibernetica, Matematica y Fisica, Calle E 309, Vedado, Ciudad Habana, Cuba

~Received 20 March 2003; published 12 June 2003!

It is shown how the electromagnetic response of two-dimensional electron gas under quantum Hall effect
regime transforms the sample impurities and defects in charge reservoirs that stabilize the Hall-conductivity
plateaus. The results determine the basic dynamical origin of the singular properties of localization under the
occurrence of the quantum Hall effect obtained in the pioneering works of Laughlin and of Joynt and Prange
by means of a gauge invariance argument and a purely electronic analysis, respectively. The common intuitive
picture of electrons moving along the equipotential lines gets an analytical realization.
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I. INTRODUCTION

Since its discovery in 1980, the integer quantum Hall
fect ~QHE! has been the subject of vast active research.1,2 It
is widely accepted that the explanation of this rather rema
able effect, particularly the existence of Hall-conductiv
plateaus, is intimately connected with localization of ele
trons by sample impurities.2–4

In the case of a perfect noninteracting two-dimensio
electron gas~2DEG! at sufficiently low temperature and wit
an exactly integral numbern of Landau levels filled, the Hal
conductivity syx5neec/B5ne2/h, and this is a conse
quence of the well-known fact that each Landau level ha
degeneracyeB/hc per unit area.5 For the Hall conductivity
to show these values~with integraln) for wide ranges of the
quantityne /B and not only for the integral filling magneti
field valuesBn5nehc/ne, which is indeed the essential fea
ture of the QHE, there must be some sort of charge reser
in order to adjust the number of electrons in extend
current-carrying states to that required by a quanti
conductivity.6 The charge reservoir, it has been argued,
provided by sample impurities or imperfections, and t
mechanism that of localization of electrons by the associa
random potential. It has been shown that as long as the F
energy remains within a region of localized states, the e
trons in extended states carry the right current for the H
conductivity to be quantized.3

However, it is also recognized that a complete mic
scopic theory from which the properties of the effect cou
be deductively obtained is still missing.5,7 Particularly, the
situation regarding the role of impurities is not yet com
pletely clear. The present work is intended to show how
electromagnetic response of the system, described by
Chern-Simons topological action as predicted by the fi
theory considered in Refs. 8, 9, and 10 effectively transfor
the sample impurities in charge reservoirs, leading to a
ture from which some basic properties of QHE could
derived. Moreover, for some ranges of variation of appl
magnetic field the system is capable of adjusting the elec
density in most of the sample points to those values requ
for satisfying the integral filling of Landau levels locall
This picture gives a fundamental explanation of the result
Refs. 11 and 3, highlighting the gauge invariance and to
logical character of the effect. The results also give supp
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to the applicability of the field description of integer QH
presented in Ref. 12 where the mechanism of chemical
tential stabilization in a gap remained unclear.

To simplify the discussion the analysis has been carr
on a multi-quantum-well structure~superlattice!,13,14 where
the field distribution of interest can be obtained analytica
The paper is organized as follows. In Sec. II we present
effective Maxwell equations and the corresponding Che
Simons effective action. In Sec. III we describe our mod
for impurities in the superlattice and obtain the linear
sponse associated with them. Here it is also detailed
fundamental argument, the way in which the system of i
purities can act as a charge reservoir. Finally, in Sec. IV, i
discussed the stability of the proposed picture for QHE
gime and the emergence of the Hall-conductivity plateau
seen. Appendix A gives a very brief introduction to the e
fective action in field theory and shows its interpretation
terms of energy density, specifically when we are interes
in deviations from a background field. Appendix B briefl
develops an alternative phenomenological program for
taining the basic effective Maxwell equations. Appendix
obtains a contribution to the energy density that is used
Sec. IV.

