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Role of impurities in stabilizing quantum Hall effect plateaus
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It is shown how the electromagnetic response of two-dimensional electron gas under quantum Hall effect
regime transforms the sample impurities and defects in charge reservoirs that stabilize the Hall-conductivity
plateaus. The results determine the basic dynamical origin of the singular properties of localization under the
occurrence of the quantum Hall effect obtained in the pioneering works of Laughlin and of Joynt and Prange
by means of a gauge invariance argument and a purely electronic analysis, respectively. The common intuitive
picture of electrons moving along the equipotential lines gets an analytical realization.
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[. INTRODUCTION to the applicability of the field description of integer QHE
presented in Ref. 12 where the mechanism of chemical po-
Since its discovery in 1980, the integer quantum Hall ef-tential stabilization in a gap remained unclear.
fect (QHE) has been the subject of vast active research. To simplify the discussion the analysis has been carried
is widely accepted that the explanation of this rather remarkon a multi-quantum-well structurésuperlatticg'*** where
able effect, particularly the existence of Hall-conductivity the field distribution of interest can be obtained analytically.
plateaus, is intimately connected with localization of elec-The paper is organized as follows. In Sec. Il we present the
trons by sample impurities:* effective Maxwell equations and the corresponding Chern-
In the case of a perfect noninteracting two-dimensionalSimons effective action. In Sec. Ill we describe our model
electron gag2DEG) at sufficiently low temperature and with for impurities in the superlattice and obtain the linear re-
an exactly integral numberof Landau levels filled, the Hall sponse associated with them. Here it is also detailed our
conductivity o,,=n.ec/B=ne?/h, and this is a conse- fundamental argument, the way in which the system of im-
quence of the well-known fact that each Landau level has gurities can act as a charge reservoir. Finally, in Sec. 1V, itis
degeneracyeB/hc per unit are&. For the Hall conductivity ~ discussed the stability of the proposed picture for QHE re-
to show these valugsvith integraln) for wide ranges of the gime and the emergence of the Hall-conductivity plateaus is
quantityn,/B and not only for the integral filling magnetic Seen. Appendix A gives a very brief introduction to the ef-
field valuesB,=nchc/ne, which is indeed the essential fea- fective action in field theory and shows its interpretation in
ture of the QHE, there must be some sort of charge reservoferms of energy density, specifically when we are interested
in order to adjust the number of electrons in extendedn deviations from a background field. Appendix B briefly
current-carrying states to that required by a quantizedlevelops an alternative phenomenological program for ob-
conductivity® The charge reservoir, it has been argued, igaining the basic effective Maxwell equations. Appendix C
provided by sample impurities or imperfections, and theobtains a contribution to the energy density that is used in
mechanism that of localization of electrons by the associate&€c. IV.
random potential. It has been shown that as long as the Fermi
energy remains within a region of localized states, the elec-
trons in extended states carry the right current for the Hall

conductivity to be quantized. _ _ The electromagnetic responag(x) = (i ¢,a) represents a
However, it is also recognized that a complete micro-jinear disturbance of the electromagnetic potential associated

scopic theory from which the properties of the effect couldyith the presence of the constant magnetic f@jdat which

be deductively obtained is still missind. Particularly, the the filling factor »=n.hc/eB has precisely the value. In

situation regarding the role of impurities is not yet com-Ref, g it was found the effective Maxwell equations satisfied

pletely clear. The present work is intended to show how thg,y the electromagnetic response of a superlattice in QHE

electromagnetic response of the system, described by thggime from a calculation of the first quantum corrections to

Chern-Simons topological action as predicted by the fieldne effective action of a 2DEG in the presence of a magnetic

theory considered in Refs. 8, 9, and 10 effectively transformsie|q B within the long wavelength approximatiosr

the sample impurities in charge reservoirs, leading to a pic-_ JhcleB,. The equations appropriate to a layered multi-

ture from which some basic properties of QHE could beq,antym-well structure were obtained by simply adding the
derived. Moreover, for some ranges of variation of appl'edequations for each plane. These equations are

magnetic field the system is capable of adjusting the electron

density in most of the sample points to those values required

for satisfying the integral filling of Landau levels locally. Aoy Xe

This picture gives a fundamental explanation of the results of “@,(X) +i a 6"“"”naaga,,(x)+477§[Pwuauﬂ

