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Excited-state level crossing and quantum phase transition in one-dimensional correlated
fermion models
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We show that for a wide class of one-dimensional correlated fermion models, such as the extended Hubbard
model, the global ground state is nondegenerate with proper boundary conditions. Consequently, energy level
crossing in the ground state is absent. We also show that the continuous quantum phase transitions are actually
caused by level crossing of the low-lying excited states of the system.
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Physics in one-dimensional correlated fermion systemshall consider, is of the following forrtf:23-26
have been one of the central focuses in condensed matter
theory for decade;® especially after the discovery of high
temperature superconductivity. As a good example, the oneH=
dimensional extended Hubbard mod&HM), with on-site
and nearest-neighbor Coulomb repulsiodsand V, is a L-1 L-1 2
simple yet nontrivial model that exhibits rich ground state ~ +X>, >, Bi(o)(Njg+N; 15)+W>, (2 Bi(a))
phase diagrat® In the U,V>0 regime at half filling, =1 o =1\ o

L-1 L L-1
. > Ti(U)Bi(U)+Ui§1 nmnu‘FV;l NN 41

both strong-coupling analy$is® and weak-coupling L
renormalization-group technigti@have shown that there is +AY (—1)'n,—uN. (1)
a phase transition from the spin-density wa@®W) to the i=1

charge-density wavéCDW) at U=2V. Some later studies S _ _ .
showed that there exists also a bond-order-density wavdD Ed. (1), ¢;, (Ci,) represents the fermion creati¢annihi-
(BOW, or BCDW) phase between the SDW and the CDW lation) operator, which creatdannihilate$ an itinerant elec-
phases:*?It was claimed that, for example, as the couplingtron of spino at lattice sitei and n;=n;;+n;,. B;(o) is
U andV increase, the continuous phase transition changesalled the bond-charge operator, defined by

into the first-order one at a bicritical point around,{/)

=(5.0t,2.3) (see, for example, Ref. 13 Bi(0)=C ,Ci115+Cli1,Cio- 2

With the inclusion of additional terms in the EHM on . ' ' s
different physics background, various one-dimensional corT,(¢) is the occupation-dependent electron hopping ampli-
related electronic models were actively studied recétith?  tude from sitei to i + 1, given by
and many phase diagrams were obtained. Most of these stud-
ies applied analytical approaches, such'as bospni;ation, and Ti(;):tAA(l_ﬁi,;)(l_ﬁwl;)"‘tBBﬁi,j:]
numerical technigues, such as exact diagonalization of the
model Hamiltonian. However, the properties of phase transi- +tAB[ﬁi,>E(1—ﬁi+1,§)+ﬁi+1,3(1— ﬁi,;)]_ (3)
tions in these models have not been clearly spelt out yet.

While it is worth the efforts to determine the phase bound-The three parameterisa,tgg, andtsg stand for electron
aries, it is also important to understand the character of thbopping from a singly occupied site to an empty site, from a
transition between different phases based on some gene@dubly occupied site to a singly occupied site, and from a
but rigorous results. doubly occupied site to an empty sit@nd the opposite pro-

In this work, we study the character of quantum phasecess$, respectively. We shall require that they have the same
transition in a class of one-dimensional correlated fermiorsign, either positive or negative. Rest of the terms represent
models, where the off-diagonal Coulomb interactionselectron-electron interactiod$-?> U and V denote, respec-
electron-phonon interactions, and alternating poteritia¢  tively, the on-site and the nearest-neighbor interactions be-
ionic Hubbard modéf~23 are all included. We show that in tween electrons. In general, they are positive parameters for
most circumstances, the system ground state is nondegendie Coulomb interaction. However, as we shall show in the
ate. Thus, there is no energy level crossing in the groundollowing, their signs do not matter as far as the degeneracy
state as long as fermion hopping is present. Implications off the global ground state of Hamiltonidf) is concerned.
this result will be discussed. The W term can be either the off-diagonal Coulomb interac-