II. EFFECTIVE MAXWELL EQUATIONS

The electromagnetic responseam(x)5( if,a) represents a
linear disturbance of the electromagnetic potential associ
with the presence of the constant magnetic fieldBn at which
the filling factor n5nehc/eB has precisely the valuen. In
Ref. 8 it was found the effective Maxwell equations satisfi
by the electromagnetic response of a superlattice in Q
regime from a calculation of the first quantum corrections
the effective action of a 2DEG in the presence of a magn
field Bn within the long wavelength approximationl@r 0

5A\c/eBn. The equations appropriate to a layered mu
quantum-well structure were obtained by simply adding
equations for each plane. These equations are

]2am~x!1 i
4psH

ca
emasnna]san~x!14p

xe

a
@Pmnuaub

1umunPab2~umPna1unPma!ub#]a]ban~x!50, ~1!
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which have been written in Lorentz-covariant form for ev
dencing the Chern-Simons terms, the ones proportiona
sH . In these equations,a is the distance between success
2DEG in the superlattice,sH and xe are respectively the
Hall conductivity and the dielectric susceptibility of a sing
2DEG at filling factorn5n, Pmn is the projection tensor on
2DEG plane,um is the four-velocity of the superlattice, an
nm is a unit spacelike four-vector normal to the 2DEG plan
In a reference system where the sample is at rest and
three axis perpendicular to the 2DEG plane, all those
given by

sH5n
e2

h
,

xe5n
e2

h

mc

eBn
,

Pmn5diag~0,1,1,0!, ~2!

um5~1,0!5~1,0,0,0!,

nm5~0,n!5~0,0,0,1!.

Taking a350 these effective Maxwell equations can
alternatively derived by extremizing with respect toam(x)
the effective action per unit length inx3 direction

G̃@am#5E d2xdtS 1

8p
eE22

1

8p
B21

isH

4ca
eamnaaFmnD ,

~3!

wheree5114pxe /a and we recall thatB5(¹3a)•n adds
up to the integral filling fieldBn . The third term in the inte-
grand of Eq.~3! is recognized as the Chern-Simons topolo
cal action and produces the Chern-Simons terms in Eq.~1!,
which describes an effective current-density

JHall5
sH

a
E3n. ~4!

This expression reflects the existence of a local Hall cond
tivity and from it can be deduced the quantization of the H
conductivity regardless the particular shape of the sam
The Chern-Simons terms can be alternatively obtained
cepting the existence of a local Hall conductivity given
the last expression written and using the gauge invaria
properties. This phenomenological program was develo
in Ref. 15 and it is sketched in Appendix B for completio

The effective action~3! corresponds to a situation i
which there is a background fieldBn , as is described within
the formalism presented in Appendix A. As is shown there
is proportional to the energy density required to produc
static deformation of the background field.

It can be underlined that this effective action embodies
structure of the electronic spectrum in the magnetic fie
which is incorporated in the propagator for evaluating
relevant Feynman diagrams determining its form.8 Thus, it
should not be surprising that the energetics of the 2D
system is reflected in it.
24531
to

.
ith
re

-

c-
ll
e.
c-

ce
d

it
a

e
,

e

G

III. IMPURITY MODEL AND FIELD SOLUTION

In the present work, the impurity in superlattice samp
will be modelled as a cylindrical hole of radiush having the
axis normal to the 2DEG. Then we search for station
axially-symmetric solutions to the effective Maxwell equ
tions, which in this case reduces to consider the follow
equations for the scalar potentialf(r ) and the azimuthal
component of the vector potentialau(r ):

d

dr S r
df

dr D52
4psH

ca

1

e

d

dr
~rau!,

1

r

d

dr S r
dau

dr D2
au

r 2
5

4psH

ca

df

dr
.

These equations were investigated in Ref. 15. A soluti
finite for r→`, is given by

f~r !5
C

Ae
K0~kr !,

au~r !5CS 2
1

kr
1K1~kr ! D , ~5!

where C is an overall constant factor to be determine
K0(x) and K1(x) are MacDonald functions of 0th and firs
order, respectively, andk54psH /caAe. From these expres
sions, the electromagnetic-response fields of the superla
are readily obtained as

E~r !5
kC

Ae
K1~kr !, B~r !52kCK0~kr !, ~6!

whereE is the radial component of the electric field and t
magnetic field is normal to the 2DEG’s. Note that the ma
netic field is proportional to the electric potential. The
fields decay exponentially forr→`, beingk21 a measure of
its effective extension, and will be adopted as valid for t
region external to the cylinderr>h. Within the interior, for
completely defining the impurity model, the electric potent
will be assumed constant and the magnetic intensity will a
be assumed to be a constant vector along the axis orthog
to the superlattice planes.

Using the expression~6! for B(r ), the magnetic fluxF
associated with the impurity can be calculated to be

F5E B•ndS5E
h

`

B~r !2prdr 522pChK1~kh!,

which in the limit h→0

lim
h→0

F522p
C

k
. ~7!