Refs. 11 and 3, highlighting the gauge invariance and topo-

logical character of the effect. The results also give support  +u,u,P,z—(u,P,,+U,P,,)usld,dpa,(x)=0, (1)

II. EFFECTIVE MAXWELL EQUATIONS
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which have been written in Lorentz-covariant form for evi- . IMPURITY MODEL AND FIELD SOLUTION
dencing the Chern-Simons terms, the ones proportional to
oy . In these equations, is the distance between successive
2DEG in the superlatticegy and x. are respectively the
Hall conductivity and the dielectric susceptibility of a single
2DEG at filling factorv=n, P, is the projection tensor on
ZDEG pla_ne,uﬂ |s_the four-velocity of the superlattice, and equations for the scalar potentidi(r) and the azimuthal
n, is a unit spacelike four-vector normal to the 2DEG plane. . .

. ~component of the vector potentia},(r):
In a reference system where the sample is at rest and with
three axis perpendicular to the 2DEG plane, all those are d ( d¢) N 4moy 1 d

In the present work, the impurity in superlattice sample
will be modelled as a cylindrical hole of radiushaving the

axis normal to the 2DEG. Then we search for stationary
axially-symmetric solutions to the effective Maxwell equa-
tions, which in this case reduces to consider the following

given by a\'ar)T " ca Edr(ra“’)’
e2
UH:nF’ 1 d dag a9_47TU'H dd)
rdrl dr ;2 ca dr’
e? mc
Xe=Nr a, These equations were investigated in Ref. 15. A solution,
finite for r —co, is given by
P,,=diag0,1,1,0, 2)

C
u,=(1,0=(1,0,0,0, ¢(r)=ﬁK0(kr),

n,=(0,n=(0,0,0,3.

1
_ _ _ ae(r)zc(_ﬁ"‘Kl(kr)), %)
Taking a;=0 these effective Maxwell equations can be

alternatively derived by extremizing with respectdQ(x)  where C is an overall constant factor to be determined,

the effective action per unit length iy direction Ko(x) andK;(x) are MacDonald functions of Oth and first
1 1 i order, respectively, anki=4moy /caye. From these expres-
T“[aﬂ]zf dzxdt<—eE2— B2+ ﬂe““”aaFW , sions, the electromagnetic-response fields of the superlattice
8w 8w 4ca @ are readily obtained as
wheree=1+4my./a and we recall thaB=(V X a)-n adds _ k_C _
up to the integral filling fieldB, . The third term in the inte- B =" Kalkn), B(r)=—kCio(kr), ©)

grand of Eq.(3) is recognized as the Chern-Simons topologi-

cal action and produces the Chern-Simons terms in(Bg. WhereE is the radial component of the electric field and the
which describes an effective Current_density magnetic field is normal to the 2DEG's. Note that the mag-
netic field is proportional to the electric potential. These
fields decay exponentially far—o, beingk * a measure of

its effective extension, and will be adopted as valid for the
region external to the cylinder= 7. Within the interior, for
This expression reflects the existence of a local Hall conduccomp|ete|y defining the impurity model, the electric potential
tivity and from it can be deduced the quantization of the Hallj|| be assumed constant and the magnetic intensity will also
conductivity regardless the particular shape of the samplese assumed to be a constant vector along the axis orthogonal
The Chern-Simons terms can be alternatively obtained aggp the superlattice planes.

cepting the existence of a local Hall conductivity given by Using the expressiofB) for B(r), the magnetic fluxd

the last expression written and using the gauge invariancgssociated with the impurity can be calculated to be
properties. This phenomenological program was developed

in Ref. 15 and it is sketched in Appendix B for completion.

The effective action(3) corresponds to a situation in :f B'“dszf
which there is a background fieR},, as is described within
the formalism presented in Appendix A. As is shown there, itwhich in the limit —0
is proportional to the energy density required to produce a
static deformation of the background field.

