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Kondo effect in coupled quantum dots: A noncrossing approximation study
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The out-of-equilibrium transport properties of a double quantum dot system in the Kondo regime are studied
theoretically by means of a two-impurity Anderson Hamiltonian with interimpurity hopping. The Hamiltonian,
formulated in slave-boson language, is solved by means of a generalization of the noncrossing approximation
(NCA) to the present problem. We provide benchmark calculations of the predictions of the NCA for the linear
and nonlinear transport properties of coupled quantum dots in the Kondo regime. We give a series of predic-
tions that can be observed experimentally in linear and nonlinear transport measurements through coupled
guantum dots. Importantly, it is demonstrated that measurements of the differential condgetati¢dV, for
the appropriate values of voltages and interdot tunneling couplings, can give a direct observation of the
coherent superposition between the many-body Kondo states of each dot. This coherence can be also detected
in the linear transport through the system: the curve linear conductance vs temperature is nonmonotonic, with
a maximum at a temperatufié characterizing quantum coherence between both the Kondo states.
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[. INTRODUCTION tions of QD’s in the Kondo regime constitute a growing area
of intense investigations, both from the theoretical and ex-
The recent observations of Kondo physics in theperimental sides. Time-dependent Kondo phy&ic&
electronic-transport properties of quantum d@@'s),'>a  Kondo physics in integer-spin QD%,or QD’s embedded in
tiny semiconductor box containing a few interacting Aharonov-Bohm ring® are examples of such configura-
electron€ have opened new promising directions for experi-tions.
mental and theoretical research of this phenomenon, one of The study of Kondo physics in mesoscopic or nanoscopic
the paradigms in condensed-matter physics. systems is not limited to QD’s. We can mention here the
The Kondo effect appears in dilute alloys containing lo-recent observation of Kondo physics in single atdfns,
calized moments as a crossover from weak to strong counolecules’? carbon nanotube¥,scanning tunneling micros-
pling between itinerant electrons of the host nonmagneticopy (STM) experiments of magnetic impurities in quantum
metal and the unpaired localized electron of the magneticorrals* or the anomalous energy relaxation in voltage-
impurity as the temperatur€l) is reduced well below the biased quantum wires and its relation to two-channel Kondo
Kondo temperatureT().” Due to spin-exchange interaction, physics®
a many-body spin singlet state is formed between the un- In this paper, we will focus on another configuration: a
paired localized electron and the itinerant electrons with ensystem of two coupled quantum dots in the Kondo regime. In
ergies close to the Fermi energy of the métaThis singlet  view of the recent experimental advances in the study of
is reflected in the density of staté®OS) of the impurity as  quantum coherence in coupled quantum dB©D)**~*%and
a narrow peak at low frequencies: the Abrikosov-Suhl orthe aforementioned studies of Kondo physics in quantum
Kondo resonance. This effect leads to many remarkabléots, it is a timely question to ask what happens when a
properties and has been the subject of extensive research feystem consisting of two quantum dots in the Kondo regime,
decades. coupled to each other by means of a tunneling barrier, is
In recent years, spectacular advances in nanotechnologiriven out of equilibrium, and how the interplay of strongly
have made it possible to experimentally study Kondo physicgorrelated electron physics, quantum coherence, and non-
in quantum dots$° These truly impressive experiments con- equilibrium physics leads to new physical scenarios. Previ-
firm early theoretical predictions that transport through quaneus theoretical studies of this problem at equilibrium have
tum dots in the Coulomb blockade regime should exhibitfocused on the aspects of quantum coherence in this
Kondo physics at low enough temperatut2QD’s provide  systeni®*'and on the competition between the Kondo effect
the intriguing opportunity to control and modify the Kondo and antiferromagnetic coupling generated via exchdngé
effect experimentally: the continuous tuning of the relevantor via capacitive coupling between défsThere have hith-
parameters governing the Kondo effeas well as the pos- erto been only few attempts to attack this problem in a non-
sibility of studying Kondo physics when the system is drivenequilibrium situation by means of different techniques: the
out of equilibrium, either by dqRefs. 11-1Y or ac vol-  equation-of-motion techniqu®,the so-called resonant tun-
tages:®~?* pave the way for the study of strongly correlated neling approximatioff (valid for T>T, and equivalent to
electron physics in artificial systems. Moreover, they providethe equation-of-motion method of Ref.)12and slave-boson
a unique testing ground in which to investigate the interplaymean-field theor§”*® Here, we present an approach which,
of strongly correlated electron physics, quantum coherenceo the best of our knowledge, tackles with this nonequilib-
and nonequilibrium physics. More sophisticated configura+ium problem in a nonperturbative, fully self-consistent, and
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I te Ik local gauge symmetry of the problemhat separates the low-
AN O\ ™ temperature state from the high-temperature local-moment
regime. This latter problem may be corrected by including
1/N fluctuations around the mean-field solutiSriThe gen-
eralization of the SBMFT to the present problem, two
coupled quantum dots in a nonequilibrium situation has been
studied in Ref. 47.

FIG. 1. Schematic diagram of the double-dot system studied in  (ii) The NCA (Refs. 49 and 50is the lowest-order self-
this paper. Each dot is coupled independently to one lead with cowconsistent, fully conserving, an@ derivable theory in the
plingsI', andI'r, respectivelytc is the interdot tunneling term.  Baym sensé® It is well known that the NCA fails in describ-
Note that the role of the interdot term is twofold: first, it generatesing the low-energy Fermi-liquid regime. Neglect of vertex
quantum coherence between the two quantum dots; second, it eégprrections prevents us from a proper description of low-
tablishes a nonequilibrium situation, that is, when the chemical POznergy excitations. Nevertheless, the NCA has proven to give
tentials are different there is a bias voIFage across the sysiem |aliaple results for temperatures down to a fractioﬁl’@f.57
(;oﬁg;?d\c/)tzngieﬂen’ a flow of electrical current through the 1o NCA gives better results in multichannel cases, where

Y : the correct non-Fermi-liquid behavior is obtair&@dNone-
theless, Krohat al>® have shown in a series of papers that it
conserving way. Our approach is based on a generalization @ possible to develop systematic corrections to the N@A's
the so-called “noncrossing approximatiofRICA) (Refs. 49 functional that cures the low-temperature pathologies of the
and 50 to the present problem. NCA. These systematic correctiofthe so-called “conserv-

The system of two coupled QD’s can be modeled bying T-matrix approximation) are able to describe the Fermi-
means of two Anderson impurities, each of them coupled tdiquid and non-Fermi-liquid regimes on the same footing. It
a different Fermi sea, and coupled together by means of aig also possible to formulate the NCA equations for fitfite
interimpurity hopping term. In the atomic limit, each impu- by introducing an extra slave-boson describing double occu-
rity can either be emptj), singly occupiedt), ||) or doubly  pancy. The correct Kondo scale is obtained by symmetrizing
occupied|1 ). The operators describing these states and thehe NCA diagrams with respect to empty and doubly occu-
transitions among them, the Hubbard operators, are neithgjied local state8
fermions nor bosons, which precludes the application of The generalization of the NCA to time-dependent phe-
usual perturbation theor§Wick’s theorem does not apply nomena was developed by Langreth and co-workers in a se-
One way of circumventing this difficulty is the auxiliary par- ries of paper¥°® (see also Ref. 64and later applied to
ticle representation pioneered by Abrikosov, who first reprenonequilibrium transport through quantum dbts#65-67
sented local spins by pseudofermichand later by Barn€é  tunnel junctions and point contad® nonequilibrium dy-
and Colemar® and consists of describing each of the statesnamics at surfaces and STM studiés’® Also, this tech-

(for each sitg as created out of the vacuum from the appli- nique has recently been applied to the study of nonequilib-
cation of a creation operatgbosonic for|0) and|{|) and  rium dynamics in quantum dots in the Kondo regifend to
fermionic for|1) and||) due to quantum statisticsEach site  the study of nonequilibrium-induced decohereficaiso in
has to be in one of the four states, and this is accomplisheguantum dots in the Kondo regime. In this work, the NCA is
by constraining the number of auxiliary particles to 1. Slave-generalized to cope with the present problem, namely, two
particle representations allow one to work with usualAnderson impurities, coupled to each other by a tunneling
quantum-field-theory methods provided one works in theparrier, which are in a nonequilibrium situation.

constrained subspace of the Hilbert space where the number The paper is divided as follows: In Sec. I, we formulate
of auxiliary particles is 1. In particular, in the limiy —  the Hamiltonian(the general form and its slave-boson for-
(infinite on-site interactiop which is the case we shall con- mulation which describes the problem. In Sec. lll, we
sider in the following, double occupancy is forbidden andbriefly review the nonequilibrium Green's-function tech-
each site can be described by one bofdr=b'|lvad and  nique, real time Dyson equations for the retarded and lesser
two fermions |T)Ef}“|vac>, |L)Ef]°|vac). This particular ~ Green’s functions, which we use in order to formulate the
version of the auxiliary particle representation has beemproblem in its fully nonequilibrium form. In Sec. IV, we
termed the slave-bosd$B) representation after Colemah. present our generalization of the NCA technique to the prob-

Within the SB formulation two nonperturbative ap- lem. In Sec. IVA, the self-energies obtained within our
proaches can be applied ftd-fold degenerate Anderson- scheme are presented and discussed. In Sec. IV B, we derive
impurity models. the physical two-particle correlation functions within the

