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Kondo effect in coupled quantum dots: A noncrossing approximation study
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The out-of-equilibrium transport properties of a double quantum dot system in the Kondo regime are studied
theoretically by means of a two-impurity Anderson Hamiltonian with interimpurity hopping. The Hamiltonian,
formulated in slave-boson language, is solved by means of a generalization of the noncrossing approximation
~NCA! to the present problem. We provide benchmark calculations of the predictions of the NCA for the linear
and nonlinear transport properties of coupled quantum dots in the Kondo regime. We give a series of predic-
tions that can be observed experimentally in linear and nonlinear transport measurements through coupled
quantum dots. Importantly, it is demonstrated that measurements of the differential conductanceG5dI/dV, for
the appropriate values of voltages and interdot tunneling couplings, can give a direct observation of the
coherent superposition between the many-body Kondo states of each dot. This coherence can be also detected
in the linear transport through the system: the curve linear conductance vs temperature is nonmonotonic, with
a maximum at a temperatureT* characterizing quantum coherence between both the Kondo states.

DOI: 10.1103/PhysRevB.67.245307 PACS number~s!: 73.63.Kv, 72.15.Qm, 73.23.Hk
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I. INTRODUCTION

The recent observations of Kondo physics in t
electronic-transport properties of quantum dots~QD’s!,1–5 a
tiny semiconductor box containing a few interactin
electrons,6 have opened new promising directions for expe
mental and theoretical research of this phenomenon, on
the paradigms in condensed-matter physics.

The Kondo effect appears in dilute alloys containing
calized moments as a crossover from weak to strong c
pling between itinerant electrons of the host nonmagn
metal and the unpaired localized electron of the magn
impurity as the temperature~T! is reduced well below the
Kondo temperature (TK).7 Due to spin-exchange interaction
a many-body spin singlet state is formed between the
paired localized electron and the itinerant electrons with
ergies close to the Fermi energy of the metal.8,9 This singlet
is reflected in the density of states~DOS! of the impurity as
a narrow peak at low frequencies: the Abrikosov-Suhl
Kondo resonance. This effect leads to many remarka
properties and has been the subject of extensive researc
decades.7

In recent years, spectacular advances in nanotechno
have made it possible to experimentally study Kondo phys
in quantum dots.1–5 These truly impressive experiments co
firm early theoretical predictions that transport through qu
tum dots in the Coulomb blockade regime should exh
Kondo physics at low enough temperatures.10 QD’s provide
the intriguing opportunity to control and modify the Kond
effect experimentally: the continuous tuning of the relev
parameters governing the Kondo effect7 as well as the pos
sibility of studying Kondo physics when the system is driv
out of equilibrium, either by dc~Refs. 11–17! or ac vol-
tages,18–24 pave the way for the study of strongly correlat
electron physics in artificial systems. Moreover, they prov
a unique testing ground in which to investigate the interp
of strongly correlated electron physics, quantum cohere
and nonequilibrium physics. More sophisticated configu
0163-1829/2003/67~24!/245307~20!/$20.00 67 2453
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tions of QD’s in the Kondo regime constitute a growing ar
of intense investigations, both from the theoretical and
perimental sides. Time-dependent Kondo physics,25–28

Kondo physics in integer-spin QD’s,29 or QD’s embedded in
Aharonov-Bohm rings30 are examples of such configura
tions.

The study of Kondo physics in mesoscopic or nanosco
systems is not limited to QD’s. We can mention here t
recent observation of Kondo physics in single atoms31

molecules,32 carbon nanotubes,33 scanning tunneling micros
copy ~STM! experiments of magnetic impurities in quantu
corrals34 or the anomalous energy relaxation in voltag
biased quantum wires and its relation to two-channel Kon
physics.35

In this paper, we will focus on another configuration:
system of two coupled quantum dots in the Kondo regime
view of the recent experimental advances in the study
quantum coherence in coupled quantum dots~DQD!36–39and
the aforementioned studies of Kondo physics in quant
dots, it is a timely question to ask what happens whe
system consisting of two quantum dots in the Kondo regim
coupled to each other by means of a tunneling barrier
driven out of equilibrium, and how the interplay of strong
correlated electron physics, quantum coherence, and
equilibrium physics leads to new physical scenarios. Pre
ous theoretical studies of this problem at equilibrium ha
focused on the aspects of quantum coherence in
system40,41and on the competition between the Kondo effe
and antiferromagnetic coupling generated via exchange41–43

or via capacitive coupling between dots.44 There have hith-
erto been only few attempts to attack this problem in a n
equilibrium situation by means of different techniques: t
equation-of-motion technique,45 the so-called resonant tun
neling approximation46 ~valid for T.TK and equivalent to
the equation-of-motion method of Ref. 12!, and slave-boson
mean-field theory.47,48 Here, we present an approach whic
to the best of our knowledge, tackles with this nonequil
rium problem in a nonperturbative, fully self-consistent, a
©2003 The American Physical Society07-1
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conserving way. Our approach is based on a generalizatio
the so-called ‘‘noncrossing approximation’’~NCA! ~Refs. 49
and 50! to the present problem.

The system of two coupled QD’s can be modeled
means of two Anderson impurities, each of them coupled
a different Fermi sea, and coupled together by means o
interimpurity hopping term. In the atomic limit, each imp
rity can either be emptyu0&, singly occupiedu↑&, u↓& or doubly
occupiedu↑↓&. The operators describing these states and
transitions among them, the Hubbard operators, are ne
fermions nor bosons, which precludes the application
usual perturbation theory~Wick’s theorem does not apply!.
One way of circumventing this difficulty is the auxiliary pa
ticle representation pioneered by Abrikosov, who first rep
sented local spins by pseudofermions,51 and later by Barnes52

and Coleman53 and consists of describing each of the sta
~for each site! as created out of the vacuum from the app
cation of a creation operator~bosonic for u0& and u↑↓& and
fermionic for u↑& andu↓& due to quantum statistics!. Each site
has to be in one of the four states, and this is accomplis
by constraining the number of auxiliary particles to 1. Slav
particle representations allow one to work with usu
quantum-field-theory methods provided one works in
constrained subspace of the Hilbert space where the num
of auxiliary particles is 1. In particular, in the limitU→`
~infinite on-site interaction!, which is the case we shall con
sider in the following, double occupancy is forbidden a
each site can be described by one bosonu0&[b†uvac& and
two fermions u↑&[ f ↑

†uvac&, u↓&[ f ↓
†uvac&. This particular

version of the auxiliary particle representation has be
termed the slave-boson~SB! representation after Coleman.53

Within the SB formulation two nonperturbative ap
proaches can be applied toN-fold degenerate Anderson
impurity models.

~i! The mean-field approximation of the slave-boson fi
~SBMFT!,53,54 only valid for describing spin fluctuations i
the Kondo regime, correctly generates the low-energy s
TK and leads to a local Fermi-liquid behavior at zero te
perature~Fig. 1!. The SBMFT, however, does suffer from
two drawbacks:~a! it leads always to a local Fermi-liquid
behavior, even for multichannel models;~b! The SBMFT has
a phase transition~originating from the breakdown of th

FIG. 1. Schematic diagram of the double-dot system studie
this paper. Each dot is coupled independently to one lead with c
plings GL and GR , respectively,tC is the interdot tunneling term
Note that the role of the interdot term is twofold: first, it genera
quantum coherence between the two quantum dots; second,
tablishes a nonequilibrium situation, that is, when the chemical
tentials are different there is a bias voltage across the systemmL

2mR5eV and, then, a flow of electrical current through th
double-dot system.
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local gauge symmetry of the problem! that separates the low
temperature state from the high-temperature local-mom
regime. This latter problem may be corrected by includi
1/N fluctuations around the mean-field solution.55 The gen-
eralization of the SBMFT to the present problem, tw
coupled quantum dots in a nonequilibrium situation has b
studied in Ref. 47.

~ii ! The NCA ~Refs. 49 and 50! is the lowest-order self-
consistent, fully conserving, andF derivable theory in the
Baym sense.56 It is well known that the NCA fails in describ
ing the low-energy Fermi-liquid regime. Neglect of verte
corrections prevents us from a proper description of lo
energy excitations. Nevertheless, the NCA has proven to g
reliable results for temperatures down to a fraction ofTK .57

The NCA gives better results in multichannel cases, wh
the correct non-Fermi-liquid behavior is obtained.58 None-
theless, Krohaet al.59 have shown in a series of papers tha
is possible to develop systematic corrections to the NCA’sF
functional that cures the low-temperature pathologies of
NCA. These systematic corrections~the so-called ‘‘conserv-
ing T-matrix approximation’’! are able to describe the Ferm
liquid and non-Fermi-liquid regimes on the same footing.
is also possible to formulate the NCA equations for finite60 U
by introducing an extra slave-boson describing double oc
pancy. The correct Kondo scale is obtained by symmetriz
the NCA diagrams with respect to empty and doubly oc
pied local states.61

The generalization of the NCA to time-dependent ph
nomena was developed by Langreth and co-workers in a
ries of papers62,63 ~see also Ref. 64! and later applied to
nonequilibrium transport through quantum dots,12,14,65–67

tunnel junctions and point contacts,68 nonequilibrium dy-
namics at surfaces and STM studies.69–71 Also, this tech-
nique has recently been applied to the study of nonequ
rium dynamics in quantum dots in the Kondo regime72 and to
the study of nonequilibrium-induced decoherence73 also in
quantum dots in the Kondo regime. In this work, the NCA
generalized to cope with the present problem, namely,
Anderson impurities, coupled to each other by a tunnel
barrier, which are in a nonequilibrium situation.

The paper is divided as follows: In Sec. II, we formula
the Hamiltonian~the general form and its slave-boson fo
mulation! which describes the problem. In Sec. III, w
briefly review the nonequilibrium Green’s-function tec
nique, real time Dyson equations for the retarded and le
Green’s functions, which we use in order to formulate t
problem in its fully nonequilibrium form. In Sec. IV, we
present our generalization of the NCA technique to the pr
lem. In Sec. IV A, the self-energies obtained within o
scheme are presented and discussed. In Sec. IV B, we d
the physical two-particle correlation functions within th
NCA approach. In Sec. IV C, we present the fermion a
boson self-energies after the projection onto the restric
Hilbert space. We present and discuss in Sec. V vari
model calculations for the DOS, both in equilibrium an
nonequilibrium situations, linear conductance, nonlinear c
rent, and nonlinear differential conductance. We give a se
of predictions for the current and finite voltage different
conductance which are relevant for experiments. It is de
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KONDO EFFECT IN COUPLED QUANTUM DOTS: A . . . PHYSICAL REVIEW B67, 245307 ~2003!
onstrated that the measurements of the differential cond
tanceG5dI/dV, for the appropriate values of voltages a
interdot tunneling couplings, can give a direct observation
the coherent superposition between the many-body Ko
states of each dot. We also give predictions for the temp
ture dependence of the linear conductance and for the
linear differential conductance in the high-voltage regim
where negative differential conductance is obtained for l
temperatures.