It can be underlined that this effective action embodies the
structure of the electronic spectrum in the magnetic field,
which is incorporated in the propagator for evaluating theThe edge current which flows through the boundary of the
relevant Feynman diagrams determining its férffus, it cylinder can be simply evaluated from the condition that in
should not be surprising that the energetics of the 2DE&onjunction with the continuous distributed Hall currents it
system is reflected in it. would produce the just determined total magnetic flux.

g
JHal="Hesn, (4)
a

B(r)2@rdr=—-27CnKy(kn),

7

. C
lim CI):_Z’JTF. (7)

77*»0
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Let us now consider the edge electric charge. Applying
Gauss’ law to the cylinder, the free edge chaegper unit
length inx5 direction in the impurity can be obtained as

1 1
a= 5 7€E(n") =5 CeknKy(kr)

and 2.5
) 1
limqg= = C /. (8 0
7
After substituting the solutiofb) in the expressiof3) for E

the effective action we get

CZ
I‘=TK0(k77)j dt. 9 3

Using the connection between the effective action and the_; 5
energy density shown in Appendix A, considering the contri-

bution to the energy of the free edge charge, and using Egs.
(), (8), and(9), we obtain for the mean energy dendity,, FIG. 1. Contour plot illustrating the equipotential curves of the
associated with an impurity the expression superposed fields for various impurities. The Hall currents flow
along them, and while some lines are closed, other ones connect
r ag(n") c? different spatial regions reflecting the presence of extended states.
uimp: - A = ﬂKo(kﬂ), (10
Af dt netic field value. For the sample type we have been consid-

) ) ering the electromagnetic response field is exponentially
where A is the sectional area of the sample. As has beepyamped away from the impurities. Therefore, the excess of
previously commented, this is the energy required to producg,agnetic flux over that corresponding to integral filling flux
a static deformatiort5) of the integral filling homogeneous yensityB_ will tend to concentrate more around the impuri-

field B,,. ) o _ ties. If the distance between them turns to be greater than the
As the next step in the definition of the model we will henetration lengtk ! a sort of Meissner effect occurs. Then
considerN impurities such as that described above spreaghe gifference between the external flux and the integral fill-
over the sample area to a mean separafienVA/N. The g one will be expelled from large volumes and concen-
holes will be assumed to be small for having a total aregyated around the defectsThe defect properties will re-
much smaller than the sample surface. Hence, the electr@emple in  such regimes the vortices in type |l
magnetic mean field associated with the inspected manysperconductors. This should not be necessarily the case. It
electron state should be approximately given by superposinghould also be stressed that although in real samples the de-
the fields of allN impurities. An illustrative picture of the fects are expected to be distributed in uncorrelated positions
spatial dependence on the 2DEG planes of the electric psy each plane of the superlattice, it is natural to suppose that
tential is shown in Fig. 1. At this point it should be noticed the magnetic flux lines of the real defects will follow trajec-
that the field solving the effective Maxwell equations exactlyiqries that traverse the samplexg direction with some but
satisfies the following propertie¢a) the Hall current always  gmgq]| distortion (similar to the real Abrikosov vortices in
flows along the equipotential level curves &iwithe normal  onideal samplegespect to the perfectly straight configura-
magnetic field to the planes and the charge densities at aqyyns we are considering.
point out of the cores of the impurities also exactly satisfies | grder to justify the above picture it should be shown
the integral filling condition as it was discussed in Ref. 15.ihat the system energy is lower than the value corresponding

Therefore, it can be concluded that the electric potential ang, the completely homogeneous field configuration. Let us
the Hall currents of the considered many-electron state angpnsider this problem in what follows.

lytically furnish the usual intuitive picture for the conduction

in QHE and also gives ground for early proposed percolation

models?’ IV. STABILITY AND QHE PLATEAUS
Let us resume the picture we intend to support in the

argue to be done below. Whenever the external magnetig n

field Bey slightly deviates from one of the values required by

integral filling of Landau levels, each impurity accumulates a

free edge chargg such that the electron density at any in- BexA=BrA+NOD,

ternal point in the sample volume adjusts to that required to

satisfy the integral filling condition at the precise local mag-and from expressiofi7), the constan€ is determined to be

From the condition of equality of total magnetic flux in
d out of the sample
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Bext_Bn 2
= K
Substituting this result in expressiéh0) and considering
there areN impuirities, it is obtained the energy density in
QHE regime

(Bext_ Bn)2 2.2
UQHE( Bex) = I\Iuimpzwk &Ko(kn). (1)

In order to simplify the discussion, for evaluating this
energy as the simple sum of the contributions of each defect
it was assumed that the field distributions of different impu- B, B B B
rities do not overlap significantly. A more accurate procedure 4 23 2 1
is however possible for the search of more quantitative re- Bext
Sults.' . . . . o . FIG. 2. Comparison of both members of inequalifyd). The

This situation in which the system is in QHE regime inner line corresponds to the left member.
should be compared with the case in which the applied ho-
mogeneous field.,: completely penetrates the sample. Thepjcture would no longer be applicable. In any case, this dirty
energy density required for a homogeneous deformatiofmit should eventually destroy the QHE regime.

