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Nonadiabatic effects in a self-consistent Hartree model for electrons under an ac electric field
in multiple quantum wells
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By deriving a dynamical differential equation for the electron distribution function in the presence of a
nonadiabatic sequential-tunneling current under an ac electric field through a multiple-quantum-well system,
the self-consistent Hartree model is generalized for the calculation of electronic states with the inclusion of
nonadiabatic effects~dependence on the time derivative of the applied ac electric field! in quantum wells. The
influences of different doping profiles, temperatures, and amplitudes of an applied ac electric field on the
electron distribution function and sequential tunneling are studied. This work provides a fully quantum-
mechanical explanation to the previously proposed current-surge model to a leading-order approximation.
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I. INTRODUCTION

Recently, transient transport properties of semicondu
quantum wells,1–3 superlattices4,5 and quantum dots6 have
been a subject of interest. Various nonlinear properties h
ing their origin in the Coulomb interaction have attracted
great deal of attention.3,7–10 Self-sustained current oscilla
tions and multistability have been predicted in tunneling c
rents through doped semiconductor superlattices and m
tiple quantum wells~MQW’s!.7 They are attributed to the
dynamics of domain walls separating the electric-field d
mains. In addition, oscillations in the sequential-tunnel
current have been predicted in MQW’s, even in the abse
of electric-field domains due to nonadiabatic effects.10 The
nonadiabatic effects discussed in this paper are assoc
with the fact that a transient conduction current depends
only on an electric field but also on its time derivative due
quantum-well capacitive coupling. The quantum-well capa
tance is of the order of picofarads. However, the resistanc
the MQW sample with a thick barrier between the wells us
in this study is of the order of teraohms due to the extrem
small sequential-tunneling current. As a result, the nona
batic effect occurs on a time scale of seconds, which ma
electron tunneling depend on the time derivative of the
plied electric field in addition to the field itself for low a
frequencies of the order of a few hertz.11,12

In this paper, we consider the sequential-tunneling tra
port of electrons in an MQW system in the presence of
applied ac electric field. We assume that the lattice temp
ture is kept constant and the electrons are in thermal equ
rium with the lattice, so that the electron temperature is
same as that of the lattice. The sequential tunneling of e
trons ~of the order of nanoseconds! through a thick barrier
between adjacent quantum wells in an MQW system i
very slow process as compared to the coherent tunnelin
electrons~of the order of sub-picoseconds! through a thin
barrier in a superlattice system. However, electrons du
the sequential-tunneling process still ‘‘see’’ an instantane
electric field because oft t!2p/V for low ac frequencyV
~of the order of a few hertz! with t t being the sequential
tunneling time~of the order of nanoseconds!.
0163-1829/0/67~24!/245306~10!/$20.00 67 2453
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Adiabatic electrons in an MQW system with an applied
electric field stay in the equilibrium states with a consta
Fermi level, sincete!t t , with te being the energy-
relaxation time due to the very-long sequential-tunnel
time within which an equilibrium state can be established
the much faster inelastic scattering of electrons inside
quantum well. However, the electron density can vary w
time if the electrons in the quantum well stay in the non
diabatic state.10,13,14For the nonadiabatic state, the nonad
batic effects cause the Fermi level in the ‘‘equilibrium’’ sta
to shake with time under an ac electric field. As a result
charge-density fluctuation in the quantum well will modi
the Hartree potential in the surrounding barrier region, a
thus greatly affect the sequential tunneling of electro
through the barrier. Simultaneously, the charge-density fl
tuation also modifies the electronic states in the quan
well within the self-consistent Hartree model.15

For the quantum-well sample considered in this study,
second-subband edge is 83.4 meV above the first-subb
edge~see Table I!, while the Fermi level is only 14.2 meV
above the first-subband edge~see Table II!. As a result, the
second subband is completely unpopulated at temperat
below 40 K. Therefore, we have neglected the tunnel
contribution from the unpopulated second subband. T
well-known negative differential conductance~NDC! phe-
nomenon can be seen if the second subband in the qua
well is brought into consideration for electron tunneling. F
the multisubband case, the NDC occurs at a field stren
where the first-subband edge in the preceding well is alig
with the second-subband edge in the next tilted well~there is
a very narrow spectral density for both quantum wells b

TABLE I. Parameters of GaAs/AlxGa12xAs MQW sample used
for numerical calculations with well depthV0, well width LW ,
barrier thicknessLB , electron densityn2D , well ~barrier! relative
dielectric constanteW (eB), and well ~barrier! electron effective
massmW (mB) with me being the free-electron mass.