We include three appendices: In Appendix A, we brie
describe how to obtain the self-energies used in the main
from a Baym functionalF at lowest order~NCA!. In Appen-
dix B, we analyze the equation of motion of the conto
ordered Green’s functions, with special emphasis on th
off-diagonal components. We prove explicitly that these o
diagonal components vanish for zero interdot tunneli
which allows us to neglect them in the NCA equations
the self-energies as stated in Sec. IV. In Appendix C,
describe the projection procedure used to deal with the c
straint in the Hilbert space.

II. MODEL

A. General formulation

As we mentioned already, the double quantum dot can
modeled as a two-impurity Anderson Hamiltonian with
extra term accounting for interimpurity hopping. Each imp
rity is connected to a different Fermi sea with chemical p
tential mL5eV/2 andmR52eV/2, respectively (eF50).

H5 (
kaP$L,R% ,s

eka
cka ,s

† cka ,s1 (
aP$L,R%,s

easdas
† das

1V0 (
kaP$L,R% ,s

~cka ,s
† das1das

† cka ,s!1VC(
s

~dLs
† dRs

1dRs
† dLs!1ULnL,↑nL,↓1URnR,↑nR,↓ . ~1!

The first two terms in the Hamiltonian represent the electr
in the leads and in the dots, respectively. In these Ham
nians,ckL/R ,s

† (ckL/R ,s) creates~annihilates! an electron with

momentumkL/R and spins in the left/right lead, anddL/Rs
†

(dL/Rs) creates~annihilates! an electron with spins in the
left/right dot. ekL/R

5ek1mL/R5ek6eV/2 and eas are the
energies in the leads and the dots, respectively. The t
term describes the coupling between each dot and its co
sponding lead, and determines the coupling stren
DL,R(e)5pV0

2(kaP$L,R%
d(e2eka

) ~we neglect thek depen-
dency of the tunneling matrix element for simplicity!. Each
lead is described by a parabolic density of states~bandwidth
W52D) centered at the chemical potential, such that we
define the function

Da~e!5pV0
2(

ka

d~e2eka
!

5H D0F12S e2ma

D D 2G if 2D<e2ma<D

0 otherwise.
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The fourth term describes the interdot tunneling. In the
sence of the interdot tunneling, this Hamiltonian describ
two independent Anderson impurities each of them coup
to different Fermi seas~typically at different chemical poten
tials!. Note that the role of the interdot term is twofold: firs
it generates quantum coherence between the impurities;
ond, it establishes a nonequilibrium situation, that is, wh
the chemical potentials are different there is a bias volt
across the system and, then, there is an electrical cur
flowing through the double-dot system. The last terms
scribe the on-site electron-electron interaction on each
wherenL/R,s5dL/Rs

† dL/Rs are the number operators for sp
s on each dot. The on-site interaction parameters areUL
5e2/2CL andUR5e2/2CR , whereCL/R are the dot capaci-
tances. The neglect of an interdot electron-electron inte
tion (;U interdotnLnR) with U interdot;CLR /CLCR corresponds
to the experimentally accessible limit of small interdot c
pacitance (CLR) as compared with the capacitances of ea
QD to the gates, and implies a vanishing interdot coupl
from this source.74 Experimentally, these parameters gover
ing the Hamiltonian: tunneling couplings, on-site intera
tions, etc., can be purposefully modified by external g
voltages,6 which allows to study a variety of rich physica
phenomena~spin- and charge-fluctuation regime, nonequili
rium phenomena, etc.! on the same sample.1–5

B. Slave-particle representation

We assumeUL5UR5U→`, forbidding double occu-
pancy on each dot. This is a good approximation for ult
small quantum dots in which the on-site interaction is mu
larger than the coupling strengthDL,R ~typically more than
one order of magnitude!.

In the limit U→`, the antiferromagnetic coupling due t
superexchangeJ;tC

2 /U vanishes in the model. Nevertheles
we expect our conclusions~for J50) to remain valid forJ
Þ0 in the following limits: ~i! small interdot couplingtC
,G52D0, provided thatTK@2J; ~ii ! large interdot cou-
pling tC.G, the antiferromagnetic coupling becomes irre
evant. The previous estimations for the limits of validity
our calculation are based on a SBMFT analysis,41,48 which
we expect to remain valid~at least qualitatively! in the pres-
ence of fluctuations.

In the limit of UL ,UR→` ~i.e.,CL ,CR→0) we can write
the Hamiltonian~1! in terms of auxiliary pseudofermion
and slave-boson operators plus constraints:

H5 (
kaP$L,R% ,s

eka
cka ,s

† cka ,s1 (
aP$L,R%,s

eas f as
† f as

1
tC

N (
s

~ f Ls
† bLbR

† f Rs1 f Rs
† bRbL

† f Ls!

1
V

AN
(

kaP$L,R% ,s
~cka ,s

† ba
† f as1 f as

† backa ,s!. ~2!

In the slave-boson representation, the annihilation oper
for electrons in the QD’s,das , is decomposed into the SB
operatorba

† which creates an empty state and a pseudo
7-3
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RAMÓN AGUADO AND DAVID C. LANGRETH PHYSICAL REVIEW B 67, 245307 ~2003!
mion operator f as which annihilates the singly occupie
state with spin s in the dot a: das→ba

† f as (das
†

→ f as
† ba). Note that we have scaled the hopping parame

V05V/AN and VC5tC /N, N being the degeneracy of th
level on each dot. The leads are described now by the fu
tion

Ga~e!5NDa~e!

5pV2(
ka

d~e2eka
!

5H GF12S e2ma

D D 2G if 2D<e2ma<D

0 otherwise.

This scaling is done in such a way that the parameterG
5ND0 andD0 /VC5ND0 /tC5G/tC appearing in the expres
sion of the Kondo temperature~see Sec. V and Refs. 41 an
42! have a well-definedN→` limit, namely, there is a well-
defined 1/N expansion of the physical quantities.

Finally, the physical constraint is that we must work in
subspace of the Hilbert space where the number of auxil
particles~on each dot! is 1, namely,

Q̂L5(
s

f Ls
† f Ls1bL

†bL51,

Q̂R5(
s

f Rs
† f Rs1bR

†bR51. ~3!

As we mentioned before, these two constraints come fr
the physical condition that each dot has to be in one of
three statesu0&, u↑&, or u↓&. To simplify the notation we con-
sider henceforth thateLs5eRs5e0. The Hamiltonian~2! has

FIG. 2. Interaction vertices. Solid, dashed, and wavy lines r
resent lead electron, pseudofermion, and slave-boson lines, re
tively. Each line carries a left~right! index. ~a! Lead-dot hopping
vertex V/AN ~full circle!. Tunneling of an electron from the lef
~right! dot to the left~right! lead is represented as the decay of t
left ~right! pseudofermion into a left~right! slave boson and lef
~right! lead electron.~b! Dot-dot hopping vertextC /N ~open circle!.
Tunneling of an electron from the left~right! dot to the right~left!
dot is represented as the combination of the left~right! pseudofer-
mion with the right~left! slave boson to decay into a left~right!
slave boson and right~left! pseudofermion. Note that this verte
exchanges left and right indices.
24530
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two different kinds of fermion-boson interactions which a
given by the vertices in Fig. 2.

III. GREEN’S FUNCTIONS AND SELF-ENERGIES

At this point, we have reduced the original problem d
scribed by the Hamiltonian in Eq.~1! to a problem of fermi-
ons and bosons interacting through the vertices of Fig. 2
subject to the constraints in Eq.~3!. Properties of the physi-
cal electrons can be built up from the Green’s functions
the pseudofermions and slave bosons~see Sec. IV B!. These
Green’s functions for the auxiliary fermions and bosons c
stitute the basic building blocks of the theory. Furthermo
our aim is to study the out-of-equilibrium properties of th
system; we need, then, a fully nonequilibrium description
the dynamics of the Green’s functions of these auxiliary p
ticles. The appropriate starting point is to derive equations
motion for the time-ordered double-time Green’s function
the auxiliary fermion~G! and boson~B! fields on a complex
contour. A rigorous and well established way to derive the
equations of motion was first introduced by Kadanoff a
Baym,75 and has been related to other nonequilibrium me
ods ~such as the Keldysh method! by Langreth, see Ref. 76
for a review.

The time-ordered double-time Green’s function are d
fined as~subindices are omitted here!.

iG~ t,t8![^Tcf ~ t ! f †~ t8!&,

iB~ t,t8![^Tcb~ t !b†~ t8!&, ~4!

or in terms of their analytic pieces,

iG~ t,t8!5G.~ t,t8!u~ t2t8!2G,~ t,t8!u~ t82t !,

iB~ t,t8!5B.~ t,t8!u~ t2t8!1B,~ t,t8!u~ t82t !. ~5!

The time-ordering operatorTc and the step functionsu op-
erate along a contourc in the complex plane. It will not
matter in the derivation given here whetherc is taken to be
the Keldysh contour, the Kadanoff-Baym contour, or a mo
general choice. G,(t,t8)[^ f †(t8) f (t)& and B,(t,t8)
[^b†(t8)b(t)& are the so-called lesser Green’s function
andG.(t,t8)[^ f (t) f †(t8)& andB.(t,t8)[^b(t)b†(t8)& are
the greater ones.

The retarded Green’s functions can be written in terms
these analytic pieces as

iGr~ t,t8!5@G.~ t,t8!1G,~ t,t8!#u~ t2t8!,

iBr~ t,t8!5@B.~ t,t8!2B,~ t,t8!#u~ t2t8!. ~6!

The advanced ones can be obtained fromGr(t,t8)
5@Ga(t8,t)#* .

The basic starting equations follow directly from th
Dyson equations in complex time space:

S i
]

]t
2e0DG~ t,t8!5d~ t2t8!1E

c
dt1S~ t,t1!G~ t1 ,t8!,

i
]

]t
B~ t,t8!5d~ t2t8!1E

c
dt1P~ t,t1!B~ t1 ,t8!. ~7!

