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Relaxation of a kinetic hole due to carrier-carrier scattering in multisubband
single-quantum-well semiconductors
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We describe a theoretical model for carrier-carrier scattering in an inverted semiconductor quantum well
structure using a multisubband diagram. The model includes all possible nonvanishing interaction terms within
the static screening approximation, and it enables one to calculate accurately the temporal evolution of the
carrier densities and the gain following a perturbation by a short optical pulse. We present a theoretical
formalism and detailed numerical calculations. The addition of more than one subband in each band as well as
the use of all exchange terms yields several results. First, the degree of gain saturation is reduced while, at the
same time, the recovery is faster as scattering events among different subbands take place. Also, carrier transfer
between subbands is observed which modifies the overall carrier dynamics.
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I. INTRODUCTION

The ultrafast carrier dynamics in inverted semiconduct
has long been a research topic with implications in applied
well as basic semiconductor physics. Carrier dynamics
commonly investigated by assuming an inverted semic
ductor quantum structure gain medium driven at high car
densities~typical of lasers and optical amplifiers! which is
perturbed by a short optical pulse which causes a spe
hole. Dynamical details are studied then by calculating
evolution of this kinetic hole. Two main theoretical a
proaches applicable far from equilibrium are common
used. The first is the nonequilibrium Green’s function theo
using for example the time-loopS-matrix method1–4 and the
second is the density matrix theory.5–8

This paper extends ultrafast carrier dynamics mod
which address the sub-1-ps time scale where carrier-ca
~c-c! scattering is the dominant mechanism. We analyz
separate confinement heterostructure~SCH! quantum well
with multiple parabolic subbands in each band using the d
sity matrix formalism while considering all possible nonv
nishing Coulomb scattering events within the multip
subband system. A schematic description of some of
scattering possibilities including electron-electron, hole-ho
and electron-hole scattering is shown in Fig. 1.

The new general coupled equation model is accompa
by extensive numerical calculations which shed light on
sues not previously observed. We demonstrate that the
netic hole recovery is measurably faster in the multisubb
case when compared to the conventional single-subband
malism. Moreover, the degree of phase filling factor satu
tion ~which is directly related to gain saturation! is reduced
in the multisubband case, as is the maximum absolute v
of the polarization. Both these effects stem from Coulo
c-c scattering events involving the second subband. The
culation also yield the time evolution of the second subba
distribution which clearly shows its contribution to the ove
all recovery. The results obtained from the calculations
important in two ways. The addition of a second subba
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clearly leads to a more accurate description of this wid
researched problem and, at the same time, the moderatio
the role played by spectral hole burning has an import
practical impact on the gain nonlinearity of quantum w
~QW! lasers and amplifiers and hence on their modulat
and switching capabilities.

Screening in a multisubband system is difficult to tre
since the random phase approximation~RPA! results in a
dielectric matrix which must be inverted to calculate t
screened potential.9 Rather than following this method, w
have used the following procedure. For each specific se
subbands, we introduced the Yukawa potential~long wave-
length static limit! with the inverse screening length corr
sponding to a two-dimensional~2D! gas with an equivalen
density. This procedure is similar to the one described
Goodnick and Lugli.10 The simulations assume initial qua
sithermal equilibrium followed by a perturbing pulse whic
removes less than 10% of the carriers. Under those co
tions, we assume that the deviation from the static limit d
to dynamical screening is not important.

The general formalism we present is more elaborate t
most of the numerous publications in the field. Before it
described and solved, we review briefly the relevant lite
ture. Early numerical results for c-c in a highly excited sem
conductor are found in the work of Binderet al.11 This cal-

FIG. 1. Schematic diagrams of direct scattering in a multis
band system. Left: three examples of diagonal scattering where
riers are scattered within subbands. Right: two examples of no
agonal scattering where carriers change subband.
©2003 The American Physical Society08-1
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culation starts from perturbed electron and hole plasma
bulk semiconductor optical amplifier and yields the evoluti
of both plasma with the screening treated in the dynam
RPA model. The polarization determines the initial perturb
tion but is not otherwise included in the equations. In Ref.
the authors discuss the relaxation time approximation~RTA!,
which makes the calculations far simpler and yet quite ac
rate for the case of small deviations from equilibrium.

Derivation of the semiconductor Bloch equations~SBE’s!
which are the basis for all relevant solutions, is detailed
Ref. 5 for bulk structures using the density matrix formalis
and an analogous derivation with the nonequilibrium Gree
functions is given in Ref. 3. The SBE of a multidimension
nanostructure is described in Ref. 8, and simulations of
electron hole generation rate for bulk semiconductors un
the influence of c-c and carrier-phonon scattering within
static screening limit are given in Ref. 7. The effects of Co
lomb scattering matrix elements in quantum wells are
scribed in Ref. 12, and an analog situation in quantum w
is presented in Ref. 13. The microscopic theory of VCSE
was studied in Ref. 14 using Green function formalism w
only the first subband at each band being considered. A
density matrix formalism for a dynamically screened pote
tial in a three-dimensional electron gas is presented by W
and Fried6 while the general single-particle effective Ham
tonian formalism is found in Ref. 15. A study of c-c scatte
ing within the static screening limit along with the polariz
tion at highly excited bulk semiconductors, where the opti
pulse evolution is derived dynamically, is presented in R
16. The non-Markovian limit which includes energy-time u
certainty and memory effects is described by Ref. 13 i
quantum wire model. A different point of view on c-c sca
tering in cases of optical excitation of moderate carrier d
sities is given in Ref. 17 and in recent publications,18–20

where the screening is built self-consistently throughout
propagation of a pulse by applying the Green formalism
the screened Coulomb potential.

This paper is organized as follows. In the next section
outline the general formalism approach. In Sec. III w
present the theoretical approach based on the density m
theory, along with mathematical aspects of the SBE. In S
IV we present simulation results of the SBE’s, and the c
clusions are given in Sec. V. Appendix A contains a deri
tion of the Coulomb matrix elements in SCH based on
k•p model; also presented are results on the bare and o
static screened Coulomb potential. Appendix B elaborates
the details of the SBE derivation in the density matrix fo
malism. Appendix C handles the scattering rate equati
and elaborates on mathematical-related issues concernin
agonal and nondiagonal scattering as well as direct ve
exchange scattering.