The edge current which flows through the boundary of
cylinder can be simply evaluated from the condition that
conjunction with the continuous distributed Hall currents
would produce the just determined total magnetic flux.
0-2
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Let us now consider the edge electric charge. Apply
Gauss’ law to the cylinder, the free edge chargeq per unit
length inx3 direction in the impurity can be obtained as

q5
1

2
heE~h1!5

1

2
CAekhK1~kh!

and

lim
h→0

q5
1

2
CAe. ~8!

After substituting the solution~5! in the expression~3! for
the effective action we get

G5
C2

4
K0~kh!E dt. ~9!

Using the connection between the effective action and
energy density shown in Appendix A, considering the con
bution to the energy of the free edge charge, and using
~5!, ~8!, and~9!, we obtain for the mean energy densityUimp
associated with an impurity the expression

Uimp52
G

AE dt

1
qf~h1!

A
5

C2

4A
K0~kh!, ~10!

where A is the sectional area of the sample. As has b
previously commented, this is the energy required to prod
a static deformation~5! of the integral filling homogeneou
field Bn .

As the next step in the definition of the model we w
considerN impurities such as that described above spr
over the sample area to a mean separationj[AA/N. The
holes will be assumed to be small for having a total a
much smaller than the sample surface. Hence, the ele
magnetic mean field associated with the inspected ma
electron state should be approximately given by superpo
the fields of allN impurities. An illustrative picture of the
spatial dependence on the 2DEG planes of the electric
tential is shown in Fig. 1. At this point it should be notice
that the field solving the effective Maxwell equations exac
satisfies the following properties:~a! the Hall current always
flows along the equipotential level curves and~b! the normal
magnetic field to the planes and the charge densities at
point out of the cores of the impurities also exactly satisfi
the integral filling condition as it was discussed in Ref. 1
Therefore, it can be concluded that the electric potential
the Hall currents of the considered many-electron state a
lytically furnish the usual intuitive picture for the conductio
in QHE and also gives ground for early proposed percola
models.2,7

Let us resume the picture we intend to support in
argue to be done below. Whenever the external magn
field Bext slightly deviates from one of the values required
integral filling of Landau levels, each impurity accumulate
free edge chargeq such that the electron density at any i
ternal point in the sample volume adjusts to that required
satisfy the integral filling condition at the precise local ma
24531
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netic field value. For the sample type we have been con
ering the electromagnetic response field is exponenti
damped away from the impurities. Therefore, the excess
magnetic flux over that corresponding to integral filling flu
densityBn will tend to concentrate more around the impu
ties. If the distance between them turns to be greater than
penetration lengthk21 a sort of Meissner effect occurs. The
the difference between the external flux and the integral
ing one will be expelled from large volumes and conce
trated around the defects.8 The defect properties will re-
semble in such regimes the vortices in type
superconductors. This should not be necessarily the cas
should also be stressed that although in real samples the
fects are expected to be distributed in uncorrelated posit
on each plane of the superlattice, it is natural to suppose
the magnetic flux lines of the real defects will follow traje
tories that traverse the sample inx3 direction with some but
small distortion~similar to the real Abrikosov vortices in
nonideal samples! respect to the perfectly straight configur
tions we are considering.

In order to justify the above picture it should be show
that the system energy is lower than the value correspon
to the completely homogeneous field configuration. Let
consider this problem in what follows.

IV. STABILITY AND QHE PLATEAUS

From the condition of equality of total magnetic flux i
and out of the sample

BextA5BnA1NF,

and from expression~7!, the constantC is determined to be

FIG. 1. Contour plot illustrating the equipotential curves of t
superposed fields for various impurities. The Hall currents fl
along them, and while some lines are closed, other ones con
different spatial regions reflecting the presence of extended sta
0-3
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C52
Bext2Bn

2p
kj2.

Substituting this result in expression~10! and considering
there areN impurities, it is obtained the energy density
QHE regime

UQHE~Bext!5NUimp5
~Bext2Bn!2

16p2
k2j2K0~kh!. ~11!

In order to simplify the discussion, for evaluating th
energy as the simple sum of the contributions of each de
it was assumed that the field distributions of different imp
rities do not overlap significantly. A more accurate proced
is however possible for the search of more quantitative
sults.