-
ec-
7-4
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Applying analytic continuation rules76 we can write Dyson
equations in real time space, which relate the lesser and
greater Green’s functions with the retarded and advan
ones:

S i
]

]t
2e0DG:~ t,t8!5E

2`

`

dt1@S r~ t,t1!G:~ t1 ,t8!

1S:~ t,t1!Ga~ t1 ,t8!#,

i
]

]t
B:~ t,t8!5E

2`

`

dt1@P r~ t,t1!B:~ t1 ,t8!

1P:~ t,t1!Ba~ t1 ,t8!#. ~8!

The retarded~and advanced! Green’s functions follow usua
Dyson equations:

S i
]

]t
2e0DGr~ t,t8!5d~ t2t8!1E

2`

`

dt1S r~ t,t1!Gr~ t1 ,t8!,

i
]

]t
Br~ t,t8!5d~ t2t8!1E

2`

`

dt1P r~ t,t1!Br~ t1 ,t8!. ~9!

The set of Dyson equations is closed by choosing a suit
approximation for the self-energiesS andP, and hence for
their analytic piecesS,, S., P,, andP.. We describe in
the following section the noncrossing approximation used
solve our problem.

IV. NONCROSSING APPROXIMATION

A. Self-energies

We use the NCA technique49,50 for obtaining the self-
energiesSL(R),s(t,t8), PL(R)(t,t8) in Eq. ~7! and their real
time analytic continuations. Hereafter, since we focus
static nonequilibrium, dc voltages, the time-translational
variance is thus not broken, i.e., all quantities depend only
the time differencet2t8.77,78 Nonetheless, our NCA equa
tions for the self-energies, see Eqs.~10! and ~11! below, to-
gether with Dyson equations in real time, Eqs.~8! and ~9!,
are valid for general situations with broken time-translatio
symmetry by just substituting (t2t8)→(t,t8) and solving
the fully time-dependent problem.

As we already mentioned, the NCA technique can be j
tified as an 1/N expansion, at lowest order in perturbatio
theory, although it is better regarded as a fully conservi
self-consistent, andF derivable theory in the Baym sense.56

The exactF is defined as the set of diagrams consisting
all vacuum skeleton diagrams built out of fully renormaliz
Green’s functions and the bare vertex, weighted so that e
self-energy is the functional derivative ofF with respect to
the corresponding skeleton propagator. It was shown
Baym that this requirement is sufficient to guarantee that
propagator equations so obtained exactly satisfy all the c
servation laws of the problem, and that the predictions fo
physical quantity are independent~to all orders! of which of
the several available~exact! expressions for that quantity i
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used to evaluate it. Approximations that are notF derivable
generally do not satisfy either of the above requirements

To lowest order in both vertices~NCA!, we obtain the
Baym functional of Fig. 3. This functional consists of tw
termsFNCA5F11F2. To lowest order in the lead-dot ver
tex we obtain the functionalF1 @Fig. 3~a!# which is of lead-
ing orderO(1) @the orderO(1/N) for the vertexV/AN is not
skeleton#. The functionalF2 @Fig. 3~b!# is constructed from
the dot-dot vertex and is of leading orderO(1/N). The NCA
solution obtained fromFNCA5F11F2 is expressed dia-
grammatically in Figs. 4 and 5. These self-energies are
tained by the functional derivation of the Baym function
~Fig. 3! S5]FNCA/]G andP5]FNCA/]B ~for details see
Appendix A!. This guarantees that our approximation is co
serving. The obtained self-energies are of leading or
O(1)1O(1/N) ~bosons! andO(1/N)1O(1/N2) ~fermions!.

In principle, it is posible to construct another generati
functional from the dot-dot vertex which contains of
diagonal Green’s functions. This functional can be co
structed fromF2 by replacing all the diagonal fermion an
boson Green’s functions by off-diagonal ones. The cor
sponding self-energies are equivalent to those of Figs. 4~b!
and 5~b! with all the diagonal Green’s functions replaced
the off-diagonal ones. However, it can be shown that the b

FIG. 3. Diagrammatic representation of the generating fu
tional FNCA5F11F2 of our NCA approximation. Solid, dashed
and wavy lines represent lead electron, pseudofermion, and s
boson lines, respectively. Each line carries a left~right! index. Full
circle, lead-dot hopping vertexV/AN; open circle, dot-dot hopping
vertextC /N. The self-energies are obtained by taking the functio
derivative ofFNCA with respect to the corresponding Green’s fun
tion. ~a! Lead-dot functionalF1 @leading orderO(1)]. ~b! Dot-dot
functionalF2 @leading orderO(1/N)].

FIG. 4. Fermion self-energy. Solid, dashed, and wavy lines r
resent lead electron, pseudofermion, and slave-boson lines, re
tively. Each line carries a left~right! index. Full circle, lead-dot
hopping vertexV/AN; open circle, dot-dot hopping vertextC /N.
The leading order of this self-energy isO(1/N)1O(1/N2).
7-5
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(tC50) off-diagonal Green’s functions are zero~see Appen-
dix B!, namely, the off-diagonal functional vanishes to ord
tC
2 , i.e., it does not contribute to leading order with term

O(1/N) in the interdot vertex. In particular, this implies th
there are no off-diagonal self-energies to second order in
interdot vertex. It is, thus, consistent to neglect off-diago
self-energies within the NCA. This way, our NCA guarante
that all diagrams of leading orderO(1/N) are included
within a more general subset of diagrams which includ
terms to all orders in both vertices.

Applying real time analytical continuation76 to Eq. ~A7!
in appendix A~see diagram in Fig. 4!, we obtain the lesser
greater, and retarded components of the fermion self-ene

SL(R),s
, ~ t2t8!5

1

N
KL(R),s

, ~ t2t8!BL(R)
, ~ t2t8!1S tC

N D 2

3GR(L),s
, ~ t2t8!BR(L)

. ~ t82t !BL(R)
, ~ t2t8!,

SL(R),s
. ~ t2t8!5

1

N
KL(R),s

. ~ t2t8!BL(R)
. ~ t2t8!1S tC

N D 2

3GR(L),s
. ~ t2t8!BR(L)

, ~ t82t !BL(R)
. ~ t2t8!,

SL(R),s
r ~ t2t8!5

1

N
$KL(R),s

. ~ t2t8!BL(R)
r ~ t2t8!

1KL(R),s
r ~ t2t8!BL(R)

, ~ t2t8!%1S tC

N D 2

3$GR(L),s
. ~ t2t8!BR(L)

, ~ t82t !BL(R)
r ~ t2t8!

1GR(L),s
. ~ t2t8!BR(L)

a ~ t82t !BL(R)
, ~ t2t8!

1GR(L),s
r ~ t2t8!BR(L)

. ~ t82t !BL(R)
, ~ t2t8!%,

~10!

where the quantitiesKL(R),s are defined in terms of the fer
mion propagator in the left~right! lead as KL(R),s
5V2(kL(R)

gkL(R) ,s ~see Sec. IV C!. The corresponding ex
pressions for slave-boson self-energies@Eq. ~A8! in Appen-
dix A# corresponding to Fig. 5 are

FIG. 5. Boson self-energy. Solid, dashed, and wavy lines re
sent lead electron, pseudofermion, and slave-boson lines, re
tively. Each line carries a left~right! index. Full circle, lead-dot
hopping vertexV/AN; open circle; dot-dot hopping vertextC /N.
The leading order of this self-energy isO(1)1O(1/N).
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PL(R)
, ~ t2t8!5

1

N (
s

KL(R),s
. ~ t82t !GL(R),s

, ~ t2t8!

1S tC

N D 2

(
s

BR(L)
, ~ t2t8!GR(L),s

. ~ t82t !

3GL(R),s
, ~ t2t8!,

PL(R)
. ~ t2t8!5

1

N (
s

KL(R),s
, ~ t82t !GL(R),s

. ~ t2t8!

1S tC

N D 2

(
s

BR(L)
. ~ t2t8!GR(L),s

, ~ t82t !

3GL(R),s
. ~ t2t8!,

PL(R)
r ~ t2t8!5

1

N (
s

$KL(R),s
, ~ t82t !GL(R),s

r ~ t2t8!

1KL(R),s
a ~ t82t !GL(R),s

, ~ t2t8!%

1S tC

N D 2

(
s

$BR(L)
. ~ t2t8!GR(L),s

, ~ t82t !

3GL(R),s
r ~ t2t8!2BR(L)

r ~ t2t8!

3GR(L),s
, ~ t82t !GL(R),s

, ~ t2t8!

1BR(L)
, ~ t2t8!GR(L),s

a ~ t82t !GL(R),s
, ~ t2t8!%.

~11!

Equations~10! and ~11! are the unprojected full NCA self
energies coming from the generating functional. The proj
tion of these quantities onto the physical subspaceQ̂aP$L,R%
51 is discussed in Appendix C.

B. Physical correlation functions

The physical lesser and greater correlation functionsa
P$L,R%) are

Aas
, ~ t2t8![^das

† ~ t8!das~ t !&,

Aas
. ~ t2t8![^das~ t !das

† ~ t8!&. ~12!

In terms of slave operators, they become the two-part
correlation functions:

Aas
, ~ t2t8![^ f as

† ~ t8!ba~ t8!ba
†~ t ! f as~ t !&,

Aas
. ~ t2t8![^ba

†~ t ! f as~ t ! f as
† ~ t8!ba~ t8!&. ~13!

The evaluation of these two-particle correlation functio
would require, in principle a further diagrammatic expa
sion. Within the NCA, however, one neglects vert
corrections79 and keeps only the lowest-order term in th
expansion of the two-particle correlation function~Fig. 6!:

Aas
, ~ t2t8!5^ f as

† ~ t8! f as~ t !&^ba~ t8!ba
†~ t !&

5Gas
, ~ t2t8!Ba

.~ t82t !,

e-
ec-
7-6
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Aas
. ~ t2t8!5^ba

†~ t !ba~ t8!&^ f as~ t ! f as
† ~ t8!&

5Ba
,~ t82t !Gas

. ~ t2t8!. ~14!

Using the identities

GL(R),s
. ~ t2t8!5 i @GL(R),s

r ~ t2t8!2GL(R),s
a ~ t2t8!#

2GL(R),s
, ~ t2t8!,

BL(R),s
. ~ t2t8!5 i @BL(R),s

r ~ t2t8!2BL(R),s
a ~ t2t8!#

1BL(R),s
, ~ t2t8!, ~15!

