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Nonadiabatic effects in a self-consistent Hartree model for electrons under an ac electric field
in multiple quantum wells
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By deriving a dynamical differential equation for the electron distribution function in the presence of a
nonadiabatic sequential-tunneling current under an ac electric field through a multiple-quantum-well system,
the self-consistent Hartree model is generalized for the calculation of electronic states with the inclusion of
nonadiabatic effectedependence on the time derivative of the applied ac electrig fielguantum wells. The
influences of different doping profiles, temperatures, and amplitudes of an applied ac electric field on the
electron distribution function and sequential tunneling are studied. This work provides a fully quantum-
mechanical explanation to the previously proposed current-surge model to a leading-order approximation.
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I. INTRODUCTION Adiabatic electrons in an MQW system with an applied ac
electric field stay in the equilibrium states with a constant
Recently, transient transport properties of semiconductolFermi level, since 7,<r, with 7, being the energy-

quantum wells; superlattice$® and quantum dotshave relaxation time due to the very-long sequential-tunneling
been a subject of interest. Various nonlinear properties havime within which an equilibrium state can be established by
ing their origin in the Coulomb interaction have attracted athe much faster inelastic scattering of electrons inside the
great deal of attentioh’1° Self-sustained current oscilla- quantum well. However, the electron density can vary with
tions and multistability have been predicted in tunneling cur-ime if the electrons in the quantum well stay in the nona-
rents through doped semiconductor superlattices and mufiabatic staté>>*For the nonadiabatic state, the nonadia-
tiple quantum wells(MQW’'s).” They are attributed to the batic effects cause the Fermi level in the “equilibrium” state

dynamics of domain walls separating the electric-field do-o shake with time under an ac electric field. As a result, a

mains. In addition, oscillations in the sequential-tunnelingCharge'd‘:“nSlty ﬂuc_tuamon in the quantum W?” will _modﬁy

. ) ; . the Hartree potential in the surrounding barrier region, and
current have been predicted in MQW'’s, even in the absenCﬁ;]us reatly affect the sequential tunneling of electrons
of electric-field domains due to nonadiabatic effé@t3he greatly d g

; . ; . . ._through the barrier. Simultaneously, the charge-density fluc-
nonadiabatic effects discussed in this paper are associat 9 y 9 y

: ) . tion also modifies the electronic states in the quantum
with the fact that a transient conduction current depends NQf.q within the self-consistent Hartree modgl.

only on an electric field but also on its time derivative due to gy the quantum-well sample considered in this study, the

quantum-well capacitive coupling. The quantum-well capacisecond-subband edge is 83.4 meV above the first-subband

tance is of the order of picofarads. However, the resistance cgdge(see Table), while the Fermi level is only 14.2 meV

the MQW sample with a thick barrier between the wells usedypove the first-subband ed¢gee Table . As a result, the

in this study is of the order of teraohms due to the extremelysecond subband is completely unpopulated at temperatures

small sequential-tunneling current. As a result, the nonadiabelow 40 K. Therefore, we have neglected the tunneling

batic effect occurs on a time scale of seconds, which makesontribution from the unpopulated second subband. The

electron tunneling depend on the time derivative of the apwell-known negative differential conductan¢®DC) phe-

plied electric field in addition to the field itself for low ac nomenon can be seen if the second subband in the quantum

frequencies of the order of a few hetz:? well is brought into consideration for electron tunneling. For
In this paper, we consider the sequential-tunneling transthe multisubband case, the NDC occurs at a field strength

port of electrons in an MQW system in the presence of arwhere the first-subband edge in the preceding well is aligned

applied ac electric field. We assume that the lattice temperawith the second-subband edge in the next tilted \ithlbre is

ture is kept constant and the electrons are in thermal equiliba very narrow spectral density for both quantum wells be-

rium with the lattice, so that the electron temperature is the

same as that of the lattice. The sequential tunneling of elec- TABLE I. Parameters of GaAs/gGa _,As MQW sample used

trons (of the order of nanosecondthrough a thick barrier for numerical calculations with well depti,, well width Ly,

between adjacent quantum wells in an MQW system is darrier thicknesd g, electron densityn,p, well (barrien relative

very slow process as compared to the coherent tunneling Sielectric consta_n'@W (eB)_, and well (barriep electron effective

electrons(of the order of sub-picosecondthrough a thin ~ MassMw (Mg) with m, being the free-electron mass.

barrier in a superlattice system. However, electrons during v . L o o o

the sequential-tunneling process still “see” an instantaneous_ *° w B 2D W B

electric field because of,<2m/Q for low ac frequencyy "€V A A (@0Fem®) ew & (M) (mJ

