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Peierls transition in the presence of finite-frequency phonons in the one-dimensional
extended Peierls-Hubbard model at half-filling
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We report quantum Monte Carlstochastic series expansjaesults for the transition from a Mott insulator
to a dimerized Peierls insulating state in a half-filled, one-dimensional extended Hubbard model coupled to
optical bond phonons. Using electron-electi@e interaction parameters corresponding approximately to
polyacetylene, we show that the Mott-Peierls transition occurs at a finite value of the electron-g&qipn
coupling. We discuss several different criteria for detecting the transition and show that they give consistent
results. We calculate the critical e-ph coupling as a function of the bare phonon frequency and also investigate
the sensitivity of the critical coupling to the strength of the e-e interaction. In the limit of strong e-e couplings,
we map the model to a spin-Peierls chain and compare the phase boundary with previous results for the
spin-Peierls transition. We point out effects of a nonlinear spin-phonon coupling neglected in the mapping to
the spin-Peierls model.
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[. INTRODUCTION n-component Gross-Neveu model, which is known to have a
long-ranged dimerization for arbitrary coupling foe2 but
Almost half a century ago, Peierls demonstrated that aot for n=1. For nonzero ionic mass, a renormalization
one-dimensional(1D) metal coupled to an elastic lattice group analysis showed that the low-energy behavior of the
could exhibit an instability towards a lattice distortion of n=2 model is still governed by the zero mass limit of the
wave vectorq=2ke .! This leads to a gap in the electronic theory. This implies that the spih-SSH model(but not the
spectrum at the Fermi energy and, for the case of a half-filledpinless modelhas a dimerized ground state for arbitrarily
band, the ground state is dimerized. Experimentally, theveak e-ph coupling. Early numerical calculations are also
Peierls instability can be observed in a wide range ofconsistent with this scenari8.It should be noted, however,
quasi-1D materials, e.g., conjugated polynfersrganic that a dimerized state was also predicted for any nonzero
charge transfer salfsMX salts? and CuGe@.° To explain  e-ph coupling in the spi- Holstein modet® for which
quantitatively the properties of these materials, several difmore recent large-scale calculations have instead indicated a
ferent models extending beyond the original non-interactinghonzero critical coupling?
Peierls model with a classical lattice have been prop8sed. Independent-electron models, such as those of SSH and
These include the Su-Schrieffer-Heeg&SH model/~1! Holstein, are important from a theoretical standpoint but are
the Holstein modet*~** various Peierls-Hubbatd™’ and  not sufficient to account quantitatively for the experimentally
extended Peierls-Hubbdfd®~?! models, as well as spin- observed properties of real materials. For that e-e interac-
Peierls model$?~32 tions have to be included in addition to the e-ph couplings.
The Peierls instability is well understood in the static lat- The interplay among the different interactions gives rise to a
tice limit (adiabatic phononsin the absence of electron- rich variety of broken-symmetry ground states as well as
electron(e-© interactions. The ground state is a Peierls statdow-energy electron-lattice excitations like solitons, po-
for arbitrarily small electron-phonofe-ph coupling. How-  larons, bipolarons, etcAt half-filling, on-site (Hubbard in-
ever, the quantum lattice and e-e interaction effects are stileractions open a charge g&pand in the absence of e-ph
not completely understood. For many quasi-1D materials theouplings the system is then a Mott insulator with algebra-
zero-point fluctuations of the phonon field are comparable técally decaying (17 as a function of distance) spin-spin
the amplitude of the Peierls distortidrand this has spurred correlations. Hence, the Peierls transition in this case is ac-
a large number of studies of quantum fluctuations in SSHompanied only by the opening of a spin gap, the charge gap
(Refs. 8,10, and Jland Holstein®'* models. Recent nu- already generated by the e-e interactions. Longer-range e-e
merical studies have shown that quantum fluctuations denteractions can destroy the Mott state, however, and hence
stroy the Peierls instability for small e-ph coupling and/ormust also affect the Mott-Peierls transition. Without
large phonon frequency in both the spinf@sand spin} phonons, even in the simplest half-filled extended Hubbard
Holstein model¥* at half-filling. For the SSH model, Fradkin model with only on-site (U) and nearest-neighbotV)
and Hirsch® carried out an extensive study of sginn interactions**®some features of the phase diagram are still
=2) and spinlessr(=1) fermions. In the antiadiabatic limit controversiaf®~*°Adding e-ph interactions further increases
(vanishing ionic mags they mapped the system to an the complexity of the problem, and the determination of the
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phase diagram remains a very challenging problem. discuss several signals that we have used to detect the Mott-