To start, take a finite chain of lattice with sites. For tion with W>0 or be induced by phonon-electron interac-
convenience, we shall assume that the lattice constant ions with W<0.2"72° The X term is another off-diagonal
unity andL is an even integer. We shall first impose the openCoulomb interaction whose magnitude is smaller than the
boundary condition on the chain in order to avoid unneceshopping integrals. Parametarwas originally proposéd to
sary mathematical nuisances. We then discuss the boundasjudy the neutral-ionic transition in mixed-stack donor-
effects. The generalized Hubbard Hamiltonian, which weaccepted organic crystals.
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In fact, Hamiltonian(1) represents several models, which <|taa|,|tagl|tzgl, all of its off-diagonal elements, such as
have been and are currently under intensive studies. For ir\A/(¢B|[EUBi(a)]2|¢a>, are nonpositive quantities. Further-
stance, whensp=tgg=tpg and W=X=A=0, H is the more,H is also irreducible in the following sense: For any
well-known EHM Hamiltonian, and withV<<0, tpa=tgg  pair of indicesmandn, there is a positive integé¢ such that
=t,g, andX=A=0, H represents an effective Hamiltonian the matrix element¥ ¥),,,is nonzero; that is, due to the fact
of the famous Su-Schrieffer-Heeger motiedt the antiadia- that electron can move from one site of the open chain to any
batic limit with W<0.2""2 For W=X=0, H represents the other site by a sequence of hoppings. Therefore, any pair of
so-called ionic Hubbard model, which is now vigorously in- configurationss, and ¢ in subspac&(N—M,M) are con-
vestigated by many physicist8-?? These models have dif- nected byH ¥ with an appropriate integé.
ferent kinds of phases in different regions of the parameter To such a Hermitian matrix, we are able to apply the
space. Consequently, quantum phase transitions will takeell-known Perron-Fibenius theorer® It tells us thatthe

place as these parameters vary. ground-state wave function &t in V(N—M,)M) is a linear
With the above preparations, we now proceed to prove theombination of ¢,} with positive coefficients and, hence, is

following fact. nondegeneratdn particular, since each eigenstate of Hamil-
Theorem Under the conditions W=0 and |X] tonian (1) has a representative in subspaf@N/2,N/2), the

<|taal.|tagl,|tggl, the global ground statd ,(N) of Hamil-  ground state ofH in this subspace is actually the global

tonian(1) on an open chain is nondegenerate for any admisground statel' ,(N) of Hamiltonian(1), and is nondegener-
sible even number of electrons. The same conclusiomte.

also holds true iN=4n+ 2 with the periodic boundary con- To go further, we let parametevg, X,U,V, andA tend to
dition (PBC) or N=4n with the antiperiodic boundary con- zero. In this limit, ¥o(N) keeps nondegenerate, but the
dition (APBC). Hamiltonian is reduced to that of a noninteracting electron

To prove the theorem, we shall apply a simplified versionchain. Its ground state is nondegenerate and has $pid
of Lieb and Mattis’ method in proving the absence of ferro-when the electron numbétis an even integer. Therefore, by
magnetism in one-dimensional itinerant electron latticethe continuity argument¥,(N) must also haves=0 for
models® In the present case, the occupation-dependent homonzero parameters.
ping of electrons and thé/interaction term in Hamiltonian If the periodic rather than the open boundary condition is
(1) needs to be dealt with care. imposed on the lattice, some mathematical ambiguities may

In the following, for definiteness, we assume that all thearise. In particular, due to electron hopping between bound-
parameterdaa, tgg, andt,g appearing in the occupation- ary sites, the off-diagonal matrix elementsfin an arbi-
dependent hopping amplitudg (o) are negative nonzero trary V(N—M,M) can be either positive or negative; this
quantities. This assumption can be relaxed for a bipartiténakes the Perron-Hoenius theorem invalid. Fortunately, for
lattice with nearest-neighbor hopping, since we can alwayour purpose, we need only to consider the subspace
apply a unitary transformation to Hamiltonigid), which ~ V(N/2,N/2), which contains the global ground state. In this
maps ¢, into (—1)¢,, thus T;(¢) is mapped into subspace, when elect.ron numbm:4n+23 it is easy to
check that all the off-diagonal elements’ifin terms of the
basis vectors given in E@5) are still nonpositive. Therefore,

It is easy to check that Hamiltoniafl) commutes with tsf;)?ngéozbgl ground stat#o(N) is also nondegenerate and has

the total electron number operaftr the total spin operators However, wherN=4n, a little algebra shows that elec-

SandS,. Hence, the Hilbert spacé(N) of N electrons can  tron hopping between boundary sites produce several posi-
be decomposed into separate subspaces tive off-diagonal matrix elements. As a result, the Perron-
N Frabenius theorem cannot be applied. To avoid this situation,

one may deliberately impose the antiperiodic boundary con-
V(N)_ME:O V(N =N-M,N;=M). 4) dition on the lattice. The extra minus sign created by this
boundary condition will eliminate the problem and make the