II. GENERAL FORMALISM

In order to formulate a model which is applicable to sem
conductor quantum wells, we use a general notation wherr i
and k represent the free-dimension space vector and
single-particle wave vector, respectively. The confined sta
are localized and are denoted by subband indexl i wherel
24530
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5e,h, with z taken to be the growth~confined! direction.
Before the optical pulse perturbs the system, we assume
system to be in quasithermal equilibrium where the popu
tions of electrons and holes are the Fermi-Dirac distributio
The subsequent dynamics are given by rate equations fo
carrier number expectation values,nei ,k5^aei ,k

† aei ,k& and

nhi ,k5^bhi ,Àk
† bhi ,Àk& and for the dipole expectation valu

pei ,hi ,k5^bhi ,Àkaei ,k&. Hereaei ,k and aei ,k
† are the annihi-

lation and creation operators of a conduction electron i
state given by (ei ,k), andbhi ,k and bhi ,k

† are similarly the

annihilation and creation operators of a valence hole i
state (hi ,k). In the following we shall simply refer tonei ,k

andnhi ,k as subband distributions and topei ,hi ,k as an inter-
subband polarization.

The intersubband polarizations of the kindnei ,ej ,k

5^aei ,k
† aej ,k& are assumed to vanish if there is no drivin

force term in the system Hamiltonian. We also havenei ,k,p

5^aei ,k
† aei ,p&5nei ,kdk,p due to translational symmetry fo

the free directions.
In the following, we will assume that intersubband pola

izations are dominated by the first transition~that is, the op-
tical pulse transition frequency is resonant only for tran
tions between the first conduction and first valence subba
which is a very good approximation for quantum wells!. The
rate equations for the carrier distributions and polarizatio
are derived from the operator equations of motion in
Heisenberg picture. They comprise two parts: denoted co
ent and collisional. The details of the coherent part are d
tated by the noninteracting Hamiltonian, the radiation-ma
interaction~optical pulse!, and by the lowest-order contribu
tion due to the c-c Coulomb interaction which causes ba
gap energy and Rabi frequency renormalizations. It a
gives rise to excitonic effects but these are neglected in
regime of very high carrier densities. For the radiation-ma
interaction we consider only induced transitions so that sp
taneous emission is neglected. The collisional part of
equations is governed by higher-order contributions of
c-c Coulomb interaction which give rise to relaxation pr
cesses that drive the particle population towards ther
equilibrium. Such relaxation processes~c-c scattering! are
divided into particle-conserving processes such as intras
band thermalization and intraband impact ionization and
non-particle-conserving processes caused by Coulo
-nduced transitions such as Auger recombination and in
band impact ionization. The nonconserving processes ca
neglected due to their small effect in the time scales wh
the particle conservation processes make consider
changes in the plasma. The most general formalism takes
form

d

dt
na,p5

d

dt
na,pUcoh1

d

dt
na,pU

col

, ~1!

d

dt
pp5

d

dt
ppUcoh1

d

dt
ppU

col

, ~2!
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and is also suitable when the Green function notation is
ployed. The explicit form is the SBE set. In the model w
present, these equations have a similar form to those give
Ref. 8 except that it includes exchange scattering proce
in the collisional part and it neglects all intrasubband pol
izations as well as contributions to interband polarizat
from other than the first transition.

III. THEORETICAL MODEL

In the following analysis, we use the density matrix a
proach along with the second-quantization21 ~SQ! represen-
tation ~Fock representation!. The system Hamiltonian which
includes noninteracting, radiation-matter interaction a
at
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n
m
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n
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Coulomb interaction terms is calculated in the SQ repres
tation using standard techniques:

H5HNI1Hrad-mat1HC ,

HNI5 (
k,ei ,hi

~«ei ,kaei ,k
† aei ,k1«hi ,kbhi ,k

† bhi ,k!, ~3!

Hrad-mat52(
k

@E~ t !•mkae1 ,k
† bh1 ,2k

†

1E* ~ t !•mk* bh1 ,2kae1 ,k#, ~4!
HC5 (
k,k8,q

F2 (
ei8 ,hj8 ,hj ,ei

Vq~ei8 ,hj8 ;hj ,ei !ae
i8 ,k1q

†
bh

j8 ,k82q
†

bhj ,k8aei ,k

1
1

2 S (
el8 ,ei8 ,ei ,el

Vq~el8 ,ei8 ;ei ,el !ae
l8 ,k1q

†
ae

i8 ,k82q
†

aei ,k8ael ,k1 (
hl8 ,hj8 ,hj ,hl

Vq~hl8 ,hj8 ;hj ,hl !bh
l8 ,k1q

†
bh

j8 ,k82q
†

bhj ,k8bhl ,kD G ,

~5!
r-
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where «l i ,k denotes the single-particle energy in the st

(l i ,k), E(t) is the electric field of the optical pulse, andmk
is the dipole matrix element.Vq(l i ,l j ;l l ,lm) denotes the
bare Coulomb matrix element, describing the c-c scatte
process of two particles from subbandsl l ,lm to subband
l i ,l j , with q transferred momentum. Functional derivatio
and discussion of the bare and static screened Coulomb
trix elements in heterostructures is given in Appendix A.

A. Semiconductor Bloch equations

A detailed derivation of the SBE’s in nanostructures un
our approximations is given in Appendix B. A compact fo
mulation of the results comprises three rate equations:
for the electron and hole distributions in a specific subba
and one for the interband polarizations induced by the opt
transitions,pk[pe1 ,h1 ,k

d

dt
nei ,p5

d

dt
nei ,pucol1 i @Vppp* 2Vp* pp#dei ,e1

, ~6!

d

dt
nhi ,p5

d

dt
nhi ,pucol1 i @Vppp* 2Vp* pp#dhi ,h1

, ~7!

d

dt
pp5

d

dt
ppucol2 ivppp1 iVp@12nh1 ,p2ne1 ,p#, ~8!

vp5
1

\
~«e1 ,p1«h1 ,p!