(of the order of a few herjzwith 7, being the sequential- 331 80 300 4.0 12.0 11.2 0.067 0.092

tunneling time(of the order of nanoseconds
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TABLE IlI. Calculated parameters of GaAsi8a _,As MQW lishment of the connection between the current quantum
sample used for numerical calculations, including average electrotheory and the previous current-surge model. Numerical re-
effective massn* with me being the free-electrono)mass, zero-field sults and discussions are given in Sec. VI for the changes of
ground-subband edgg” , second-subband edg” , and chemi-  cyrrent, drift velocity, and density as a function of time. The

cal potentialuo(nzp, T) measured fronE{” . electron distribution functions at different times for various

- © 0 temperatures, amplitudes of ac electric field, and doping pro-
m* (M) Ei’ (meV) E;" (meV) Ko (MeV) files are also shown and compared. The paper is concluded in
0.07 445 1279 14.2 Sec. VIl with some remarks.

cause of the very thick barrier between thei@n the other Il SHIFTED FERMI-DIRAC MODEL

hand, the NDC phenomenon also occurs in quantum wells By using a shifted Fermi-Dirac mod&l,the nonequilib-
with a single subband. This is due to a lesser overlap berium electron distribution function can be written as
tween the quantum-well quasiparticle spectral functions

(whose width depends not only on the interwell coupling but

also on the disorder self-enejggs the applied electric field fro(k)= ng(E|k+Ak|+AEk)' 1)
increases when the Fermi energy is not too far from the top
of the barrier.. For t.he ;ample with barri'er thicknd5§ wheref“o(E,) is the Fermi function and is given by
=300 A considered in this paper, the required field strength 0
for the multisubband NDC phenomenon is 27.8 kV/cm.

However, the maximum field strength employed in this study 2o Ex— o(Nop, T 71

is only 1 kV/cm. Consequently, we have only included the fo (Bl =11+ex kB—T . @

first subband and neglected the NDC effect in our model

where the Fermi energy is well below the top of the barrier. . N '

Moreover, the field-domain effect in an MQW system is ex- 1€re Ex is the electron kinetic energy arfdis the tempera-
pected to be very small under low electric fields for coherent{Ure- #o(N2p,T) is the chemical potential of the equilibrium
tunneling cases or below 40 K for sequential-tunneling case§/€ctron gas relative to the edge of the ground subband in the
and is neglected in this paper since it becomes significarfit@ntum well and is determined by the electron densjy
only for a large-tunneling current. The thick-barrier-layer & T+ In EQ. (1), AE, represents the local fluctuation of elec-
sample used in this study is to limit the dark sequentialfon kinetic energy for electron staffe). Using the accelera-
tunneling current to an extremely low amount, which ensuredion theorem for the momentum driftk introduced in Eq.

a very high detectivity for quantum-well infrared photodetec-(1) under an applied electric fielfi,(t), we obtain the fol-
tors operating at a low-temperature and/or a Iow-photoHOW'”g gener_allz_ed Boltzmqnn’s equation associated with the
background® When the sequential tunneling is low, the im- Shifted Fermi-Dirac model in Eq(1):

purity or defect channels within the barrier would play a

role” However, this only modifies the resistance of the afHo(k) e of#o(k)  dAE, af*o(k)

sample for sequential tunneling of electrons. The nonadia- ot —%Sb(t)VkEk E + T E

batic effects discussed in this paper for electron tunneling k k

remain the same. The usual self-consistent Hartree model is afro(k)
based on the known equilibriurtiFermi-Dirag distribution = T|co||,
function of electrons, which can be applied to find electron
wave functions and energy levels simultaneously in quantum
wells. The main result of this paper is the derivation of awhere&y(t)=Eqct Eqsin(M) is the time-dependent electric
dynamical differential equation for nonadiabatic electronsfield with frequencyQ)=2=/T,, time periodT,, dc ampli-
under an ac electric field in quantum wells which is thentude &y, and ac amplitude,.. The term on the right-hand
used to find the electron distribution function. This dynami-side of Eq.(3) represents collision contributions. In the limit
cal equation can be coupled to the self-consistent Hartreef (17e<1 with 7, being the energy-relaxation time of elec-
model to solve for electron wave functions, energy levelsfrons in the quantum well, we hav@AE,/dt);=0; but
and nonadiabatic distributions at the same time. (dAk/dty,=e&y(t)/h, where(- - ), defines a time average
The paper is organized as follows. In Sec. II, we introduceover multiple periods of T,. In this case, only the
a shifted Fermi-Dirac mod#l for local fluctuations of elec- momentum-drift phenomenon occurs. On the other hand, we
tron kinetic energy and charge density in the quantum wellfind (dAk/dt);=0 in the limit of Q 7,> 1, with 7, being the
Section Il is used to establish a unified theory for both co-momentum-relaxation time of electrons in the quantum well.
herent and sequential tunneling of electrons in quantum-welUnder this condition, only the energy-drift phenomenon oc-
and superlattice systems. The previous current-surge modeurs with (dAEk/dt)t=o(Q)S§C/4, wherea () is the ac
is briefly reviewed in Sec. IV. Section V is devoted to the conductivity of electrons in the quantum wéil.
derivation of a differential equation based on the self- For the shifted Fermi-Dirac model in EL), there exists
consistent Hartree model with the inclusion of nonadiabatia local charge-density fluctuation for each electron dtate
effects on the electron distribution function, and to the estabelefined by

