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Excited-state level crossing and quantum phase transition in one-dimensional correlated
fermion models
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We show that for a wide class of one-dimensional correlated fermion models, such as the extended Hubbard
model, the global ground state is nondegenerate with proper boundary conditions. Consequently, energy level
crossing in the ground state is absent. We also show that the continuous quantum phase transitions are actually
caused by level crossing of the low-lying excited states of the system.
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Physics in one-dimensional correlated fermion syste
have been one of the central focuses in condensed m
theory for decades,1–3 especially after the discovery of hig
temperature superconductivity. As a good example, the o
dimensional extended Hubbard model~EHM!, with on-site
and nearest-neighbor Coulomb repulsionsU and V, is a
simple yet nontrivial model that exhibits rich ground sta
phase diagram.1,3 In the U,V.0 regime at half filling,
both strong-coupling analysis4–6 and weak-coupling
renormalization-group technique1,2 have shown that there i
a phase transition from the spin-density wave~SDW! to the
charge-density wave~CDW! at U52V. Some later studies
showed that there exists also a bond-order-density wa
~BOW, or BCDW! phase between the SDW and the CD
phases.7–13 It was claimed that, for example, as the coupli
U and V increase, the continuous phase transition chan
into the first-order one at a bicritical point around (U,V)
5(5.0t,2.3t) ~see, for example, Ref. 13!.

With the inclusion of additional terms in the EHM o
different physics background, various one-dimensional c
related electronic models were actively studied recently14–22

and many phase diagrams were obtained. Most of these s
ies applied analytical approaches, such as bosonization,
numerical techniques, such as exact diagonalization of
model Hamiltonian. However, the properties of phase tra
tions in these models have not been clearly spelt out
While it is worth the efforts to determine the phase boun
aries, it is also important to understand the character of
transition between different phases based on some ge
but rigorous results.

In this work, we study the character of quantum pha
transition in a class of one-dimensional correlated ferm
models, where the off-diagonal Coulomb interactio
electron-phonon interactions, and alternating potential~the
ionic Hubbard model16–22! are all included. We show that in
most circumstances, the system ground state is nondeg
ate. Thus, there is no energy level crossing in the gro
state as long as fermion hopping is present. Implications
this result will be discussed.

To start, take a finite chain of lattice withL sites. For
convenience, we shall assume that the lattice constan
unity andL is an even integer. We shall first impose the op
boundary condition on the chain in order to avoid unnec
sary mathematical nuisances. We then discuss the boun
effects. The generalized Hubbard Hamiltonian, which
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shall consider, is of the following form:16,23–26

H5 (
i 51

L21

(
s

Ti~ s̄ !Bi~s!1U(
i 51

L

n̂i↑n̂i↓1V(
i 51

L21

n̂i n̂i 11

1X(
i 51

L21

(
s

Bi~s!~ n̂i s̄1n̂i 11,s̄!1W(
i 51

L21 S (
s

Bi~s! D 2

1D(
i 51

L

~21! i n̂i2mN̂. ~1!

In Eq. ~1!, ĉis
† ( ĉis) represents the fermion creation~annihi-

lation! operator, which creates~annihilates! an itinerant elec-
tron of spin s at lattice sitei and n̂i5n̂i↑1n̂i↓ . Bi(s) is
called the bond-charge operator, defined by

Bi~s!5 ĉi ,s
† ĉi 11,s1 ĉi 11,s

† ĉi ,s . ~2!

Ti(s̄) is the occupation-dependent electron hopping am
tude from sitei to i 11, given by

Ti~ s̄ !5tAA~12n̂i ,s̄!~12n̂i 11,s̄!1tBBn̂i ,s̄n̂i 11,s̄

1tAB@ n̂i ,&s̄~12n̂i 11,s̄!1n̂i 11,s̄~12n̂i ,s̄!#. ~3!