2(
q

Vq~e1 ,h1 ;h1 ,e1!~ne1 ,p¿q1nh1 ,p¿q!, ~9!
e

g

a-

r

o
d
al

Vp5
E~ t !•mp

\
1

1

\ (
q

Vq~e1 ,h1 ;h1 ,e1!pp¿q , ~10!

wherevp , andVp denote, respectively, the first-order reno
malized transition and Rabi frequencies where nondiago
Coulomb contributions to the renormalized frequencies w
neglected due to their relative small effect compared with
diagonal contributions. Equations~6!–~10! are the SBE’s for
the interacting particles model. Taking the Coulomb ter
Vq(•••) to be zero gives the SBE’s in the free-carrier mod

The collisional contribution is

d

dt
na i ,pucol5~Ga i ,p

in 1Da i ,p
in,(2)!~12na i ,p!

2~Ga i ,p
out 1Da i ,p

out,(2)!na i ,p

1~Da,p
(1) pp1c.c!da1 ,a i

, ~11!

d

dt
ppucol5(

a1

@2~Ga1 ,p
in 1Ga1 ,p

out !pp1La1 ,p
in,(1)~12na1 ,p!

1La1 ,p
out,(1)na1 ,p1La1 ,p

(2) pp1La1 ,p
(3) #, ~12!

where the superscripts in the brackets of the ratesD andL
refer to the polarization power. For relatively weak optic
pulses the terms involvingD (1), D (2), L (2), and L (3) are
negligible ~these involve the square- and third-power pol
ization!, and the equations become the well-known Bol
mann equations for c-c scattering. In all rate terms, excha
contributions are considered. The sum refers to summa
8-3
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over first conduction and first valence subbands (a1
5e1 ,h1) ~dominant transition!. The explicit form of these
rates is given in Appendix C. Figure 1 displays the dire
scattering terms of theG rates.

B. Numerical aspects

In addition to a detailed physical formalism, the resu
we present below involve considerable computational co
plexities. All computer programs used to solve the SB
were written in C11 and can be described as CP
bounded. A memory-bound program would have consum
memory over and above the RAM limit, which would hav
caused a bottleneck due to frequent disk access. The c
lations were performed using the Origin 2001 at the HP
center in Tel-Aviv. The simulations used 32 dedicated pa
lel SGI CPU’s, each operating at 500 MHz and having
memory size beyond the program needs. A typical simula
ran for 12 days. For illustration, these simulations would r
on a single modern PC for approximately 1 year.

The SBE’s given by Eqs.~6!–~12! were solved for a typi-
cal SCH QW laser amplifier with the following paramete
The total width of the heterostructure was 985 Å, compris
a single In0.25Ga0.75As 85-Å-wide well with 100-Å GaAs
barriers on each side. The rest of the structure compr
Al0.18Ga0.82As on both sides. The temperature was fixed
300 K and strain effects were included. TheE-k diagrams
and the confined wave functions where computed follow
Ref. 22. The particle masses at theG point ~k50! and Cou-
lomb matrix elements were extracted from these data.

me150.03m0 , mh150.055m0 ,

me250.033m0 , mh250.06m0 ,

Ee12Eh151.2312 eV, Eh22Eh150.0379 eV,

Ee22Ee150.0709 eV,

where all of the energies were computed at theG point. The
medium was excited by a 75-fs Gaussian-shaped op
pulse ~the unnormalized Rabi frequency at the peak of
pulseE0•mk /\ was approximately 7.531012 Hz). The fre-
quency of the field was chosen to coincide with the g
region of the first transitione1-h1. The amplifier is assumed
to be thin; namely, we do not consider pulse propagat
effects or any distributed nonlinearities. All simulations co
sider a parabolic band structure.

Any nonparabolic character of the valence subbands
troduces some changes to the relaxation rates, due to d
ences in the density of states. These effects are consider
a separate paper.23 The qualitative impact of c-c scattering i
multisubband structures as treated in this paper rema
however, unchanged even in the cases where the densi
states is modified.

The calculations we present disregarded interf
phonons24 whose scattering rates may, in principle, be co
24530
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parable with those originating from c-c scattering
multiple-quantum-well ~MQW! structures with relatively
narrow wells~;50 Å!.25–27 These calculations do not con
sider screening, however, which tends to decrease the
tering rates.

The heterostructure we consider comprises a single 8
quantum well whose hole wave functions~first and second
subband! and electron wave function~first subband! are
mainly localized at the well center. This results in a po
overlap of carrier and IP envelope functions, which in tu
reduces the rate. Intrasubband scattering rates due to IP
the second conduction subband may be comparable with
c-c time constants under consideration. However, the fi
confinement of electrons in the well, which in the prese
case is of the order of 100 meV, reduces the rate of the la

FIG. 2. Evolution of the first conduction-confined subband d
tribution. Upper solid line denotes the initial distribution2` fs
before the arrival of the pulse peak. Upper dashed line denotes
distribution at240 fs, lower solid line180 fs at which the plasma
is the most perturbed, lower dashed line1250 fs, and middle solid
line 11.2 ps.

FIG. 3. Evolution of the first valence-confined subband dis
bution. Upper solid line denotes the initial distribution2` fs before
the arrival of the pulse peak. Upper dashed line denotes the d
bution at240 fs, lower solid line180 fs at which the plasma is th
most perturbed, lower dashed line1250 fs, and middle solid line
11.2 ps.
8-4
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RELAXATION OF A KINETIC HOLE DUE TO . . . PHYSICAL REVIEW B67, 245308 ~2003!
Intersubband transition rates~analog to nondiagonal scatte
ing! caused by IP’s are negligible in single-quantum-w
structures.