Bex—Bn over the integral filling fieldB, is calculated as A plot of both members of the inequality as functions of
follows. From the action for a free stationary magnetic fieldgyternal applied fielB,,, is shown in Fig. 2 for the case
(VXA)2 when >k~ 1\2m/Ky(k7). It can be seen the existence of
I'[A]= —f dx—f dt, wide regions around integral filling valués, for which the
8m QHE regime is favorable. So, in this case, the inequéli)
and using the definition of effective action over a back-predicts a plateau width
ground(A3), we obtain

T[a]EF[AexJ_F[An]_J’ dx%(’i)] (n2+ a’)z—l’l2 .

2n(n’+ a)
a(x)

(AB)n:Bn[

A=A,
1 1 1 In this equation we have introduced as given by the
:[__ngt_l'_Bﬁ_l'_Bn(Bext_ Bn)} J dx f dt—  expression 1hac/2e?)[k??Ko(kn)/2mr—1], which  in-
8m 8m 4 creases with a decrease in the impurity density. This result
(Buy—B,)? would clearly express the QHE stability if there are no alter-
_ MJ dxf dt. native states of the system showing less energy.
8 The plateaus predicted by the above expression have been

Recalling that, as shown in Appendix A, the energy density i$$hown in Fig. 3 for successively increasing values of the
minus this expression per unit time and volume, and takingluantity a. It is seen that the plateaus become wider as the
into account the contributiol¥(Be,y) from the electron sec-
tor, whose derivation is sketched in Appendix(§2e also
Ref. 9, given by Eq.(C2) and shown as the thick line in Fig.

2, the desired energy density for the case of complete exter-

nal field penetration is given by 172 +
(Bex— By)? .
Z’{homog{Bext): %"'M(Bext)- (12 Nw? 1l
=%
For the QHE regime to be energetically favorable it is 14 b
clear we must havéloue(Bex) <Unomod Bex) and this is 175 +

equivalent to e r

( kzgzKo(kT]) _ 1) (Bext_ Bn)2
2

6 <UBe). (13 0

The function/(B) is non-negative, so it is easily seen that

the QHE regime is always preferred whenever FIG. 3. Predicted plateaus for increasing values of the quantity
<k~ 1J27/Ko(k7), which means that the Hall conductivity «, which corresponds to a decreasing in the impurity density.
shows a perfect steplike dependence. However, in the limiPhysical parameters are taken as in Ref.i3:4.1x 10! cm ™2,

of a very small¢ the impurities will strongly interact and the a=146 A, and 1£2 is varied in the order of 108 cm™2.
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@mpurity (_jensity increases, which is in agreement with whaftc|assical action a term/dxJ,(x)A,(x). The complete
is found in Ref. 16. We have used the same values for theacuum-vacuum transition amplitud@J] for this theory in
physical parameters as those of the experiments described jjlesence of the sourcés is given by the path integral
Ref. 13: the electron densityn, was fixed at 4.1

X 10tcm ™2, the interplanar distance was taken as 146 A, . .

and the electron effective mass as 0.07 times the free- Z[J]:j [DA]ex 'I[A]+'f AXJL ()AL [

electron mass. The density of impurities was varied in the )
order of 168 cm™2 for obtaining what is shown in Fig. 3. Denoté byiW[J]=InZ[J] the connected vacuum-vacuum
transition amplitude. In the presence of sourggsthe fields

V. CONCLUSIONS A, have vacuum expectation values
It has been illustrated that the electromagnetic response of,3 .\ _ L :

a superlattice of 2DEG free of impurities is able to transform L#(x)— Z[J] [DA]A#(x)exp{H [A]

an added distribution of impurities or defects in a set of

charge reservoirs. The excess charge over that required by an +iJ dxJ,(x)A (x)} _

integral filling of Landau levels is then accumulated in the " "

impurities. It can be understood from the present analysisrhe quantum effective action is defined as the Legendre

that it is the dynamically acquired capacity of accumulating,[ransform ofW[J1:

charge of the impurities the main element to account for this '

effect.