(i) The mean-field approximation of the slave-boson fieldNCA approach. In Sec. IVC, we present the fermion and
(SBMFT),>*%* only valid for describing spin fluctuations in boson self-energies after the projection onto the restricted
the Kondo regime, correctly generates the low-energy scalklilbert space. We present and discuss in Sec. V various
Tk and leads to a local Fermi-liquid behavior at zero tem-model calculations for the DOS, both in equilibrium and
perature(Fig. 1). The SBMFT, however, does suffer from nonequilibrium situations, linear conductance, nonlinear cur-
two drawbacks:(a) it leads always to a local Fermi-liquid rent, and nonlinear differential conductance. We give a series
behavior, even for multichannel mode(b) The SBMFT has of predictions for the current and finite voltage differential
a phase transitiorforiginating from the breakdown of the conductance which are relevant for experiments. It is dem-

uw L=eV 2 right dot
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onstrated that the measurements of the differential conducrhe fourth term describes the interdot tunneling. In the ab-
tanceG=dl/dV, for the appropriate values of voltages andsence of the interdot tunneling, this Hamiltonian describes
interdot tunneling couplings, can give a direct observation ofwo independent Anderson impurities each of them coupled
the coherent superposition between the many-body Kondto different Fermi seagypically at different chemical poten-
states of each dot. We also give predictions for the temperdials). Note that the role of the interdot term is twofold: first,
ture dependence of the linear conductance and for the noii-generates quantum coherence between the impurities; sec-
linear differential conductance in the high-voltage regime,ond, it establishes a nonequilibrium situation, that is, when
where negative differential conductance is obtained for lowthe chemical potentials are different there is a bias voltage
temperatures. across the system and, then, there is an electrical current
We include three appendices: In Appendix A, we briefly flowing through the double-dot system. The last terms de-
describe how to obtain the self-energies used in the main textcribe the on-site electron-electron interaction on each dot
from a Baym functionafb at lowest ordefNCA). In Appen- WherenL,R,,,zd[,R,,dL,R(, are the number operators for spin
dix B, we analyze the equation of motion of the contour-o on each dot. The on-site interaction parameters e
ordered Green’s functions, with special emphasis on theire?/2C, andUg=e?/2Cg, whereC  are the dot capaci-
off-diagonal components. We prove explicitly that these off-tances. The neglect of an interdot electron-electron interac-
diagonal components vanish for zero interdot tunnelingtion (~ UinergoNNR) With Ujnterdor~ CLr/C1 Cr COrresponds
which allows us to neglect them in the NCA equations forto the experimentally accessible limit of small interdot ca-
the self-energies as stated in Sec. IV. In Appendix C, wepacitance C,r) as compared with the capacitances of each
describe the projection procedure used to deal with the cor@D to the gates, and implies a vanishing interdot coupling

straint in the Hilbert space. from this sourcé? Experimentally, these parameters govern-
ing the Hamiltonian: tunneling couplings, on-site interac-
ll. MODEL tions, etc., can be purposefully modified by external gate

voltages® which allows to study a variety of rich physical

phenomenéspin- and charge-fluctuation regime, nonequilib-
As we mentioned already, the double quantum dot can bgum phenomena, etcon the same sampte?®

modeled as a two-impurity Anderson Hamiltonian with an

extra term accounting for interimpurity hopping. Each impu-

rity is connected to a different Fermi sea with chemical po-

tential u, =eV/2 andug= —eV/2, respectively é=0). We assumeU =Ur=U—2, forbidding double occu-
pancy on each dot. This is a good approximation for ultra-

H= E e ct o o+ E c dt d small quantum dots in which the on-site.interaction is much
Kee (LRYO Ko 7kg 0 Ke 0 acltRy,e 7 @00 larger than the conplmg strengthy, g (typically more than
one order of magnitude
In the limit U— o, the antiferromagnetic coupling due to
superexchange~t(2;/U vanishes in the model. Nevertheless,
t we expect our conclusiongor J=0) to remain valid forJ
+dredie)tULng iy +URNR 1NR |- (1) #0 in the following limits: (i) small interdot couplingtc
The first two terms in the Hamiltonian represent the electrons<]’ =24, provided thatT,>2J; (ii) large interdot cou-
in the leads and in the dots, respectively. In these HamiltoPling tc>1I", the antiferromagnetic coupling becomes irrel-

nians,cl » (cc ) creategannihilate$ an electron with evant. The previous estimations for the limits of validity of
L/R L/R our calculation are based on a SBMFT analy& which

we expect to remain valiat least qualitativelyin the pres-

A. General formulation

B. Slave-particle representation

+V0 E (Cla,rrda<r+djurcka,0')+vcz (derR”

Kae{L,R1 O

momentumk, ;g and sping in the left/right lead, anaﬂI,RU
(dy/re) creates(annihilate$ an electron with spinr in the ence of fluctuations.

Ieft/nght th' €k p~ €kt HUR= k= €VI2 and €ag A€ the ~Inthe limit of U, ,Ug—< (i.e.,C_,Cr—0) we can write
energies in the leads and the dots, respectively. The thirghe Hamiltonian(1) in terms of auxiliary pseudofermions
term describes the coupling between each dot and its corrgnd slave-boson operators plus constraints:

sponding lead, and determines the coupling strength
A (€)= wvgzkaE{L (e ex) (we neglect thek depen-
dency of the tunneling matrix element for simpligitfgach
lead is described by a parabolic density of stabEmdwidth
W=2D) centered at the chemical potential, such that we can

_ T T
H= E ekack ,(rcka ,U’+ E 6-curfcz(rf ao
Kae{L,R} T @ ae{lL,R}, o

tc
+ = E (fI(rbLbLfRUJ{_ f;(rbRbeLU)

define the function N <
. \/2 _ \Y
AO=mVe 2 dlee,) = X (el bt b ). (@
“ \/N kLYE{L,R} T “« “
_ 2

Ao[l—(e 'u“) } if —D<e—u,<D In the slave-boson representation, the annihilation operator
= D for electrons in the QD’sd .., is decomposed into the SB

0 otherwise. operatorbl which creates an empty state and a pseudofer-
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FIG. 2. Interaction vertices. Solid, dashed, and wavy lines rep
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two different kinds of fermion-boson interactions which are
given by the vertices in Fig. 2.

Ill. GREEN'S FUNCTIONS AND SELF-ENERGIES

At this point, we have reduced the original problem de-
scribed by the Hamiltonian in Eql) to a problem of fermi-
ons and bosons interacting through the vertices of Fig. 2 and
subject to the constraints in E(B). Properties of the physi-
cal electrons can be built up from the Green’s functions of
the pseudofermions and slave bos¢sse Sec. IV B These
Green'’s functions for the auxiliary fermions and bosons con-

resent lead electron, pseudofermion, and slave-boson lines, respegitute the basic building blocks of the theory. Furthermore

tively. Each line carries a leftright) index. (a) Lead-dot hopping
vertex V/y/N (full circle). Tunneling of an electron from the left
(right) dot to the left(right) lead is represented as the decay of the
left (right) pseudofermion into a leftright) slave boson and left
(right) lead electron(b) Dot-dot hopping vertex. /N (open circlg.
Tunneling of an electron from the leftight) dot to the right(left)

dot is represented as the combination of the (gfht) pseudofer-
mion with the right(left) slave boson to decay into a Idftight)
slave boson and righgleft) pseudofermion. Note that this vertex
exchanges left and right indices.

mion operatorf,, which annihilates the singly occupied
state with spin o in the dot a: d,,—blf,, (d!

aoc

Hffwba). Note that we have scaled the hopping parameter

Vo=V/{N and Vc=tc/N, N being the degeneracy of the

our aim is to study the out-of-equilibrium properties of the
system; we need, then, a fully nonequilibrium description of
the dynamics of the Green'’s functions of these auxiliary par-
ticles. The appropriate starting point is to derive equations of
motion for the time-ordered double-time Green’s function of
the auxiliary fermion(G) and bosor(B) fields on a complex
contour. A rigorous and well established way to derive these
equations of motion was first introduced by Kadanoff and
Baym,® and has been related to other nonequilibrium meth-
ods (such as the Keldysh methptdy Langreth, see Ref. 76
for a review.

The time-ordered double-time Green’s function are de-
gned as(subindices are omitted here

iG(t,t")=(T (O (t")),

level on each dot. The leads are described now by the func-

tion
I',(e)=NA,(€)
= WVZKE Se—e )

i

0

€~ Uy

2
) } if —-D<e—pu,<D
otherwise.

This scaling is done in such a way that the paramelers
=NAgyandAy/Ve=NAy/tc=T/t; appearing in the expres-
sion of the Kondo temperatulsee Sec. V and Refs. 41 and
42) have a well-definetN— o limit, namely, there is a well-
defined 1N expansion of the physical quantities.

Finally, the physical constraint is that we must work in a

subspace of the Hilbert space where the number of auxiliary

particles(on each dotis 1, namely,

QL: Z fI(rfLU+ bIbL: 1!

Qr=2 fhofretbEbr=1. 3)

As we mentioned before, these two constraints come from (

iB(t,t")=(Tb(t)b™(t")), (4)
or in terms of their analytic pieces,
iIG(t,t")=G7(t,t")o(t—t")—G=(t,t")o(t' —1),
iB(t,t")=B7(t,t")o(t—t")+B=(t,t")o(t'—t). (5

The time-ordering operatdf. and the step functiong op-
erate along a contour in the complex plane. It will not
matter in the derivation given here whetheis taken to be
the Keldysh contour, the Kadanoff-Baym contour, or a more
general choice. G=(t,t")=(fT(t")f(t)) and B=(t,t")
=(b'(t")b(t)) are the so-called lesser Green’s functions,
andG~ (t,t")=(f(t)fT(t")) andB~(t,t")=(b(t)b'(t")) are
the greater ones.

The retarded Green’s functions can be written in terms of
these analytic pieces as

iIG'(t,t") =[G (t,t")+G=(t,t")]O(t—t"),
iB'(t,t")=[B~(t,t")—B=<(t,t")]6(t—t"). (6)
The advanced ones can be obtained froBi(t,t’)
=[Gt ,1)]*.