Our first set of simulations considered multisubband pa
bolic energy–wave-vector dispersion. At ‘‘infinite time,’’ be
fore the arrival of the pulse peak, the polarization inside
medium is assumed to be zero throughout and the in
subband distributions are quasithermal Fermi-Dirac distri
tions within the bands. At 300 K and for an exemplary to
carrier density ofN2d;1.331012 cm22, we extracted the
chemical potential at each band and calculated the var
densities which areN2d

e1'0.76N2d , N2d
h1'0.7N2d , N2d

e2

'0.24N2d , andN2d
h2'0.3N2d . The densities of higher sub

bands (e3 , h3 , . . . ) were found to be negligible.
The second set of simulations considered only one s

band within each band and use the same parameters as b
only with densities ofN2d

e1 5N2d
h15N2d51012 cm22.

FIG. 4. Evolution of the second conduction-confined subba
distribution. Upper solid line denotes the initial distribution2` fs
before the arrival of the pulse peak. Dashed line denotes the d
bution at1250 fs, lower solid line11.2 ps.

FIG. 5. Evolution of the second valence-confined subband
tribution. Upper solid line denotes the initial distribution2` fs
before the arrival of the pulse peak. Dashed line denotes the d
bution at1250 fs, lower solid line11.2 ps.
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IV. RESULTS AND DISCUSSION

The following figures show calculated time evolutions
each of the subband distributions, according to Eqs.~6!–
~12!. Figures 2 and 3 describe the behavior of the first s
band in the conduction and valence bands, respectively. E
figure comprises five curves describing the distributions
times the following:2` fs, upper solid line;240 fs, upper
dashed line; 80 fs, lower solid line; 250 fs, lower dashed li
and 1.2 ps, middle solid line. The reference timet50 fs is
taken at the peak of the arriving pulse. Figures 4 and 5
similar but address the evolution of the second subband
each band, which in the present model are assumed no
participate in the optical transition. The distributions of the
subbands are denoted by three curves which refer the foll
ing: to 2` fs, upper solid line; 250 fs, dashed line; 1.2 p
lower solid line.

The interaction with the optical pulse removes carrie
from the gain region at energies below the average part
energy in the plasma. Hence, the plasma heats and
phase filling factor (ne1 ,k1nh1 ,k21) do not relax into their
initial condition but rather into a new, lower value whic
decreases the gain. Figure 6 describes the phase filling fa

d

ri-

s-

ri-

FIG. 6. Phase filling factor at the momentum region where
plasma is most perturbed.

FIG. 7. Normalized total density at the second conductio
confined subband.
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at the momentum region where the plasma is most pertu
~at this figure thet50 fs refers to2150 fs before the peak
arrival!. The increase shown in the figure means that 80
after the peak of the pulse, the effect of the c-c scatter
mechanism already dominates over the effect of the tai
the optical pulse and causes the phase filling factor to
crease. Approximately 500 fs after the pulse peak, the ph
filling factor stabilizes except for a continuous mild increa
which continues due to thermalization processes as well
transfer of particles from the second subbands at each b
to the first. After a significantly longer time, on the order
a few ps, all of the subbands reach new quasi-Fermi-D
distributions at the same temperature. Figure 7 describes
time dependence of the distribution in the second conduc
subband normalized to its initial value. As long as the p

FIG. 8. Evolution of the first conduction-confined subband d
tribution. Upper solid line denotes the initial distribution2` fs
before the arrival of the pulse peak. Upper dashed line denote
distribution at240 fs, lower solid line180 fs at which the plasma
is the most perturbed, lower dashed line1250 fs, and middle solid
line 11.2 ps.

FIG. 9. Evolution of the first valence-confined subband dis
bution. Upper solid line denotes the initial distribution2` fs before
the arrival of the pulse peak. Upper dashed line denotes the d
bution at240 fs, lower solid line180 fs at which the plasma is th
most perturbed, lower dashed line1250 fs, and middle solid line
11.2 ps.
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turbation due to the optical pulse has a stronger effect t
the c-c scattering process, the distribution remains appr
mately constant. At later times, when the c-c scattering p
cess mediates the transfer of particles to the first subband
normalized distribution naturally decreases monotonica
This decrease can be approximated in the RTA asNe2

(t)

.Ne2
(0)exp(2t/t), wheret5300 ps.

The calculation shows that the process transfers 0.4%
the second subband population into the first subband wi
1.2 ps after the pulse peak. For comparison, in the m
perturbed case, the optical pulse removes 7.5% of the
subband population. Using the RTA as before, it would ta
about 20 ps to replenish the original population of the fi
subband.

In order to further highlight the significance of includin
more than one subband in the calculation, we recalcula
the response of the same SCH QW medium with ident
physical parameters (T5300 K, N2d

e1 5N2d
h151012 cm22,

me150.03m0 , mh150.055m0 , Ee12Eh151.2312 eV!,
except that only a single subband was included in e
band.

-

he

-

ri-

FIG. 10. Phase filling factor at the momentum region whe
the plasma is most perturbed in the simulation without the sec
subband.

TABLE I. Final distributions~at 1.2 ps) of Figs. 2–5, 8, and
approximated as Fermi-Dirac distributions. The chemical poten
and temperatures differences between these distributions an
their respective initial distributions are given.

Subband Du (meV) DT ~K!

e1
a 27.1 40

h1
a 26.8 40

e2
a 22.3 20

h2
a 25.1 37

e1
b 28 50

h1
b 27.4 53

aMultisubband simulation.
bSingle subband was included in each band.
8-6
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Figures 8 and 9 exhibit similar curves as in Figs. 2 and
Comparing the the lower dashed lines which denote
subband distribution 250 fs after the arrival of the pu
peak, it is obvious that including the second subband
the calculations yields a significantly faster recovery of
kinetic hole.

Comparing the phase filling factors, Figs. 6 and 10 sh
two clear differences. First, the minimum value reached
to saturation in the multisubband model is higher than
transparency point~where the induced emission and abso
tion are equal!, while in the single-subband model, the sa
ration is sufficiently large to reach the transparency po
Second, the recovery of the phase filling factor is faster in
multisubband model as can be deduced by observation o
shape of the respective curves.