This situation in which the system is in QHE regim
should be compared with the case in which the applied
mogeneous fieldBext completely penetrates the sample. T
energy density required for a homogeneous deforma
Bext2Bn over the integral filling fieldBn is calculated as
follows. From the action for a free stationary magnetic fie

G@A#52E dx
~¹3A!2

8p E dt,

and using the definition of effective action over a bac
ground~A3!, we obtain

G̃@a#[G@Aext#2G@An#2E dx
dG@A#

dA~x!
U

A5An

•a~x!

5F2
1

8p
Bext

2 1
1

8p
Bn

21
1

4p
Bn~Bext2Bn!G E dxE dt5

2
~Bext2Bn!2

8p E dxE dt.

Recalling that, as shown in Appendix A, the energy densit
minus this expression per unit time and volume, and tak
into account the contributionU(Bext) from the electron sec
tor, whose derivation is sketched in Appendix C~see also
Ref. 9!, given by Eq.~C2! and shown as the thick line in Fig
2, the desired energy density for the case of complete ex
nal field penetration is given by

Uhomog~Bext!5
~Bext2Bn!2

8p
1U~Bext!. ~12!

For the QHE regime to be energetically favorable it
clear we must haveUQHE(Bext),Uhomog(Bext) and this is
equivalent to

S k2j2K0~kh!

2p
21D ~Bext2Bn!2

8p
,U~Bext!. ~13!

The functionU(B) is non-negative, so it is easily seen th
the QHE regime is always preferred wheneverj
,k21A2p/K0(kh), which means that the Hall conductivit
shows a perfect steplike dependence. However, in the l
of a very smallj the impurities will strongly interact and th
24531
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picture would no longer be applicable. In any case, this d
limit should eventually destroy the QHE regime.

A plot of both members of the inequality as functions
external applied fieldBext is shown in Fig. 2 for the case
when j.k21A2p/K0(kh). It can be seen the existence
wide regions around integral filling valuesBn for which the
QHE regime is favorable. So, in this case, the inequality~13!
predicts a plateau width

~DB!n5BnH 2n~n21a!

~n21a!22n2J .

In this equation we have introduceda as given by the
expression (mac2/2e2)@k2j2K0(kh)/2p21#, which in-
creases with a decrease in the impurity density. This re
would clearly express the QHE stability if there are no alt
native states of the system showing less energy.

The plateaus predicted by the above expression have
shown in Fig. 3 for successively increasing values of
quantitya. It is seen that the plateaus become wider as

FIG. 2. Comparison of both members of inequality~13!. The
thinner line corresponds to the left member.

FIG. 3. Predicted plateaus for increasing values of the quan
a, which corresponds to a decreasing in the impurity dens
Physical parameters are taken as in Ref. 13:ne54.131011 cm22,
a5146 Å, and 1/j2 is varied in the order of 10728 cm22.
0-4
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ROLE OF IMPURITIES IN STABILIZING QUANTUM . . . PHYSICAL REVIEW B67, 245310 ~2003!
impurity density increases, which is in agreement with w
is found in Ref. 16. We have used the same values for
physical parameters as those of the experiments describ
Ref. 13: the electron densityne was fixed at 4.1
31011cm22, the interplanar distancea was taken as 146 Å
and the electron effective massm as 0.07 times the free
electron mass. The density of impurities was varied in
order of 10728 cm22 for obtaining what is shown in Fig. 3

V. CONCLUSIONS

It has been illustrated that the electromagnetic respons
a superlattice of 2DEG free of impurities is able to transfo
an added distribution of impurities or defects in a set
charge reservoirs. The excess charge over that required b
integral filling of Landau levels is then accumulated in t
impurities. It can be understood from the present analy
that it is the dynamically acquired capacity of accumulat
charge of the impurities the main element to account for
effect.

A next important step of the present study would be
investigate a similar model but in the case of planar samp
Analogous results can be expected in this case. The m
additional complication seems to be the determination of
fields associated with a single defect, since for that situa
these fields spray out in the 3D space.

An additional task for this planar case, would be the
clusion of the temperature. We expect this study to provid
foundation of the successful phenomenological model of
graham and Wilkes.17 In addition, the present discussion ca
also be viewed as giving a microscopic explanation of
model of Toyodaet al.6 These authors assumed the existen
of a kind of particle reservoir being in equilibrium with th
2DEG and with a limited capacity to account for the plate
widths found in experiments. The fact that the total ene
~11! becomes greater than the energy of the homogene
magnetic field distribution can be expected to play the role
the limiting capacity stopping the particle accumulation a
accounting for the plateau widths.
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APPENDIX A: EFFECTIVE ACTION OVER A
BACKGROUND FIELD AND ITS INTERPRETATION IN

TERMS OF ENERGY DENSITY

In the following we include, for the more intereste
reader, the standard definition of the effective action in fi
theory and its energetic interpretation. For more details
Ref. 18.