Eq. ~14! can be rewritten as

Aas
, ~ t2t8!5Gas

, ~ t2t8!$ i @Ba,s
r ~ t82t !2Ba,s

a ~ t82t !#

1Ba,s
, ~ t82t !%

Aas
. ~ t2t8!5Ba

,~ t82t !$ i @Ga,s
r ~ t2t8!2Ga,s

a ~ t2t8!#

2Ga,s
, ~ t2t8!%. ~16!

Now, according to the projection procedure explained in A
pendix C ~see also Ref. 62!, the termsGas

, (t2t8)Ba,s
, (t8

2t) and Ba
,(t82t)Ga,s

, (t2t8) have to be projected ou
@they are of the order ofO(e22ibla)]. This is accomplished
by making

GL(R),s
. ~ t2t8!5 i @GL(R),s

r ~ t2t8!2GL(R),s
a ~ t2t8!#

BL(R),s
. ~ t2t8!5 i @BL(R),s

r ~ t2t8!2BL(R),s
a ~ t2t8!#,

~17!

which gives the following physical correlation functions:

Aas
, ~ t2t8!5 iGas

, ~ t2t8!@Ba,s
r ~ t82t !2Ba,s

a ~ t82t !#,

Aas
. ~ t2t8!5 iBa

,~ t82t !@Ga,s
r ~ t2t8!2Ga,s

a ~ t2t8!#,

Aas
r (a)~ t2t8!5Ga,s

r (a)~ t2t8!Ba
,~ t82t !

2Gas
, ~ t2t8!Ba,s

a(r )~ t82t !. ~18!

These Green’s functions have to be calculated with the
responding projected self-energies, as discussed in the
lowing section.

FIG. 6. Diagrammatic representation of the physical tw
particle correlation function within the NCA. The neglected vert
corrections areO(1/N2) ~Ref. 53!.
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C. Physical self-energies

The final set of projected self-energies is~see Appendix C
for details!

SL(R),s
r ~t!5H 1

N
K̃L(R),s

. ~t!1 i S tC

N D 2

@G̃R(L),s
r ~t!

2G̃R(L),s
a ~t!#

B̃R(L)
, ~2t!

ZR(L)
J B̃L(R)

r ~t!,

PL(R)
r ~t!5H 1

N (
s

K̃L(R),s
, ~2t!1 i S tC

N D 2

(
s

@B̃R(L)
r ~t!

2B̃R(L)
a ~t!#

G̃R(L),s
, ~2t!

ZR(L)
J G̃L(R),s

r ~t!. ~19!

SL(R),s
, ~t!5H 1

N
K̃L(R),s

, ~t!1 i S tC

N D 2 G̃R(L),s
, ~t!

ZR(L)

3@B̃R(L)
r ~2t!2B̃R(L)

a ~2t!#J B̃L(R)
, ~t!,

PL(R)
, ~t!5H 1

N (
s

K̃L(R),s
. ~2t!1 i S tC

N D 2

(
s

B̃R(L)
, ~t!

ZR(L)

3@G̃R(L),s
r ~2t!2G̃R(L),s

a ~2t!#J G̃L(R),s
, ~t!.

~20!

Where we have introduced the notationt5t2t8. The NCA
equations depend on the conduction electrons through
quantitiesK̃ which are defined in terms of the Fourier tran
forms of thebare conduction-electron propagators~namely,
without dot-lead coupling! as

K̃a,s
: ~e!5V2F22ImH(

ka

1

e2eka
1 ihJ f a

:~e!G
52pV2(

ka

d~e2eka
! f a

:~e!52Ga~e! f a
:~e!,

where f a
,(e)51/(eb(e2ma)11) is the Fermi function and

f a
.(e)512 f a

,(e) ~see Ref. 62!.

The Green’s functionsG̃ and B̃, which are full propaga-
tors with respect to the lead-dot hopping,do not include the
interdot coupling. The factorsZL and ZR can be identified
with the left and right charges in the absence of the inter
hopping. They can be obtained from the left and rig
charges of two independent single-impurity problems~at dif-
ferent chemical potentialsmL andmR , respectively!, namely,

Za5E dv

2p
@NG̃a

,~v!1B̃a
,~v!#.

-
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It is important to emphasize two aspects of the projection~i!
the simplification of the propagators (K→K̃, G→G̃, and
B→B̃) is requiredby the projection procedure~see Appen-
dix C! and is not an additional approximation;~ii ! this should
not be construed to imply that there is no interdot correct
in the slave-particle Green’s functions that enter into
physical correlation functions of Eq.~18!.

Finally, we note that the structure of the self-energies
lows for a very intuitive physical interpretation: each le
~right! self-energy has the structure

$Kernel(1)1Kernel(2)%3propagator.

Kernel(1) contains the addition or substraction spectrum
conduction electrons in the left~right! lead, i.e., K̃a,s

: .
Kernel(2) contains the addition or substraction spectrum
physicalelectrons in the right~left! dot. This can be shown
by comparing the second term of each self-energy with
expressions for the physical correlation functions in Eq.~18!,
which allows us to rewrite Eqs.~19! and ~20! as

SL(R),s
r ~t!5H 1

N
K̃L(R),s

. ~t!1 i S tC

N D 2ÃR(L),s
. ~t!

ZR(L)
J B̃L(R)

r ~t!,

PL(R)
r ~t!5H 1

N (
s

K̃L(R),s
, ~2t!

1 i S tC

N D 2

(
s

ÃR(L),s
, ~2t!

ZR(L)
J G̃L(R),s

r ~t!.

~21!

SL(R),s
, ~t!5H 1

N
K̃L(R),s

, ~t!1 i S tC

N D 2 ÃR(L),s
, ~t!

ZR(L)
J B̃L(R)

, ~t!,

PL(R)
, ~t!5H 1

N (
s

K̃L(R),s
. ~2t!

1 i S tC

N D 2

(
s

ÃR(L),s
. ~2t!

ZR(L)
J G̃L(R),s

, ~t!.

~22!

Equation~21! and~22! show explicitly that the interdot term
is renormalized by correlations@the interdot coupling terms
of the left ~right! self-energies depend on the right~left! dot
spectra throughÃR(L)s

, or ÃR(L)s
. in Kernel(2)]. Other ex-

amples where the structure of the kernels in the NCA s
energies affects the Kondo physics are, for instance,
Kondo effect in metal grains80 or the Kondo effect in normal-
superconducting systems.81 Equations~21! and ~22! consti-
tute the main result of this section. The projected se
energies inserted in the appropriate Dyson equation give
overall result in Eq.~18! for the physical correlation func
tions, which has the correct order. Of course, in the abse
of the interdot coupling we recover from Equations~21! and
~22! two independent sets of NCA equations for the left a
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right single-impurity problems. These equations are in agr
ment with the ones previously obtained in Refs. 14, 62, a
68.

The equations for the self-energies, together with
Dyson equations for the retarded and lesser Green’s fu
tions and the normalization conditions, close the set of eq
tions to be solved. We numerically iterate them to conv
gence.

V. RESULTS

A. Density of states

Here we present results for the left and right dot de
sities of states, both for equilibrium and finite voltage (mL
5V/2, mR52V/2) situations. We use the following pa
rameters in the calculations~unless otherwise stated!: e0
522.5, T50.003, andD56 ~all energies are given in unit
of G). The Kondo temperature corresponding to these
rameters isTK

0 ;3.731024 ~here, the superscript ‘‘0’’ means
without the interdot coupling, namely, the Kondo tempe
ture of the single-impurity problem corresponding to the
parameters!, as calculated from the Bethe ansatz analyti
solution (N52):7,50

TK
0 5G~111/2!Dr~G/pDr !

1/2exp~2pue0u/G!. ~23!

G(x) is the gamma function and the rescalingDr
5exp(21/2)D accounts for the assumed parabolic DOS’s
the leads instead of the rectangular one used in the B
ansatz solution.62 Note, finally, that in order to compare wit
the SBMFT results,

TK
SBMFT;Drexp~2pue0u/G!;4TK

0 .

It is known from the SBMFT~Refs. 41, 42, and 47! and from
numerical renormalization-group43 calculations that the ef-
fective Kondo temperatureTK

DD of the double-dot system
grows exponentially with the interdot hopping,

TK
DD;TK

SBMFTexpF tC

G
arctanS tC

G D G .
It is not possible to extract an analytical expression for
Kondo temperature from our set of coupled NCA equatio
and so no possibility to check the previous expressiona pri-
ori; nevertheless, we choose relatively high temperatureT
.TK

0 in all our calculations in order to prevent the expect
low-temperature pathologies should the effective Kon
temperatureTK

DD increase exponentially with the interdo
hopping as predicted by the SBMFT and the numeri
renormalization-group techniques.

In Fig. 7, the QD DOS at equilibrium~here, of course, the
left and right dots are equivalent! is plotted for increasing
values of the interdot tunneling. The full DOS@Fig. 7~a!#
shows the splitting of the main peak~energy scale for charge
fluctuations! originating from the interdot coupling which
generates quantum coherence between the dots. The spl
in the DOS corresponds to the formation of bonding a
antibonding combinations of the single-particle levels, i.
e65e07tC due to the interdot tunneling. Figure 7~b! shows
7-8
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KONDO EFFECT IN COUPLED QUANTUM DOTS: A . . . PHYSICAL REVIEW B67, 245307 ~2003!
a blowup of the low-frequency part of the DOS around t
Fermi level. As we increase the interdot coupling, the Kon
peak also splits into the bonding and antibonding combi
tions. Importantly, the energy scale for this splitting of t
Kondo peak, which is a manifestation of quantum cohere
between the two many-body Kondo states on each do
much smaller than the one corresponding to the splitting
the broad peak~which is a manifestation of coherence b
tween single-particle states!. We have, then,Dẽ52 t̃ C!De
52tC , where Dẽ and De52tC are the splitting of the
Kondo peak and the single-particle splitting, respective
This reduction of the splitting, namely,t̃ C!tC , is caused by
the strong Coulomb repulsion on each dot~see Sec. IV C!.
Typical values of this splitting are in the rang
;10TK

0 –40TK
0 ~note that the single-particle splittings are

the range;103TK
0 2104TK

0 ). These obtained values for th
reduced splitting of the Kondo resonance are in good se
quantitative agreement with the mean-field slave-bo
calculation.40–42,47

The behavior at different temperatures is studied in Fig
where we plot the DOS of the coupled dot problem@Fig.