()
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25 (t)—E E[1“‘0(k)—f”"(E)] J“O[é’]—E [E0]> TIEx Sl f4(Ey)

TR TARY 0 (=K bIT Ty vdnlg kobllTo A5k
e /dAE, at5%(Ey) — 2By +e&le)], 7)
IR VAR T N T =P @

whereuv &= (er,/m*)&,, the momentum-relaxation time
_ 7, IS given by
where V is the volume of the sample. The local charge-

density fluctuation is a result of the change of the electron m* o
S

distribution in energy space with respect to the equilibrium o= (8)
state even when,p is a constant. e\/8§+5b2
m* is the effective mass of electrons, is the electron satu-
. COHERENT- AND SEQUENTIAL-TUNNELING ration velocity, and<; is the saturation electric field. In Eq.
MODELS (7), J*o[ & llevd &) can be equivalently viewed as a three-

dimensional tunneling-electron density that depend<pn
T, andn,p. Obviously, the conductance that is proportional
to J#o[ &1/ &, becomes dependent @ in this situation.

For an MQW system with thick-barrier layers, the adia-
batic sequential-tunneling current density flowing in the
direction (growth direction and perpendicular to the
quantum-well layersis found to b&°

IV. CURRENT-SURGE MODEL

2e z From now on, we limit ourselves to an electrical-quantum
Jr)= v ; VKTTE Sl TH(B) — TH(BFedplp) ], limit where only the ground subband of the narrow?quantum
(5) well is occupied by electrons at low temperatures and low
electron densities. The electron kinetic energy of the ground
whereL g is the thickness of the barrier between two adjacensubband (measured from the edpeis given by E,
quantum wellsp? is the group velocity of quasibound- or =#%k?/2m*. In the current-surge mod&l;">**we assume
continuum-state electrons in thejirection, and]’[Ek,gb] is that AEk is associated with the fluctuation of the chemical
the quantum-mechanical transmission of electrons througRotential of electrons in the quantum weihdependent of
the biased barrier. If07>1, with =, being the electron individual gleqtron stade instead of the local fluctuation .qf
sequential-tunneling time7[E,,&,] has to be found by electron kinetic energy for each electron state. By writing
solving a time-dependent Scliager equation. Otherwise, AEx=—Au=po(nzp,T)—u(t) for the global chemical-
T[Ey.&] can be calculated from a static Sctinger equa-  Potential fluctuation, wherg(t) anduo(nzp, T) are, respec-
tion at each time if Qr<1. We will be only interested in tively, the transient chemical potential for electron density
the latter case witlf) 7<1 hereafter. ng(t) and that for an equilibrium electron gas in quantum
In the limit of small barrier thickness and weak field, i.e., Wells, we get
e&Ls<Ey, Eq. (5) yields a coherent-tunneling current that
takes the same form as that obtained using the regular Bolt- dAEy _ IAE, o %
zmann’s equationdAE,/dt=0) under the relaxation-time dt at dng dt ’
approximation:

C)

We further introduce a spatially averaged space-charge field
gna(t) which is defined b§P,13,14

(6)

22 (ngO(Ek)}
Jro(t)= —& v)?r = |
== bzk: (Vi) “7p JE, AE=e&(t)Lg, (10)

where we have seT [E, 5b]:v§7'p/|-s<1 for scattering- whereé&,(t) measures the reduction of the electron chemical
limited miniband-state electrons at very low electric field Potential in quantum wells. If we use Levine's sequential-
(with mean free pathzﬁrp smaller thanLg), and 7, is the tunngllng model in Eq(?), we find .the change in the current
momentum-relaxation time of electrons. Consequently, théjenslty due to the existence of this space-charge fig(d),
conductance that is proportional d¢0(t)/ &, becomes inde-
pendent ofg, in this situation.

If we feP'_aC?f”"(Ek) tomt)he leading-order approximation \herej#o[ £,] has been given in Ed7). In Eq. (11), the first
by the equilibrium valuef;°(Ey) for faster electron energy term can be viewed as an equivalent capture current flowing
relaxation processes due to inelastic scattering of electrons &sto the quantum well, while the second term can be re-

compared to the electron sequential tunneling, and replacgarded as a sequential-tunneling current flowing out of the
the electron group velocity by a drift velocityv &y (@  quantum well.