V0

~meV!
LW

(Å)
LB

(Å)
n2D

(1011 cm22) eW eB

mW

(me)
mB

(me)

331 80 300 4.0 12.0 11.2 0.067 0.09
06-1
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cause of the very thick barrier between them!. On the other
hand, the NDC phenomenon also occurs in quantum w
with a single subband. This is due to a lesser overlap
tween the quantum-well quasiparticle spectral functio
~whose width depends not only on the interwell coupling b
also on the disorder self-energy! as the applied electric field
increases when the Fermi energy is not too far from the
of the barrier. For the sample with barrier thicknessLB
5300 Å considered in this paper, the required field stren
for the multisubband NDC phenomenon is 27.8 kV/c
However, the maximum field strength employed in this stu
is only 1 kV/cm. Consequently, we have only included t
first subband and neglected the NDC effect in our mo
where the Fermi energy is well below the top of the barr
Moreover, the field-domain effect in an MQW system is e
pected to be very small under low electric fields for cohere
tunneling cases or below 40 K for sequential-tunneling ca
and is neglected in this paper since it becomes signific
only for a large-tunneling current. The thick-barrier-lay
sample used in this study is to limit the dark sequent
tunneling current to an extremely low amount, which ensu
a very high detectivity for quantum-well infrared photodete
tors operating at a low-temperature and/or a low-pho
background.16 When the sequential tunneling is low, the im
purity or defect channels within the barrier would play
role.17 However, this only modifies the resistance of t
sample for sequential tunneling of electrons. The nona
batic effects discussed in this paper for electron tunne
remain the same. The usual self-consistent Hartree mod
based on the known equilibrium~Fermi-Dirac! distribution
function of electrons, which can be applied to find electr
wave functions and energy levels simultaneously in quan
wells. The main result of this paper is the derivation o
dynamical differential equation for nonadiabatic electro
under an ac electric field in quantum wells which is th
used to find the electron distribution function. This dynam
cal equation can be coupled to the self-consistent Har
model to solve for electron wave functions, energy leve
and nonadiabatic distributions at the same time.

The paper is organized as follows. In Sec. II, we introdu
a shifted Fermi-Dirac model18 for local fluctuations of elec-
tron kinetic energy and charge density in the quantum w
Section III is used to establish a unified theory for both c
herent and sequential tunneling of electrons in quantum-w
and superlattice systems. The previous current-surge m
is briefly reviewed in Sec. IV. Section V is devoted to t
derivation of a differential equation based on the se
consistent Hartree model with the inclusion of nonadiaba
effects on the electron distribution function, and to the est

TABLE II. Calculated parameters of GaAs/AlxGa12xAs MQW
sample used for numerical calculations, including average elec
effective massm* with me being the free-electron mass, zero-fie
ground-subband edgeE1

(0) , second-subband edgeE2
(0) , and chemi-

cal potentialm0(n2D ,T) measured fromE1
(0) .

m* (me) E1
(0) ~meV! E2

(0) ~meV! m0 ~meV!

0.07 44.5 127.9 14.2
24530
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lishment of the connection between the current quant
theory and the previous current-surge model. Numerical
sults and discussions are given in Sec. VI for the change
current, drift velocity, and density as a function of time. T
electron distribution functions at different times for vario
temperatures, amplitudes of ac electric field, and doping p
files are also shown and compared. The paper is conclude
Sec. VII with some remarks.

II. SHIFTED FERMI-DIRAC MODEL

By using a shifted Fermi-Dirac model,18 the nonequilib-
rium electron distribution function can be written as

f m0~k!5 f 0
m0~Euk1Dku1DEk!, ~1!

where f 0
m0(Ek) is the Fermi function and is given by

f 0
m0~Ek!5H 11expFEk2m0~n2D ,T!

kBT G J 21

. ~2!

Here,Ek is the electron kinetic energy andT is the tempera-
ture.m0(n2D ,T) is the chemical potential of the equilibrium
electron gas relative to the edge of the ground subband in
quantum well and is determined by the electron densityn2D
at T. In Eq. ~1!, DEk represents the local fluctuation of ele
tron kinetic energy for electron stateuk&. Using the accelera-
tion theorem for the momentum driftDk introduced in Eq.
~1! under an applied electric fieldEb(t), we obtain the fol-
lowing generalized Boltzmann’s equation associated with
shifted Fermi-Dirac model in Eq.~1!:

] f m0~k!

]t
2

e

\
Eb~ t !“kEk

] f m0~k!

]Ek
1

dDEk

dt

] f m0~k!

]Ek

5
] f m0~k!