FIG. 7. Equilibrium density of states~DOS! for different values
of the interdot hoppingtC50.0, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0~units
of G!. The curves are shifted vertically for clarity.TK

0 50.000 37G.
~a! Full DOS. The splitting in the DOS corresponds to the format
of bonding and antibonding combinations of the single-particle l
els due to interdot tunneling.~b! Blowup of the low-frequency re-
gion around the Kondo peak. As the interdot coupling increases
Kondo peak also splits. Importantly, this splitting, which is a ma
festation of quantum coherence between the two many-body Ko
states on each dot, is much smaller than the splitting of the br
peak, see main text.
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8~a!# for tC51.6 at different temperatures. The splittin
originating from the interdot coupling is still visible at tem
peraturesT*10TK

0 . For comparison, we show in Fig. 8~b!
the reduction of the Kondo peak for the single-impur
problem as the temperature increases. At the highest stu
temperatureT;20TK

0 the Kondo peak for the single
impurity system is almost suppressed as compared with
coupled dot system. This is in good qualitative agreem
with the previous statement thatTK

DD.TK
0 .41–43,47It is worth

noting that the splitting of the Kondo resonance is robus
temperatures higher thanTK

0 ; experimentally this is of the
most relevance: according to this result, the experime
conditions for studying Kondo physics in coupled QD’s a
less demanding than in single QD’s~temperatures much
lower thanTK

0 are needed in order to observe Kondo-rela
features in the transport properties of single1–5 QD’s!.

B. Nonlinear transport properties

We have proven in the preceding section that the inter
coupling generates quantum coherence between the
This quantum coherence is reflected in the DOS of each
as a splitting, both in the charge-fluctuation and spin
fluctuation parts of the spectrum. We are interested in Kondo
physics and the obvious question we want to answer is th
Can we observe the splitting of the Kondo peak, induced

-

he
-
do
d

FIG. 8. Temperature dependence of the equilibrium density
states~DOS! around the Fermi level. The arrows indicate the dire
tion of increasing temperatures.TK

0 50.000 37G. ~a! DOS of the
coupled dot problem fortC51.6G. The structure originating from
the interdot coupling is still visible at temperaturesT*10TK

0 . ~b!
Reduction of the Kondo peak for the single-impurity problem as
temperature increases. At the highest studied temperaturT
;20TK

0 the Kondo peak is almost suppressed as compared with
coupled dot system.
7-9
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RAMÓN AGUADO AND DAVID C. LANGRETH PHYSICAL REVIEW B 67, 245307 ~2003!
the interdot coupling, in a differential conductance measu
ment? The answer to the previous question is nontrivial
cause we are dealing with the nonequilibrium physics
strongly correlated electrons and hence the spectral funct
are expected to strongly depend on the applied bias vol
~shift and broadening of the peaks!. In other words, the dif-
ferential conductance curve does not just mimic the ze
voltage DOS~as it does for noninteracting electrons!. From
the experimental point of view this is a timely and cruc
question: the observation of such a splitting would prove
remarkable phenomenon of quantum coherence betweethe
two Kondo many-body states on each dot. Experiments by
Oosterkampet al.36 and Blick et al.38 have proven quantum
coherence between single-particle states in coupled Q
Also, some signatures of coherence between Kondo stat
a double quantum dot system have been reported recent
Jeonget al. in Ref. 39. The first step in order to answer o
question is to calculate the current through the double-
system. We follow the standard nonequilibrium approach
transport through a region of interacting electrons11,82 and
relate the current through each dot to its retarded and le
Green’s functions:

I aP$L,R%52
2e

h E deGa~e!@2Im Aa
r ~e! f a~e!1Aa

,~e!#.

~24!

Here, Aa
r (e) and Aa

,(e) are the Fourier transforms of th
retarded and lesser physical Green’s functions of Eq.~18!.

The total current through the system is calculated aI

FIG. 9. Nonlinear transport properties of the DQD system
different interdot couplings~in units ofG) for T50.003'8TK

0 with
TK

0 50.000 37G. ~a! Current-voltage characteristics.~b! Differential
conductance at finite voltage. The zero-bias anomaly first broad
and then splits with increasing interdot hopping. The splitting of
zero-bias anomaly reflects quantum coherence between the
many-body Kondo states on each QD.
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5(IL2IR)/2. The differential conductanceG5dI/dV is cal-
culated by the numerical differentiation of the curren
voltage (I -V) curves.

We study in Fig. 9 the nonlinear transport properties
the DQD system. We plot in Fig. 9~a! the I -V characteristics
for different values of the interdot hopping. As the interd
hopping increases, the low-voltage differential conducta
grows. At large voltages the current saturates, the differen
conductance nears zero and even becomes slightly neg
for the largesttC . These features are better brought out in
plot of the differential conductance at finite voltage@Fig.
9~b!#. As we increase the interdot hopping, the zero-b
Kondo anomaly broadens and splits. We can attribute
broadening to the aforementioned increase of the effec
Kondo temperature as a function of the interdot hopping.
large interdot tunneling couplings the zero-bias anom
splits. The splitting of the zero-bias anomaly is an unambi
ous indication of quantum coherence between the Ko
states on each dot.

This behavior of the nonlinear transport properties can
better unsderstood in terms of the nonequilibrium DOS
each dot~Figs. 10 and 11!.

In Fig. 10, we plot the nonequilibrium DOS (mL5V/2
512.5TK

0 ,mR52V/25212.5TK
0 ) for the left ~top figure!

and right~bottom figure! coupled quantum dots. For the un
coupled situation (tC50), each DOS has a Kondo pea
around each chemical potential as expected. With increa
interdot hopping, the behavior of each DOS becomes q
complex. The Kondo peak on each side splits into two pe
while at the same time the whole spectral weight near
Fermi level shifts to lower frequencies. Furthermore, the

r

ns
e
wo

FIG. 10. Nonequilibrium DOS (mL5V/2512.5TK
0 ,mR52V/2

5212.5TK
0 ) for different values of the interdot hopping,tC50.0,

1.0, 1.2, 1.4, and 1.6~units of G). The curves are shifted vertically
for clarity. TK

0 50.000 37G. Top: left DOS. Bottom: right DOS. The
arrows mark the position of the chemical potentials.
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KONDO EFFECT IN COUPLED QUANTUM DOTS: A . . . PHYSICAL REVIEW B67, 245307 ~2003!
split peaks are asymmetric, they have different heights
spectral weights~it is important to mention here, howeve
that the NCA is known to overestimate the asymmetry of
peaks because it does incorrectly treat potential and spin
scattering on equal footing.59! As the interdot hopping in-
creases, the lower~upper! band of the left~right! DOS moves
to lower ~higher! frequencies, while increasing its heigh
until it matches with the upper~lower! band of the right~left!
DOS. As an example, fortC51.6 the lower peak on the lef
DOS and the upper peak on the right DOS approxima
match atv;mR . As a result, there is a peak in the differe
tial conductance atV525TK

0 for this interdot coupling@solid
curve of Fig. 9~b!#.

Also interesting is to study how the DOS evolves as
function of the applied voltage for a fixed interdot couplin
This nontrivial behavior of the DOS versus applied voltage
studied in Fig. 11 where we plot the nonequilibrium DOS f
tC51.6 and different voltages fromV510TK

0 to V550TK
0 in

intervals of DV55TK
0 . As the voltage increases, the le

~right! DOS moves to higher~lower! frequencies such tha
the middle point between the split Kondo peaks lies appro
mately at the left~right! chemical potential~this discussion is
only qualitative; note that even for the uncoupled case
Kondo peaksdo not lie exactly on each chemical potential!.

The temperature dependence of the current and diffe
tial conductance are plotted in Fig. 12. Several features
these curves are noteworthy. If we focus first in the differe
tial conductance@Fig. 12~b!# we see that the splitting of th
zero-bias anomaly can be resolved for temperaturesT
&10TK

0 . For higher temperatures the splitting can no long
be resolved and, instead, a broad zero-bias anomaly is
tained. Also important to mention is the nonmonotonic b
havior of the linear conductanceG5dI/dVuV50 with tem-
perature. Starting from high temperatures, the lin
conductance firstincreasesfor decreasing temperatures, in
dicating the appearance of Kondo physics. This beha

FIG. 11. Nonequilibrium DOS attC51.6G for different voltages
in the rangeV510TK

0 through 50TK
0 . TK

0 50.000 37G. Top: left
DOS. Bottom: right DOS. The arrows mark the directions of
creasing voltages.
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saturates at the temperature for which the splitting is
solved~hereT;10TK

0 ) and then the linear conductancede-
creasesfor decreasing temperatures. This behavior can
easily explained by noting that the linear conductance a
nite temperatures is a convolution of the DOS around
Fermi level with the derivative of the Fermi function~whose
full width at half maximum is 3.5T). When the width of the
derivative of the Fermi function is smaller than the splittin
of the Kondo peak this convolution is very small, due to t
small spectral weight around the Fermi level when t
Kondo peak splits, explaining why the linear conductan
decreases when lowering the temperature. This nonmo
tonic temperature behavior is an indirect proof of the form
tion of the splitting~in single dots in the Kondo regime th
linear conductance monotonically increases, until it satura
in the Fermi-liquid regime, for decreasing temperatures!. We
show this behavior in Fig. 13 where we compare the te
perature dependence of the linear conductance of a si
quantum dot~solid line! with the temperature dependence
the linear conductance of a double quantum dot withtC
51.6 ~dashed line!. The linear conductance for the single d
follows the usual logarithmic increase at intermediate te
peratures followed by a saturation near the unitary limit. T
linear conductance for the double-dot case shows a n
monotonic temperature dependence, it increases for dec
ing temperatures in the regionT.T* whereas it decreases i
the regionT,T* . The temperature scaleT* @which is the
temperature for which the splitting is resolved in Fig. 12~b!#
characterizes quantum coherence between both dots in
Kondo regime. Note that in order to compare with the sing
dot case the temperature has been scaled with respect t
Kondo temperature of thesingle-dot problem,

TK5DA2D0 /pue0uexp~2pue0u/4D0!.