A (t)=Jro Cleénd & + &, ] — [ &.], (11)

statistically averaged group velocjtef electrons in a bulk For a quantum well, the electron density will be constant
material, Eq.(5) reduces to Levine’s sequential-tunneling if the conduction currents flowing in and out of the well are
modef° equal. The variation of the charge density in the well is cre-

245306-3



DANHONG HUANG AND D. A. CARDIMONA PHYSICAL REVIEW B 67, 245306 (2003

ated by an imbalance in conduction currents. The chargedoping for the single quantum  well, ngzt)

current conservation law for density fluctuatidip(t) re- =|¢1(z,1)|?ng(t) is the density function, and
quires
op(t)L +oo
d _ PtOtw
S on(0)= 2 Sp()=AAI D), (12 Ne(t)=N2pt+ —— == =N20* p2p fo dEST(E.L),

(16)
where A is the cross-sectional area of the MQW sample. The
left-hand side of Eq(12) represents the charge increase in-where p,p=(my,/7#?) is the density of states for two-
side the well, while the right-hand side of the equation standslimensional electrons in the quantum well aff{E,t) rep-
for the net increase in charges due to a nonadiabatic changesents the local fluctuation of the electron distribution func-
in the current flowing into the quantum well. Combining tion in energy space. Here, the number of electrons in the
Eqgs.(4), (9), (10), and(12), we finally arrive at the following quantum well is not a constant due to the nonadiabatic cur-
equation derived previously as the current-surge mtlel:  rent flowing. Moreover, we find from Eq$4), (9), and(16)

that

d d

LBCQwagna(t) = LBCQwaSb(t) —AJ(1), (13 d o g

where the quantum-well capacitance per unit are& dsy

=(m*e? w#?)f}°(0). Here, we have employed in E(L3) d

the fact that §u/anJ) (dn./dt) = eLg[d&,(t)/dt] for the ca- +62Lspzoa5b(t) fo dE| —

pacitance coupling of the quantum well to an external ac

electric field!%1314The fast inelastic scattering in quantum (17)

wells ensures that electrons are in an “equilibrium” state.

However, Eq(13) causes a shaking Fermi level for the equi- Applying Eq.(12) and using Eqs(11) and(17), we find the

librium state on a macroscopic time scale. following integral equation forsf(E,t) by using Levine’s
model in Eq.(7)

JfEo(E)
=

V. NONADIABATIC EFFECTS IN A SELF-CONSISTENT

to g d&y(t)
HARTREE MODEL epzof dEE5f(E,t)+e Lapas (;)t

As mentioned in the Introduction, electrons in quantum

wells see only the instantaneous ac electric field during their b If*o(E) ep
sequential-tunneling process 2 7<1. In this case, the xf -2 ( = {vd &)+ Suvd 6F1}
ground-state electron wave functign(z,t) inside the quan- 0 JE
tum well within the self-consistent Hartree model is deter- 4o
mined by* xf dET[E+E;,&; VullfH%E) + Sf(E,t)
0
he d 1 d w
- _ —fCUE+e&lg)— ST(E+e&lsg,t)]
2 42\ m(2) dz) e&p(t)z+Uow(2) 0 B B
+ [’ZD ud[eb]f dET[E+EQ, &; VIO T4o(E)
+VH(th) ¢l(zvt):El(t)¢l(21t)v (14) w
—f5(E+e&lp)]=0. (18

whereE,(t) is the time-dependent ground-subband edge, the

electron effective mas®* (z) takesmyy, in the well andmg In Eq. (18), Vy(z,t) andE,(t) are written simply a3/, and
in the barrier, andJow(2) is zero inside the well buV, E,. The adiabatic quantitie¥("(z,t) and E{”(t) can be
outside the well. For the adiabatic state, we havl)  ,ptained by simply settingsp(t)=0 in Eq. (15) and
= uo(nyp,T), otherwisedp(t)#0 for the cases with nona- VH(Z,t)Ivl(_?)(Z,t) in Eq. (14). Moreover, the fluctuation of

diabatic effects. The Hartree potentill(z,t) in Eq. (14 he rift velocity dv 5] introduced in Eq(18) is calcu-
can be found from the Poisson equation lated to be

e 2E
= No@—ndz]. (19 5vd[5f]=—(p2D)f dESHEDN—. (19
My

where donors are assumed completely ionized, and the rela-
tive dielectric constang,(z) takesey, in the well andeg in Finally, Eq.(18) leads us to the dynamical differential equa-
the barrier.Np(z) in Eq. (15) is the static profile of donor tion for 6f(E,t),

d
&(2) ;VH(z D)
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dey(t) dfg%(E) 1
dt  JE Ly

d
S Of(E—els ™"

X{vd El+ Svd ST TIE+Ey,&; Vallf5°(E)