A next important step of the present study would be to F[A]=W[JA]—f deﬁ(x)AM(x), (A1)

investigate a similar model but in the case of planar samples.

Analogous results can be expected in this case. The ma'whereJﬁ are the sources which correspond to fields expec-

additional complication seems to be the determination of theation valuesA ,, and obviously satisfy

fields associated with a single defect, since for that situation

these fields spray out in the 3D space. SWI[JIA
An additional task for this planar case, would be the in- 570 =A,(X).

clusion of the temperature. We expect this study to provide a w

foundation of the successful phenomenological model of Infrom these expressions it can be shown tk,l};usolve

graham and Wilke$’ In addition, the present discussion can

also be viewed as giving a microscopic explanation of the ST[AY]

model of Toyodeet al® These authors assumed the existence PN

of a kind of particle reservoir being in equilibrium with the SAL(X)

2DEG and with a limited capacity to account for the plateaunormally, the sourced,, are ficticious and the equations of

widths found in experiments. The fact that the total energynotion are given by gq(AZ) with J =0. We see thal’

(11) becomes greater than the energy of the homer”em{ﬂays the fée of the action, in the sense that solutions are

magnetic field distribution can be expected to play the role otygse that minimizd”, but with quantum corrections taken
the limiting capacity stopping the particle accumulation andintg account.

1 6z[3]  SWJ]
iZ[J] 83, (x) &3,

7

—J,(x). (A2)

accounting for the plateau widths. If the sourcesJ,, are actually present, it can be defined the
field a,(x) over the background field soluticm;(x) and an
ACKNOWLEDGMENTS effective action
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which satisfies

- sIa]
APPENDIX A: EFFECTIVE ACTION OVER A F[a]|a:°:5a—(><)
BACKGROUND FIELD AND ITS INTERPRETATION IN M

TERMS OF ENERGY DENSITY

a=0

Let us show now the connection between the effective
In the following we include, for the more interested action and the energy denstf/Suppose a currerit, (x) is
reader, the standard definition of the effective action in fieldturned on adiabatically from zero &t —, and remains at
theory and its energetic interpretation. For more details sea constant valugZ,(x) for a large timeT, and finally goes to
Ref. 18. zero smoothly as—co. In this process the system goes from
Consider a field theory with elementary fieldg(x) and  the vacuum to a state with ener@y 7]—which is a func-
classical actiori[A]. Introduce external sourcek,(x) and  tional of 7(x)—and then again to the vacuum. The ampli-
couple them to the fields of the theory by adding to thetude of transitionZ[J], which is the overlap between the
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initial and final vacuum state vectors, is given by the phase oy 19 Xe
exp(—iE[7]T), which is equivalent to state VXB=4m—_—EXn+ - —|E+dn—P-E|, (B3
W[J]=—-E[J]T. (A4)
: . 1
The fact that the system in presence of the souwftg) is VXE+ — iB:O, (B4)
in a state with energi[ 7], which is reasonable to assume is cat
the state with lower energy, implies that in this state
V-B=0, (B5)

H—fdxj X)A (x)=E[ 7],
(H) WOAL0=ELT] whereP is the projector “on the 2DEG” dyadic 3D tensor,

where H is the Hamiltonian of the system in absence ofthe spatial part of Eq2), andn is a unit vector normal to the

sources and(H) its expectation value. But it is easily Plane.

checked this is the very equation that would be obtained Eduations(B4) and (BS) are analogues of the vacuum

from minimizing the expectation value of the Hamiltonien equations for F_a_lraday induction and the absence of magnetic

with the constraints that the state be normalized and field§harge. In addition, in Eq¢B2) and (B4), the x.-dependent

A, have stationary expectation valugs(x), upon which terms show that the electron gas behaves as a dielectric sur-

Ef.ﬂ and 7,(x) play the role of Lagrange multipliers, re- face which polarizes itself linearly only due to the tangential

spectively. 6Iearly, for this to occu should be fixed to the c0mPonents of the electric field. The Hall currents appear

sourceJ” necessary for producing the field now explicitly in the right-hand sidéRHS) of Eq. (B4). The
Using now Eq.(A4) and recalling the definition of the only unusual contribution is the magnetic field dependent

effective action(A1) we obtain charge density appearing in the RHS of E§2). However,
as mentioned above, and discussed in Ref. 19, this term