Zimanyi et al'® have investigated models with both e-e Peierls transition. In Sec. IV we present the phase diagram in
and e-ph interactions using “g-ology” and renormalization the (wq,«) plane for a fixed value of the on-site interaction
group techniques. They showed that the ground state haslathat has previously been used in models of polyacetylene.
spin gap if the combined backscattering amplitugdé  We also disguss the effects of varying the e—e'intergction
=01(wo) +g1(wo) is negative, wher@(wo) is the contri- ?r:gedne%t?o?tlggeed{doér\llgev,m:re dthceonr'?;:ril iﬁeal\iglgg)eileerrlf
bution from e-e interactions argh(w,) <0 comes from the  houndary with known spin-Peierls results. In Sec. V we sum-
e-ph interactions. Thus, in the extended Hubbard model, ifnarize our results and discuss some future prospects.

the bare couplingg;=U—2V is positive, thengI?O for

small valu_e_s of the e—ph coupling and there is no spin gap. Il. MODEL AND OBSERVABLES

The transition to a Peierls state occurs only when the e-ph

coupling exceeds a critical value agll becomes negative. It~ The Hamiltonian is given by

should be noted, however, that the conventional scenario for

the behavior close to the lined=2V has recently been — T T i
challenged®—3#*°and a Peierls-like bond-ordered s¥ate most t% (1+alai+al)(CirasCiotCioticg)

likely appears close t&=U/2 even in the absence of e-ph 1 1

coupllTngs For the pure SSH model=V=0), g, is zero +M2 ni+U2 N — _)(nm_ _)

andg; is negative for any nonzero e-ph coupling. This im- | | 2 2

plies a Peierls ground state for arbitrarily small e-ph cou-

ﬂ:rns%hllrg’ agreement with the earlier results of Fradkin and +V2i (ni_l)(ni+l_1)+w02i ala;, (1)

In the limit of strong on-site e-e interactions, which in- N .
hibit doubly occupied sites, a half-filled system can beWherea;i(a;) createsannihilates a phonon on the bond be-
mapped to a spin-phonon model, which also can undergo &veen sites andi+1, ¢!, (c; ) is the spine electron cre-
dimerization (spin-Peierl$ transition???* Extensive studies ation(@nnihilation) operator, anah;=n; ;+n; ;. For the half-
of spin-Peierls models in recent ye&rs?have largely been filled band that we study here, the chemical potential
spurred by the discovery of a spin-Peierls transition at un=_0. We set the single-electron hoppitp unity. For the e-e
usually high temperaturg 4 K) in CuGeQ_S Several differ- interactions, we first take the valués=2.5 andvV=U/4,
ent calculations, for different types of spin-phonon cou-which have previously been used as values corresponding
plings, have shown that the transition occurs only above &pproximately to what is expected in polyacetyléfhave
finite spin-phonon coupling in the presence of finite- Will also consider other values &, keeping the ratio fixed
frequency phonon®:2°=*This is in contrast to the adiabatic at U/V=4. We study the system as a function of the bare
limit, where dimerization occurs for infinitesimal couplify. phonon frequency, and the e-ph interactioa.