+6f(E,t) — f{U(E+e&yle) — ST(E+e&lp,t)]
1
+mvd[sbmmE&°>,eb;v<H°>][fg‘°(E>

—f4(E+e&lg)]=0, (20)

where the initial condition is chosen to & (E,t)=0 att
=0 if the ac electric field is applied to the system after

=0. 6f(E,t) has a lower bound that is set by the condition

Sf(E,t) +f5%(E)=0.
For smallA «, the first term in Eq(20) can be approxi-
mated to the leading order by

(21)

9t (E)
JE

Similarly, a part of the third term in Eq20) can be approxi-
mated as

ﬁ5f E
E ( 1t)~_

T[E+E;. & V[ f5%(E) + SF(E 1)
— fEO(E+e&ylp) — ST(E+e&ylp,t)]
~T[E+E & VP + 8V onzp) popA ]

X[ Lot A4(E) — LT Etegle)],

where OV 6n,0) = (e2ependte) and  qre
= (€%2€q€ew) pop in the Thomas-Fermi modét.By recalling
Apu=—e&(t)Lg, Eg. (20) results in the current-surge
model in Eq.(13), where

(22

Prg1(t)
Prg(t) | | {1k~ (U2EQ[E+Ey () ~UR .1+ e&(HNsA =V, ()] by 1(1)

wherek’ = (A/R)\2mg(E+e&y(t)Lg). From the solution of

Eq. (24) we find the quantum-mechanical transmission of

electrons from

1 [E+e&(tlg

TIE+E;, & Vy]= @ —F (26)

where|S|?=[|a|?+|b|?+ 2Re(@b*)]/4. The solution of Eq.
(24) ensures that the transmission coefficient in &%) de-

way. Here, the two complex nhumbeaisandb are defined by
the starting boundary condition of E(R4)

PHYSICAL REVIEW B 67, 245306 (2003

) +oo atgo(E)
Cow=€"p2p . dE E I
€p2p

JMO[ 5b] = |_W

+
)vd[f:b] fo dETTE+EP, & V)]

X[f4O(E) - fEYE+egLe)],

TIE+E® & VO —ef g~ T[E+E® &+ Ena; VI,
and v &+ ovd ofl=~vdEptEa if we set 7,
~Lg/(ve/2) with vg being the electron group velocity at the
Fermi level. The space-charge fielg(t) introduced by
Ap=—e& (t)Lg can be calculated from

“+ 00
f dESF(E,t),
0

Endt)=— 23

els

which becomes positive ifp(t)<O0.

The quantum-mechanical transmission coeffici@fte
+E1,&;Vy] used to evaluate the tunneling current in Eq.
(7) can be found from the following backward iteratfoat
each timet

¢j-1(t)=

1 .6 : H
2+ £ U] e (- DA+V()-E

_El(t)]]¢j(t)_¢j+1(t) (24

for 1<j<Ng, where ¢;(t)=¢1(z,t), VI(1)=Vy(z 1),
Eq=%2/2mgA2, A=Lg/Ng and Ng is the number of slabs
(thicknessA) within the barrier layer. HererB=O for j

=0 andj=Ng+1. Otherwiseu?zvo. The ending bound-
ary condition of Eq.(24) produces

exp(iNgk) ] 5

a
b

(27)

dq(1) }
—(i/2K)(pa(t) — ¢o(1)) ]’

with k= (A/#) y2mgE.

VI. NUMERICAL RESULTS AND DISCUSSION
We choose a GaAs/iBGa _,As MQW sample for nu-

merical calculations. Some sample parameters can be found
pends on the barrier thickness and height in an exponentiah Tables |

and |Il. Other parameters includéy;
=0.05 kv/cm, vs=2x10° cm/sec, =2 kV/cm, and T,
=4 sec. Different doping profiles have been considered, in-
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=3 sec). These features are a result of the induced space-
charge field&, ().

The reduction of electron population aroun&
=uo(nsp,T) can be described by the space-charge field

<3 0.000 0.5 ° En(t) defined in Eq(23). We displayé,((t) (solid curve, left

IS VOUPE e 9 scalg in Fig. 2@), along with &,(t) (dashed curve, right
£ 0005 100 = scalg as functions ot for uniform doping. From the figure
£ = we see that, (t) and &y (t) are nearly in phase with each
g -0.010 08 = other, except for a slight phase shift. This is a direct result of
3 [ Uniform Doping “ oscillations in the change of the charge dengip(t) in the

0015 T=40K 1" quantum well, as shown in Fig(l®, where bothsp(t) (solid
L e =1kV/cm .
0020t s curve, left scalgand dv 4 6f] (dashed curve, right scalare
00 05 10 15 20 25 30 35 40 plotted as functions df Since&,4(t) describes the reduction
t (sec) of charge density in the quantum well, we expég(t) to be