Furthermore, in each subspat$N—M,M), we observe global ground state nondegenerate again. This completes our

that, under the open boundary condititim up-spin and the proof of the theorem, and some remarks are in order.

down-spin fermion operators can be properly arranged in  This theorem tells us that level crossing of the global

such a way that the action of Hamiltoniandbes not violate ground state is absent in the region of parameter space for
their orderings. More precisely, one can choose a naturaly<0 with nonzero electron hoppings. Therefore, physical

—Ti(;), while other terms of the Hamiltonian keep un-
changed.

basis of configurations of(N—M,M) by quantities of the system associated only with the ground-
R R ~ R state at temperaturé=0, such as the ground-state energy
po=(c] ---cl ol el )]0), (5)  and momentum, should be smooth functions of these param-

eters for any finite-size chains. In particular, the symmetries
where |0) is the vacuum state.i{<i,<---<iy_y) and of the ground state should not change as these parameters
(j1<j».<---<jwm) denote the positions of the up-spin and vary. However, as the system size increases toward the ther-
the down-spin electrons on the lattice chain, respectively. Imodynamic limit, this smoothness may be violated. We shall
terms of these vectors, Hamiltonigh) can be rewritten into  later discuss on this issue.
a Hermitian matrix. We notice that, wheWW<0 and|X]| Here, we should point out that energy level crossing could
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be induced byboundary conditionsin fact, in some studies of Hamiltonian(1) should have different symmetries, which

of Hamiltonian (1), say, the EHM in regions arount are required by the selection rules of the corresponding or-
=2V, ground-state energy level crossing were observed andering operators.

used to determine transition point. In most numerical studies, As a result, when level-crossing of the global ground state
including exact diagonalization and quantum Monte Carlois absent, a quantum phase transition can only be induced by
simulation, 4 electrons with PBC were used, which violates a reconstruction of low-excitation spectrum of the system.
the condition of our theorem as we discussed above. Consgake the extended Hubbard model, for example. In the SDW
quently, a level crossing of the global ground state may hapmsulating phase, it is known that the spin-triplet eigenstates
pen at some special pointlg,Vo,Wo,Xo,40) in the param-  gre low-lying excitations. On the other hand, the CDW or-
eter space. It is well known that fomdelectrons with PBC, dering is caused by a |0W_|ying excitation spectrum of Spin_
and 4 +2 electrons with APBC, the ground state is degen-singlet states. Consequently, these low-lying excitation states
erate at noninteracting limit)=V=W=X=A=0. This is  must cross over each other at the border between the SDW
an example ofaccidental degeneracd which induces ob- phase and the CDW phase. Other interesting examples are
served level crossing in some existing numerical simulationsthe jonic Hubbard mod&—?2and some exactly soluble two-

In fact, as noticed by several authdts??* when “im-  dimensional quantum spin modéfsin the former model, as
proper” boundary conditions were intentionally used, thethe on-site Coulomb repulsidd changes, the system under-
global ground state and the first excited state of the systemjoes transition from band insulator to spontaneously dimer-
could be degenerate at the border between different phaseged and to Mott insulating phases. While at the same time,
Generally, thes¢two) degenerate states have different sym-one observes that the first excited state varies from spin trip-
metries and when parameter varies, the global ground stafet to spin singlet and to spin triplé%:'’-??In the latter mod-
undergoes a symmetry crossover, and that defs@se kind  els, we found that, at the phase transition point, the first
of) phase transition. From the numerical point of view, suchexcited state changes from triplet to singlet, while the ground
tactics may be a clever way to determine phase transitiogtate remains to be a nondegenerate and completely dimer-
point. Nevertheless, the ground-state properties should neted state® As one expects, the change of symmetries of the
depend on the choice of boundary conditions in the thermotow-lying excitation states in these cases are commanded by
dynamic limit. Introducing intentionally such accidental de- the selection rules of the ordering operators characterizing
generacy may mislead us. the corresponding phase. In other words, the accidental de-