]t
ucoll , ~3!

whereEb(t)5Edc1Eacsin(Vt) is the time-dependent electri
field with frequencyV52p/Tp , time periodTp , dc ampli-
tudeEdc, and ac amplitudeEac. The term on the right-hand
side of Eq.~3! represents collision contributions. In the lim
of Vte!1 with te being the energy-relaxation time of ele
trons in the quantum well, we havêdDEk /dt& t50; but
^dDk/dt& t5eEb(t)/\, where^•••& t defines a time averag
over multiple periods of Tp . In this case, only the
momentum-drift phenomenon occurs. On the other hand,
find ^dDk/dt& t50 in the limit of Vtp@1, with tp being the
momentum-relaxation time of electrons in the quantum w
Under this condition, only the energy-drift phenomenon o
curs with ^dDEk /dt& t5s(V)Eac

2 /4, wheres(V) is the ac
conductivity of electrons in the quantum well.19

For the shifted Fermi-Dirac model in Eq.~1!, there exists
a local charge-density fluctuation for each electron stateuk&,
defined by

n

6-2
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d

dt
drk~ t !5

d

dt H e

V @ f m0~k!2 f 0
m0~Ek!#J

52
e

V K dDEk

dt L
t

F2
] f 0

m0~Ek!

]Ek
G , ~4!

where V is the volume of the sample. The local charg
density fluctuation is a result of the change of the elect
distribution in energy space with respect to the equilibriu
state even whenn2D is a constant.

III. COHERENT- AND SEQUENTIAL-TUNNELING
MODELS

For an MQW system with thick-barrier layers, the ad
batic sequential-tunneling current density flowing in thez
direction ~growth direction and perpendicular to th
quantum-well layers! is found to be20

Jm0~ t !5
2e

V (
k

vk
zT@Ek ,Eb#@ f m0~Ek!2 f m0~Ek1eEbLB!#,

~5!

whereLB is the thickness of the barrier between two adjac
quantum wells,vk

z is the group velocity of quasibound- o
continuum-state electrons in thez direction, andT @Ek ,Eb# is
the quantum-mechanical transmission of electrons thro
the biased barrier. IfVt t@1, with t t being the electron
sequential-tunneling time,T @Ek ,Eb# has to be found by
solving a time-dependent Schro¨dinger equation. Otherwise
T @Ek ,Eb# can be calculated from a static Schro¨dinger equa-
tion at each timet if Vt t!1. We will be only interested in
the latter case withVt t!1 hereafter.

In the limit of small barrier thickness and weak field, i.e
eEbLB!Ek , Eq. ~5! yields a coherent-tunneling current th
takes the same form as that obtained using the regular B
zmann’s equation (dDEk /dt50) under the relaxation-time
approximation:

Jm0~ t !5
2e2

V Eb(
k

~vk
z!2tpF2

] f m0~Ek!

]Ek
G , ~6!

where we have setT @Ek ,Eb#5vk
ztp /LB<1 for scattering-

limited miniband-state electrons at very low electric fie
~with mean free pathvk

ztp smaller thanLB), and tp is the
momentum-relaxation time of electrons. Consequently,
conductance that is proportional toJm0(t)/Eb becomes inde-
pendent ofEb in this situation.

If we replacef m0(Ek) to the leading-order approximatio
by the equilibrium valuef 0

m0(Ek) for faster electron energy
relaxation processes due to inelastic scattering of electron
compared to the electron sequential tunneling, and rep
the electron group velocityvk

z by a drift velocity vd@Eb# ~a
statistically averaged group velocity! of electrons in a bulk
material, Eq.~5! reduces to Levine’s sequential-tunnelin
model20
24530
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Jm0@Eb#5
2e

V vd@Eb#(
k

T @Ek ,Eb#@ f 0
m0~Ek!

2 f 0
m0~Ek1eEbLB!#, ~7!

wherevd@Eb#5(etp /m* )Eb , the momentum-relaxation time
tp is given by

tp5
m* vs

eAEs
21Eb

2
, ~8!

m* is the effective mass of electrons,vs is the electron satu-
ration velocity, andEs is the saturation electric field. In Eq
~7!, Jm0@Eb#/evd@Eb# can be equivalently viewed as a thre
dimensional tunneling-electron density that depends onEb ,
T, andn2D . Obviously, the conductance that is proportion
to Jm0@Eb#/Eb becomes dependent onEb in this situation.