_ ~ nearly out of phase with,,{t) or &(t), as can be seen from
FIG_. 1. Calculated time dependence of electron sequentlaIFigS_ 2a) and 2b). The situations withdp(t)<0 and
f;ngel!ng currents(t) = AL %o &] + AJni(1)] (left scalg for nona- - 5y~ 0 indicate electrons moving out of and into the quan-
labatic [AJn{t)#0, solid curvg and adiabatic[AJndt)=0, 4\ \yell, respectively. Moreoveso J 5f] will be in phase
dashed curvk and an applied ac electric fiek(t) (right scale for with &, (t) since it is proportional to- 5f(E, ) that itself is
T=40 K and £,.=1 kV/cm with uniform doping inside GaAs na ’
quantum wells. prop_ortlonal tpgna(t). _ _

Figure 3 displays the calculated adiabatic Hartree poten-
tial [in panel (a)] and the change of Hartree potentfah
panel(b)] in the nonadiabatic state from the Poisson equation
doping. The temperature and the amplitude of the ac elec- (15) as functions of positioa for different doping profiles at
tric field, £,c, will be given in the figure captions. t/T,=0.25. HereT=40 K, £,.=1 kV/cm, and the quantum

Figure 1 presents the calculated nonadiabatic electrowell sits in the range of 300 £z=<380 A. From Fig. 8a)
sequential-tunneling current (t) =[J*[ &,]+AJ(t)] A  we find that the absolute value of the adiabatic Hartree po-
(solid curve and the adiabatic sequential-tunneling currenttential becomes smallest for the uniform-doping case. The
[ (t)=J*[ £,]A (dashed curveas a function of time (left ~ centerd doping in the quantum well causes the conduction
scalg for the MQW sample aT=40 K, £,.=1 kV/cm, and band edge to bend down at the well center, while the etlge
with uniform doping inside the GaAs quantum wells. For doping makes the conduction band edge bend up there, as
comparison, the applied ac electric figlg{t) (right scale¢is  shown in Fig. 8a). With the total potential seen by the elec-
also plotted in the same figure. Whéy(t) approaches its trons being the sum of the adiabatic Hartree potential
maximum (i.e., t=1 sec), we find a small enhancement in V(Ho)(z,t) plus the chang@Vy(z,t) plus the quantum-well
I{t) with respect td ((t) and the saturation df,(t) due to  potentialUgw(2), the out-of-phase nature of FigsiaBand
the large reduction in electron density inside the quantun8(b) will result in the band bending seen in FigiaBbeing
wells. On the other hand, we find a large enhancement isubstantially suppressed by the nonadiabatic effects in Fig.
I ,«(t) due to the large increase of electron density inside th&(b). However, the nonadiabatic effects with ed§eloping
quantum wells wher£,(t) approaches its minimurfi.e., t produces two positive spik¢solid curve in Fig. 8)] at the

cluding uniform well doping, cente$ doping, and edg&

1.2 T T T 1.2 1.0 — T T T T T T I 3
CYRPAN Uniform Doping SN (b)
s
T=40 K ’ AN 2
r
0.6 eac=1 kV /cm 408 05}k ’ \\ —
/ \ Q
- — - / N 1 3
£ £ q‘E // \\ =
° 8 ] , Y Uniform Doping g
> 00 0.0 > o, 00 T=40 K 10
= z \ Y oe=tkv/iem S| T
\ ac ’

= — . \ L |
~% = = D /) =
W 0.6 0.6 g o5f ' p B
\ /I 5 °
\\ ’ 1= &

N P
1'2 1 1 1 1.2 1'0 1 1 1 1 1 N I_‘ 1 3
0 1 2 3 4 00 05 1.0 15 20 25 30 35 40
t (sec) t (sec)

FIG. 2. Time dependence of a calculated space-chargediglt (solid curve, left scaleand an applied ac electric fielg}(t) (dashed
curve, right scalein panel(a), as well as time dependence of calculated charge-density fluctugdidh (solid curve, left scaleand change
of drift velocity sv 4 6f] (dashed curve, right scale panel(b) for T=40 K and&,.=1 kV/cm with uniform doping inside quantum wells.
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t/ Tp=0.25
T=40 K

aac=1 kV/cm

8 T T T T T T
 (b) t/T=0.25
al T T=40K ]
SN e =1KV/em

(meV)

; 4 ~
2 o < e :
= -4r \\\_"/ T =
) —— Edge 5-Doping o —— Edge $-Doping
PG - CemtersDopingy >0 ey Center 3-Doping |
Uniform Doping 1~ . Uniform Doping
-12 . L N— . - ' ' . ' . )
250 300 350 400 450 1250 300 350 400 450
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FIG. 3. Calculated position dependence of adiabatic Hartree poteM{i%)ISz,t) in panel (a) and change of nonadiabatic Hartree
potentialsAVy(z,t) in panel(b) att/T,=0.25, withT=40 K and&,.=1 kV/cm for edges doping(solid curves, centerd doping(dashed
curves, and uniform dopingdotted curvesin the quantum well.

edges of the quantum well and thus will reduce the electrofiin panel(b)]. From Fig. %b) it is clear thatsf (E,t) always
sequential-tunneling current.