FIG. 12. Nonlinear transport properties of the DQD syste
(tC51.6G) for different temperatures as a function of the appli
bias voltage.TK

0 50.000 37G. ~a! Current-voltage characteristics
~b! Differential conductance at finite voltage.
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RAMÓN AGUADO AND DAVID C. LANGRETH PHYSICAL REVIEW B 67, 245307 ~2003!
Finally, it is important to mention here is that the NCA
known to overestimate the Kondo peak amplitude~and then
the linear conductance! when calculated from the density o
states. Typical overestimates are within the range 10–1514

Keeping this overestimation in mind~which for temperatures
T&431022TK leads to an overshooting of the unitary lim
in the single-dot case; Fig. 13, solid line!, we purposefully
show results at low temperatures where the temperature
pendences of the linear conductance for the single-
double-dot cases compare best.

Finally, we comment on the temperature dependence
the differential conductance at large voltages@see Fig. 12~a!#.
At low temperatures the slope of theI -V characteristics a
large voltages approaches zero and eventually beco
slightly negative, namely, theI -V characteristics presen
negative differential conductance~NDC!, at the lowest tem-
peratures. The slope of the differential conductance incre
gradually as one increases the temperature. For the hig
temperature studied (T520TK

0 , dashed-dotted line!, no
traces of NDC are found even for very large voltages.

This NDC behavior can be physically understood as f
lows: at low voltages, the current is carried only by sp
fluctuations mediated by the Kondo effect between the le
and the dots~without the Kondo effect, the current would b
zero due to the Coulomb blockade!. As one increases th
voltage, the Kondo effect is progressively reduced
voltage-induced decoherence73 leading to a decrease of sp
fluctuations and thus to the current. If thermal and quant
fluctuations were not present the current would go to zero
V@TK

0 , which is what one gets within the SBMFT, see b
low. On the contrary, the NCA does include fluctuatio
which regulate the background currentIÞ0 for TK

0 !V

FIG. 13. Comparison of the temperature dependence of the
ear conductance in a single quantum dot~solid line! and a double
quantum dot withtC51.6G ~dashed line!. The linear conductance
for the single dot follows the usual logarithmic increase at interm
diate temperatures followed by a saturation near the unitary li
The linear conductance for the double-dot case shows a nonm
tonic temperature dependence, it increases for decreasing tem
tures in the regionT.T* whereas it decreases in the regionT
,T* . The temperature scaleT* characterizes quantum coheren
between both dots in the Kondo regime. Note that in order to co
pare with the single-dot case the temperature has been scaled
respect to the Kondo temperature of thesingle-dot problem, see
main text.
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,2ẽ0 ( ẽ0 is the level position renormalized by charg
fluctuations7!. The mechanism leading to current reducti
for increasing voltages, i.e., NDC, thus becomes less and
effective as the applied voltage approaches 2ẽ0, namely,
when charge fluctuations do start to play a role, and/or w
the temperature increases. We are studying a range of
ages of theI -V characteristics for whichV!2ẽ0 ~the largest
voltage in Fig. 12 isV5100TK

0 whereas charge fluctuation
appear in an energy range of;53103TK

0 –53104TK
0 , de-

pending ontC , see Fig. 7!, so the NDC is mainly destroyed
by thermal fluctuations. This is shown in Fig. 14, where w
compare theI -V characteristics@Fig. 14~a!# and differential
conductance@Fig. 14~b!# of the system at low (T55TK

0 ) and
high (T520TK

0 ) temperatures. For the low-temperature si
ation, the slope at large voltages does indeed develop N
for V*50TK

0 . At V.50TK
0 , the differential conductance be

comes zero and the current smoothly starts to decrease a
increases the dc voltage. ForT520TK

0 , the differential con-
ductance is always positive. This can be easily understoo
terms of the increase of the background DOS betweenv
;0 ~spin fluctuations! and v;ẽ0 ~charge fluctuations! as
temperature increases which leads to an increase of the
ferential conductance.

The NDC for T55TK
0 changes drastically at larger d

voltages where our numerical results for the current rapi

n-

-
t.
o-
ra-

-
ith

FIG. 14. Nonlinear transport properties of the DQD syste
(tC51.6G) for two different temperatures as a function of the a
plied bias voltage.TK

0 50.000 37G. ~a! Current-voltage characteris
tics. ~b! Differential conductance at finite voltage. At large voltag
the system develops regions of negative differential conducta
~see main text!. ~c! Blowup of the low-voltage region in the differ
ential conductance. The extra structure at low voltages~small zero-
bias anomaly plus satellites! is originating from the splitting due to
the applied voltage.
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KONDO EFFECT IN COUPLED QUANTUM DOTS: A . . . PHYSICAL REVIEW B67, 245307 ~2003!
develop a wiggly pattern~not shown!. The appearance of thi
fluctuating pattern in the numerics is accompanied by
breakdown of current conservation, namely,JL52JR is no
longer fulfilled. This could be either due to a NCA brea
down or a dynamical instability, namely, the spontaneo
development of a time-dependent current in response to
static applied voltage.77 Dynamical instabilities, rather typi
cal in nonlinear systems presenting NDC,78 have been re-
cently reported in single QD’s in the Kondo regime.25–27It is
impossible for us to check this possibility~our numerical
scheme is only valid for time-translational invariant situ
tions!, and so we choose to show no results for voltageV
.60TK

0 and leave this issue for future investigations.
We finish this part with two remarks. The first is that th

NDC has been previously reported in the context of
SBMFT.47 Importantly, the NDC features obtained here a
smooth~thedI/dV evolves from zero to negative values in
smooth manner! and gradually disappear as the temperat
increases as we mentioned before. On the contrary, the N
obtained within the SBMFT consists of sharp transitions
tween the high and low current regions. These sharp tra
tions can be attributed to the lack of fluctuations~quantum
and thermal! of the boson fields in the SBMFT as alread
anticipated by us in Ref. 47.

The second remark is that the low-voltage part of
differential conductance curve at the lowest temperat
@Fig. 14~c!# does also develop new fine structure~extra
peaks!. The differential conductance develops a sm
zero-bias anomaly and satellites separated from zero atDV
;610TK

0 . These new structures in the differential condu
tance are in agreement with the ones previously reporte
two-level quantum dots65,46and coupled quantum dots in th
limit of strong interdot repulsion46 and can be attributed to
the extra splitting induced by the applied voltage: the volta
splits the peaks in the left and right spectral functions, an
peak in the differential conductance occurs when these
peaks cross each other. The agreement is only qualita
though. In Refs. 46 and 65 such crossings occur atDe5V,
whereDe ~a fixed quantity! is the energy separation betwee
single-particlelevels in the two-level quantum dot65,46or the
energy separation between the bonding and antibonding
els in the coupled quantum dot system.46 On the contrary, the
peaks in the differential conductance of our calculation
pear at much lower-frequency scales. As mentioned bef
our calculation includes the strong renormalization of
levels due to electronic correlations and due to the volta
The crossings, hence, appear at voltages for whichDẽ(V)
5V ~namely,ẽ11V/25 ẽ22V/2), whereDẽ(V)5 ẽ22 ẽ1

52 t̃ C(V) is the voltage-dependent energy separation
tween the antibonding and bonding combinations of
Kondo peak~which, again, is much smaller than the sing
particle splitting 2tC).

Figure 15, where we plot the full spectral function at
finite voltage, illustrates this phenomenon. Each peak sp
by 6V/2. As a result the full DOS develops four peaks, t
combinationse16V/2 ande26V/2, that can be clearly re
solved at high enough voltages. These split peaks are ma
with asterisks for the highest voltage in the figure, the d
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tance between consecutive peaks is twice the renormal
interdot hopping, and the distance between alternate pea
the voltage. We mention, in passing, that the observation
this fine structure in the differential conductance would co
stitute a direct proof of the voltage-induced splitting of t
Kondo resonance. Here, the splitting associated with the
terdot hopping serves as a testing tool, similarly to that p
vided by an external magnetic field in single quantum dot12

~the quantityDe of our previous discussion being now th
Zeeman splitting in a single quantum dot with an exter
magnetic field! to check the voltage-induced splitting. Dif
ferent proposals for measuring this voltage-induced splitt
are the subject of current active research.67,83,84

We support our previous paragraph by studying the te
perature dependence of the nonequilibrium full DOS atV

5100TK
0 ~Fig. 16!. At high temperatures,T*2 t̃ C , the split-

ting coming from the interdot coupling cannot be resolv
and the coupled dot system is equivalent to a single dot w
a broad Kondo peak~coming from a convolution of the
bonding and antibonding peaks with thermal broadenin!.
The width of this effective Kondo peak is thus larger th
2 t̃ C . As expected, a finite voltage,V.T, splits this effective
single Kondo peak into two peaks separated byV ~Fig. 16,
thick solid line!. Further lowering of the temperature allow
to resolve the interdot-induced splitting resulting in ex
peaks superimposed to the ones induced by the voltage~Fig.
16, asterisks!.

FIG. 15. Nonequilibrium full DOS at low temperature (T
55TK

0 ) and tC51.6G for different voltages V525TK
0 ,

50TK
0 ,100TK

0 . TK
0 50.000 37G. The applied voltage induces extr

splittings in the bonding and antibonding combination of the Kon
peak. As a result, four peaks can be clearly resolved in the full D
at high voltages~these peaks are marked with asterisks for the hi
est voltage in the figure!.
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RAMÓN AGUADO AND DAVID C. LANGRETH PHYSICAL REVIEW B 67, 245307 ~2003!
We finish by commenting on the observability of the e
fects described in this section: We obtain in our calculatio
splittings in the differential conductance of the order
.50TK

0 . Typical Kondo temperatures in quantum dots are
the order of a fewmeV ~for instance, the Kondo temperatu
is .4 –250meV in the experiment of Ref. 1!, which gives
splittings well within the resolution limits of state-of-the-a
techniques~remember that 1meV;10 mK).

VI. CONCLUSIONS

We have theoretically studied the transport propert
both equilibrium and out-of-equilibrium properties, of
coupled quantum dot system in the Kondo regime. We h
modeled the double quantum dot system by means of a
impurity Anderson Hamiltonian with interimpurity hoppin
and infinite on-site interaction on each dot. The Hamiltoni
formulated in slave-boson language, is solved by means
generalization of the NCA for the present problem: tw
quantum dots in the Kondo regime, coupled to each othe
a tunneling barrier and with an applied voltage across th
We have provided benchmark calculations of the predicti
of the noncrossing approximation for the linear and non
ear transport properties of coupled quantum dots in

FIG. 16. Temperature dependence of the nonequilibrium
DOS (V5100TK

0 ) andtC51.6G. TK
0 50.000 37G. At high tempera-

tures, the splitting coming from the interdot coupling cannot
resolved and the coupled dot system is equivalent to a single
with a broad Kondo peak coming from a convolution of the bon
ing and antibonding peaks with thermal broadening. This effec
single Kondo peak is split by the voltage as expected~vertical
marks!. Further lowering of the temperature allows the resolution
the interdot-induced splitting~asterisks!.
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Kondo regime. We give a series of predictions that can
observed experimentally in linear and nonlinear transp
measurements through coupled quantum dots in the Ko
regime.