The three parameterstAA ,tBB , and tAB stand for electron
hopping from a singly occupied site to an empty site, from
doubly occupied site to a singly occupied site, and from
doubly occupied site to an empty site~and the opposite pro
cess!, respectively. We shall require that they have the sa
sign, either positive or negative. Rest of the terms repres
electron-electron interactions.23–25 U and V denote, respec-
tively, the on-site and the nearest-neighbor interactions
tween electrons. In general, they are positive parameters
the Coulomb interaction. However, as we shall show in
following, their signs do not matter as far as the degener
of the global ground state of Hamiltonian~1! is concerned.
The W term can be either the off-diagonal Coulomb intera
tion with W.0 or be induced by phonon-electron intera
tions with W,0.27–29 The X term is another off-diagona
Coulomb interaction whose magnitude is smaller than
hopping integrals. ParameterD was originally proposed26 to
study the neutral-ionic transition in mixed-stack dono
accepted organic crystals.30
©2003 The American Physical Society05-1
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In fact, Hamiltonian~1! represents several models, whic
have been and are currently under intensive studies. Fo
stance, whentAA5tBB5tAB and W5X5D50, H is the
well-known EHM Hamiltonian, and withW,0, tAA5tBB
5tAB , andX5D50, H represents an effective Hamiltonia
of the famous Su-Schrieffer-Heeger model31 at the antiadia-
batic limit with W,0.27–29 For W5X50, H represents the
so-called ionic Hubbard model, which is now vigorously i
vestigated by many physicists.16–22 These models have dif
ferent kinds of phases in different regions of the parame
space. Consequently, quantum phase transitions will
place as these parameters vary.

With the above preparations, we now proceed to prove
following fact.

Theorem. Under the conditions W<0 and uXu
,utAAu,utABu,utBBu, the global ground stateC0(N) of Hamil-
tonian~1! on an open chain is nondegenerate for any adm
sible even number of electrons. The same conclus
also holds true ifN54n12 with the periodic boundary con
dition ~PBC! or N54n with the antiperiodic boundary con
dition ~APBC!.

To prove the theorem, we shall apply a simplified vers
of Lieb and Mattis’ method in proving the absence of ferr
magnetism in one-dimensional itinerant electron latt
models.32 In the present case, the occupation-dependent h
ping of electrons and theW-interaction term in Hamiltonian
~1! needs to be dealt with care.

In the following, for definiteness, we assume that all t
parameterstAA , tBB , and tAB appearing in the occupation
dependent hopping amplitudeTi(s̄) are negative nonzero
quantities. This assumption can be relaxed for a bipar
lattice with nearest-neighbor hopping, since we can alw
apply a unitary transformation to Hamiltonian~1!, which
maps ĉis into (21)i ĉis , thus Ti(s̄) is mapped into
2Ti(s̄), while other terms of the Hamiltonian keep u
changed.

It is easy to check that Hamiltonian~1! commutes with
the total electron number operatorN̂, the total spin operators
Ŝ andŜz . Hence, the Hilbert spaceV(N) of N electrons can
be decomposed into separate subspaces

V~N!5 (
M50

N

% V~N↑5N2M ,N↓5M !. ~4!

Furthermore, in each subspaceV(N2M ,M ), we observe
that, under the open boundary condition,the up-spin and the
down-spin fermion operators can be properly arranged
such a way that the action of Hamiltonian 1does not violate
their orderings. More precisely, one can choose a nat
basis of configurations ofV(N2M ,M ) by

fa5~ ĉi 1 ,↑
†

••• ĉi N2M ,↑
† !~ ĉ j 1 ,↓

†
••• ĉ j M ,↓

† !u0&, ~5!

where u0& is the vacuum state. (i 1, i 2,•••, i N2M) and
( j 1, j 2,•••, j M) denote the positions of the up-spin an
the down-spin electrons on the lattice chain, respectively
terms of these vectors, Hamiltonian~1! can be rewritten into
a Hermitian matrixH. We notice that, whenW<0 anduXu
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<utAAu,utABu,utBBu, all of its off-diagonal elements, such a
W^fbu@(sBi(s)#2ufa&, are nonpositive quantities. Furthe
more,H is also irreducible in the following sense: For an
pair of indicesm andn, there is a positive integerK such that
the matrix element (H K)mn is nonzero; that is, due to the fac
that electron can move from one site of the open chain to
other site by a sequence of hoppings. Therefore, any pa
configurationsfa andfb in subspaceV(N2M ,M ) are con-
nected byH K with an appropriate integerK.

To such a Hermitian matrix, we are able to apply t
well-known Perron-Fro¨benius theorem.33 It tells us thatthe
ground-state wave function ofH in V(N2M ,&M ) is a linear
combination of$fa% with positive coefficients and, hence,
nondegenerate. In particular, since each eigenstate of Ham
tonian ~1! has a representative in subspaceV(N/2,N/2), the
ground state ofH in this subspace is actually the glob
ground stateC0(N) of Hamiltonian~1!, and is nondegener
ate.