Consider a field theory with elementary fieldsAm(x) and
classical actionI @A#. Introduce external sourcesJm(x) and
couple them to the fields of the theory by adding to t
24531
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classical action a term*dxJm(x)Am(x). The complete
vacuum-vacuum transition amplitudeZ@J# for this theory in
presence of the sourcesJm is given by the path integral

Z@J#5E @DA#expH i I @A#1 i E dxJm~x!Am~x!J .

Denote by iW@J#[ ln Z@J# the connected vacuum-vacuu
transition amplitude. In the presence of sourcesJm , the fields
Am have vacuum expectation values

Am
J ~x![

1

Z@J#
E @DA#Am~x!expH i I @A#

1 i E dxJm~x!Am~x!J 5
1

iZ@J#

dZ@J#

dJm~x!
5

dW@J#

dJm
.

The quantum effective action is defined as the Legen
transform ofW@J#:

G@A#5W@JA#2E dxJm
A~x!Am~x!, ~A1!

whereJm
A are the sources which correspond to fields exp

tation valuesAm , and obviously satisfy

dW@JA#

dJm
A

5Am~x!.

From these expressions it can be shown thatAm
J solve

dG@AJ#

dAm
J ~x!

52Jm~x!. ~A2!

Normally, the sourcesJm are ficticious and the equations o
motion are given by Eq.~A2! with Jm50. We see thatG
plays the roˆle of the action, in the sense that solutions a
those that minimizeG, but with quantum corrections take
into account.

If the sourcesJm are actually present, it can be defined t
field am(x) over the background field solutionAm

J (x) and an
effective action

G̃@a#[G@AJ1a#2G@AJ#2E dx
dG@A#

dAm~x!
U

A5AJ

am~x!,

~A3!

which satisfies

G̃ @a#ua505
d G̃@a#

dam~x!
U

a50

50.

Let us show now the connection between the effect
action and the energy density.18 Suppose a currentJm(x) is
turned on adiabatically from zero att52`, and remains at
a constant valueJm(x) for a large timeT, and finally goes to
zero smoothly ast→`. In this process the system goes fro
the vacuum to a state with energyE@J#—which is a func-
tional of J(x)—and then again to the vacuum. The amp
tude of transitionZ@J#, which is the overlap between th
0-5
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initial and final vacuum state vectors, is given by the ph
exp(2iE@J#T), which is equivalent to state

W@J#52E@J#T. ~A4!

The fact that the system in presence of the sourcesJm(x) is
in a state with energyE@J#, which is reasonable to assume
the state with lower energy, implies that in this state

^H&2E dxJm~x!Am
J ~x!5E@J#,

where H is the Hamiltonian of the system in absence
sources and̂ H& its expectation value. But it is easil
checked this is the very equation that would be obtain
from minimizing the expectation value of the HamiltonianH,
with the constraints that the state be normalized and fie
Am have stationary expectation valuesAm(x), upon which
E@J# and Jm(x) play the role of Lagrange multipliers, re
spectively. Clearly, for this to occurJ should be fixed to the
sourceJA necessary for producing the fieldA.

Using now Eq.~A4! and recalling the definition of the
effective action~A1! we obtain

^H&52
1

T
W@JA#1E dxJ m

A~x!Am~x!

52
1

T HW@JA#2E dxJm
A~x!Am~x!J 52

1

T
G@A#.

Dividing by the volume we obtain the energy density. S
we conclude that minus the effective action per unit time a
volume, evaluated in a given stationary field configurati
equals the minimum of the energy density among all
states which are consistent with this stationary field expe
tion configuration.

From this interpretation and the definition and propert

of the effective action over a backgroundG̃@a#, it should be

clear that minusG̃@a# per unit time and volume, evaluated
a stationary configurationam(x) equals the energy density t
produce this static deformation with respect to the confi
ration am50.

APPENDIX B: 2D HALL EFFECT RESPONSE ALWAYS
DESCRIBED BY THE TOPOLOGICAL

CHERN-SIMONS ACTION

The set of equations~1! can be translated into a mor
physically appealing representation by expressing them
terms of the electric and magnetic field intensities

Ei5 i ~] ia02]0ai !,

Bi5e i jk] jak . ~B1!