IV. CURRENT-SURGE MODEL

From now on, we limit ourselves to an electrical-quantu
limit where only the ground subband of the narrow quant
well is occupied by electrons at low temperatures and l
electron densities. The electron kinetic energy of the grou
subband ~measured from the edge! is given by Ek
5\2k2/2m* . In the current-surge model,10,13,14 we assume
that DEk is associated with the fluctuation of the chemic
potential of electrons in the quantum well~independent of
individual electron state!, instead of the local fluctuation o
electron kinetic energy for each electron state. By writi
DEk52Dm5m0(n2D ,T)2m(t) for the global chemical-
potential fluctuation, wherem(t) andm0(n2D ,T) are, respec-
tively, the transient chemical potential for electron dens
ne(t) and that for an equilibrium electron gas in quantu
wells, we get

dDEk

dt
5

]DEk

]t
2

]m

]ne

dne

dt
. ~9!

We further introduce a spatially averaged space-charge
Ena(t) which is defined by10,13,14

DEk5eEna~ t !LB , ~10!

whereEna(t) measures the reduction of the electron chemi
potential in quantum wells. If we use Levine’s sequenti
tunneling model in Eq.~7!, we find the change in the curren
density due to the existence of this space-charge fieldEna(t),

DJna~ t !5Jm02eLBEna@Eb1Ena#2Jm0@Eb#, ~11!

whereJm0@Eb# has been given in Eq.~7!. In Eq.~11!, the first
term can be viewed as an equivalent capture current flow
into the quantum well, while the second term can be
garded as a sequential-tunneling current flowing out of
quantum well.

For a quantum well, the electron density will be consta
if the conduction currents flowing in and out of the well a
equal. The variation of the charge density in the well is c
6-3
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ated by an imbalance in conduction currents. The cha
current conservation law for density fluctuationdr(t) re-
quires

V d

dt
dr~ t ![V d

dt (
k

drk~ t !5ADJna~ t !, ~12!

whereA is the cross-sectional area of the MQW sample. T
left-hand side of Eq.~12! represents the charge increase
side the well, while the right-hand side of the equation sta
for the net increase in charges due to a nonadiabatic ch
in the current flowing into the quantum well. Combinin
Eqs.~4!, ~9!, ~10!, and~12!, we finally arrive at the following
equation derived previously as the current-surge model:10

LBCQW

d

dt
Ena~ t !5LBCQW

d

dt
Eb~ t !2DJna~ t !, ~13!

where the quantum-well capacitance per unit area isCQW

5(m* e2/p\2) f 0
m0(0). Here, we have employed in Eq.~13!

the fact that (]m/]ne)(dne/dt)5eLB@dEb(t)/dt# for the ca-
pacitance coupling of the quantum well to an external
electric field.10,13,14The fast inelastic scattering in quantu
wells ensures that electrons are in an ‘‘equilibrium’’ sta
However, Eq.~13! causes a shaking Fermi level for the eq
librium state on a macroscopic time scale.

V. NONADIABATIC EFFECTS IN A SELF-CONSISTENT
HARTREE MODEL

As mentioned in the Introduction, electrons in quantu
wells see only the instantaneous ac electric field during t
sequential-tunneling process ifVt t!1. In this case, the
ground-state electron wave functionf1(z,t) inside the quan-
tum well within the self-consistent Hartree model is det
mined by21

F2
\2

2

d

dzS 1

m* ~z!

d

dzD 2eEb~ t !z1UQW~z!

1VH~z,t !Gf1~z,t !5E1~ t !f1~z,t !, ~14!

whereE1(t) is the time-dependent ground-subband edge,
electron effective massm* (z) takesmW in the well andmB
in the barrier, andUQW(z) is zero inside the well butV0
outside the well. For the adiabatic state, we havem(t)
5m0(n2D ,T), otherwisedr(t)Þ0 for the cases with nona
diabatic effects. The Hartree potentialVH(z,t) in Eq. ~14!
can be found from the Poisson equation

d

dzFe r~z!
d

dz
VH~z,t !G5

e2

e0
@ND~z!2ne~z,t !#, ~15!

where donors are assumed completely ionized, and the
tive dielectric constante r(z) takeseW in the well andeB in
the barrier.ND(z) in Eq. ~15! is the static profile of donor
24530
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doping for the single quantum well, ne(z,t)
5uf1(z,t)u2ne(t) is the density function, and

ne~ t !5n2D1
dr~ t !LW

e
5n2D1r2DE

0

1`

dEd f ~E,t !,

~16!

where r2D5(mW /p\2) is the density of states for two
dimensional electrons in the quantum well andd f (E,t) rep-
resents the local fluctuation of the electron distribution fun
tion in energy space. Here, the number of electrons in
quantum well is not a constant due to the nonadiabatic c
rent flowing. Moreover, we find from Eqs.~4!, ~9!, and~16!
that

LW

d

dt
dr~ t !5er2DE

0

1`

dE
]

]t
d f ~E,t !

1e2LBr2D

d

dt
Eb~ t !E

0

1`

dEF2
] f 0

m0~E!