To go further, we let parametersW,X,U,V, andD tend to
zero. In this limit, C0(N) keeps nondegenerate, but th
Hamiltonian is reduced to that of a noninteracting electr
chain. Its ground state is nondegenerate and has spinS50
when the electron numberN is an even integer. Therefore, b
the continuity argument,C0(N) must also haveS50 for
nonzero parameters.

If the periodic rather than the open boundary condition
imposed on the lattice, some mathematical ambiguities m
arise. In particular, due to electron hopping between bou
ary sites, the off-diagonal matrix elements ofH in an arbi-
trary V(N2M ,M ) can be either positive or negative; th
makes the Perron-Fro¨benius theorem invalid. Fortunately, fo
our purpose, we need only to consider the subsp
V(N/2,N/2), which contains the global ground state. In th
subspace, when electron numberN54n12, it is easy to
check that all the off-diagonal elements ofH in terms of the
basis vectors given in Eq.~5! are still nonpositive. Therefore
the global ground stateC0(N) is also nondegenerate and h
spin S50.

However, whenN54n, a little algebra shows that elec
tron hopping between boundary sites produce several p
tive off-diagonal matrix elements. As a result, the Perro
Fröbenius theorem cannot be applied. To avoid this situat
one may deliberately impose the antiperiodic boundary c
dition on the lattice. The extra minus sign created by t
boundary condition will eliminate the problem and make t
global ground state nondegenerate again. This completes
proof of the theorem, and some remarks are in order.

This theorem tells us that level crossing of the glob
ground state is absent in the region of parameter space
W<0 with nonzero electron hoppings. Therefore, physi
quantities of the system associated only with the grou
state at temperatureT50, such as the ground-state ener
and momentum, should be smooth functions of these par
eters for any finite-size chains. In particular, the symmetr
of the ground state should not change as these param
vary. However, as the system size increases toward the
modynamic limit, this smoothness may be violated. We sh
later discuss on this issue.

Here, we should point out that energy level crossing co
5-2
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be induced byboundary conditions. In fact, in some studies
of Hamiltonian ~1!, say, the EHM in regions aroundU
52V, ground-state energy level crossing were observed
used to determine transition point. In most numerical stud
including exact diagonalization and quantum Monte Ca
simulation, 4n electrons with PBC were used, which violat
the condition of our theorem as we discussed above. Co
quently, a level crossing of the global ground state may h
pen at some special point (U0 ,V0 ,W0 ,X0 ,D0) in the param-
eter space. It is well known that for 4n electrons with PBC,
and 4n12 electrons with APBC, the ground state is dege
erate at noninteracting limit,U5V5W5X5D50. This is
an example ofaccidental degeneracy,36 which induces ob-
served level crossing in some existing numerical simulatio
In fact, as noticed by several authors,11,18,22 when ‘‘im-
proper’’ boundary conditions were intentionally used, t
global ground state and the first excited state of the sys
could be degenerate at the border between different pha
Generally, these~two! degenerate states have different sy
metries and when parameter varies, the global ground s
undergoes a symmetry crossover, and that defines~some kind
of! phase transition. From the numerical point of view, su
tactics may be a clever way to determine phase transi
point. Nevertheless, the ground-state properties should
depend on the choice of boundary conditions in the therm
dynamic limit. Introducing intentionally such accidental d
generacy may mislead us.

With regard to the quantum phase transition when
ground state is known to be nondegenerate, we would lik
point out that,these transitions are actually caused by t
level crossing of excited states of the Hamiltonian. This issue
has been discussed by several authors in the framewor
bosonization and renormalization group techniques, suita
dealing with weak-coupling cases.11,34 In the following, we
shall provide a more general and straightforward argume

We start with the following well-known identity in the
many-body theory:

^C0u@Ô†,@H,Ô##uC0&5(
n

~En2E0!~ u^C0uÔuCn&u2

1u^C0uÔ†uCn&u2!, ~6!

whereÔ is an arbitrary operator. The sum on the right-ha
side of Eq.~6! is over all the eigenvectorsCn of the Hamil-
tonian. We observe that, when^C0uÔuC0&50, this sum is
larger than@E1(Ô)2E0#^C0uÔ†ÔuC0&, whereE1(Ô) de-
notes the energy of the first excited stateC1, which contrib-
utes a nonzero matrix element^C1uÔuC0&. Now, we takeÔ
for the SDW, CDW, or BOW ordering operators. It is easy
check that the left-hand side of Eq.~6! is actually a quantity
of orderO(1) in the thermodynamic limit since the hoppin
and the interaction terms in Hamiltonian~1! are short ranged
This fact implies that, if the system has a certain type
ordering, say the SDW ordering, and the corresponding
relation function diverges in the thermodynamic limit, th
the energy differenceE1(Ô)2E0 must tend to zero. There
fore, in different ordered phases, the low-lying excited sta
24510
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of Hamiltonian~1! should have different symmetries, whic
are required by the selection rules of the corresponding
dering operators.