Using these relations and the gauge conditions¹•a50 and
n•a50, Eqs.~1! can be written in the following form:

¹•S E14p
xe

a
P•ED54p

sH

a
n•B, ~B2!
24531
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-

in

¹3B54p
sH

a
E3n1

1

c

]

]t S E14p
xe

a
P•ED , ~B3!

¹3E1
1

c

]

]t
B50, ~B4!

¹•B50, ~B5!

whereP is the projector ‘‘on the 2DEG’’ dyadic 3D tenso
the spatial part of Eq.~2!, andn is a unit vector normal to the
plane.

Equations~B4! and ~B5! are analogues of the vacuum
equations for Faraday induction and the absence of magn
charge. In addition, in Eqs.~B2! and~B4!, thexe-dependent
terms show that the electron gas behaves as a dielectric
face which polarizes itself linearly only due to the tangent
components of the electric field. The Hall currents app
now explicitly in the right-hand side~RHS! of Eq. ~B4!. The
only unusual contribution is the magnetic field depend
charge density appearing in the RHS of Eq.~B2!. However,
as mentioned above, and discussed in Ref. 19, this t
arises from the general condition of charge conservat
Therefore, its presence should not be considered as an
usual outcome. Rather, such charge densities are determ
by assuming the existence of a Hall conductivity in a plan
medium. This fact will be discussed below.

In the set of equations~B2!–~B5!, let us substitute the
magnetic field dependent charge density by an undefi
function rHall. All the other terms remain unaltered. Afte
taking the divergence of Eq.~B4!, and adding the result to
Eq. ~B2!, the following conservation conditions follow fo
the polarization and for the Hall currents and densities

]

]t
~rHall1rpol!1¹•~JHall1Jpol!50,

]

]t
rHall1¹•JHall50. ~B6!

After substituting in Eq.~B6! the expression~4! for the
Hall current, it follows that

]

]t
rHall52

sH

a
¹•~E3n!52

sH

a
n•~¹3E!5

]

]t S sH

ca
n•BD .

~B7!

This relation shows that the unknown quantityrHall

should differ by a time independent function from the ma
netic field dependent charge density that appears in Eq.~B2!.
Then, after assuming that before any perturbation~as, for
example, incoming waves! the charge densities vanished,
follows that the magnetic field dependent surface charge d
sities~and then the whole Chern-Simons structure of the H
current four-vector! is implied by the existence of a Ha
conductivity.
0-6
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APPENDIX C: DERIVATION OF U„B…

Consider a system of 2D noninteracting electrons in
perpendicular magnetic fieldBext. The energy levels of this
system are the well-known Landau levels

«n5S n1
1

2D\vc ,

wherevc5eBext/mc is the cyclotronic frequency. Each on
of these levels have a degeneracy ofeBext/hc per unit area,
so the filling factor of Landau levels is given by

n5
nehc

eBext
,

with ne the electron density. This means that the first@n#
levels are completely occupied and the rest of the electr
ne2@n#eBext/hc per unit area, are occupying th
(@n#11)-th one. Here@n# denotes the integer part ofn. The
energy per unit area is obviously given by

eBext

hc (
i 51

[n]

« i1S ne2@n#
eBext

hc D « [n] 11

5
ne

2h2

4pm H 2@n#~@n#11!S Bext

B1
D 2

1~2@n#11!
Bext

B1
J ,
n

hy

24531
a

s,

with B15nehc/e the field value for whichn51.
If we have now several parallel 2D systems, placed a

distancea from each other, the energy density per unit vo
ume is clearly given by the last expression divided bya:

ne
2h2

4pmaH 2@n#~@n#11!S Bext

B1
D 2

1~2@n#11!
Bext

B1
J .

~C1!

This expression, evaluated at an integral-filling fieldBext

5Bn , has the valuene
2h2/4pma irrespective ofn. As we are

interested in energy differences with respect to the integ
filling situation we subtract this background from the la
expression to obtain the desired contribution to the ene
density

U~Bext!5U0H 2@n#~@n#11!S Bext

B1
D 2

1F ~2@n#11!
Bext

B1
21J ,

U05
ne

2h2

4pma
. ~C2!

This function is shown as the thick line in Fig. 2.
hys.
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