1 arises from the general condition of charge conservation.
(Hy=— TW[JA]+f dxjﬁ(x)AM(x) Therefore, its presence should not be considered as an un-
usual outcome. Rather, such charge densities are determined
1 1 by assuming the existence of a Hall conductivity in a planar
== f[W[JA]—f dXJﬁ(X)AM(X)} =—7ITAL medium. This fact will be discussed below.
In the set of equation$B2)—(B5), let us substitute the
Dividing by the volume we obtain the energy density. So,Magnetic lﬂ,ﬁld dependent charge density by an undefined
we conclude that minus the effective action per unit time andunction p™=". All the other terms remain unaltered. After
volume, evaluated in a given stationary field configuration,king the divergence of EqB4), and adding the result to
equals the minimum of the energy density among all theEd- (BZ),.the' following conservation conditions fol!qw for
states which are consistent with this stationary field expectdn® Polarization and for the Hall currents and densities
tion configuration.
From this interpretation and the definition and properties d
i ] _ ] —(pHaI|+pp0|)+V-(JHall+ Jpol):O,
of the effective action over a backgrouhgla], it should be at
clear that minug'[a] per unit time and volume, evaluated in
a stationary configuratioa, (x) equals the energy density to

produce this static deformation with respect to the configu-
rationa,=0.

__ Hall . qHall_
—ptle v anel=o. (B6)

After substituting in Eq(B6) the expressiori4) for the

APPENDIX B: 2D HALL EFFECT RESPONSE ALWAYS .
Hall current, it follows that

DESCRIBED BY THE TOPOLOGICAL
CHERN-SIMONS ACTION

vl My (Exny=— 0. (VxE)= =

a a at

ﬂn.B).
ca
(B7)

The set of equationg§l) can be translated into a more 2P
physically appealing representation by expressing them in
terms of the electric and magnetic field intensities

Ei=i(da9— dod;), This relation shows that the unknown quantip/™"
should differ by a time independent function from the mag-
B,= eiik(;j ay. (B1) netic field dependent charge density that appears ifEz).
Then, after assuming that before any perturbatias, for
Using these relations and the gauge conditi®na=0 and  example, incoming wavéghe charge densities vanished, it
n-a=0, Egs.(1) can be written in the following form: follows that the magnetic field dependent surface charge den-
sities(and then the whole Chern-Simons structure of the Hall
current four-vector is implied by the existence of a Hall

v conductivity.

g
E+47T§]P~E)=47T?HH~B, (B2)
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APPENDIX C: DERIVATION OF U(B) with B;=nghc/e the field value for whichw=1.
. . . . If we have now several parallel 2D systems, placed at a
Consider a system of 2D noninteracting electrons in ad f h oth h d |
erpendicular magnetic fiel.,;. The energy levels of this istancea from each other, the energy density per unit vol-
P ext: ume is clearly given by the last expression dividedaby
system are the well-known Landau levels

sn=(n+E hac, neh? —[VI([v]+ )| == Bex +(2[y]+1)—ext
2 4mma
wherew,= eBg,/Mmc is the cyclotronic frequency. Each one (C1)
of these levels have a degeneracye®,.,;/hc per unit area,
so the filling factor of Landau levels is given by This expression, evaluated at an integral-filling figlg,
h =B,, has the value2h?/4mmairrespective oh. As we are
= NeNC interested in energy differences with respect to the integral
€Bext’ filling situation we subtract this background from the last

with n, the electron density. This means that the flrsi expression to obtain the desired contribution to the energy

Ievels are completely occupied and the rest of the electrond€NSity
—[v]eBs/hc per unit area, are occupying the

([v]+ 1)-th one. Herg v] denotes the integer part of The ext 2 Bext
energy per unit area is obviously given by UBex) =Uo) —[vI([v]+1)| = | +](2[v]+ 1)—— 1
eB,
(C2)

n2h2 0" a7ma’
i { [vI([v]+1)

ext

By

+(2[V]+ 1) —e“]
This function is shown as the thick line in Fig. 2.
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