Numerical studies of models with both e-ph and e-e inter- The dispersionless optical phonons we use are different
actions, in which the charge degrees of freedom are retaindom the bare SSH phonons, which have vanishing energy
(Peierls-Hubbard and extended Peierls Hubbard mpdelsfor momentumg— 0. However, these acoustic phonons de-
have addressed the effect of interactions on the dimerizatiopouple from the electronic low-energy states involved in the
amplitudé®*and the excited statéSDetailed studies of the Peierls instability and therefore only the optical phonons
phase diagrams have in the past been limited by the smatlose tog= need to be kept’'°Hence, in this regard we
lattice sizes accessible when both e-e and e-ph interactioreéxpect the optical phonons in Ed) to be equivalent to fully
are included’ The situation is rapidly improving, however, quantum mechanical SSH phonons. In the noninteracting
as modern quantum Monte Catié”**and density matrix limit (U,V—0), the ground state should therefore be a
renormalization grouiy*° methods can now access modelsdimerized Peierls insulator for any nonzerc'
with both e-e and e-ph interactions on chains with several To obtain numerically exact ground state results we have
hundred sites. used the stochastic series expandiB8B quantum Monte

Here we consider a 1D extended Hubbard model withCarlo method for periodic chains with up tiN=256 sites.
on-site (U) and nearest-neighbaiV) e-e interactions and The SSE method is a finite-temperature technique based on
couple it to dispersionless optical bond phonons via modulaimportance sampling of the diagonal elements of the Taylor
tion of the electron kinetic energy. We study the transitionexpansion ofe #H, where g is the inverse temperaturg,
from a Mott insulating state, with dominant spin-spin corre-=t/T. Ground state expectation values can be obtained using
lations, to a Peierl¢dimerized spin-gapped state. Since the sufficiently larges, and there are then no approximations
parameter space of this model is rather large, with a barbeyond the statistical errors. Typicallg=2N or 4N was
phonon frequencyd) and an e-ph coupling«) in addition  sufficient for the quantities presented here to have converged
to the e-e couplings, we have limited our study to a physito their ground state values. Using the recently developed
cally reasonable ratit)/V=4 of the e-e parameters. “operator loop” update?! the electronic degrees of freedom

In Sec. Il we define the model and the various physicalare treated in the same manner as in the absence of
quantities that we have calculated using a quantum Montghonons.’ The phonons are also treated in the occupation
Carlo method(stochastic series expansfdn In Sec. Il we  number basis directly with the SSE representéfidine.,
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slightly different from the interaction picture used for the 1.00 [ ' ' ' ' :
phonons in Refs. 29 and A3t the (low) energy scales that
we are interested in here, the number of phonons per bond is 0.75 T i
small (typically <10) and there are no problems in using a
truncated basi¢the truncation can be arbitrarily large in the .
SSB. = 0.50E i
The Mott and Peierls phases can be characterized using
the static spiS and bond(B) structure factors and suscep- 0.25 - 1
tibilities, as will be further discussed in Sec. Ill. The struc-
ture factors are defined by 0.00 Leeesssessssssesssssssdiu
1 - T T T T
Ss(a) =15 & €SS, 2 128 [ 1
k1
1.00 .
1 :
Se(a)=15 > (KK, 3 L0T5 | e-eNel6 ]
N i o o8 N=32
t - I 0.50 | e N=64 .
where K;=%,_; (Cj;+1,Cj,»TH.c.) is the kinetic energy = N=128
operator on théth bond. The corresponding static suscepti- 025 | G-ON=256 )
bilities are given by
0.00 : : : :
1 aten [ , , 0.0 0.1 0.2 0.3 0.4 0.5
xs@=1 > ¢ [Cansnsio), @ @

FIG. 1. Charge(upper panegland spin(lower panel stiffness

1 iq(k—1) B constants vs e-ph coupling for several different system sizesg, at
xe() = X €7V | dnK(K(0)). (B =1andu=28.