Figure 4 indicates the effects of an ac electric-fieldtional to 9f;°(E)/JE. Because the Fermi surface broadens

strengthé,.[in panel(a)] and temperaturé [in panel(b)] on
the charge-density fluctuatior®(t) as a function ot in a
uniformly doped quantum well. In Fig.(d we find that
fluctuations 5p(t) increase with&,. at T=40 K, with the
negative peakelectrons removed from the quantum well
being saturated &,.=5 kV/cm. In Fig. 4b), asT increases
op(t) is enhanced when it is negatielectrons removed
from the quantum wel] but reduced when it is positive

(electrons added to the weht £,.=1 kV/icm.
Figure 4 only shows us the global fluctuation of the T=40 K andé,.=1 kV/cm. From Fig. 6a) we find that the

charge density in the quantum well. In order to gain furtherpositive peak in the adiabatic Hartree potenﬁ&P)(z,t)

insight into the local change in the electron distribution func-(dashed curveat the center of the quantum well is greatly

tion, we displaysf(E,t) in Fig. 5 att/T,=0.25 with uni-
form doping for different values of,. [in panel(a)] and T

8 T T T T T T '
Uniform Doping (@)

— T=4o K /”—N\\\

o L ’/ \\ 4
e ¢ / .
(&) ,’ \

v—o ’/’ \
~— 0 /’
=t e, =1kV/cm |

------ e, =9 kV/cm
-4 L 1 L 1 L
0 1 2 3 4
t (sec)

shows a negative minimum aiy(n,p,T), since it is propor-

with increasingT, we find from Fig. %b) that the negative
minimum is partially suppressed and broadefsadid curve
when T=40 K as compared to thafdashed curveat T
=20 K. From Fig. %a) we find that the negative minimum is
enhanced whefi,. is increased. The cugplashed curvein
Fig. 5a) is a result of zero occupation of electrons in a
specific state with kinetic enerdy in the ground subband.
Figures 6a) and Gb) present nonadiabatic effects on the
Hartree potentials in the uniformly doped quantum well at

suppressed by the nonadiabatic effe@tslid curve att/T,
=0.25, leaving two positive spikes at the edges of the quan-

1.0 T T T T T T
L Uniform Doping . ()]
o5l E=1kV/cm
£
(@]
' 00
— -05
=1
S G T=20 K
-1.0 1 1 1
0 1 2 3 4
t (sec)

FIG. 4. Time dependence of calculated charge-density fluctuatip(i in the uniformly doped quantum well . In pan@l), we set
T=40 K with £,.=1 kV/cm (solid curve and&,=5 kV/cm (dashed curve In panel(b), we setf,.=1 kV/cm with T=40 K (solid curve

andT=20 K (dashed curve
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02 T 1 1 1 1
- (a)
0.0}
e =1kV/em
02+ ! ac .
= |\ S g, =9 kV/em =
W o4l /" . = .
2= ' ' . . * ! . .
TN Uniform Doping *© o4l Uniform Doping |
0.6 ! /l t/Tp=0.25 - ' N t/Tp=O.25
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FIG. 5. Calculated change of nonadiabatic distribution functiéf(&,t) at t/T,=0.25 for electrons in the uniformly doped gquantum

well. In panel (a), we setT=40 K with £,.=1 kV/cm K (solid curvg and &,.=5 kV/cm (dashed curve In panel (b), we set&y
=1 kV/cm with T=40 K (solid curveg andT=20 K (dashed curve

tum well. Figure @b) shows the comparison between Hartreemoved and negativéelectrons being addgéxtreme values
potentials when the electrons in the quantum well are eitheof £,(t) is broken in the case with nonadiabatic effethsck
removed (/T,=0.25, solid curvg or added {/T,=0.75, solid curve. A small offset®****of log, (| I ,{(t)| with respect

dashed curve We find from Fig. 6b) that the two positive to £,(t)=0 can be seen by comparing thick and thin solid
spikes at the edges of the quantum well are suppressed, bedrves.

two negative spikes are generated when electrons are added

to the well.