]E
G .

~17!

Applying Eq. ~12! and using Eqs.~11! and~17!, we find the
following integral equation ford f (E,t) by using Levine’s
model in Eq.~7!

er2DE
0

1`

dE
]

]t
d f ~E,t !1e2LBr2D

dEb~ t !

dt

3E
0

1`

dEF2
] f 0

m0~E!

]E
G2S er2D

LW
D $vd@Eb#1dvd@d f #%

3E
0

1`

dET @E1E1 ,Eb ;VH#@ f 0
m0~E!1d f ~E,t !

2 f 0
m0~E1eEbLB!2d f ~E1eEbLB ,t !#

1S er2D

LW
D vd@Eb#E

0

1`

dET @E1E1
(0) ,Eb ;V H

(0)#@ f 0
m0~E!

2 f 0
m0~E1eEbLB!#50. ~18!

In Eq. ~18!, VH(z,t) andE1(t) are written simply asVH and
E1. The adiabatic quantitiesV H

(0)(z,t) and E1
(0)(t) can be

obtained by simply settingdr(t)50 in Eq. ~15! and
VH(z,t)5V H

(0)(z,t) in Eq. ~14!. Moreover, the fluctuation of
the drift velocity dvd@d f # introduced in Eq.~18! is calcu-
lated to be

dvd@d f #52S r2D

n2D
D E

0

1`

dEd f ~E,t !A2E

mW
. ~19!

Finally, Eq.~18! leads us to the dynamical differential equ
tion for d f (E,t),
6-4
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]

]t
d f ~E,t !2eLB

dEb~ t !

dt

] f 0
m0~E!

]E
2

1

LW

3$vd@Eb#1dvd@d f #%T @E1E1 ,Eb ;VH#@ f 0
m0~E!

1d f ~E,t !2 f 0
m0~E1eEbLB!2d f ~E1eEbLB ,t !#

1
1

LW
vd@Eb#T @E1E1

(0) ,Eb ;V H
(0)#@ f 0

m0~E!

2 f 0
m0~E1eEbLB!#50, ~20!

where the initial condition is chosen to bed f (E,t)50 at t
50 if the ac electric field is applied to the system aftet
50. d f (E,t) has a lower bound that is set by the conditi
d f (E,t)1 f 0

m0(E)50.
For smallDm, the first term in Eq.~20! can be approxi-

mated to the leading order by

]

]t
d f ~E,t !'

]Dm

]t
F2

] f 0
m0~E!

]E
G . ~21!

Similarly, a part of the third term in Eq.~20! can be approxi-
mated as

T @E1E1 ,Eb ;VH#@ f 0
m0~E!1d f ~E,t !

2 f 0
m0~E1eEbLB!2d f ~E1eEbLB ,t !]

'T @E1E1
(0) ,Eb ;V H

(0)1~dV H
(0)/dn2D!r2DDm#

3@ f 0
m01Dm

~E!2 f 0
m01Dm

~E1eEbLB!#, ~22!

where (dV H
(0)/dn2D)5(e2/2e0eWqTF) and qTF

5(e2/2e0eW)r2D in the Thomas-Fermi model.21 By recalling
Dm52eEna(t)LB , Eq. ~20! results in the current-surg
model in Eq.~13!, where
o

nt

24530
CQW5e2r2DE
0

1`

dEF2
] f 0

m0~E!

]E
G ,

Jm0@Eb#5S er2D

LW
D vd@Eb#E

0

1`

dET @E1E1
(0) ,Eb ;V H

(0)#

3@ f 0
m0~E!2 f 0

m0~E1eEbLB!#,

T @E1E1
(0) ,Eb ;V H

(0)2eEnaLB#'T @E1E1
(0) ,Eb1Ena;V H

(0)#,
and vd@Eb#1dvd@d f #'vd@Eb1Ena# if we set tp
'LB /(vF/2) with vF being the electron group velocity at th
Fermi level. The space-charge fieldEna(t) introduced by
Dm52eEna(t)LB can be calculated from

Ena~ t !52S 1

eLB
D E

0

1`

dEd f ~E,t !, ~23!

which becomes positive ifdr(t),0.
The quantum-mechanical transmission coefficientT @E

1E1 ,Eb ;VH# used to evaluate the tunneling current in E
~7! can be found from the following backward iteration8 at
each timet

f j 21~ t !5H 21
1

Ed
@U j

B2eEb~ t !~ j 21!D1Vj
H~ t !2E

2E1~ t !#J f j~ t !2f j 11~ t ! ~24!

for 1< j <NB , where f j (t)5f1(zj ,t), Vj
H(t)5VH(zj ,t),

Ed5\2/2mBD2, D5LB /NB and NB is the number of slabs
~thicknessD) within the barrier layer. Here,U j

B50 for j
50 and j 5NB11. Otherwise,U j

B5V0. The ending bound-
ary condition of Eq.~24! produces
FfNB11~ t !

fNB
~ t ! G5F exp~ iNBk̄8!