Direct evidence of the presence or absence of the spin al function of for several system sizel. As N grows, p
charge gaps can also be obtained from spin and charge stiff- ) " e
nesseg. andp,, which are defined as the second derivative!nde€d rapidly converges to zero for all in agreement to
of the internal energy per site with respect to phase factor@Ur €xpectations. The Mott state has no spin gapte spin
multiplying the kinetic energy;pc.s= &2E(¢C’s)/ﬁ¢g . 44 stiffnesg whereas the Peierls state has a finite spin(g@apo

The SSE estimators for all these observables can be found f#Pin Stiffness If the Peierls transition occurs at a critical

Ref. 37. coupling «.>0, it should be of the Kosterliz-Thouless
type 3® where the spin stiffness changes discontinuously from
Ill. DETECTING THE MOTT-PEIERLS TRANSITION a finite value fore< a. to zero fora> « . The spin stiffness

graphed in the lower panel of Fig. 1 shows a jump develop-

For our choice oV=U/4, the ground state in the limit of ing with increasingN, indicating a critical couplinga,
zero e-ph interactiond=0) is a Mott insulator with no spin  ~0.3.
gap (but finite charge gapand is characterized by arl/ The spin stiffness data do not easily yield a more accurate
decay of the staggered spin-spin correlatiohi§.The transi-  estimate of the critical coupling. As discussed in the context
tion to a dimerized Peierls state is marked by the developef the spin-Peierls modéf, logarithmic corrections lead to
ment of a staggered kinetic energy modulation, and willlarge finite-size effects for~ «.. A more accurate estimate
hence be signalled by divergent peaksjats in the bond- can be obtained from the scaling behavior of the finite-size
order structure factofEq. (3)] and susceptibilitfEq. (5)].  staggered bond and spin susceptibilifigs is known from
The dimerization is accompanied by the opening of a spirbosonization studies that in the Mott phase the equal-time
gap, the charge gap remaining finite. Hencedker peak in  staggered spin and bond correlations both decay with dis-
the spin structure factor and susceptibili§gs.(2) and(4)],  tancer as 1f, up to multiplicative logarithmic correctioris.
which diverge in the Mott phase, become nondivergent in the\t the Mott-Peierls phase boundary, the log corrections can
Peierls state. be expected to disappe&rand this can be used as a criterion

In the adiabatic limit, the system is dimerized for ammy for the phase transition. In the dimerized Peierls phase the
>0. We here present several results showing that the Peiert®nd correlation function approaches a constant at long dis-
transition occurs at a critical coupling.>0 whenwy=1  tances, whereas the spin correlations decay exponentially. It
and U=2.5. The phase diagrams discussed in Sec. IV arés convenient to study the associated static susceptibilities
based on the same signals for the transition at other e-e codefined in Eqs(4) and(5), which in a critical state scale with
plings andw. one power oN higher than the structure factdisgs.(2) and

Since the charge gap is finite in both the Mott and Peierlg3)]. In the Peierls phasgg()/N should converge to 0 and
states, the charge stiffnegs should vanish in the thermody- xg(7)/N should diverge, whereas in the Mott phase
namic limit for all «. The upper panel of Fig. 1 shows as  xs(7)/N should diverge logarithmically andyg(7)/N
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20 ] 1.15
o 0=0.10
o 0=0.20
1.10
15 - 1
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E A
B =
F1of 1 2 100
a
[’g)m
05 [ | 0.95
' ' ' 0.90
0'85 1 1 1 1 1
04| . 0.0 0.1 0.2 0.3 0.4 0.5
//_./m ('1/1Ic
Z 0.3 fromzmzme - 5. FIG. 3. Sg(q)/q vs q for several values o& arounda, for N
£ / =128. The curves for=0.30 dip below 1 for smalt, indicating
2 e the presence of a spin gap.
o2 | "’/.’”‘1\4 |
.—‘\‘\;\; keepingU=2.5 andV=0.625. As shown in Fig. 4¢. de-
04 . , , creases linearly to zero for smadl,. This phase diagram is
' 3.0 4.0 5.0 hence consistent with the knowwm =0 for adiabatic
In(N) phonons.