~i! The nonlinear differential conductanceG5dI/dV di-
rectly measures the transition~astC increases! from two iso-
lated Kondo impurities to a coherent bonding and antibo
ing superposition of the many-body Kondo states of ea
dot. For increasing interdot couplings, the zero-bias anom
first broadens and then splits. The latter case correspond
transport which is optimized for a finite bias voltage matc
ing the splitting between these two bonding and antibond
states.

~ii ! The effective Kondo temperature of the coupled s
tem increases with the interdot coupling. This is reflected
a broadening of the zero-bias anomaly.

~iii ! The nonmonotonic temperature behavior of the line
conductanceG5dI/dVuV50 is an indirect proof of the for-
mation of the splitting. Starting from high temperatures, t
linear conductance first grows for decreasing temperatu
indicating the appearance of Kondo physics. This behav
saturates at the temperature for which the splitting is
solved. Further lowering of the temperature produces a
crease of the linear conductance: The curve linear cond
tance vs temperature has a maximum at a temperature
T* characterizing quantum coherence between the two qu
tum dots.

~iv! The differential conductance at large voltages can
come negative~NDC!.

~v! At low enough temperatures, it is possible to reso
extra structures in the differential conductance coming fr
the splitting induced by the applied bias voltage.

We hope our work will inspire and encourage experime
tal investigations of Kondo physics in coupled quantum d
and related systems.
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APPENDIX A: BAYM FUNCTIONAL AND NCA
SELF-ENERGIES

The NCA technique is the lowest-order fully conservin
and self-consistent theory one can construct from a Ba
functional F.56 This functional is defined as the set of di
grams consisting of all vacuum skeleton diagrams built
of fully renormalized Green’s functions and the bare vert
Using this definition, we obtain to lowest order in the lea
dot coupling the functionalF1 @Fig. 3~a!# which can be writ-
ten as.
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F15 i
V2

N (
aP$L,R%

(
ka

(
s

E
c
dtdt8

3Gas~t,t8!gka ,s~t8,t!Ba~t8,t!, ~A1!

where the integrals and the time-ordered Green’s functio

iGas~t,t8![^Tcf as~t! f as
† ~t8!&,

iBa~t,t8![^Tcba~t!ba
†~t8!&,

igka ,s~t,t8![^Tccka ,s~t!cka ,s
† ~t8!&, ~A2!

are defined along a complex contour.
The self-energies are obtained by the functional deriva

of the Baym functional,

Sas
(1)~t,t8!5

]F1

]Gas~t,t8!
,

Pa
(1)~t,t8!5

]F1

]Ba~t,t8!
, ~A3!

which gives

SL(R)s
(1) ~t,t8!5 i

V2

N (
kL(R)

gkL(R)s
~t,t8!BL(R)~t,t8!,

PL(R)
(1) ~t,t8!52 i

V2

N (
s

(
kL(R)

gkL(R)s
~t8,t!GL(R)s~t,t8!.

~A4!

A similar analysis onF2 @interdot term, Fig. 3~b!# gives

F252S tC

N D 2

(
s

E
c
dtdt8GLs~t,t8!BL~t8,t!

3GRs~t,t8!BR~t8,t!, ~A5!

SL(R)s
(2) ~t,t8!52S tC

N D 2

BL(R)~t,t8!GR(L)s~t,t8!

3BR(L)~t8,t!,

PL(R)
(2) ~t,t8!5S tC

N D 2

(
s

GR(L)s~t8,t!BR(L)~t,t8!

3GL(R)s~t,t8!. ~A6!

The final NCA self-energies are thus

SL(R)s
(NCA)~t,t8!5SL(R)s

(1) ~t,t8!1SL(R)s
(2) ~t,t8!, ~A7!

and

PL(R)
(NCA)~t,t8!5PL(R)

(1) ~t,t8!1PL(R)
(2) ~t,t8!. ~A8!

Finally, continuation to the real time domain of the se
energiesS (NCA) and P (NCA) and specialization to stead
state give Eqs.~10! and ~11! in the main text.
24530
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APPENDIX B: EQUATION OF MOTION FOR THE
CONTOUR-ORDERED OFF-DIAGONAL GREEN’S

FUNCTIONS

In this appendix, we discuss the equation of motion
the contour-ordered Green’s functions and show explic
that their off-diagonal components vanish fortC50. As a
consequence, the off-diagonal self-energies~Sec. IV A! do
not contribute to ordertC

2 and can be neglected within th
NCA.

We start from the definition of the contour-ordere
Green’s function,

Gas,a8s
t

~ t2t8!52 i ^Tcf as~ t ! f a8s
†

~ t8!&, ~B1!

and its equation of motion

2 i
]

]t8
Gas,a8s

t
~ t2t8!5d~ t2t8!^$ f as~ t !, f a8s

†
~ t8!%&

2 i ^Tcf as~ t !@H, f a8s
†

~ t8!#&,

~B2!

where$,% and@ ,# denote anticommutation and commutatio
respectively. As we mentioned in Sec. III, the time-orderi
operatorTc operates along a contourc in the complex plane.
The anticommutator foraÞa8 is zero, and the equation o
motion for the off-diagonal Green’s functions becomes

2 i
]

]t8
Gas,a8s

t
~ t2t8!52 i ^Tcf as~ t !@H, f a8s

†
~ t8!#&

for aÞa8. ~B3!

For instance, the LR component can be written as

S 2 i
]

]t8
2eRD GLs,Rs

t ~ t2t8!

52 i
V

AN
(
kR

^Tcf Ls~ t !ckRs

† ~ t8!bR
†~ t8!&

2 i
tC

N
^Tcf Ls~ t ! f Ls

† ~ t8!bL~ t8!bR
†~ t8!&. ~B4!

By operating withgR
t from right, the LR contour-ordered

Green’s function can be expressed as the sum of two te

GLs,Rs
t ~ t2t8!5GLs,Rs

(1)t ~ t2t8!1GLs,Rs
(2)t ~ t2t8!. ~B5!

The first one

GLs,Rs
(1)t ~ t2t8!5

V

AN
(
kR

E
c
dtCkR ,L

t ~ t2t!gR
t ~t2t8!

~B6!
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contains the off-diagonal Green’s function

CkR ,LR
t ~ t2t!52 i ^Tcf Ls~ t !ckRs

† ~t!bR
†~t!&,

which contains high-order terms involving both interdot a
dot-lead couplings~for example, whent.t, in the contour
sense, this correlation function represents the creation o
electron at theright lead followed by the annihilation o
another electron in theleft dot at a later time!. We disregard
these kind of terms in the following in order to simplify ou
discussion.

The second term in Eq.~B5! is

GLs,Rs
(2)t ~ t2t8!5

tC

NE
c
dtDLR

t ~ t2t!gR
t ~t2t8!, ~B7!

which contains the off-diagonal Green’s function

DLR
t ~ t2t!52 i ^Tcf Ls~ t ! f Ls

† ~t!bL~t!bR
†~t!&.

The two-particle Green’s functionDLR
t (t2t) can be ex-

pressed within the NCA as the product of one diagonal
mion propagator~the left one in this particular example! and
one off-diagonal bosonic propagator. This allows us to
press diagrammatically Eq.~B7! as in Fig. 17~a!.

The boson off-diagonal Green’s function can be obtain
using a similar analysis:

BL,R
(2)t~ t2t8!5

tC

N (
s

E dtbL
t ~ t2t!FLs,Rs

t ~t2t8!,

~B8!

with

FIG. 17. Feynman diagrams corresponding to~a! the off-
diagonal fermion propagator of Eq.~B7! ~schematically GLR

5GLLBLRgRR) and ~b! the off-diagonal boson propagator of E
~B8! ~schematicallyBLR5bLLGLRBRR).
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FLs,Rs
t ~t2t8!52 i ^Tcf Rs

† ~t!bR~t! f Ls~t!bR
†~ t8!&.

Again, the two-particle Green’s functionFLs,Rs
t (t2t8) can

be decomposed as the product of a fermionic~off-diagonal!
and a bosonic~diagonal! propagator, allowing us to expres
diagrammatically Eq.~B8! as in Fig. 17~b!.

In the diagrams of Fig. 17, the off-diagonal fermion a
boson propagators are coupled; importantly, both vanish
tC50 @of course the off-diagonal propagators not conside
in this discussion, such as the one in Eq.~B6!, would also be
zero without the interdot coupling#. In particular, this implies
that the off-diagonal self-energies also vanish to ordertC

2

~they are built out ofbareoff-diagonal propagators! as stated
in Sec. IV A.

A possible confusing point is that in the usual formulati
it would be necessary to use the off-diagonal self-energ
and propagators in the noninteracting problem. In that pr
lem, there are no slave bosons, and so no possibility for
self-energy diagrams of Fig. 17. However, the slave pro
gators in Fig. 4~b! are also stripped away. According to th
usual definitions, Fig. 4~b! no longer remains a proper sel
energy insertion, and one would need the off-diagonal pro
gators to lowest order in the tunneling. However, a mome
reflection shows that the same result is obtained without
off-diagonal propagators, if onedefinesthe ‘‘proper’’ self-
energy with the requirement that it should begin and end
the same lead, and takes the dashed line in Fig. 4~b! to be the
propagator in the absence of the interdot coupling.

APPENDIX C: PROJECTION

Here we discuss the evaluation of operator avera
within the restricted subspace of the Hilbert space with
constraints of Eq.~3!. The formal expression for the expec
tation value of an operator in this subspace can be written

^Ô&QL51,QR515
1

ZQL51,QR51
Tr$e2b(H02mLNL2mRNR)

3dQL,1dQR,1TC@SC~2`,`!Ô#%, ~C1!

whereTC orders operators along a complex contour, the h
ping terms are treated as perturbations~i.e., H0 contains the
isolated regions of the problem, leads and dots, before t
are connected!, and the partition function is given by

ZQL51,QR515Tr$e2b(H02mLNL2mRNR)

3dQL,1dQR,1TC@SC~2`,`!#%. ~C2!