$12 i k̄82~1/2Ed!@E1E1~ t !2UNB11
B 1eEb~ t !NBD2VNB11

H ~ t !#%fNB11~ t !G , ~25!
und

in-
wherek̄85(D/\)A2mB(E1eEb(t)LB). From the solution of
Eq. ~24! we find the quantum-mechanical transmission
electrons from

T @E1E1 ,Eb ;VH#5
1

uSu2
AE1eEb~ t !LB

E
, ~26!

whereuSu25@ uau21ubu212Re(ab* )#/4. The solution of Eq.
~24! ensures that the transmission coefficient in Eq.~26! de-
pends on the barrier thickness and height in an expone
way. Here, the two complex numbersa andb are defined by
the starting boundary condition of Eq.~24!
f

ial

Fa

bG5F f1~ t !

2~ i /2k̄!~f2~ t !2f0~ t !!
G , ~27!

with k̄5(D/\)A2mBE.

VI. NUMERICAL RESULTS AND DISCUSSION

We choose a GaAs/AlxGa12xAs MQW sample for nu-
merical calculations. Some sample parameters can be fo
in Tables I and II. Other parameters includeEdc
50.05 kV/cm, vs523106 cm/sec, Es52 kV/cm, and Tp
54 sec. Different doping profiles have been considered,
6-5
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cluding uniform well doping, centerd doping, and edged
doping. The temperatureT and the amplitude of the ac elec
tric field, Eac, will be given in the figure captions.

Figure 1 presents the calculated nonadiabatic elec
sequential-tunneling currentI na(t)5@Jm0@Eb#1DJna(t)#A
~solid curve! and the adiabatic sequential-tunneling curre
I a(t)5Jm0@Eb#A ~dashed curve! as a function of timet ~left
scale! for the MQW sample atT540 K, Eac51 kV/cm, and
with uniform doping inside the GaAs quantum wells. F
comparison, the applied ac electric fieldEb(t) ~right scale! is
also plotted in the same figure. WhenEb(t) approaches its
maximum ~i.e., t51 sec), we find a small enhancement
I na(t) with respect toI a(t) and the saturation ofI na(t) due to
the large reduction in electron density inside the quant
wells. On the other hand, we find a large enhancemen
I na(t) due to the large increase of electron density inside
quantum wells whenEb(t) approaches its minimum~i.e., t

FIG. 1. Calculated time dependence of electron sequen
tunneling currentsI (t)5A@Jm0@Eb#1DJna(t)# ~left scale! for nona-
diabatic @DJna(t)Þ0, solid curve# and adiabatic@DJna(t)50,
dashed curve#, and an applied ac electric fieldEb(t) ~right scale! for
T540 K and Eac51 kV/cm with uniform doping inside GaAs
quantum wells.
24530
n

t

in
e

53 sec). These features are a result of the induced sp
charge fieldEna(t).

The reduction of electron population aroundE
5m0(n2D ,T) can be described by the space-charge fi
Ena(t) defined in Eq.~23!. We displayEna(t) ~solid curve, left
scale! in Fig. 2~a!, along with Eb(t) ~dashed curve, right
scale! as functions oft for uniform doping. From the figure
we see thatEna(t) and Eb(t) are nearly in phase with eac
other, except for a slight phase shift. This is a direct resul
oscillations in the change of the charge densitydr(t) in the
quantum well, as shown in Fig. 2~b!, where bothdr(t) ~solid
curve, left scale! anddvd@d f # ~dashed curve, right scale! are
plotted as functions oft. SinceEna(t) describes the reduction
of charge density in the quantum well, we expectdr(t) to be
nearly out of phase withEna(t) or Eb(t), as can be seen from
Figs. 2~a! and 2~b!. The situations withdr(t),0 and
dr(t).0 indicate electrons moving out of and into the qua
tum well, respectively. Moreover,dvd@d f # will be in phase
with Ena(t) since it is proportional to2d f (E,t) that itself is
proportional toEna(t).