As a result, when level-crossing of the global ground st
is absent, a quantum phase transition can only be induce
a reconstruction of low-excitation spectrum of the syste
Take the extended Hubbard model, for example. In the SD
insulating phase, it is known that the spin-triplet eigensta
are low-lying excitations. On the other hand, the CDW o
dering is caused by a low-lying excitation spectrum of sp
singlet states. Consequently, these low-lying excitation st
must cross over each other at the border between the S
phase and the CDW phase. Other interesting examples
the ionic Hubbard model16–22and some exactly soluble two
dimensional quantum spin models.35 In the former model, as
the on-site Coulomb repulsionU changes, the system unde
goes transition from band insulator to spontaneously dim
ized and to Mott insulating phases. While at the same tim
one observes that the first excited state varies from spin
let to spin singlet and to spin triplet.16,17,22In the latter mod-
els, we found that, at the phase transition point, the fi
excited state changes from triplet to singlet, while the grou
state remains to be a nondegenerate and completely di
ized state.35 As one expects, the change of symmetries of
low-lying excitation states in these cases are commande
the selection rules of the ordering operators characteriz
the corresponding phase. In other words, the accidental
generacies of these low-lying excitation states, which
caused by the existence of a higher symmetry of
Hamiltonian,36 determine the quantum phase-transiti
points.

Here, we would like to make a remark on the previo
result on the Kosterlitz-Thouless~KT!-type quantum phase
transition observed in some one-dimensional systems
some limiting cases, such asW50, D50 or W50, X50,
Hamiltonian~1! can be mapped into a Sine-Gordon mod
by taking the continuum limit and applying the bosonizati
transformation.11,34 A KT-type quantum phase transition i
observed. By the definition of bosonization, the Sine-Gord
model actually describes the excitation spectrum of the s
tem, so it is the change in the excited states that causes
phase transition. This conclusion is completely consist
with our general theorem proved in this work. On the oth
hand, not all quantum phase transitions appear in the m
Hamiltonian~1!, especially with correlated hopping intera
tions, could be correctly described by the Sine-Gord
model even qualitatively.

Another important and related issue, which we would li
to discuss briefly, is whether the phase transitions in th
models are always continuous, like theXXZ model at the
isotropic Heisenberg point. A careful investigation sho
that, although their ground states are nondegenerate
finite-size chains, a cusp on the curve ofE0 may still develop
in the thermodynamic limit, as shown in Fig. 10 of Ref. 1
It is caused by the so-called avoided level-cross
phenomenon.37 Notice that the curve ofE0 approaches to
that of the first excited state energy without crossing in t
limit, as we showed above. On the other hand, the latter
a cusp at the transition point since an excited states le
5-3
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crossing occurs there. Consequently, a cusp may also
squeezed out on the former at the same point as the c
tends to infinity.

Finally, we would like to emphasize that, except the co
ditions on parametersW andX, connectivity of the lattice as
well as the configurations$fa% by electron hopping is also
of fundamental importance in establishing the nondeg
eracy of the global ground state. Therefore, one expects
this theorem could be violated in either the case ofW.0 or
the atomic limit withTi(s̄),&X, andW tending to zero. Un-
der these circumstances, the global ground stateC0(N) of H
in a specific subspaceV(N) may be degenerate for som
parametersU0 ,V0, andD0, and accompanied by a first-orde
phase transition.25 We should also mention that our theore
does not apply to some one-dimensional fermion mod
especially to those integrable models as discussed in R
38–41. These models usually posses higher symmetries
induce degeneracy and level crossing in its eigenvalue s
trum, and consequently, quantum phase transitions at co
E.
ti-
.
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tt

u,
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sponding integrable points. On the other hand, our theo
does apply to the one-dimensional Hubbard model, whic
integrable.

To summarize, in the present work, we show that, in
wide class of one-dimensional correlated fermionic mode
such as the extended Hubbard model and the ionic Hubb
model, the global ground state of the system is nondege
ate under a properly chosen boundary condition. Con
quently, all the physical quantities change continuously
parameters vary and there exists no energy level cross
We emphasize the important role played by level crossing
the low-lying excited states in inducing the quantum pha
transition in the systems.
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