The basic starting equations follow directly from the
Dyson equations in complex time space:

gt 0

G(t,t")=6(t—t")+ f dty 3 (t,t1)G(ty,t"),

the physical condition that each dot has to be in one of the

three state40), 1), or ||). To simplify the notation we con-
sider henceforth that, ,= eg,= €,. The Hamiltonian2) has

Jd
Bt =o(t—t)+ chtll'[(t,tl)B(tl,t’). (7)
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Applying analytic continuation rulé® we can write Dyson omles
equations in real time space, which relate the lesser and th L(R) Y ,/ VAN v
greater Green's functions with the retarded and advancec N\ ‘ *
ones: -

N — Y\

AUVAUAVS
aJ _ ) _ \ ERIM Q - b

(i——eo)e<(t,t')=f dty[37(t,t)G=(ty,t") . /! ‘\./m

ot

= ~ww =7 N ’/
+33(1,t)GA(ty,t)], ® P
~
SwR="
. (9 = - = . . . .
IEB<(t,t')= dt,[TI"(t,t;)B=(t,t") FIG. 3. Diagrammatic representation of the generating func-
— tional ®NCA=d, + d, of our NCA approximation. Solid, dashed,
+H2(t t,)Ba(t;,t")] (8) and wavy lines represent lead electron, pseudofermion, and slave-
sl 15 .

boson lines, respectively. Each line carries a (gght) index. Full
The retardedand advancedGreen’s functions follow usual ~ Circle, lead-dot hopping vertex/JN; open circle, dot-dot hopping
Dyson equations: verFext.C IN. The self-energies are obtained by talfing the functional
derivative of®NCA with respect to the corresponding Green'’s func-
P w tion. (a) Lead-dot functionatb, [leading ordetO(1)]. (b) Dot-dot
(i i eo)Gr(t,t’)z S(t—t")+ f mdtlzf(t,tl)Gf(tl,t’), functional @, [leading ordeitO(1/N)].
used to evaluate it. Approximations that are dotlerivable
d ® generally do not satisfy either of the above requirements.
IEBr(t,t')Z&t—t'HJ’%dtlﬂr(t,tl)Br(tlyt')- 9 To lowest order in both verticeCA), we obtain the
Baym functional of Fig. 3. This functional consists of two
The set of Dyson equations is closed by choosing a suitabl€ms®"“*=®,+®,. To lowest order in the lead-dot ver-
approximation for the self-energi@s andIl, and hence for tex we obtain the functionab, [Fig. 3(a)] which is of lead-
their analytic piece® <, 3>, 1<, andII”. We describe in ing orderO(1) [the orderO(1/N) for the vertexV/ N is not
the following section the noncrossing approximation used tskeletor). The functional®, [Fig. 3(b)] is constructed from
solve our problem. the dot-dot vertex and is of leading orde(1/N). The NCA
solution obtained fromdN“A=d,+d, is expressed dia-
grammatically in Figs. 4 and 5. These self-energies are ob-
IV. NONCROSSING APPROXIMATION tained by the functional derivation of the Baym functional
A. Self-energies (Fig. 3 S =0®NCA9G andI1=adN 4B (for details see
We use the NCA techniqd®® for obtaining the self- Appendix A). This guarantees that our approximation is con-

energiesS g (Lt'), T g (L,t") in Eq. (7) and their real serving. The obtained self-energies are of leading order

2 .
time analytic continuations. Hereafter, since we focus ono(l)+.o(1./N) (bqson$ gndO(l/N)+O(1/N ) (fermions. .
In principle, it is posible to construct another generating

static nonequilibrium, dc voltages, the time-translational in-

variance is thus not broken, i.e., all quantities depend only oéﬂgcgﬁgfl é:ggl,;hﬁjniggggt %/ﬁirste;(unvng:afggaalgz gg;]_
the time differencet—t’.”77® Nonetheless, our NCA equa- © 29 '

tions for the self-energies, see E@$0) and (11) below, to- structed fromd, by rgplacing all the diagonal fermion and
gether with Dyson equations in real time, E¢8) and (9), boson Green’s functions by off-diagonal ones. The corre-

are valid for general situations with broken time-translationalSpondlng _self-energle_s are eqU|vaI<?nt to those of Figs. 4
symmetry by just substitutingt €t')—(t,t’) and solving and 5b) with all the diagonal Green’s functions replaced by
the fully time-dependent problem ' the off-diagonal ones. However, it can be shown that the bare

As we already mentioned, the NCA technique can be jus-

tified as an IN expansion, at lowest order in perturbation LR 2 o 5
theory, although it is better regarded as a fully conserving, TR

self-consistent, and derivable theory in the Baym sene.

The exact® is defined as the set of diagrams consisting of ”R)’\f\

all vacuum skeleton diagrams built out of fully renormalized ~—

Green'’s functions and the bare vertex, weighted so that eac|
self-energy is the functional derivative @f with respect to
the corresponding skeleton propagator. It was shown by
Baym that this requirement is sufficient to guarantee that the FiG. 4. Fermion self-energy. Solid, dashed, and wavy lines rep-
propagator equations so obtained exactly satisfy all the conresent lead electron, pseudofermion, and slave-boson lines, respec-
servation laws of the problem, and that the predictions for aively. Each line carries a leftright) index. Full circle, lead-dot
physical quantity are independeid all orderg of which of  hopping vertexv//N; open circle, dot-dot hopping vertetx /N.

the several availabléexac) expressions for that quantity is The leading order of this self-energy @& 1/N) -+ O(1/N?).

>/
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FIG. 5. Boson self-energy. Solid, dashed, and wavy lines repre- L(R)(t t')

sent lead electron, pseudofermion, and slave-boson lines, respec-
tively. Each line carries a leftright) index. Full circle, lead-dot
hopping vertexV/+/N; open circle; dot-dot hopping vertex /N.

The leading order of this self-energy @(1)+ O(1/N).

(tc=0) off-diagonal Green’s functions are zgisee Appen-

dix B), namely, the off-diagonal functional vanishes to order . ,
t2, i.e., it does not contribute to leading order with termsHLR(t—1)=
O(1/N) in the interdot vertex. In particular, this implies that

there are no off-diagonal self-energies to second order in the

interdot vertex. It is, thus, consistent to neglect off-diagonal
self-energies within the NCA. This way, our NCA guarantees

that all diagrams of leading orde®(1/N) are included

within a more general subset of diagrams which includes

PHYSICAL REVIEW B 67, 245307 (2003
2 KL(R)

' =G (R o(t—1")

2
> B§(L)(t—t')GF>e(L),a(t' -1

XGf(R)‘U(t—t’),

2 KL(R)

' =GRy o(t—1")

2
= > B;(L)(t_t’)GFf(L),a(t’ -1

XGE(R)‘U(t—t’),

2 {KL(R) A" =G (g ,(t—1")

+ KRy ot — DG (r).o(t—t")}
2

tc
20: {Briy(t—t")Gry o(t' 1)

+
N

terms to all orders in both vertices.
Applying real time analytical continuatiéhto Eq. (A7)
in appendix A(see diagram in Fig.)4 we obtain the lesser,

greater, and retarded components of the fermion self-energy:

tc)?

N

t— EK< —t")Bp (t—t’
SR.l(t—t)= N L(R),o(t =) B (gy(t—t") +

X Gy, o(t=1")Bryy(t' ~1)B(r)(t—t"),

2

1 tc
SR o(t—t)= NKL(R) At=t)B Ry (t—t") + N

X GRy,o(t=t")Bray(t' —t)B(r)(t—t'),
SRt =g {KL(R) A=) B (ry(t—t")

r ' < ’ l:C 2
+KL(R),U(t_t )BL(R)(t_t )}+ N
X{Gry,o(t=t")Br)(t’ —1)BLR)(t—t")
+Grey,o(t—t")BRy(t —)B(r)(t—t")

Gy o (1= 1) Bray(t' ~OB R (1)},
(10

where the quantitiek, g , are defined in terms of the fer-
mion propagator in the left(right) lead as K (g,
=V23 Sk Ik o (S€€ Sec. IVE The corresponding ex-
pressions for slave-boson self-enerdiEs|. (A8) in Appen-
dix A] corresponding to Fig. 5 are

Gl (r).o(t—t") =Bg(t—t")

X Gr(L),o(t' ~)GL(r) o(t—1")
T BRu (=) GR) (1 ~DG (), ot}
(11)

Equations(10) and (11) are the unprojected full NCA self-
energies coming from the generating functional. The projec-

tion of these quantities onto the physical subsp@gg{m}
=1 is discussed in Appendix C.

B. Physical correlation functions

The physical lesser and greater correlation functiogs (
e{L,R}) are

A (t=t)=(d] ("), (1),

=(d,(1)d] (). (12

In terms of slave operators, they become the two-particle
correlation functions:

(t—t")=(fl_(t)b,(t)bI(t)f (1)),

AL (t=t)=(bI(Df (DL (t)by(t). (13

The evaluation of these two-particle correlation functions
would require, in principle a further diagrammatic expan-
sion. Within the NCA, however, one neglects vertex
correction§® and keeps only the lowest-order term in the
expansion of the two-particle correlation functitfig. 6):

= (1 (1) ue(D)) (b (t)bI(D))
=G, (t—t")BZ ('~ 1),

t—t")

0(0'(

A<

C((T
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L(R)

suENwy
Rise T,
. 3
. .

** A

e *,
N xA~

L(R)

FIG. 6. Diagrammatic representation of the physical two-
particle correlation function within the NCA. The neglected vertex

corrections aré(1/N?) (Ref. 53.

A (t—=t)=(bl (b (1)) (DT,
=B (t'—t)G_ (t—t’).