By assuming that the final distributions~at 1.2 ps! of Figs.
2–5, 8, and 9 are given by Fermi-Dirac distributions we ha
extracted the chemical potential and temperature of each
band out of the first and third wave-vector moments~corre-
spond for the total density and energy of each subband!. The
fitting between the approximated Fermi-Dirac distributio
and the final distributions was excellent. The chemical
tential and temperature differences between the initial dis
butions ~at t52` ps) and the extrapolated final distribu
tions are given in Table I. As can be seen from the tab
the perturbed subbands (e1 and h1) of the multisubband
simulation reach a lower temperature than in the sec
simulation where only one subband at each band was
sidered~340 K versus 350 K!, the respective chemical po
tentials are also less perturbed. An additional interesting
ture is that due to the fact that in this specific conside
example the diagonal Coulomb matrix element of the sec
conduction subband is relatively weaker than the other s
band diagonal elements~see Appendix A!, the e2 subband
was less perturbed than the other subbands, which ca
seen from the smaller deviation of the chemical potential
temperature. We have not taken carrier-phonon interact
into account, which would have relaxed the carrier tempe
ture to the lattice temperature within a relaxation time of
order 0.6 ps.

One more aspect of the improvement gained in calcu
ing the recovery of a spectral hole with the multisubba
formalism is shown in Fig. 11. The figure compares the ti
evolution of the absolute value of the polarization at t
momentum region where the plasma is most perturbed
culated with one and with two subbands. The dashed l
which denotes the single-subband case, reaches higher v
than the corresponding multisubband case. Coulomb sca
ing which involves higher subbands adds a contribution
the thermalization of the first subbands moderating the
crease in the value of the polarization. Consequently,
dephasing is stronger.

Considering a simple phenomenological model witho
high-order polarization terms in the collisional part and p
larization transfer of linear terms, the polarization dephas
is given by15
24530
.
e

n
e

e
e
-
-
t.
e
he

e
b-

-
i-

,

d
n-

a-
d
d

b-

be
d
ns
-

e

t-
d
e

l-
e,
ues
er-
o
-
e

t
-
g

dna1 ,k

dt
ucol5Ga1 ,k

in ~12na1 ,k!2Ga1 ,k
out na1 ,k , ~13a!

dpk

dt
ucol52gkpk , ~13b!

gk5Ge1 ,k
in 1Ge1 ,k

out 1Gh1 ,k
in 1Gh1 ,k

out , ~13c!

where theG are the same as in Appendix C. The dephasi
which is responsible for the decay of the polarization as w
as for its suppression during the polarization buildup,
clearly stronger in the multisubband case which implies t
its G rates are stronger, where these terms are directly ca
by the c-c Coulomb scattering.

V. CONCLUSIONS

This paper described a detailed calculation of the c-c s
tering contribution to a spectral hole recovery in a roo
temperature inverted QW gain medium under the parab
band assumption and using the density matrix formalis
The calculations were performed for the high-injection
gime typical of semiconductor optical amplifiers. The ma
contribution of this paper is the inclusion of two subbands
each band while maintaining all exchange terms. A gene
formalism and the results of elaborate numerical calculati
have been presented. The addition of a second subban
each band has a significant influence on several asp
First, the recovery of the kinetic hole is measurably faste
the multisubband case when compared to the conventi
single-subband formalism. Moreover, following a perturbi
optical pulse in the multisubband case, the degree of sat
tion of the phase filling factor~which is directly related to the
gain! is reduced as is the maximum absolute value of
polarization, both due to Coulomb c-c scattering events
volving the second subband. The calculation also yields
time evolution of the second subband distribution whi
clearly shows its contribution to the overall recovery. T

FIG. 11. The absolute value of the polarization vs time. T
polarization considered here is extracted from the momentum
gion where the plasma is most perturbed. The lower solid line
notes the multisubband case whereas the upper dashed line de
the nonmultisubband case.
8-7
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results obtained from the calculations serve two purpo
Including the second subband clearly leads to a more a
rate description of this widely researched problem and, at
same time, the moderation of the role played by spectral h
burning has an important practical impact on the gain n
linearity of QW lasers and amplifiers and hence on th
modulation and switching capabilities.
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APPENDIX A: COULOMB SCATTERING

In the SQ representation, the wave functions are repla
by field creation and annihilation operatorsC†(r ) andC~r !.
Using the mode representation in the electron-hole pict
the annihilation operator can be written as

C~r ,t !5 (
ei ,hj ,k

Fei ,k~r i ,z!aei ,k~ t !1Fhj ,k~r i ,z!bhj ,k
† ~ t !,

~A1!

where the general form of the wave function is given by

Fl l ,k~r i ,z!5
1

AA
(

n
eik•r ifk,n

l l ~z!uk,n~r !. ~A2!

Heren denotes the band index,uk,n(r ) is the lattice periodic
Bloch function of bandn, fk,n

l l (z) denotes the confined pa
of the envelope function, andA is the area of the quantum
well. Calculations of the single-particle noninteractingE-k
dispersion curve, as well as the confined part of the enve
function, were made by following thek•p method of Gers-
honi et al.22 They used eight zone center Bloch wav
(uS↓&,uX↓&,uY↓&,uZ↓&,uS↑&,uX↑&,uY↑&,uZ↑&) with the con-
fined part of the envelope given as
24530
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pe

fk,n
lm~z!5

1

A~Lz
(

l 52J

l 51J

Fk,n
lm~ l !ej (2p l /Lz)z. ~A3!

Here Lz denotes the width of the separate confinem
heterostructure, taken to be sufficiently wide to inclu
the tails of bound wave functions. Despite the fact th
each wave function is governed by projections of all eig
Bloch wave functions~valence and conduction! we label the
ei (hj ) if the energy state is above~below! the conduction
~valence! edge.