Figure 3 displays the calculated adiabatic Hartree pot
tial @in panel ~a!# and the change of Hartree potential@in
panel~b!# in the nonadiabatic state from the Poisson equat
~15! as functions of positionz for different doping profiles at
t/Tp50.25. Here,T540 K, Eac51 kV/cm, and the quantum
well sits in the range of 300 Å<z<380 Å. From Fig. 3~a!
we find that the absolute value of the adiabatic Hartree
tential becomes smallest for the uniform-doping case. T
centerd doping in the quantum well causes the conduct
band edge to bend down at the well center, while the edgd
doping makes the conduction band edge bend up there
shown in Fig. 3~a!. With the total potential seen by the ele
trons being the sum of the adiabatic Hartree poten
VH

(0)(z,t) plus the changeDVH(z,t) plus the quantum-well
potentialUQW(z), the out-of-phase nature of Figs. 3~a! and
3~b! will result in the band bending seen in Fig. 3~a! being
substantially suppressed by the nonadiabatic effects in
3~b!. However, the nonadiabatic effects with edged doping
produces two positive spikes@solid curve in Fig. 3~b!# at the

l-
.

FIG. 2. Time dependence of a calculated space-charge fieldEna(t) ~solid curve, left scale! and an applied ac electric fieldEb(t) ~dashed
curve, right scale! in panel~a!, as well as time dependence of calculated charge-density fluctuationdr(t) ~solid curve, left scale! and change
of drift velocity dvd@d f # ~dashed curve, right scale! in panel~b! for T540 K andEac51 kV/cm with uniform doping inside quantum wells
6-6
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FIG. 3. Calculated position dependence of adiabatic Hartree potentialsVH
(0)(z,t) in panel ~a! and change of nonadiabatic Hartre

potentialsDVH(z,t) in panel~b! at t/Tp50.25, withT540 K andEac51 kV/cm for edged doping~solid curves!, centerd doping~dashed
curves!, and uniform doping~dotted curves! in the quantum well.
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edges of the quantum well and thus will reduce the elect
sequential-tunneling current.

Figure 4 indicates the effects of an ac electric-fie
strengthEac @in panel~a!# and temperatureT @in panel~b!# on
the charge-density fluctuationsdr(t) as a function oft in a
uniformly doped quantum well. In Fig. 4~a! we find that
fluctuationsdr(t) increase withEac at T540 K, with the
negative peak~electrons removed from the quantum we!
being saturated atEac55 kV/cm. In Fig. 4~b!, asT increases
dr(t) is enhanced when it is negative~electrons removed
from the quantum well!, but reduced when it is positive
~electrons added to the well! at Eac51 kV/cm.

Figure 4 only shows us the global fluctuation of t
charge density in the quantum well. In order to gain furth
insight into the local change in the electron distribution fun
tion, we displayd f (E,t) in Fig. 5 at t/Tp50.25 with uni-
form doping for different values ofEac @in panel~a!# and T
24530
n

r
-

@in panel~b!#. From Fig. 5~b! it is clear thatd f (E,t) always
shows a negative minimum atm0(n2D ,T), since it is propor-
tional to ] f 0

m0(E)/]E. Because the Fermi surface broade
with increasingT, we find from Fig. 5~b! that the negative
minimum is partially suppressed and broadened~solid curve!
when T540 K as compared to that~dashed curve! at T
520 K. From Fig. 5~a! we find that the negative minimum i
enhanced whenEac is increased. The cusp~dashed curve! in
Fig. 5~a! is a result of zero occupation of electrons in
specific state with kinetic energyE in the ground subband.

Figures 6~a! and 6~b! present nonadiabatic effects on th
Hartree potentials in the uniformly doped quantum well
T540 K andEac51 kV/cm. From Fig. 6~a! we find that the
positive peak in the adiabatic Hartree potentialVH

(0)(z,t)
~dashed curve! at the center of the quantum well is great
suppressed by the nonadiabatic effects~solid curve! at t/Tp
50.25, leaving two positive spikes at the edges of the qu
FIG. 4. Time dependence of calculated charge-density fluctuationsdr(t) in the uniformly doped quantum well . In panel~a!, we set
T540 K with Eac51 kV/cm ~solid curve! andEac55 kV/cm ~dashed curve!. In panel~b!, we setEac51 kV/cm with T540 K ~solid curve!
andT520 K ~dashed curve!.
6-7
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FIG. 5. Calculated change of nonadiabatic distribution functionsd f (E,t) at t/Tp50.25 for electrons in the uniformly doped quantu
well. In panel ~a!, we set T540 K with Eac51 kV/cm K ~solid curve! and Eac55 kV/cm ~dashed curve!. In panel ~b!, we setEac

51 kV/cm with T540 K ~solid curve! andT520 K ~dashed curve!.
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tum well. Figure 6~b! shows the comparison between Hartr
potentials when the electrons in the quantum well are ei
removed (t/Tp50.25, solid curve! or added (t/Tp50.75,
dashed curve!. We find from Fig. 6~b! that the two positive
spikes at the edges of the quantum well are suppressed
two negative spikes are generated when electrons are a
to the well.