(t)
(14)

Using the identities

Gl(r),o(t=t") =[G (r),(t—t') =G (r) ,(t—1")]
_GL(R),O'(t_t )7

BL(R),o(t—t")=i[B(r),(t—t") =Bl (r) ,(t—t")]
+BL(R),0‘(t_t ), (15)

Eqg. (14) can be rewritten as
AS (t—t) =G (

t—t"){i[B], ,(t'—t)—=B% (t'—1)]

+B (' —t)}
AL (t=t") =B (t' —t){i[G], ,(t—t') =G (t—t")]
=G, (t=t")}. (16)

Now, according to the projection procedure explained in Ap-

pendix C(see also Ref. 62 the termsG:
—t) and B (t'—
[they are of the order oD (e 2'A a)]. This is accomplished
by making

(t—=t")B ,(t’

aag

GLr).o(t=t") =[G (r) ((t—t") =G} (g ,(t—t')]
Bl(r).o(t—t)=i[B[ () ,(t—t') =B (g ,(t—t")],
(17)

which gives the following physical correlation functions:

AL (t=t) =G (t—t")[B, ,(t' —t) =B (t'—1)],

AL (t—t)=iB (' —t)[G] (t—t") =G, (t—t')],

AP (t—t") =G (t—t")B (t' —1)

— G, (t—t"HB2Dt'—t). (18

t)GL“,(t—t ) have to be projected out

PHYSICAL REVIEW B7, 245307 (2003

C. Physical self-energies

The final set of projected self-energiegsee Appendix C
for detail9

) [GR(L) (r(T)

R(L)< )]

tc
S (R).o(T)= r NKL(R) (7)+i

~?e(|_) (,-(7')] r|_(R)(7'),

) > [BRyy(7)

Brnol— D) =,
—r (7).
Zr() ] HR

I} (gy(7)= [ EKL(R)( 7)+i

(L)(T)] (19

Gy A7)
CRLo(T [ K ,r+|(c) —hr
L(R),c ( ) L(R),c ( ) N ZR(L)

><[BR(L)( ™)~ B(L)( T)]]BL(R)(T)

E;(L)(T)
HPESY

v Zr)

I Ry (7)= { EKL(R)( 7)+i

X [érR(L),(r( - T) - ég(L),(r( - T)] éf(R),(r( T)'

(20

The NCA
equations depend on the conduction electrons through the

quantitiesk which are defined in terms of the Fourier trans-
forms of thebare conduction-electron propagatofsamely,
without dot-lead couplingas

ff(e)}

=277V2k2 Se—e ) (€)=2T (e)f5(e),

Where we have introduced the notatiest—t’.

k

a

K3 o(e)= vz{ 2|m{2

€— eka-i—i 7

where 3 (€)=1/(ef¢"#d+1) is the Fermi function and
f~(e)=1—1f(€) (see Ref. 62

The Green’s function§& andB, which are full propaga-
tors with respect to the lead-dot hoppimp notinclude the
interdot coupling. The factorg, andZg can be identified
with the left and right charges in the absence of the interdot
hopping. They can be obtained from the left and right
charges of two independent single-impurity probldaisdif-
ferent chemical potentialg, andug, respectively, namely,

These Green’s functions have to be calculated with the cor-

responding projected self-energies, as discussed in the fol-

lowing section.

dw < B <
Za=fE[NGa(w)+Ba(w)].
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It is important to emphasize two aspects of the projectipn: right single-impurity problems. These equations are in agree-
the simplification of the propagatork(K, G—G, and ment with the ones previously obtained in Refs. 14, 62, and

B—B) is requiredby the projection proceduresee Appen- 68.

dix C) and is not an additional approximatidii;) this should The equations for the self-energies, together with the

not be construed to imply that there is no interdot correctiorPyson equations for the retarded and lesser Green's func-

in the slave-particle Green's functions that enter into thelions and the normalization conditions, close the set of equa-

physical correlation functions of EGL8). tions to be solved. We numerically iterate them to conver-
Finally, we note that the structure of the self-energies algence.

lows for a very intuitive physical interpretation: each left

(right) self-energy has the structure V. RESULTS

A. Density of states

{KernefY+ Kernef?)} x propagator. _
Here we present results for the left and right dot den-

KernelV) contains the addition or substraction spectrum ofsities of states, both for equilibrium and finite voltage,

conduction electrons in the leftright) lead, i.e.,K5,.  =V/2, ur=—V/2) situations. We use the following pa-
Kernef? contains the addition or substraction spectrum offameters in the calculationfinless otherwise statedey
physicalelectrons in the rightleft) dot. This can be shown =—2.5, T=0.003, and> =6 (all energies are given in units

by comparing the second term of each self-energy with th@f I'). The Kondo temperature corresponding to these pa-
expressions for the physical correlation functions in @§),  rameters iSTg~3.7x 10 * (here, the superscript “0” means

which allows us to rewrite Eq$19) and (20) as without the interdot coupling, namely, the Kondo tempera-
ture of the single-impurity problem corresponding to these
parameters as calculated from the Bethe ansatz analytical

te\2AZ AT | =
—C) 0w BLr)(7), solution (N=2):"*°

N

1.
SR o7 =[—K> ST i
L(R),o(T) NCLR), (7) Ze

TR=T(1+1/2)D,(I'/7D,)exp — 7|€|/T). (23
1 ~ . . .
H[(R)(T):[N; Kf(R),u(_T) I'(x) is the gamma function and the rescalinQ,

=exp(—1/2)D accounts for the assumed parabolic DOS’s in
the leads instead of the rectangular one used in the Bethe

2 A< _
L t_C) Arw) o =7 | =, (7) ansatz solutiofi? Note, finally, that in order to compare with
N/ ¥ Zpy L(R),o2 the SBMFT results,
(22) TSBMFT_D exef — | eol/T)~ 4T2 .
1. te 23;@) S It is known from the SBMFTRefs. 41, 42, and 47nd from
S Ryo(T)= NKE(R),(,(T)H N) — Bir) (7). numerical renormalization-groficalculations that the ef-
R(L)

fective Kondo temperatur@R® of the double-dot system
grows exponentially with the interdot hopping,

1 ~
HE(R)(T):[_E KL>(R) o= 7) t t
N “ TED~T§BMFTeX[{—CarctarE—C

r r/
tc 2 AA§(|_) (_ T) ~ . . . .
+il = A LA GL<(R) 7). It is not possible to extract an analytical expression for the
NJ % Zr() ' Kondo temperature from our set of coupled NCA equations,

(22) and so no possibility to check the previous expressiqi-
ori; nevertheless, we choose relatively high temperattires

Equation(21) and(22) show explicitly that the interdot term  >T?¢ in all our calculations in order to prevent the expected
is renormalized by correlatior{she interdot coupling terms  |ow-temperature pathologies should the effective Kondo
of the left (right) self-energies depend on the rigeft) dot  temperatureTR® increase exponentially with the interdot
spectra througm§(L)0 or A§(L)(r in Kernef?]. Other ex- hopping as predicted by the SBMFT and the numerical
amples where the structure of the kernels in the NCA selfrenormalization-group techniques.
energies affects the Kondo physics are, for instance, the In Fig. 7, the QD DOS at equilibriurthere, of course, the
Kondo effect in metal graiff or the Kondo effect in normal- left and right dots are equivalenis plotted for increasing
superconducting systefis Equations(21) and (22) consti-  values of the interdot tunneling. The full DOFig. 7(a)]
tute the main result of this section. The projected self-shows the splitting of the main pe&knergy scale for charge
energies inserted in the appropriate Dyson equation give affuctuationg originating from the interdot coupling which
overall result in Eq.(18) for the physical correlation func- generates quantum coherence between the dots. The splitting
tions, which has the correct order. Of course, in the absende the DOS corresponds to the formation of bonding and
of the interdot coupling we recover from Equatidi2d) and  antibonding combinations of the single-particle levels, i.e.,
(22) two independent sets of NCA equations for the left ande.. = €5+ t¢ due to the interdot tunneling. Figuréby shows
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T=0.003
T=0.004 |—
T=0.005
T=0.006
T=0.007
T=0.008

p (@) (1/T)
p (@) (1/T)

940 20 0 20 40

p (@) (1)

o( Units of T°,)
c
)
[«% : : : : : H -
pL—— =
-40 -20 0 20 40
e o Units of T°,)
0 - - * : : T * = -
-200 -100 0 100 200 FIG. 8. Temperature dependence of the equilibrium density of

stategDOS) around the Fermi level. The arrows indicate the direc-
tion of increasing temperatureiﬁ:0.000 3T. (a) DOS of the
coupled dot problem foto=1.6I". The structure originating from
the interdot coupling is still visible at temperaturéx 10Tﬁ. (b)
Reduction of the Kondo peak for the single-impurity problem as the
o . temperature increases. At the highest studied temperature
(a) Full DOS. The splitting in the DOS corresponds to the formatlonwono the Kondo Kis al .
- h ; S . . K peak is almost suppressed as compared with the
of bonding and antibonding combinations of the single-particle Iev-Coupled dot system
els due to interdot tunnelingb) Blowup of the low-frequency re- ’
gion around the Kondo peak. As the interdot coupling increases, the . .
Kondo peak also splits. Importantly, this splitting, which is a mani- 8(&] for tc=1.6 at different temperatures. The splitting
festation of quantum coherence between the two many-body Kond8riginating from the interdot coupling is still visible at tem-
states on each dot, is much smaller than the splitting of the broageraturesT=10Ty . For comparison, we show in Fig(l8
peak, see main text. the reduction of the Kondo peak for the single-impurity
problem as the temperature increases. At the highest studied
a blowup of the low-frequency part of the DOS around theemperature T~20T% the Kondo peak for the single-
Fermi level. As we increase the interdot coupling, the Kondq, ity system is almost suppressed as compared with the
peak also splits into the bonding and antibonding Comb'naéoupled dot system. This is in good qualitative agreement

tions. Importantly, the energy scale for this splitting of thewith the previous statement th-ﬁED>T& 41-4347¢ is worth

Kondo peak, which is a manifestation of quantum coherenc% ; . :

' noting that the splitting of the Kondo resonance is robust at
between the two many-body Kondo states on each dot, i 9 PIting
much smaller than the one corresponding to the splitting o

the broad peakwhich is a manifestation of coherence be-
tween single-particle statesWVe have, thenAe=2t-<Ae

o( Units of T°)

FIG. 7. Equilibrium density of statg®0S9) for different values
of the interdot hopping-=0.0, 1.0, 1.2, 1.4, 1.6, 1.8, and Zuits
of I'). The curves are shifted vertically for clarifyﬁ:0.000 3T.

emperatures higher thaTﬁ; experimentally this is of the
most relevance: according to this result, the experimental
conditions for studying Kondo physics in coupled QD’s are
less demanding than in single QD{$emperatures much

=2tc, where A€ and Ae=2tc are the splitting of the |5\er thanT are needed in order to observe Kondo-related
Kondo peak and the single-particle splitting, reSpeCt'Velyfeatures in the transport properties of sitgfeQD's).