For polyacetylene Fradkin and Hirs€hused rescaled
phonon parameters, which in our units correspondwtp
=0.067,a=0.052. This point is indicated in Fig. 4, and, in
accordance with the strong dimerization of polyacetylene, is
well within the Peierls phase.

As argued above, the e-ph coupling in the present model
is similar to that in the SSH model for the purpose of study-
ing the dimerization transition. This implies that in the limit
f (U,V)—0, we should be able to reproduce previous SSH
results. In particular, according to Fradkin and HirdCfay,
should be zero even for finite frequency phonons. To verify
this, we have studied as a function of (J,V), keeping a
fixed ratio ofU/V=4. With this ratio the ground state for all
U is a Mott insulator with zero spin gap in the limit of
vanishing e-ph interactiotl. We have studied only a single

FIG. 2. Finite-size scaling of the staggered bond-ordgper
pane) and spin(lower panel susceptibility forwg /t=1 and several
values ofw. The dashed lines show thé-independent behavior
expected at the Mott-Peierls transition.

should approach zero logarithmicallhe log corrections for
spin and bond correlations are differ&int Figure 2 shows
both quantities versus INj for several values otx. The
expected behavior is indeed observed, and within statistic
errors bothys(7r)/N and xyg(7)/N are independent afl for
the largest chains whes~0.26.

Additional confirmation of the critical coupling is ob-
tained by studying the behavior &(q)/q asq—0. It has
been showtfr*®that if the ground state is gapless in the spin
sector, thenSg(q)/q—1/7 as q—0, whereas if there is a
spin gap,Ss(gq)/g—0. Even a very small spin gap can be
detected this way, since it is in practice sufficient to see that
7S¢(q)/q decays below 1 for smat] to conclude that a spin
gap must be present. In Fig. 3 we present results for different
values ofa. The curves fora<0.26 are above 1 for alj,
and the decay towards 1 is very slow. The asymptotic ap- 020 P
proach to 1 can be expected to be logarithfii@n the other
hand, thea=0.30 curves drop below 1. From these results 3 015 ¢
we estimatea.=0.28+0.01, which is compatible with the
g=m quantities in Fig. 2. In general, we have found that 0.10 -

025

Ss(q)/qg, which indirectly signals the opening of a spin gap, M
is the easiest and most reliable way to detect a bond-ordered 0.05 | ©
state(also see Ref. 37
0.00 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
IV. PHASE DIAGRAMS ®,

(]

The critical coupling depends on the parameters of the F|G. 4. Phase diagram fdd=2.5 andV=0.625. The squares
Hamiltonian, in particular, the bare phonon frequengy.  with error bars show the critical e-ph coupling separating the Mott
Using the above criteria for distinguishing the Mott and (M) and Peierls(P) insulating phases. The circle corresponds to
Peierls phases, we have calculatedas a function ofw, phonon parameters previously used for polyacetyl@ted. 10.
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0.5 Hubbard model with the spin-Peierls form for up to 10.
The transition curve crosses the Mott-Peierls transition curve
atU~8, and is not in good agreement away from this point.
The spin-Peierls criticaly increases linearly witid as U
—o, whereas the Mott-Peierls boundary has a slower in-
crease withU. The poor agreement for small is not sur-
prising, as the mapping to the spin chain, with couplihg
given by Eq.(8), can only be expected to be good for large
U, and the form used for the spin-Peierls transition curve is
not expected to be quantitatively accurate for very sméall
(corresponding here to small).%? Considering, however,
that the analytical form is accurate for the spin-Peierls model
0.0 1 ' ' ' ' ' with wo/J=0.252%%2 and that the nonlinear spin-phonon
0.0 2.0 4.0 6.0 8.0 10.0 - e -
U coupling should be negligible for small, the disagreement
for the smalll region in Fig. 5 must be due to the poor
FIG. 5. Phase diagram fas,=1 andV=U/4. The squares with correspondence between the full electron model and the spin
error bars show the critical e-ph coupling. The solid curve showschain with the lowest-ordet in Eq. (8). The poor agreement
the form CVCNUO'S- The dashed curve shows the transition for thefor U>8 indicates that the nonlinear spin-phonon term
corresponding spin-Peierls mod&ef. 32. (ax;)? doesbecomes important ag— .