Finally, we display in Fig. 7f (E,t) at t/Tp50.25 ~dotted
curve! and 0.75~dashed curve!, as well as the equilibrium
distribution f 0

m0(E) ~solid curve! in panel ~a! and
log10uI na(t)u as a function ofEb(t) in panel ~b!. From Fig.
7~a! we see f (E,t) resembles the equilibrium distributio
f 0

m0(E) with a shaking Fermi level with time~shaking up at
t/Tp50.75 and shaking down att/Tp50.25). Compared
with the adiabatic electron sequential-tunneling current@thin
solid curve withDJna(t)50] in Fig. 7~b!, the symmetry of
log10uI na(t)u with respect to the positive~electrons being re-
24530
er

but
ed

moved! and negative~electrons being added! extreme values
of Eb(t) is broken in the case with nonadiabatic effects~thick
solid curve!. A small offset10,13,14of log10uI na(t)u with respect
to Eb(t)50 can be seen by comparing thick and thin so
curves.

VII. CONCLUSIONS AND REMARKS

In conclusion, we have derived a dynamical different
equation for the nonadiabatic electron distribution functi
with sequential-tunneling current flowing through an MQ
system. Using this equation, we generalized the s
consistent Hartree model for the calculation of the electro
states with the inclusion of nonadiabatic effects in a quant
well. We have also studied the effects of different dopi
profiles, temperatures, and amplitudes of applied ac elec
field on the nonadiabatic electron sequential tunneling.
FIG. 6. Calculated position dependence of Hartree potentials for nonadiabatic~solid curve! and adiabatic~dashed curve! in panel~a! at
T540 K andEac51 kV/cm with uniform doping inside the quantum well, and nonadiabatic Hartree potentialsVH(z,t) in panel ~b! for
t/Tp50.25 ~solid curve! and t/Tp50.75 ~dashed curve!.
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FIG. 7. Calculated nonadiabatic electron distribution functionsf (E,t) in panel ~a! and logarithm of absolute value of nonadiaba
sequential-tunneling currentI na(t)5A@Jm0@Eb#1DJna(t)# as a function of an applied ac electric fieldEb(t) in panel~b! for T540 K and
Eac51 kV/cm. In panel~a!, we plot f (E,t) at t/Tp50.25~dotted curve! andt/Tp50.75~dashed curve!. The equilibrium electron distribution
function f 0

m0(E) ~solid curve! is also shown for the comparison. In panel~b!, the currents calculated from adiabatic~thin curve! and
nonadiabatic~thick curve! electron sequential tunneling are compared with each other.
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nally, we have connected the present quantum-statis
theory to the previously proposed current-surge model wi
leading-order approximation.

In this paper, only the self-consistent Hartree mode
employed. The exchange interaction between electrons
the field-domain effect are expected to be very small22 at T
540 K andEac51 kV/cm and have been neglected.

The time scale for observing the nonadiabatic effects
quires

te!t t!t,RtCQWA, 2p/V,

whereRt5(LB /A)@]Jm0@Eb#/]Eb#
21 is the differential tun-

neling resistance, depending onEb andT. Here,Vte!1 ex-
cludes the energy-drift effect, leaving only the momentu
drift effect in the system. Further,Vt t!1 ensures that the
electrons see only an instantaneous ac electric field du
the sequential-tunneling process. Finally,t,RtCQWA en-
. B

o

24530
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sures the observation of the nonadiabatic effects inside
quantum well. Assumingte51 ps corresponds to a homog
neous energy-level broadening of 1 meV, leading toV
!1012 Hz from Vte!1. Therefore, only a momentum drif
exists for low ac frequencyV;1 Hz. The tunneling timet t

can be estimated fromt t;e/@Jm0@Eb#A#. For a superlattice,
we take Jm0@Eb#A51 mA, leading to t t50.1 ps andV
!1013 Hz from Vt t!1. For an MQW system, we tak
Jm0@Eb#A510 pA, leading tot t510 ns andV!108 Hz.
This justifies the calculation of the quantum-mechani
transmission of electrons through a biased barrier using
time-independent Schro¨dinger equation in an MQW system
with V;1 Hz. Difficulties in observing the nonadiabatic e
fects may come from the small quantum-well capacitan
CQWA;10 pF in the requirementt,RtCQWA. For a super-
lattice, we takeRt5104 ohm, and thent,1027 sec is re-
quired~impossible to observe withV;1 Hz). For an MQW
system, on the other hand, we takeRt51011 ohm, which
implies t,1 sec~very easy to observe withV;1 Hz).
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