Since the charge operators commute with the Hamilton
each constraint can be incorporated by a Kroneckerd func-
tion in the statistical averages of Eqs.~C1! and ~C2!. To
relate averages in the restricted ensemble with the ones
responding to an unrestricted ensemble, we represent
Kroneckerd function as an integral over a complex chemic
potential14,54 ~see also Appendix D in Ref. 50 and chap. 7
Ref. 7!:
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dQL,15
b

2pE2p/b

p/b

dlLe2 iblL(QL21),

dQR,15
b

2pE2p/b

p/b

dlRe2 iblR(QR21), ~C3!

^Ô&QL51,QR515
1

ZQL51,QR51
S b

2p D 2E
2p/b

p/b

dlL

3E
2p/b

p/b

dlReiblLeiblRZGC^Ô&GC .

~C4!

This way, we can relate the average in the constrained
semble with an average in the grand canonical ensem
which can be written as

^Ô&GC5
1

ZGC
Tr$e2b(H02mLNL2mRNR1 ilLQL1 ilRQR)

3TC@SC~2`,`!Ô#%,

ZGC5Tr$e2b(H02mLNL2mRNR1 ilLQL1 ilRQR)

3TC@SC~2`,`!#%. ~C5!

This average inside the integral in Eq.~C4! now obeys a
linked cluster theorem and we can use conventional fi
theory. In principle, we can stop here, evaluate the avera
in the grand canonical ensemble, and project to the phys
ensemble by a final integration over the chemical potenti
Further simplification can be gained, however, by noting t
the grand canonical partition functionZGC can be rewritten
as a sum over canonical partition functions:

ZGC5 (
QL50

`

(
QR50

`

ZC~QL ,QR!e2 iblLQLe2 iblRQR ~C6!

and by expanding the expressions in the grand canon
ensemble as power series,

ZGC5ZC~0,0!1ZC~1,0!e2 iblL1ZC~0,1!e2 iblR

1ZC~1,1!e2 iblLe2 iblR1•••,

^Ô&GC5^Ô&0,01^Ô&1,0e2 iblL1^Ô&0,1e2 iblR

1^Ô&1,1e2 iblLe2 iblR1•••. ~C7!

Inserting these power-series expansions inside the integr
Eq. ~C4!, the only terms that survive are:

^Ô&QL51,QR515
1

ZC~1,1!
@ZC~0,0!^Ô&1,11ZC~1,0!^Ô&0,1

1ZC~0,1!^Ô&1,0#, ~C8!

where we have used̂Ô&0,050 which is the case for any
physical operator of interest. The operators we are intere
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in can be classified as operators acting on the left dot
operators acting on the right dot,85 namely,

^ÔL&QL51,QR515FZC~0,1!

ZC~1,1!
^ÔL&1,01

ZC~0,0!

ZC~1,1!
^ÔL&1,1G ,

^ÔR&QL51,QR515FZC~1,0!

ZC~1,1!
^ÔR&0,11

ZC~0,0!

ZC~1,1!
^ÔR&1,1G .

~C9!

We can conclude from this analysis that physical opera
on the left and right sides have to be of the order
O(e2 iblL)1O(e2 iblLe2 iblR) and O(e2 iblR)
1O(e2 iblLe2 iblR), respectively. From now on we deno
the order of the operators asO(1,0)1O(1,1) ~left operators!
andO(0,1)1O(1,1) ~right operators!.

Equations~C9! can be rewritten as

^ÔL&QL51,QR515
ZC~0,1!

ZC~1,1! F ^ÔL&1,01
ZC~0,0!

ZC~0,1!
^ÔL&1,1G ,

^ÔR&QL51,QR515
ZC~1,0!

ZC~1,1! F ^ÔR&0,11
ZC~0,0!

ZC~1,0!
^ÔR&1,1G .

~C10!

The coefficientsZC(0,1)/ZC(0,0) andZC(1,0)/ZC(0,0) can
be identified with the right and left normalization factors
the absence of the interdot hopping, i.e.,ZC(0,0)/ZC(0,1)
[1/ZR and ZC(0,0)/ZC(1,0)[1/ZL and can be obtained
from the left and right canonical partition functions of tw
independent single-impurity problems at different chemi
potentialsmL and mR , respectively~see Refs. 14, 62, and
68!. This way, the physical operators in the constrained
semble can be written as

^ÔL&QL51,QR515
ZC~0,1!

ZC~1,1! F ^ÔL&1,01
1

ZR
^ÔL&1,1G ,

^ÔR&QL51,QR515
ZC~1,0!

ZC~1,1! F ^ÔR&0,11
1

ZL
^ÔR&1,1G .

~C11!

Equation ~C11! is the central result of this section. Le
~right! physical operators in the restricted ensemble w
QL51,QR51 contain two terms:~i! the coefficient of the
term of the order ofO(e2 iblL(R)) in the operator evaluated in
the grand canonical ensemble plus~ii ! the coefficient of the
term of the order ofO(e2 iblLe2 iblR) in the operator evalu-
ated in the grand canonical ensemble divided by the norm
ization factor of the right~left! problem without the interdot
coupling.

The new normalization factors,ZC(0,1)/ZC(1,1) and
ZC(1,0)/ZC(1,1) can be obtained from the identitie

^Q̂L&QL51,QR51[1 and^Q̂R&QL51,QR51[1.
Now, we apply the previous projection procedure to t

self-energies of Eqs.~10! and ~11!. The projection of the
self-energies can be accomplished in three basic steps.
first step, we follow Langreth and Nordlander in Ref. 62~see
also Ref. 14!: since the Dyson equations forGL(R)

, andBL(R)
,

contain eitherGL(R)
, or BL(R)

, in every term, the self-energie
that multiply these quantities must have all terms prop
7-17
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tional to GL(R)
, or BL(R)

, or higher projected out. As a resu
we obtain from Eqs.~10! and~11! the following self-energies
(t5t2t8):

SL(R),s
r ~t!5H 1

N
K̃L(R),s

. ~t!1 i S tC

N D 2

@G̃R(L),s
r ~t!

2G̃R(L),s
a ~t!#B̃R(L)

, ~2t!J BL(R)
r ~t!,

PL(R)
r ~t!5H 1

N (
s

K̃L(R),s
, ~2t!1 i S tC

N D 2

(
s

@B̃R(L)
r ~t!

2B̃R(L)
a ~t!#G̃R(L),s

, ~2t!J GL(R),s
r ~t!. ~C12!

Similarly,

SL(R),s
, ~t!5H 1

N
K̃L(R),s

, ~t!1 i S tC

N D 2

G̃R(L),s
, ~t!@B̃R(L)

r ~2t!

2B̃R(L)
a ~2t!#J BL(R)

, ~t!,

PL(R)
, ~t!5H 1

N (
s

K̃L(R),s
. ~2t!1 i S tC

N D 2

(
s

B̃R(L)
, ~t!

3@G̃R(L),s
r ~2t!2G̃R(L),s

a ~2t!#J GL(R),s
, ~t!,

~C13!

where we have emphasized in our notation the struc
(Kernel(1)1Kernel(2))3propagator. In Kernel(1), the quanti-
ties K̃ are defined in terms of the Fourier transforms of t
bare conduction-electron propagators~namely, without dot-
lead coupling! as K̃a,s

: (e)52p(ka
V2d(e2eka

) f a
:(e),

where f a
,(e)51/(eb(e2ma)11) is the Fermi function and

f a
.(e)512 f a

,(e) ~see Ref. 62 and below!. This way, the
kernel isO(0,0). The Green’s functions within the Kernel(2)

part, namelyG̃, B̃, do not include the interdot hopping
meaning that the kernel isO(0,1) for the left part andO(1,0)
for the right one. This previous projection in the kerne
is completely equivalent to the projection one does in
single- impurity problem: with the same kind of argumen
one neglects terms of orderO(e2 ibl) in the conduction
electron propagator which, in principle, is a full propaga
to be calculated in the presence of slave fermions
bosons. The self-energy corrections to the lead elec
propagators such as the bubble diagram in Fig. 18 are thr
away in the single-impurity case~and also, of course, in ou
case!. As a consequence of this projection, one always wo
with bare conduction-electron propagators, which, again
not what one gets initially from the unprojected NCA equ
tions.

In a second step, we project out unwanted contributi
from the propagators multiplying the kernels. As we me
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tioned previously, the left~right! kernel is of the order of
O(0,0)1O(0,1) @O(0,0)1O(1,0)#, meaning that the re-
tarded propagators multiplying these kernels, Eq.~C12!,
should be of the order ofO(0,0), namely,bare propagators
with respect to the interdot. The corresponding lesser pro
gators in Eq.~C13! therefore contribute withO(1,0) ~left
operators! and O(0,1) ~right operators! giving the correct
order: O(1,0)1O(1,1) for the left operators andO(0,1)
1O(1,1) for the right ones. Finally, according to Eq.~C11!
the O(1,1) contributions should be normalized byZR and
ZL , respectively. The final set of the projected self-energ
is then

SL(R),s
r ~t!5H 1

N
K̃L(R),s

. ~t!1 i S tC

N D 2

@G̃R(L),s
r ~t!

2G̃R(L),s
a ~t!#

B̃R(L)
, ~2t!

ZR(L)
J B̃L(R)

r ~t!,

PL(R)
r ~t!5H 1

N (
s

K̃L(R),s
, ~2t!1 i S tC

N D 2

(
s

@B̃R(L)
r ~t!

2B̃R(L)
a ~t!#

G̃R(L),s
, ~2t!

ZR(L)
J G̃L(R),s

r ~t!, ~C14!

SL(R),s
, ~t!5H 1

N
K̃L(R),s

, ~t!1 i S tC

N D 2 G̃R(L),s
, ~t!

ZR(L)

3@B̃R(L)
r ~2t!2B̃R(L)

a ~2t!#J B̃L(R)
, ~t!,

PL(R)
, ~t!5H 1

N (
s

K̃L(R),s
. ~2t!1 i S tC

N D 2

(
s

B̃R(L)
, ~t!

ZR(L)

3@G̃R(L),s
r ~2t!2G̃R(L),s

a ~2t!#J G̃L(R),s
, ~t!,

~C15!

which correspond to Eqs.~19! and~20! used in the main text.

FIG. 18. Self-energy contribution of the order ofO(e2 ibl) to
the conduction-electron propagator which is projected out
the constraint. The inclusion of this self-energy contribution
the conduction-electron propagator would give unwanted contr
tions of the order ofO(1,0) ~left contact! and O(0,1) ~right con-
tact!.
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