In order to calculate the Coulomb matrix elements
have used the following approximations. First, the Coulo
potential will have the same functional form throughout t
heterostructure, even thought the dielectric constant va
from one region of the structure to another. This assump
is based on the fact that the variations of the dielec
constant are quite small~i.e., ueb12eb2u!eb1 ,eb2). Second,
the k dependence of the confined part of the envelo
fk,n

l l (z) in the wave function is considered to be we
and can therefore be neglected. This assumption sim
fies the algebra a great deal; we shall use the simpler nota
fn,l l

(z)[fk,n
l l (z). Third, thek dependence of the Bloch pa

uk,n(r i ,z) in the wave function is considered to be weak
the zone center region; therefore, the Bloch functions
calculated at theG point ~k50!. Fourth, except for the Bloch
part in the wave function, the other parts are considered to
constant within the regions of a unit cell, and therefore
integration will be made in two steps: first integration ov
the volume of a unit cell which involves only the Bloc
functions and then throughout the entire volume with t
other parts of the wave functions. Applying the above a
proximations we can calculate Coulomb matrix elements
solving the integral in Eq.~A4!. Going to the right-hand side
~RHS! of Eq. ~A4! requires the substitution of variables an

Bessel function identities:q5ukW22kW28u5ukW12kW18u , andd is
the Kronecker delta function:
Vq~l l8 ,lm8 ;lm ,l l !5 (
n1 ,n2

e2

A2eb

E
0

LzE
0

Lz
dz2dz1E E d2r2d2r1

1

A~rW 22rW 1!21~z22z1!2

3ej [(k1•r12k18•r1)1(k2•r22k28•r2)]fn1 ,l
m8

* ~z1!fn1 ,lm
~z1!fn2 ,l

l8
* ~z2!fn2 ,l l

~z2!

5dk¢11k¢2 ,k¢
181k¢

28

2pe2

ebAq
(

n1 ,n2

E
2Lz

Lz
dz e2quzu E

uzu/2

Lz2uzu/2
dz1fn1 ,l

m8
* S z12

z

2
Dfn1 ,lm

3S z12
z

2
Dfn2 ,l

l8
* S z11

z

2
Dfn2 ,l lS z11

z

2
D , ~A4!
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Vq~l l8 ,lm8 ;lm ,l l !5
4pe2

( Fn ,l8
* ~ j 28!Fn ,l8

* ~ j 18!Fn1 ,lm
~ j 1!Fn2 ,l l

~ j 2!
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Veb j 1 , j 18 , j 2 , j 28 ,
n1 ,n2

2 l 1 m

3

¦

1

q21S pD

Lz
D 2 2

12e2qLz

qLz

Fq22S pD

Lz
D 2G

Fq21S pD

Lz
D 2G2 , D150,

2
12e2qLz

qLz

Fq21S pD1

Lz
D 2

2S pD

Lz
D 2G

Fq21S pD1

Lz
D 2

2S pD

Lz
D 2G2

1S 2pDq

Lz
D 2 , D1Þ0,

~A5!
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whereD5 j 21 j 182 j 12 j 28 andD15 j 22 j 181 j 12 j 28 . HereV
is the volume of integration. It can be seen from the abo
equation that the following identities are valid:

Vq~l j8 ,l i8 ;l i ,l j !5Vq~l i8 ,l j8 ;l j ,l i !5Vq* ~l i ,l j ;l j8 ,l i8!

5Vq* ~l j ,l i ;l i8 ,l j8!. ~A6!

Replacing the bare Coulomb potential@v(r )5e2/ebur u#
in Eq. ~A4! with the Yukawa potential @vs(r )
5(e2/ebur u)e2kur u# where k denotes the inverse screenin
length yields nonanalytical results. Further discussion of
derivation of this potential in the Thomas-Fermi screen
model or in the static limit of the RPA or PPA~plasmon pole
approximation! for cases of 2D and 3D is given in Ref. 2
For the example introduced at the beginning of Sec. III B
have calculated the bare Coulomb matrix elements from
analytic expression~A5!, and the static screened elemen
were numerically computed via Eq.~A4! including the
screening factor exp~2kur u! in the integrand.

FIG. 12. Diagonal bare Coulomb matrix elements vs momen
transfer q. Upper ~lower! solid lines denoteVq

3d (Vq
2d). Upper

dashed curve denotes diagonal matrix element for scattering
tween particles in the subbandse1 ,h1 ,h2. Lower dashed curve is
for scattering involving the second conduction subband.
24530
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Assuming inversion symmetry for our example the on
nonvanishing Coulomb terms are diagonal elements of
form V(a i ,a j ;a j ,a i) or V(a i ,b j ;b j ,a i) where $a,b%
5$e,h% or $h,e%, nondiagonal elements which involve sca
tering within the same band such asV(a i ,a i ;a j ,a j ) or
V(a i ,a j ;a i ,a j ), with a5$e,h% and iÞ j , and also non-
diagonal elements which involve scattering of electrons a
holes such asV(a i ,bm ;bn ,a j ) with $a,b%5$e,h% or $h,e%
and where bothiÞ j and mÞn are satisfied. Terms of the
kind V(a i ,a i ;a i ,am) or V(a i ,bm ;bm ,a l) are negligible.13

Due to the geometry of our example and its physical
rameters, the confined part of the envelope functions~A3! of
the first two valence subbands as well as the first conduc
band are strongly confined to the well region. We can the
fore expect that Coulomb matrix elements for scattering
tween particles in these bands will be closer to the case
pure 2D scattering than matrix elements for scattering t
involves the second conduction band. This is confirmed

e-

FIG. 13. Diagonal static screened Coulomb matrix elements
momentum transfer. Upper~lower! solid curve denotesVs,q

2d (Vs,q
3d ).