This reduction of the splitting, namelyc<tc, is caused by
the strong Coulomb repulsion on each dste Sec. IVE _ _
Typical values of this spliting are in the range B. Nonlinear transport properties

~10Tﬁ—40l'ﬁ (note that the single-particle splittings are in ~ We have proven in the preceding section that the interdot
the range~ 103Tﬂ—104T2). These obtained values for the coupling generates quantum coherence between the dots.
reduced splitting of the Kondo resonance are in good semithis quantum coherence is reflected in the DOS of each QD
guantitative agreement with the mean-field slave-bosoms a splitting, both in the charge-fluctuation and spin-
calculation?®-4247 fluctuation parts of the spectruiie are interested in Kondo
The behavior at different temperatures is studied in Fig. §hysics and the obvious question we want to answer is thus:

where we plot the DOS of the coupled dot problghig.  Can we observe the splitting of the Kondo peak, induced by
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FIG. 9. Nonlinear transport properties of the DQD system for 0

different interdot couplinggin units of ') for T=0.003<8T2 with o (Units of T )

Tﬁ:0.000 3T. (a) Current-voltage characteristidd) Differential

conductance at finite voltage. The zero-bias anomaly first broadens FIG. 10. Nonequilibrium DOS g, =V/2= 12.5I'ﬁ JMur=—VI2

and then splits with increasing interdot hopping. The splitting of the= —12.5T2) for different values of the interdot hopping;=0.0,

zero-bias anomaly reflects quantum coherence between the twibO, 1.2, 1.4, and 1.6units ofI'). The curves are shifted vertically

many-body Kondo states on each QD. for clarity. Tﬁ=0.000 3T'. Top: left DOS. Bottom: right DOS. The

arrows mark the position of the chemical potentials.

the interdot coupling, in a differential conductance measure=| _| /2. The differential conductanog=dI/dV is cal-
ment? The answer to the previous question is nontrivial be-

cause we are dealing with the noneauilibrium phvsics Ofculated by the numerical differentiation of the current-
9 q phy voltage (-V) curves.

strongly correlated electrons and hence the spectral functions We study in Fig. 9 the nonlinear transport properties of

are expected to strongly depend on the applied bias voltag[% . .
. : by e DQD system. We plot in Fig.(8) thel-V characteristics
(shift and broadening of the peakén other words, the dif for different values of the interdot hopping. As the interdot

ferential conductance curve does not just mimic the Z€T0hopping increases, the low-voltage differential conductance
voltage DOS(as it does for noninteracting electronsrom pping ' 9

the experimental point of view this is a timely and crucial grows. At large voltages the current saturates, the differential
A X o conductance nears zero and even becomes slightly negative
guestion: the observation of such a splitting would prove th

remarkable phenomenon of quantum coherence beteheen %or the largest. These features are better brought out in a

e e
Oosterkampet al*® and Blick et al*® have proven quantum ' ppIng,

coherence between sinale-particle states in coupled QD,Kondo anomaly broadens and splits. We can attribute this
gie-p b 1?:iroadening to the aforementioned increase of the effective

:ljth?emeu:ngtEﬁuégts :fsiggegzr\]/%eb%?r\ﬁvresno};ggdrgcséﬂifs Kondo temperature as a function of the interdot hopping. For
q Y P yl?grge interdot tunneling couplings the zero-bias anomaly

Jeonget al. in Ref. 39. The first step in order to answer our plits. The splitting of the zero-bias anomaly is an unambigu-
guestion is to calculate the current through the double-dogus ihdication of quantum coherence between the Kondo
system. We follow the standard nonequilibrium approach ta q
transport through a region of interacting electrd#é and States on each dot.

relate the current through each dot to its retarded and Iessgr This begawor O(]; t_he nonllne?rr;[ransport plr%p.emes can be
Green’s functions: etter unsderstood in terms of the nonequilibrium DOS on

each dof(Figs. 10 and 1L
In Fig. 10, we plot the nonequilibrium DOSu( =V/2
2e =12.5T) , ug=—V/2=—12.5T}) for the left (top figure
lpeiLry=— Ff del(e)[2Im Al(e)f () +AS(e)]. and right(bottom figuré coupled quantum dots. For the un-
(24) coupled situation t-=0), each DOS has a Kondo peak
around each chemical potential as expected. With increasing
interdot hopping, the behavior of each DOS becomes quite
Here, A}(€) and A} (e) are the Fourier transforms of the complex. The Kondo peak on each side splits into two peaks
retarded and lesser physical Green’s functions of (E§). while at the same time the whole spectral weight near the
The total current through the system is calculated as Fermi level shifts to lower frequencies. Furthermore, these
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0.03

c 2 =
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FIG. 11. Nonequilibrium DOS &t.=1.6I" for different voltages V (Units of TOK)

in the rangeV=10TY through 50%. T%=0.0003T. Top: left

DOS. Bottom: right DOS. The arrows mark the directions of in-  FIG. 12. Nonlinear transport properties of the DQD system

creasing voltages. (tc=1.6I") for different temperatures as a function of the applied
bias voItage.TE:0.000 3T. (a) Current-voltage characteristics.

split peaks are asymmetric, they have different heights anff? Differential conductance at finite voltage.

spectral weightgit is important to mention here, however,
that the NCA is known to overestimate the asymmetry of thesaturates at the temperature for which the splitting is re-
peaks because it does incorrectly treat potential and spin-flipolved (here T~10Tg) and then the linear conductande-
scattering on equal footimyj) As the interdot hopping in- creasesfor decreasing temperatures. This behavior can be
creases, the lowéuppei band of the lef{right) DOS moves easily explained by noting that the linear conductance at fi-
to lower (highep frequencies, while increasing its height, hite temperatures is a convolution of the DOS around the
until it matches with the uppetower) band of the rightleft)y ~ Fermi level with the derivative of the Fermi functiéwhose
DOS. As an example, fai.= 1.6 the lower peak on the left full width at half maximum is 3.%). When the width of the
DOS and the upper peak on the right DOS approximatelyderivative of the Fermi function is smaller than the splitting
match atw~ ug. As a result, there is a peak in the differen- of the Kondo peak this convolution is very small, due to the
tial conductance af= 25Ty, for this interdot couplingsolid ~ small spectral weight around the Fermi level when the
curve of Fig. gb)]. Kondo peak splits, explaining why the linear conductance
Also interesting is to study how the DOS evolves as adecreases when lowering the temperature. This nonmono-
function of the applied voltage for a fixed interdot coupling. tonic temperature behavior is an indirect proof of the forma-
This nontrivial behavior of the DOS versus applied voltage istion of the splitting(in single dots in the Kondo regime the
studied in Fig. 11 where we plot the nonequilibrium DOS forlinear conductance monotonically increases, until it saturates
te=1.6 and different voltages frov= 10T& to V=50Tﬁ in in the Fgrm|-I|qU|q regime, for decreasing temperaturéée
intervals of AV=5T2. As the voltage increases, the left S1OW this behavior in Fig. 13 where we compare the tem-

(right) DOS moves to highetlower) frequencies such that perature dependence Of. the linear conductance of a single
the middle point between the split Kondo peaks lies approxidantum dotsolid line) with the temperature dependence of

; ; ot A . the linear conductance of a double quantum dot with
mately at the lefright) chemical potentialthis discussion is
y tright P A = 1.6 (dashed ling The linear conductance for the single dot

only qualitative; note that even for the uncoupled case the_ SRS ; .
vy y ?ollows the usual logarithmic increase at intermediate tem-

Kondo peakglo notlie exactly on each chemical potenjial : . o
The temperature dependence of the current and differerReratures followed by a saturation near the unitary limit. The

tial conductance are plotted in Fig. 12. Several features ijnear conductance for the double-dot case shows a non-

these curves are noteworthy. If we focus first in the differen.TOnotoNic temperature dependence, it increases for decreas-

tial conductancéFig. 12b)] we see that the splitting of the " temperatures in the regidn>T* whereis it decreases in
zero-bias anomaly can be resolved for temperatufes the regionT<T*. The temperature scalg* [which is the

leTﬁ. For higher temperatures the splitting can no |0nge|1ehmpertatl_1re for Wh'tCh the rs1plltt|ng ISb rfsolvedblrthldg(l?)?;' h
be resolved and, instead, a broad zero-bias anomaly is ofj: aracterizes quantum conerence between bo ots in the

tained. Also important to mention is the nonmonotonic be- ondo regime. Note that in order to compare with the single-
havior of the linear conductancg=d1/dV]| with tem dot case the temperature has been scaled with respect to the
- Vo0 -

perature. Starting from high temperatures, the IinealKondo temperature of theingle-dot problem
conductance firsincreasesfor decreasing temperatures, in-
dicating the appearance of Kondo physics. This behavior Tc=DV2A,/ 7| ep|exp— || /4A ).
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FIG. 13. Comparison of the temperature dependence of the lin- z
ear conductance in a single quantum ¢kilid line) and a double g
quantum dot withtc=1.6' (dashed ling The linear conductance ~ 0-02|~ 5
for the single dot follows the usual logarithmic increase at interme- %0.50
diate temperatures followed by a saturation near the unitary limit. 0.03
The linear conductance for the double-dot case shows a nonmonc ™ 60 40 20 0 20 40 60 P
tonic temperature dependence, it increases for decreasing temper -20 0 20

tures in the regionT>T* whereas it decreases in the region V (Units OfTOK)
<T*. The temperature scalf* characterizes quantum coherence
between both dots in the Kondo regime. Note that in order to com-
pare with the single-dot case the temperature has been scaled Wi&\
respect to the Kondo temperature of thiagle-dot problemsee ¢
main text.