With regard to the quantum phase transition when thejeneracies of these low-lying excitation states, which are
ground state is known to be nondegenerate, we would like teaused by the existence of a higher symmetry of the
point out that,these transitions are actually caused by the Hamiltonian®® determine the quantum phase-transition
level crossing of excited states of the Hamiltonighis issue  points.
has been discussed by several authors in the framework of Here, we would like to make a remark on the previous
bosonization and renormalization group techniques, suitablyesult on the Kosterlitz-Thoules&T)-type quantum phase
dealing with weak-coupling casés™ In the following, we  transition observed in some one-dimensional systems. In
shall provide a more general and straightforward argumentsome limiting cases, such &§=0, A=0 or W=0,X=0,

We start with the following well-known identity in the Hamiltonian(1) can be mapped into a Sine-Gordon model,
many-body theory: by taking the continuum limit and applying the bosonization
transformatiot?>* A KT-type quantum phase transition is
observed. By the definition of bosonization, the Sine-Gordon
model actually describes the excitation spectrum of the sys-
tem, so it is the change in the excited states that causes the

+[(Wo|OT| W) ?), (6)  phase transition. This conclusion is completely consistent
with our general theorem proved in this work. On the other
whereO is an arbitrary operator. The sum on the right-handhand, not all quantum phase transitions appear in the model
side of Eq.(6) is over all the eigenvectord,, of the Hamil-  Hamiltonian(1), especially with correlated hopping interac-
tonian. We observe that, Whﬁ(f‘i’o|©|‘1’o>:0, this sum is  tons, could be correctly described by the Sine-Gordon

> an ; | litatively.
larger than[E;(0) - Eo](Wo|O'0W,), whereE,(0) de-  O0¢! even qualitatively

h f the fi ted stdt hich i Another important and related issue, which we would like
hotes the energy of the first excited state, which contrib- 5 gigcyss briefly, is whether the phase transitions in these

utes a nonzero matrix elemefi?1|O[Wo). Now, we takeO  models are always continuous, like theXZ model at the

for the SDW, CDW, or BOW ordering operators. It is easy tojsotropic Heisenberg point. A careful investigation shows
check that the left-hand side of E@) is actually a quantity that, although their ground states are nondegenerate on
of orderO(1) in the thermodynamic limit since the hopping finjte-size chains, a cusp on the curveEgfmay still develop

and the interaction terms in Hamiltonigt) are short ranged. in the thermodynamic limit, as shown in Fig. 10 of Ref. 12.
This fact implies that, if the system has a certain type ofit js caused by the so-called avoided level-crossing
ordering, say the SDW ordering, and the corresponding colphenomenori’ Notice that the curve of, approaches to
relation function diverges in the thermodynamic limit, then that of the first excited state energy without crossing in this
the energy differenc&,(O) — E, must tend to zero. There- limit, as we showed above. On the other hand, the latter has
fore, in different ordered phases, the low-lying excited states cusp at the transition point since an excited states level

(Wol[OF,[H,01][¥0)= 2 (En=Eo)({WolO|W)?
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crossing occurs there. Consequently, a cusp may also tsponding integrable points. On the other hand, our theorem
squeezed out on the former at the same point as the chaitoes apply to the one-dimensional Hubbard model, which is
tends to infinity. integrable.

Finally, we would like to emphasize that, except the con- To summarize, in the present work, we show that, in a
ditions on parameterd/ and X, connectivity of the lattice as wide class of one-dimensional correlated fermionic models,
well as the configuration§¢,} by electron hopping is also sych as the extended Hubbard model and the ionic Hubbard
of fundamental importance in establishing the nondegenmgdel, the global ground state of the system is nondegener-
eracy of the global grou_nd stat_e. T_herefore, one expects thake under a properly chosen boundary condition. Conse-
this theorem could be violated in either the case\ot0 or  guently, all the physical quantities change continuously as
the atomic limit withT;(o),)X, andW tending to zero. Un-  parameters vary and there exists no energy level crossing.
der these circumstances, the global ground steeN) of H  we emphasize the important role played by level crossing of
in a specific subspac¥(N) may be degenerate for some the ow-lying excited states in inducing the quantum phase
parameterso, Vo, andA,, and accompanied by a first-order transition in the systems.
phase transitioA”> We should also mention that our theorem
does not apply to some one-dimensional fermion models, We are grateful to A. W. Sandvik and D. K. Campbell for
especially to those integrable models as discussed in Refhelpful comments. G. S. Tian wishes to thank the department
38-41. These models usually posses higher symmetries that physics at the Chinese University of Hong Kong for its
induce degeneracy and level crossing in its eigenvalue spebospitality and the support of this work through the “Incen-
trum, and consequently, quantum phase transitions at corréive Fund Program.”
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