Upper dashed curve denotes diagonal matrix element for scatte
between particles in the subbandse1 ,h1 ,h2. Lower dashed curve is
for scattering involving the second conduction subband.
8-9
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Figs. 12 and 13 which display the diagonal bare Coulo
matrix elementsVq and diagonal static screened Coulom
matrix elementsVs,q as a function of transverse momentu
q. The matrix elements are divided by (4p2e2)/(Veb); the
units of the normalized elements are@cm22#. In bulk mate-
rials the bare Coulomb matrix element scales asVq

3d}1/q2

while in a pure 2D system it scales asVq
2d}1/q. The curves

in Fig. 12 for bulk 3D and pure 2D structures are therefo
straight lines~solid! in the double-logarithmic plot. The othe
curves are diagonal elements where the upper dashed c
shows a typical element for bare Coulomb scattering wh
none of the particles are from the subbande2. The lower
dashed curve denotes a typical element wheree2 is involved.
The behavior in the long-wavelength regionq→0 is close to
the purely 2D, while in theq.106 cm21 range, it begins to
tend toward 3D behavior.

FIG. 14. Nondiagonal static screened Coulomb matrix eleme
vs momentum transferq. Upper ~lower! dashed line shows nondi
agonal matrix elements for scattering of valence~conduction! sub-
band carriers. The solid line shows a typical nondiagonal ma
element which comprise a mixture of valence and conduction s
band carriers~see text!.
24530
b

e

rve
re

The screening length used in our calculations was take
bek52.53106 cm21, which is consistent with a 2D carrie
density of 1012 cm22. In Fig. 13 the screened Coulomb sca
tering therefore shows a behavior similar to the bare C
lomb scattering forq.106 cm21 but the elements approac
constants forq well below 106 cm21.

The diagonal elements give rise to thermalization with
the subbands; these processes do not change the numb
particles within the subband.

In our example the nondiagonal matrix elements were
vided into the three groups shown in Fig. 14 for the sta
screened Coulomb potential. The upper dashed curve sh
V(hm ,hn ;hm ,hn) or V(hm ,hm ;hn ,hn), the solid line is
V(hm ,ei ;ej ,hn) or V(ei ,hn ;hm ,ej ), and the lower dashed
line showsV(ej ,ei ;ej ,ei) or V(ei ,ei ;ej ,ej ). In all cases
both iÞ j and mÞn. The direct or exchange nondiagon
elements are responsible to a net exchange of carriers
tween the subbands, hence causing the occupation of
subbands to change. The diagonal elements of Fig. 13
seen to be about an order of magnitude larger than the n
diagonal elements of Fig. 14.

APPENDIX B: DERIVATION OF THE SBE’s

The dynamics of the expectation values of the operatoO
may reside in the density operatorr or in the operatorO
itself, depending on whether we work in the Schro¨dinger or
the Heisenberg picture, respectively. In this work the Heis
berg picture is used, and the dynamic equations are give

Ȯ5
i

\
@H,O#. ~B1!

Taking the system Hamiltonian as the sum of Eqs.~3!, ~4!,
and ~5!, using fermion anticommutation relations, and som
index manipulations leads to the rate equations for the
pectation valuesnei ,p , nhi ,p for the electron and hole num

bers and for the dipole expectation valuepp :

ts

x
b-
d

dt
nei ,p52

1

i\
^@H,aei ,p

† aei ,p#&5
1

i\
@2E~ t !•~mppp* 2mp* pp!#dei ,e1

1
1

i\ (
em ,k8,q

F (
hj8 ,hj

Vq~em ,hj8 ;hj ,ei !

3^aem ,p¿q
† aei ,pbh

j8 ,Àk8Àq
†

bhj ,Àk8&2Vq~ei ,hj8 ;hj ,em!^aei ,p
† aem ,p¿qbh

j8 ,Àk8Àq
†

bhj ,Àk8&

1 (
ej8 ,ej

Vq~ej8 ,ei ;em ,ej !^aei ,p
† ae

j8 ,k82q
†

aej ,k8aem ,pÀq&2Vq~ej8 ,em ;ei ,ej !^aem ,p¿q
† ae

j8 ,k82q
†

aej ,k8aei ,p&G , ~B2!

d

dt
nhi ,p52

1

i\
^@H,bhi ,Àp

† bhi ,Àp#&5
1

i\
@2E~ t !•~mppp* 2mp* pp!#dhi ,h1

1
1

i\ (
hm ,k8,q

F (
hj8 ,hj

Vq~hj8 ,hi ;hm ,hj !^bhi ,2p
† bh

j8 ,2k81q
†

bhj ,2k8bhm ,2p2q&2Vq~hj8 ,hm ;hi ,hj !

3^bhm ,2p2q
† bh

j8 ,2k81q
†

bhj ,2k8bhi ,Àp&1 (
ej8 ,ej

Vq~hm ,ej8 ;ej ,hi !^bhm ,2p2q
† bhi ,2pae

j8 ,k81q
†

aej ,k8&

2Vq~hi ,ej8 ;ej ,hm!^bhi ,2p
† bhm ,2p2qae

j8 ,k82q
†

aej ,k8&G , ~B3!
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d

dt
pp52

1

i\
^@H,bh1 ,Àpae1 ,p#&5

1

i\ F ~«e1 ,p1«h1 ,p!pp1E~ t !•mpg~nh1 ,p1ne1 ,p21!1(
q

Vq~e1 ,h1 ;h1 ,e1!^pe1 ,h1 ,pÀq&G
1

1

i\ (
k8,q

F (
hj8 ,hj ,em

Vq~e1 ,hj8 ;hj ,em!^bh
j8 ,Àk8¿q

†
bhj ,Àk8aem ,p¿qbh1 ,Àp&1 (

ej8 ,hj ,em

Vq~ej8 ,h1 ;hj ,em!