Finally, we display in Fig. 7#(E,t) att/T,=0.25(dotted VIl. CONCLUSIONS AND REMARKS
va.é a_nd O.ZL_?(dashed ?ume as We.” as the equilibrium In conclusion, we have derived a dynamical differential
distribution f°(E) (solid curve in panel (a3 and

- ” ) equation for the nonadiabatic electron distribution function
logidIni(t)| as a function oféy(t) in panel (b). From Fig.  yjth sequential-tunneling current flowing through an MQW
7(a) we seef(E,t) resembles the equilibrium distribution system. Using this equation, we generalized the self-
f°(E) with a shaking Fermi level with timéshaking up at  consistent Hartree model for the calculation of the electronic
t/T,=0.75 and shaking down afT,=0.25). Compared

states with the inclusion of nonadiabatic effects in a quantum
with the adiabatic electron sequential-tunneling curfémn

well. We have also studied the effects of different doping
solid curve withAJ,(t)=0] in Fig. 7(b), the symmetry of profiles, temperatures, and amplitudes of applied ac electric

logyo 1 ns(t)| With respect to the positivéelectrons being re- field on the nonadiabatic electron sequential tunneling. Fi-

0.8 y T

— 0.16 ——
* Uniform Doping Uniform Doping —t/Tp=O.25
'/ \ t/Tp=0.25 i rT=40K = ______ ’[/Tp=0.75
S oul [ T=40K = oal E=1 KV /cm
> [ e =1kV/cm 2 T 1
c : '\ & £
= = 000
N N
> Non-Steady-State [ >
@ ----- Steady-State
%50 s00 @0 400 450 ~0.08 : ' o
250 300 350 400 450
z (A) z (A)

FIG. 6. Calculated position dependence of Hartree potentials for nonadiéhaltit curve and adiabati¢dashed curvein panel(a) at

T=40 K and&,.=1 kV/cm with uniform doping inside the quantum well, and nonadiabatic Hartree potewtiélst) in panel(b) for
t/T,=0.25(solid curve andt/T,=0.75(dashed curve
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1.0 === T . T . T . VBT — T
— Equilibrium | Non-Steady-State |
08 N t/T=0.25 | ol — Steady-State |
N t/T=0.75 | <
0.6} \ §
— J ; -5 7
= 04} " Uniform Doping- e |
\ T=40 K :o 16| Uniform Doping |
02} \\eac=1 kV/cm S g? T=40K
(a) AN ] - e, =1 kV/cm (b)]
0.0 N SN S0 4 S S —
0 10 20 30 40 -1.0 -0.5 0.0 0.5 1.0
E (meV) e() (KV/cm)

FIG. 7. Calculated nonadiabatic electron distribution functié¢is,t) in panel(a) and logarithm of absolute value of nonadiabatic
sequential-tunneling curremt(t) = A[ J*9[ &,]+ AJ,(t)] as a function of an applied ac electric fig(t) in panel(b) for T=40 K and
Eac=1 kVicm. In panela), we plotf(E,t) att/T,=0.25(dotted curv¢andt/T,=0.75(dashed curve The equilibrium electron distribution
function fg‘f’(E) (solid curve is also shown for the comparison. In parb), the currents calculated from adiabafibin curve and
nonadiabatidthick curve electron sequential tunneling are compared with each other.

nally, we have connected the present quantum-statisticalures the observation of the nonadiabatic effects inside the
theory to the previously proposed current-surge model with gluantum well. Assuming.= 1 ps corresponds to a homoge-
leading-order approximation. neous energy-level broadening of 1 meV, leading Qo

In this paper, only the self-consistent Hartree model is<10'? Hz from Q r,<1. Therefore, only a momentum drift
employed. The exchange interaction between electrons angkists for low ac frequencf)~1 Hz. The tunneling timer,
the field-domain effect are expected to be very sthat T .an be estimated from,~ e/[ J*°[ £,].A]. For a superlattice,

=40 K gndgac=1 kV/cm and. have been nt.aglec.ted. we take J4[&,]A=1 uA, leading to =0.1 ps andQ
The time scale for observing the nonadiabatic effects re-_ 10 Hz from Qr<1. For an MQW system, we take
quires Jr[£]A=10 pA, leading tor,=10 ns andQ<10® Hz.
This justifies the calculation of the quantum-mechanical
Te< T <t<RCowd, 2m/Q, transmission of electrons through a biased barrier using the

time-independent Schdinger equation in an MQW system
with ) ~1 Hz. Difficulties in observing the nonadiabatic ef-
whereR,= (Lg/A)[ dI*[ &)/ 9E,] 1 is the differential tun- fects may come from the small quantum-well capacitance
neling resistance, depending 6pandT. Here,)7,<1 ex-  CowA~10 pF in the requirement<R;Cow.A. For a super-
cludes the energy-drift effect, leaving only the momentum-attice, we takeR,=10* ohm, and thert<10 ' sec is re-
drift effect in the system. Furthef) 7,<1 ensures that the quired(impossible to observe with~1 Hz). For an MQW
electrons see only an instantaneous ac electric field duringystem, on the other hand, we taRe=10' ohm, which
the sequential-tunneling process. Finaltyy Ri©CqowA en-  impliest<1 sec(very easy to observe with ~1 Hz).
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