) ) ) One effect of the nonlinear coupling term is to renormal-
phonon frequencywo=1. The resulting phase diagram is j;a j: Writing x2= (x2)+ A (x?), the renormalized is given
presented in Fig. 5. The critical e-ph coupling decreaseg o !
monotonically with decreasingJ,V), but the smallness of
the spin gap asY,V)—0 makes it hard to obtain reliable 4t2(1+ a?(x?))
results belowd =0.4. We can therefore not make a definite Jeﬁ=T,
statement about this limit. Nevertheless, our results are con-

sistent with a power-law behavier.~U” with y~0.3, but  j e  J>J. Evaluation the spin-Peierls transition curve us-
a logarithmic form forU—0 can also not be excluded. ing Jo« instead ofJ clearly would reducer, for givenU and

For largeU,V, and with the ratiov=U/4, the extended pring the result closer to the actual Mott-Peierls curve in Fig.
Hubbard model can be mapped onto the spiReisenberg 5. However, we have not evaluatéd?) for a quantitative
chain with exchange coupling=4t/(U—V) (this mapping  test of this effect. In any case, (k) is large there is also no
becomes invalid forV~U/2, where phase transitions t0 yea5s50n to expect that the remaining nonlinear coupling

bond-ordered and charge-ordered phases dtcir Carry- «?A(x?) can be neglected ifx is not small. This issue
ing out this transformation for the full electron-phonon clearlyl deserves further study.

model[Eq. (1)] the phonon-modulated exchange is

0.4

0.3

0.2

0.1

9

ax;)? © V. SUMMARY

u-v. ' In summary, we have studied several aspects of the phase
diagram of an extended 1D Hubbard model coupled to opti-
cal bond phonons. We have demonstrated that the stochastic
series expansion techniqié' can be used for large
electron-phonon chainéhere up to 256 sitgsto compute
several different quantities that signal the opening of the spin
gap at the Mott-Peierls transition. The spin gap boundary is

J(X)=

Wherexi=a;'+ a;. Under the assumption that the nonlinear
term ~(axi2) can be neglected, which is natpriori clear
when « is not small, we obtain exactly the spin-Peierls
model considered in, e.g., Refs. 29 and 32:

HSP=Z (J+gx)S-Sq1+ woz aiTai , (7) also in good agreement with direct probes of the bond order
: : (i.e., kinetic-energy correlation functions and susceptibilities
with atq=m).
Our phase diagrams are in agreement with what is gener-
4t2 8at? ally expected, but to our knowledge they have not been com-
J= u—v' 9T u-v (8)  puted quantitatively before. For large e-e couplings, we have

pointed out the relevance of an effective nonlinear spin-
For model(7), an analytic expression for the critical spin- phonon coupling in the mapping of the Hubbard model to a
phonon couplingy has been obtained for the whole range ofspin chain. Because of this, standard spin-phonon models,
bare phonon frequencies,/J.*? The form, Eq.(12) of Ref.  where the nonlinear term is not included, cannot be expected
32, is expected to be exact in the anti-adiabatic limig/J  to reproduce fully the phase diagrams of electron-phonon
— o0, which here corresponds td—oe. It is in good agree- models.
ment with numerica(SSB resultg® for the spin-Peierls tran- The methods that we have used here should also be ap-
sition even for frequencies as low ag/J=0.25. In Fig. 5 plicable to systems away from half-filling. We plan such cal-
we compare our SSE results for the extended Peierlssulations aimed at studying the stability of the soliton lattice,
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which is formed in doped systems in the adiabatic linft:*8
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