3^ae
j8 ,k81q

†
bhj ,Àp¿qaem ,k8ae1 ,p&2 (

hj8 ,hj ,hm

Vq~hj8 ,h1 ;hj ,hm!^bh
j8 ,Àk8Àq

†
bhj ,ÀpÀqbhm ,Àk8ae1 ,p&

2 (
ej8 ,ej ,em

Vq~ej8 ,e1 ;ej ,em!^ae
j8 ,k81q

†
aej ,p¿qaem ,k8bh1 ,Àp&G . ~B4!
a
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The three expectation valuesnei ,p , nhi ,p , and pp are two-
operator expectation values, and their rate equations
given in terms of four-operator expectation values. By us
Eq. ~B1! on the four-operator expectation values we get r
equations given in terms of six-operator expectation valu
Continuing the iteration gives an infinite hierarchy
coupled equations, known as the BBGYK hierarchy. The
of equations may be truncated by nullifying the correla
part of the 2(N11)-operator expectation value in the ra
equations for the 2N-operator expectation values. For th
two-operator rate equations, this yields the SBE in the fr
carrier model. For the four-operator expectation values
gives the SBE’s in the interacting carrier model along w
the collision equations. Each expectation value of a 2N op-
erator can be decomposed into all possible products of
pectation values of lower-order operators plus a contribu
from the correlated part of the 2N operator which cannot be
expressed as product of lower-order terms~this is the well-
known Wick theorem4,29!.

Since we are interested in the spectral hole burning eff
it is necessary to evaluate the four-operator correlations.
this case the six-operator correlations are neglected. It ca
done by using the Hartree-Fock factorization method,
which the first-order contribution of the expectation value
a 2N-operator expectation value is given by all possible
pectation value products of two-operator expectation valu
For example, the third four-operator expectation value in
~B2! yields

^aei ,p
† ae

j8 ,k82q
†

aej ,k8aem ,pÀq&

52nei ,pnem ,pÀqdp,k8dei ,ej
de

j8 ,em

1d^aei ,p
† ae

j8 ,k82q
†

aej ,k8aem ,pÀq&, ~B5!

where the first term is the Hartree-Fock factorization proc
contribution and the lastd term is the four-operator correla
tion ~neglectingdq,0 terms due to charge neutrality!. Repeat-
ing this procedure for all of the four-operator expectati
24530
re
g
e
s.

t
d

-
it

x-
n

t,
or
be
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f
-
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.

s

values in Eqs.~B2!–~B4! and after some algebra and inde
manipulations, we get the set of equations given by E
~6!–~10!.

In order to write explicit terms for the collision parts o
the SBE’s~11! and ~12! , we need to write the equations o
the four-operator correlation term@the last d term in Eq.
~B5!#, for each correlation in Eqs.~B2!–~B4!. In the next
step, keeping only the Hartree-Fock factored terms and
placing the bare Coulomb potential with the screened po
tial we get the Eqs.~11! and~12! . Following this procedure,
we find the asymptotic limitt→` of the quantum kinetic
equation for the four-operator correlation equation, in wh
we assume that the relaxation time of the correlation par
short compared with that of the single-particle~Bogoliubov
approximation6,30!. Using this procedure, we get relaxed co
relation functions determined in terms of nonequilibriu
two-operator expectation values, which yields a scatter
integral along with the screened potential.

APPENDIX C: COLLISION RATES

In the following scattering rate terms, ifa denotes the
conduction band, thenb denotes the valence band and vi
versa. One can get the outscattering rate termsXl,p

out by re-
placingnl,p↔12nl,p in Eqs. ~C3!, ~C4!, and ~C6!. Before
writing the explicit form of the rate terms in Eqs.~11! and
~12!, we introduce the following two Coulomb matrix ele
ments:

Ṽk,p,q
1 ~l j ,lm;ln ,l i !

5Vs,q~l j ,lm ;ln ,l i !2Vs,uk2p2qu~l j ,lm ;l i ,ln!,

~C1!

Ṽk,p,q
2 ~l j ,lm;ln ,l i !

5Vs,q* ~l j ,lm;ln ,l i !•Ṽk,p,q
1 ~l j ,lm;ln ,l i !, ~C2!
8-11
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Ga i ,p
in 5

2p

\ (
k,q,a j

F (
an ,am

d~«a j ,p1q1«am ,k2q2«an ,k2«a i ,p!•@Ṽk,p,q
2 ~a j ,am;an ,a i !#•@~12nan ,k!•nam ,k2q•na j ,p1q#

1 (
bn ,bm

d~«a j ,p1q2«bn ,k2q1«bm ,k2«a i ,p!@ uVs,q~a j ,bm ;bn ,a i !u2
•~12nbn ,k2q!•nbm ,k•na j ,p1q#G , ~C3!

Da i ,p
in,(2)5

2p

\ (
k,q,a j

$@d~«a j ,p1q1«a1 ,k2q2«a1 ,k2«a i ,p!•na j ,p1q1d~«a j ,p1q2«b1 ,k2q1«b1 ,k

2«a i ,p!•na j ,p1q#•@Vs,q* ~a j ,b1 ;b1 ,a i !•Ṽk,p,q
1 ~a j ,a1;a1 ,a i !•pk2q* •pk1c.c.#%2

p

\ (
k,q,b j

$d~«a j ,p1q2«b1 ,k2q

1«b j ,k2«a i ,p!•nb j ,k•@Vs,q* ~a1 ,b j ;b1 ,a i !•Vs,uk2p2qu~a1 ,b j ;b1 ,a i !•pk2q* •pp1q1c.c.#%, ~C4!

Da,p
(1) 5

p

\ (
k,q

F (
am ,an

@d~«a1 ,p1q1«am ,k2q2«an ,k2«a1 ,p!•~nan ,k

2nam ,k2q!#•@Vs,q* ~am ,b1 ;b1 ,an!•Ṽk,p,q
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Each of these collision integral expressions~G,D,L! denotes
a rate which is computed via a discrete summation over s
bands and three integrations. For eachp the integration is
held overq, over the angle betweenp andq ~w!, and overk.
In the Markovian approximation, the angle betweenk andq
~f! is determined by the energy Diracd function. There are,
however, subtle cases where the integrand diverges, suc
longitudinal scattering at diagonal elements (k•q56kq);
these divergences can be removed by variable manipulat
which change the limits of thek integration. These limits are
different for diagonal scattering and nondiagonal scatter
due to the different subband mass considered in our exam
There are two possiblef angles for eachk (fk and 2p
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