V( Units of T))

FIG. 14. Nonlinear transport properties of the DQD system
=1.6I") for two different temperatures as a function of the ap-
plied bias voItageTﬁz0.000 3T. (a) Current-voltage characteris-
tics. (b) Differential conductance at finite voltage. At large voltages
the system develops regions of negative differential conductance
(see main texyt (c) Blowup of the low-voltage region in the differ-
ential conductance. The extra structure at low voltagesll zero-

bias anomaly plus satellites originating from the splitting due to
the applied voltage.

Finally, it is important to mention here is that the NCA is
known to overestimate the Kondo peak amplitded then
the linear conductangevhen calculated from the density of
states. Typical overestimates are within the range 10-15%.
Keeping this overestimation in miri@vhich for temperatures
T=<4x10 2Ty leads to an overshooting of the unitary limit
in the single-dot case; Fig. 13, solid linave purposefully <Zé& (€& is the level position renormalized by charge
show results at low temperatures where the temperature déuctuations). The mechanism leading to current reduction
pendences of the linear conductance for the single- antpr increasing voltages, i.e., NDC, thus becomes less and less
double-dot cases compare best. effective as the applied voltage approachés,2namely,
Finally, we comment on the temperature dependence ofthen charge fluctuations do start to play a role, and/or when
the differential conductance at large voltafiese Fig. 12a)].  the temperature increases. We are studying a range of volt-
At low temperatures the slope of theV characteristics at ages of thd -V characteristics for whicly<2%, (the largest
large voltages approaches zero and eventually becomegitage in Fig. 12 isV=100Ty, whereas charge fluctuations
slightly negative, namely, thé-V characteristics present gppear in an energy range of5x 10°T2—-5x 10T, de-
negative differential conductgnaﬁBJD(_:), at the Iowest_tem- ending ortc, see Fig. , so the NDC is mainly destroyed
peratures. The slo_pe of the differential conductance mcrt_aas% thermal fluctuations. This is shown in Fig. 14, where we
gradually as one increases the temperature. For the highe mpare thd-V characteristic§Fig. 14a)] and differential

. - 0 _ .
temperature studied TE20T,, dashed-dotted line no conductancéFig. 14b)] of the system at lowT=5T%) and

traces of NDC are found even for very large voltages. . a0 .
This NDC behavior can be physically understood as fol.Nigh (T=20Ty) temperatures. For the low-temperature situ-

lows: at low voltages, the current is carried only by Spination, the slope at large voltages does indeed develop NDC
i - for V=50T} . At V=50T}, the differential conductance be-
fluctuations mediated by the Kondo effect between the lead K- '
and the dotgwithout the Kondo effect, the current would be comes zero and the current smoothly starts to decrease as one
zero due to the Coulomb blockagdeds one increases the increases the dc voltage. For= 20T2 | the differential con-
voltage, the Kondo effect is progressively reduced byductance is always positive. This can be easily understood in
voltage-induced decohereréeading to a decrease of spin terms of the increase of the background DOS between
fluctuations and thus to the current. If thermal and quantum-0 (spin fluctuations and w~¢, (charge fluctuationsas
fluctuations were not present the current would go to zero fotemperature increases which leads to an increase of the dif-
V>Tﬂ, which is what one gets within the SBMFT, see be-ferential conductance.
low. On the contrary, the NCA does include fluctuations The NDC for T=5T% changes drastically at larger dc
which regulate the background curreh#0 for TR<V  voltages where our numerical results for the current rapidly
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develop a wiggly pattertnot shown. The appearance of this V25T’

fluctuating pattern in the numerics is accompanied by a 1 K :

breakdown of current conservation, namely= —Jg is no —s V=50T0K

longer fulfilled. This could be either due to a NCA break- “loe—e v=100T" [[¥18 e
down or a dynamical instability, namely, the spontaneous : : K

development of a time-dependent current in response to the 0.8 ........... ..... N 13 WO , ...........
static applied voltag&” Dynamical instabilities, rather typi- g
cal in nonlinear systems presenting Nf¥Chave been re-
cently reported in single QD’s in the Kondo regifte?’ It is
impossible for us to check this possibilitpur numerical
scheme is only valid for time-translational invariant situa-
tions), and so we choose to show no results for voltages
>60TY and leave this issue for future investigations.

We finish this part with two remarks. The first is that this
NDC has been previously reported in the context of the
SBMFT# Importantly, the NDC features obtained here are
smooth(thed|/dV evolves from zero to negative values in a 0.2 L™
smooth manngrand gradually disappear as the temperature
increases as we mentioned before. On the contrary, the NDC
obtained within the SBMFT consists of sharp transitions be-
tween the high and low current regions. These sharp transi- 0 S S S S S S
tions can be attributed to the lack of fluctuatidigsiantum -100 -50 0 50 100
and thermal of the boson fields in the SBMFT as already
anticipated by us in Ref. 47.

The second remark is that the low-voltage part of the kG, 15, Nonegquilibrium full DOS at low temperaturer (
differential conductance curve at the lowest temperature- 5T%) and tc=1.60 for different voltages V=25T?,
[Fig. 14c)] does also develop new fine structufextra  50T1%,100T%. T%=0.0003T. The applied voltage induces extra
peaks. The differential conductance develops a smallsplitings in the bonding and antibonding combination of the Kondo
zero-bias anomaly and satellites separated from zerfoVat peak. As a result, four peaks can be clearly resolved in the full DOS
~+10T ﬁ . These new structures in the differential conduc-at high voltagesthese peaks are marked with asterisks for the high-
tance are in agreement with the ones previously reported ifst voltage in the figuje

] 46 ;

Iti\:‘vnci)tlg\f/eslt?ounamilrj]tne]r?jzi re aur}gig%u;rlzdcgﬁa&u?ttﬂghste'g ttr:)e tance between consecutive peaks is twice the renormalized
'g Inte P : i interdot hopping, and the distance between alternate peaks is

the extra splitting induced by the applied voltage: the voltagqhe voltage. We mention, in passing, that the observation of

splits the peaks in the left and right spectral functions, and s fine structure in the differential conductance would con-
peak in the differential conductance occurs when these splifiiyte a direct proof of the voltage-induced splitting of the
peaks cross each other. The agreement is only qualitativRondo resonance. Here, the splitting associated with the in-
though. In Refs. 46 and 65 such crossings occukétV,  terdot hopping serves as a testing tool, similarly to that pro-
whereA e (a fixed quantity is the energy separation between vided by an external magnetic field in single quantum tots
single-particlelevels in the two-level quantum d8t®or the  (the quantityAe of our previous discussion being now the
energy separation between the bonding and antibonding levzZeeman splitting in a single quantum dot with an external
els in the coupled quantum dot syst&h©On the contrary, the magnetic fieldl to check the voltage-induced splitting. Dif-
peaks in the differential conductance of our calculation apferent proposals for measuring this voltage-induced splitting
pear at much lower-frequency scales. As mentioned beforgre the subject of current active resea%f}%.’s"’
our calculation includes the strong renormalization of the We support our previous paragraph by studying the tem-
levels due to electronic correlations and due to the voltageerature dependence of the nonequilibrium full DOSvat
The crossings, hence, appear at voltages for wiiéfiVv) =100Tﬁ (Fig. 16. At high temperaturesf = ZTC, the split-
=V (namely,é, +V/2="¢_—VI/2), whereA€(V)="¢é_—¢,  ting coming from the interdot coupling cannot be resolved
= ZTC(V) is the voltage-dependent energy separation beand the coupled dot system is equivalent to a single dot with
tween the antibonding and bonding combinations of thed broad Kondo peakcoming from a convolution of the
Kondo peak(which, again, is much smaller than the single-bonding and antibonding peaks with thermal broadening
particle splitting 2¢). The width of this effective Kondo peak is thus larger than
Figure 15, where we plot the full spectral function at a2t.. As expected, a finite voltag¥,> T, splits this effective
finite voltage, illustrates this phenomenon. Each peak splitsingle Kondo peak into two peaks separatedvbgFig. 16,
by =V/2. As a result the full DOS develops four peaks, thethick solid ling. Further lowering of the temperature allows
combinationse , =V/2 ande_*=V/2, that can be clearly re- to resolve the interdot-induced splitting resulting in extra
solved at high enough voltages. These split peaks are markgetaks superimposed to the ones induced by the volfeige
with asterisks for the highest voltage in the figure, the dis-16, asterisks

1 R 1 1 1 B —

p (@) (1/T)
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— T0T’ Kondo regime. We give a series of predictions that can be
1 UK 5 5 observed experimentally in linear and nonlinear transport
— T=15T°K measurements through coupled quantum dots in the Kondo
. N T A AN S regime
— T=10T : ; f N T ; ; : i
K (i) The nonlinear differential conductan¢e=dl/dV di-
0.8} T=3T | SRR i} S S e rectly measures the transitidast increasesfrom two iso-

T ' lated Kondo impurities to a coherent bonding and antibond-
S S e ing superposition of the many-body Kondo states of each
: : dot. For increasing interdot couplings, the zero-bias anomaly
first broadens and then splits. The latter case corresponds to
i i P : transport which is optimized for a finite bias voltage match-
R R S I ing the splitting between these two bonding and antibonding
states.

(i) The effective Kondo temperature of the coupled sys-
\ tem increases with the interdot coupling. This is reflected as
s 28 N\ VR a broadening of the zero-bias anomaly.
5 A\ (iif ) The nonmonotonic temperature behavior of the linear
A O : R R RN conductance&g=dI/dV|y_q is an indirect proof of the for-

: : : : mation of the splitting. Starting from high temperatures, the
linear conductance first grows for decreasing temperatures,
indicating the appearance of Kondo physics. This behavior
saturates at the temperature for which the splitting is re-
solved. Further lowering of the temperature produces a de-

o (Units OfTOK) crease of the linear conductance: The curve linear conduc-
tance vs temperature has a maximum at a temperature scale
FIG. 16. Temperature dependence of the nonequilibrium fullT* characterizing quantum coherence between the two quan-
DOS (V=100T%) andtc=1.6". T9=0.000 3T'. At high tempera-  tum dots.
tures, the splitting coming from the interdot coupling cannot be (iv) The differential conductance at large voltages can be-
resolved and the coupled dot system is equivalent to a single datome negativéNDC).
with a broad Kondo peak coming from a convolution of the bond-  (v) At low enough temperatures, it is possible to resolve
ing and antibonding peaks with thermal broadening. This effectiveextra structures in the differential conductance coming from
single Kondo peak is split by the voltage as expecteertical  the splitting induced by the applied bias voltage.
marks. Further lowering of the temperature allows the resolution of  \\e hope our work will inspire and encourage experimen-
the interdot-induced splittingasterisks tal investigations of Kondo physics in coupled quantum dots
and related systems.
We finish by commenting on the observability of the ef-
fects described in this section: We obtain in our calculations
splittings in the differential conductance of the order of ACKNOWLEDGMENTS
:5OT2 . Typical Kondo temperatures in quantum dots are of
the order of a fewueV (for instance, the Kondo temperature
is =4-250ueV in the experiment of Ref.)Lwhich gives
splittings well within the resolution limits of state-of-the-art
techniqguegremember that JueV~10 mK).
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We have theoretically studied the transport propertlesy g

both equilibrium and out-of-equilibrium properties, of a
coupled quantum dot system in the Kondo regime. We have
modeled the double quantum dot system by means of a two-
impurity Anderson Hamiltonian with interimpurity hopping
and infinite on-site interaction on each dot. The Hamiltonian, The NCA technique is the lowest-order fully conserving
formulated in slave-boson language, is solved by means of and self-consistent theory one can construct from a Baym
generalization of the NCA for the present problem: twofunctional®.%® This functional is defined as the set of dia-
guantum dots in the Kondo regime, coupled to each other bgrams consisting of all vacuum skeleton diagrams built out
a tunneling barrier and with an applied voltage across thenof fully renormalized Green’s functions and the bare vertex.
We have provided benchmark calculations of the prediction&Jsing this definition, we obtain to lowest order in the lead-
of the noncrossing approximation for the linear and nonlin-dot coupling the functionab ; [Fig. 3(@] which can be writ-
ear transport properties of coupled quantum dots in theéen as.

APPENDIX A: BAYM FUNCTIONAL AND NCA
SELF-ENERGIES
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V2

b, =i
! N ae{LR}

2 dedT

XGao’(T!TI)gka,O'(T,!T)Ba(T,!T)i (Al)

where the integrals and the time-ordered Green’s functions

IGao’(T T ) <T fa()'(T)fao' Tr))'
iB,(7,7)=(Tcb(Pbl (7)),

)=(TcCh, . o(T)Ck (7)),

are defined along a complex contour.

gy, o(7,7 (A2)

The self-energies are obtained by the functional derivation

of the Baym functional,

L)
SO(r, 1) -—
G (7, 7")
Jb
n®(r,7')= ——"—, (A3)
IBy(7,7")

which gives

V2
Shyo(T.7 =iy E I myo( 7T )BLR(TT'),

KL(r)

H(Ll()R)(T,T')=— W 2 2 gkL(R)a'(T T)GLR)o(T.7')-
T L(R)
(A4)

A similar analysis onb,, [interdot term, Fig. &)] gives

t 2
®,= —(NC) > LdeT'GLg(T,T’)BL(T’,T)

X Gro(7,7")BR(7',7), (A5)
(2) ’ tC 2 ’ ’
EL(R)U(T!T )= N BL(R)(T!T )GR(L)U(T!T )
XBry(7',7),
(2) ’ tc 2 ’ ’
iRy (r7")= N 2 Gr)o( 7', 7)Bry(7,7")
XGLRryo(7,7"). (AB)
The final NCA self-energies are thus
SR ) =2k (r )+ 2k (r ), (A7)
and
NN (7, ) =1L (1, 7))+ Tk (1.7).  (AB)

Finally, continuation to the real time domain of the self-
energiesS(NCA and TIN®A and specialization to steady
state give Eqs(10) and(11) in the main text.
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APPENDIX B: EQUATION OF MOTION FOR THE
CONTOUR-ORDERED OFF-DIAGONAL GREEN’S
FUNCTIONS

In this appendix, we discuss the equation of motion for
the contour-ordered Green’s functions and show explicitly
that their off-diagonal components vanish figyr=0. As a
consequence, the off-diagonal self-energigsc. IV A do
not contribute to ordet? and can be neglected within the
NCA.

We start from the definition of the contour-ordered
Green'’s function,

Gy wro(t=t)=—(Tc,(OFL, (1)), (BY

and its equation of motion

0 T
—i EGaa’,a’o(I_t’): 5(t_t,)<{fmr(t),fa,0(t')}>

(T ue(OIH, T, ()1,
(B2)

where{,} and[,] denote anticommutation and commutation,
respectively. As we mentioned in Sec. Ill, the time-ordering
operatorT, operates along a contoaiin the complex plane.
The anticommutator for# ' is zero, and the equation of
motion for the off-diagonal Green’s functions becomes

;, Gl wo(t=t)=—i(Tcf (o (O[H, L, (1)])

t
—i—

for a#a’'. (B3)

For instance, the LR component can be written as

J
—i——er|G t—t’
( ot R) LO'RU'( )

JN 2 (Tefua(Bei, (1)bR(L))

<T fLo(D ], (t)bL(t")bL(t")). (B4)

By operating withgy, from right, the LR contour-ordered
Green'’s function can be expressed as the sum of two terms,

Gl ro(t—t)=GHR (t—t")+ G (t—t'). (BS)

The first one

];BtR(r(t t =\/—_k2 deTCI(R,L(t_T)g}?(T_t,)
(B6)
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F}_(r,R(r( T_tl) == I <TCf1I%(r( T)bR( T)fLO'( T) ba(t,)>

Again, the two-particle Green’s functidﬁ[U’Ra(r—t’) can
be decomposed as the product of a fermidioit-diagona)
and a bosonic¢diagonal propagator, allowing us to express

b b+ diagrammatically Eq(B8) as in Fig. 17b).
L R In the diagrams of Fig. 17, the off-diagonal fermion and
boson propagators are coupled; importantly, both vanish for

A T S

tc=0 [of course the off-diagonal propagators not considered
in this discussion, such as the one in B86), would also be
zero without the interdot coupligln particular, this implies
that the off-diagonal self-energies also vanish to or’dﬁer
(they are built out obare off-diagonal propagatoyss stated

R in Sec. IVA.
. % + A possible confusing point is that in the usual formulation
b) fL : : fR it would be necessary to use the off-diagonal self-energies
s . and propagators in the noninteracting problem. In that prob-
".’ '." lem, there are no slave bosons, and so no possibility for the
¢ self-energy diagrams of Fig. 17. However, the slave propa-
\-,V\ - n gators in Fig. 4b) are also stripped away. According to the
bl': bL b; bR bL bL usual definitions, Fig. @) no longer remains a proper self-

energy insertion, and one would need the off-diagonal propa-
gators to lowest order in the tunneling. However, a moments

FIG. 17. Feynman diagrams corresponding (8 the off- . : . .
diagonal fermion propagator of EqB7) (schematically G, g reflection shows that the same result is obtained without the

=G, B_rgrr) and (b) the off-diagonal boson propagator of Eq. ©ff-diagonal propagators, if ondefinesthe “proper” self-

(B8) (schematicallyB, g=b,, G, gBrR)-
contains the off-diagonal Green’s function

Clg Lr(t— D)= —(Tcf L (Def (DDE(7),

energy with the requirement that it should begin and end on
the same lead, and takes the dashed line in Fiy.t4 be the
propagator in the absence of the interdot coupling.

APPENDIX C: PROJECTION

which contains high-order terms involving both interdot and Here we discuss the evaluation of operator averages
dot-lead couplingsfor example, whert> 7, in the contour  within the restricted subspace of the Hilbert space with the
sense, this correlation function represents the creation of agonstraints of Eq(3). The formal expression for the expec-

electron at theright lead followed by the annihilation of tation value of an operator in this subspace can be written as:
another electron in thieft dot at a later timg We disregard

these kind of terms in the following in order to simplify our
discussion.

Tr{e*B(Ho*MLNL*MRNR)
The second term in EdB5) is

(O) ~105-1=
QL QR ZQL:]-yQR:]-

X 8o 100 1T —,0)0]}, (C1
G(L?:[Rg(t—t,):%deDT_R(t—T)g}Q(T—t’), (B?) QL.19QR1 C[SC( ) ]} ( )
¢ whereT . orders operators along a complex contour, the hop-
ping terms are treated as perturbatidns., Hy contains the
isolated regions of the problem, leads and dots, before they
are connectedl and the partition function is given by

which contains the off-diagonal Green’s function

Dir(t— 7 =—i(TfL()f] (PbL(T)bK(7)).

The two-particle Green’s functiol| z(t—7) can be ex-
pressed within the NCA as the product of one diagonal fer-
mion propagatoftthe left one in this particular exampland
one off-diagonal bosonic propagator. This allows us to ex-
press diagrammatically EgB7) as in Fig. 17a). i , o
The boson off-diagonal Green's function can be obtained®Nce the charge operators commute with the Hamiltonian,
using a similar analysis: each constraint can be incorporated by a Kronegk&rnc-

tion in the statistical averages of Eq€l) and (C2). To
ot te . . relate averages in the restricted ensemble with the ones cor-
B(L,)R(t—t’)=ﬁ > debL(t_T)FLg,Ra(T_t,)a responding to an unrestricted ensemble, we represent each
7 (B8) Kroneckers function as an integral over a complex chemical
potential*>* (see also Appendix D in Ref. 50 and chap. 7 of
with Ref. 7.

ZQL:LQRzlz Tr{e*B(Ho*#LNL*MRNR)

X 6q, 19qq1TclSc(—»,»)]}.  (C2)
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B (7B , in can be classified as operators acting on the left dot or
09 1= 5 y dr e AMQTD), operators acting on the right dStnamely,
. Z-(0,0) . Z:(0,0 .
OL)o —10n-1=| 5 73 (O ™+ oY,
I R CXEE TR R RER T
e 2m) | 74(1,0 7£(0,0
A _| A w01, SOV A (1,1
A 1 ( ﬂ )2 - <OR>QL:I,QR:l Zc(1,1)<OR> + Zc(1,1)<OR> .
O)o = el f dx C9
< >QL 1Qr71 ZQL:l,QR:1 2m —7lp : ; ; i ©9
We can conclude from this analysis that physical operators
@l B e i - on the left and right sides have to be of the order of
Xf_ /Bd)\Re'B Le'PRZ5c(O)ge- O(e 'AM)+0(e 'APre 1AMR) and O(e 'P'R)

+0(e P e P R) | respectively. From now on we denote
(C4  the order of the operators &(1,0)+ O(1,1) (left operators
AndO(0,1)+0(1,1) (right operators

This way, we can relate the average in the constrained e ; .
y g Equations(C9) can be rewritten as

semble with an average in the grand canonical ensemble
which can be written as Z:(0,1)

A Z-(0,0
(Ou)q =101 Zo(1D) C

<C)L>1'0+ ZC(O,l) <©L>1’1:| '

,\ 1 . :
<O>Gc:Z_Tr{e*/o’(Ho*#LNL*#RNR+”\LQL*”\RQR)
GC

R Zc(1,0] . Z-(0,00 .
. (Or)q, =1.05=1= Zo(10) (Og)®H+ 710 (OR)M.
X Te[Se(—2,2)01}, . o (C10
Zgo=Tr{e AHo= LNL=ppNRHIN.QLFINRQR) The coefficientsZ:(0,1)/Z-(0,0) andZ:(1,0)/Z-(0,0) can
be identified with the right and left normalization factors in
XTe[Sc(—,°)]}. (CH  the absence of the interdot hopping, i.B5(0,0)/Z¢(0,1)

. o . . =1/Zg and Z:(0,0)/Z¢(1,0)=1/Z, and can be obtained
This average inside the integral in E(C4) now obeys a érom the left and right canonical partition functions of two

linked cluster theorem and we can use conventional fiel ) dependent sinale-impurity oroblems at different chemical
theory. In principle, we can stop here, evaluate the averages P 9 purty p

in the grand canonical ensemble, and project to the physic%g)te;‘_ﬂ?sl'sxg a?r?eM Rh' ;?‘f;egt'g?;¥éfse(?nI?ﬁfeséggét?jh:gin_
ensemble by a final integration over the chemical potentials. rﬁbl n i; wrig %’ P
Further simplification can be gained, however, by noting thatSMP'e can be en as

the grand canonical partition functicf;c can be rewritten . ZcOD[ ,~ 1o 1, 4y
as a sum over canonical partition functions: (OL)g =1Q4=17 Zo(LD) (Op) ™™ Z_R<OL> E
i — - - R Zc(1,0[ . 1
= iBNLQLa~ 1B RQR _“=C 01, — 1,1
Zsc QLE:0 QRE:0 Zc(QL.Qr)e e (C6) (Or)o,-104-1= 7 (1 1| (O + 7-(0R) }
Cl1
and by expanding the expressions in the grand canonical i ) . _( )
ensemble as power series, Equation (C11) is the central result of this section. Left
(right) physical operators in the restricted ensemble with
Zoe=Zc(0,00+ Zo(1,00e A 4 7(0,1)e AR QL=10Qr=1 contain two termsli) the coefficient of the
i i term of the order oD (e~ '# .(®) in the operator evaluated in
+Zc(1,De e PRt the grand canonical ensemble pliis the coefficient of the
term of the order oD (e~ e A R) in the operator evalu-
(0)gc=(0)%+(0) 1% 1AL+ (D)0 AR ated in the grand canonical ensemble divided by the normal-
ization factor of the rightleft) problem without the interdot

+(O)ble AMe AR ... (C?  coupling.

. . . o ) . The new normalization factorsZ(0,1)/Z¢(1,1) and
Inserting these power-series expansions inside the integral %c(l 0)/Zo(1,1) can be obtained from the identities
Eq. (C4), the only terms that survive are: ) ’_ N B

(Qu)q —10r-1=1 and(Qr)q -10,-1=1.

. 1 . . Now, we apply the previous projection procedure to the
<O>QL:1,QR:1=m[zc(0,0)<0>1’l+zc(1,0)<O>O’1 self-energies of Eqs(10) and (11). The projection of the
e self-energies can be accomplished in three basic steps. In a
+Zc(0,1(0)19], (cg firststep, we follow Langreth and Nordlander in Ref.(62e
X also Ref. 14 since the Dyson equations f@( ry andB (g,
where we have used0)%°=0 which is the case for any contain eithe|G|_<(R) or Bf(R) in every term, the self-energies
physical operator of interest. The operators we are interestetiat multiply these quantities must have all terms propor-
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tional to GL(R) or B or higher projected out. As a result - LR
we obtain from Eqs(10) and(11) the following self-energies P /—\\ RS
(r=t—t'): ! .
1. tc)? ’ - \
SR o(T)= [ KRy o(7) Fi ) [GR(L) o(7) U\/L(R)J\,
_ga B (—n B , FIG. 18. Self-energy contribution of the order G{e~'#") to
R(L) (7)] R(L)( )] L(R)(T) the conduction-electron propagator which is projected out by

the constraint. The inclusion of this self-energy contribution to
2 the conduction-electron propagator would give unwanted contribu-
[BR(L)(T) tions of the order 0fO(1,0) (left contac} and O(0,1) (right con-
tach.

LR)(T [ EKL(R)( )+|

_Bg(L)(T)]Gﬁ(L),a(_T)JGrL(R),a(T)- (€12 tioned previously, the leftright) kernel is of the order of
0(0,0)+0(0,1) [O(0,0)+0O(1,0)], meaning that the re-

Similarly, tarded propagators multiplying these kernels, EG12),
()2 should be of the order d®(0,0), namelybare propagators
S < r [ K< _C> G:s ABL, (=1 with respect to the interdot. The corresponding lesser propa-
LR.o(7)= LR RL.o(DBru)(—7) gators in Eq.(C13 therefore contribute witfO(1,0) (left

operatory and O(0,1) (right operators giving the correct

_E;g(L)(_T)] BL<(R)(T)1 order: O(1,0)+0(1,1) for the left operators an®(0,1)
+0(1,1) for the right ones. Finally, according to E¢11)
the O(1,1) contributions should be normalized B, and
n= K> +|( ) B Z, , respectively. The final set of the projected self-energies
L(R)(T) { 2 L(R), o= 7) 2 R(L)(T) is then
X[Ghy o(— ) — G& U(—T)]}G< o7, 1 tc
R(L), R(L), L(R), rL(R)YU( 7= NKL(R) (7-)+| [GR(L) (7
(C13
where we have emphasized in our notation the structure ~G3) (D] R('-)( )]NB’,_ o (7),
(KernefY+ Kernef?) xpropagator. In Kerné!, the quanti- RO, R

tiesK are defined in terms of the Fourier transforms of the
bare conduction-electron propagatofisamely, without dot- ]

lead coupling as K3, (e)=27%, V25(e— e )f5(e), iy (7)= 2 Kiw.ol T)+' E [BRray(7)
where {3 (€)=1/(ef¢#d+1) is the Fermi function and

f2(e)=1—f=(e) (see Ref. 62 and belowThis way, the R(L) (—=7)

. . - -B
kernel isO(0,0). The Green’s functions within the Kerfrl ray(7)] Zra)

part, namelyG, B, do not include the interdot hopping

meaning that the kernel 3(0,1) for the left part an®(1,0) 1.

for the right one. This previous projection in the kernels EL(R) A7) = [ KL(R) (r)+|(
is completely equivalent to the projection one does in the

single- impurity problem: with the same kind of arguments

one neglects terms of orded(e 'ﬁ_”) in the conduction X[B{?{(L)(_T)_BE(L)(_T)]]BE(R)(T)=
electron propagator which, in principle, is a full propagator

to be calculated in the presence of slave fermions and

bosons. The self-energy corrections to the lead electron

propagators such as the bubble diagram in Fig. 18 are thrownlII (g)(7) = 2 KRy ol = 7) Fi
away in the single-impurity cag@nd also, of course, in our

Gl .o(1, (Cl19

c) GR(L) o(7)

N ZR(y

) 2 E;(L)( 7)

v Zr)

case. As a consequence of this projection, one always works

with bare conduction-electron propagators, which, again, is x[E;'R(L) U(—T)—E;g(L) J=7] éf(R) (1),
not what one gets initially from the unprojected NCA equa- ’ ' ’

tions. (C15

In a second step, we project out unwanted contributions
from the propagators multiplying the kernels. As we men-which correspond to Eq$19) and(20) used in the main text.
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