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Peierls transition in the presence of finite-frequency phonons in the one-dimensional
extended Peierls-Hubbard model at half-filling
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We report quantum Monte Carlo~stochastic series expansion! results for the transition from a Mott insulator
to a dimerized Peierls insulating state in a half-filled, one-dimensional extended Hubbard model coupled to
optical bond phonons. Using electron-electron~e-e! interaction parameters corresponding approximately to
polyacetylene, we show that the Mott-Peierls transition occurs at a finite value of the electron-phonon~e-ph!
coupling. We discuss several different criteria for detecting the transition and show that they give consistent
results. We calculate the critical e-ph coupling as a function of the bare phonon frequency and also investigate
the sensitivity of the critical coupling to the strength of the e-e interaction. In the limit of strong e-e couplings,
we map the model to a spin-Peierls chain and compare the phase boundary with previous results for the
spin-Peierls transition. We point out effects of a nonlinear spin-phonon coupling neglected in the mapping to
the spin-Peierls model.
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I. INTRODUCTION

Almost half a century ago, Peierls demonstrated tha
one-dimensional~1D! metal coupled to an elastic lattic
could exhibit an instability towards a lattice distortion
wave vectorq52kF .1 This leads to a gap in the electron
spectrum at the Fermi energy and, for the case of a half-fi
band, the ground state is dimerized. Experimentally,
Peierls instability can be observed in a wide range
quasi-1D materials, e.g., conjugated polymers,2 organic
charge transfer salts,3 MX salts,4 and CuGeO3.5 To explain
quantitatively the properties of these materials, several
ferent models extending beyond the original non-interact
Peierls model with a classical lattice have been propos6

These include the Su-Schrieffer-Heeger~SSH! model,7–11

the Holstein model,12–14 various Peierls-Hubbard15–17 and
extended Peierls-Hubbard16,18–21 models, as well as spin
Peierls models.22–32

The Peierls instability is well understood in the static l
tice limit ~adiabatic phonons! in the absence of electron
electron~e-e! interactions. The ground state is a Peierls st
for arbitrarily small electron-phonon~e-ph! coupling. How-
ever, the quantum lattice and e-e interaction effects are
not completely understood. For many quasi-1D materials
zero-point fluctuations of the phonon field are comparable
the amplitude of the Peierls distortion,9 and this has spurred
a large number of studies of quantum fluctuations in S
~Refs. 8,10, and 11! and Holstein13,14 models. Recent nu
merical studies have shown that quantum fluctuations
stroy the Peierls instability for small e-ph coupling and
large phonon frequency in both the spinless25 and spin-12
Holstein models14 at half-filling. For the SSH model, Fradki
and Hirsch10 carried out an extensive study of spin-1

2 (n
52) and spinless (n51) fermions. In the antiadiabatic limi
~vanishing ionic mass!, they mapped the system to a
0163-1829/2003/67~24!/245103~6!/$20.00 67 2451
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n-component Gross-Neveu model, which is known to hav
long-ranged dimerization for arbitrary coupling forn>2 but
not for n51. For nonzero ionic mass, a renormalizati
group analysis showed that the low-energy behavior of
n52 model is still governed by the zero mass limit of th
theory. This implies that the spin-1

2 SSH model~but not the
spinless model! has a dimerized ground state for arbitrari
weak e-ph coupling. Early numerical calculations are a
consistent with this scenario.10 It should be noted, however
that a dimerized state was also predicted for any nonz
e-ph coupling in the spin-1

2 Holstein model,13 for which
more recent large-scale calculations have instead indicat
nonzero critical coupling.14

Independent-electron models, such as those of SSH
Holstein, are important from a theoretical standpoint but
not sufficient to account quantitatively for the experimenta
observed properties of real materials. For that e-e inte
tions have to be included in addition to the e-ph coupling2

The interplay among the different interactions gives rise t
rich variety of broken-symmetry ground states as well
low-energy electron-lattice excitations like solitons, p
larons, bipolarons, etc.2 At half-filling, on-site ~Hubbard! in-
teractions open a charge gap,33 and in the absence of e-p
couplings the system is then a Mott insulator with algeb
ically decaying (1/r as a function of distancer ) spin-spin
correlations. Hence, the Peierls transition in this case is
companied only by the opening of a spin gap, the charge
already generated by the e-e interactions. Longer-range
interactions can destroy the Mott state, however, and he
must also affect the Mott-Peierls transition. Witho
phonons, even in the simplest half-filled extended Hubb
model with only on-site ~U! and nearest-neighbor~V!
interactions,34,35 some features of the phase diagram are s
controversial.36–40Adding e-ph interactions further increase
the complexity of the problem, and the determination of t
©2003 The American Physical Society03-1
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phase diagram remains a very challenging problem.
Zimanyi et al.19 have investigated models with both e

and e-ph interactions using ‘‘g-ology’’ and renormalizatio
group techniques. They showed that the ground state h
spin gap if the combined backscattering amplitudeg1

T

5g1(v0)1g̃1(v0) is negative, whereg1(v0) is the contri-

bution from e-e interactions andg̃1(v0),0 comes from the
e-ph interactions. Thus, in the extended Hubbard mode
the bare couplingg15U22V is positive, theng1

T>0 for
small values of the e-ph coupling and there is no spin g
The transition to a Peierls state occurs only when the e
coupling exceeds a critical value andg1

T becomes negative. I
should be noted, however, that the conventional scenario
the behavior close to the lineU52V has recently been
challenged36–38,40and a Peierls-like bond-ordered state m
likely appears close toV5U/2 even in the absence of e-p
couplings. For the pure SSH model (U5V50), g1 is zero
andg1

T is negative for any nonzero e-ph coupling. This im
plies a Peierls ground state for arbitrarily small e-ph co
pling, in agreement with the earlier results of Fradkin a
Hirsch.10

In the limit of strong on-site e-e interactions, which i
hibit doubly occupied sites, a half-filled system can
mapped to a spin-phonon model, which also can underg
dimerization ~spin-Peierls! transition.22,24 Extensive studies
of spin-Peierls models in recent years26–32have largely been
spurred by the discovery of a spin-Peierls transition at
usually high temperature~14 K! in CuGeO3.5 Several differ-
ent calculations, for different types of spin-phonon co
plings, have shown that the transition occurs only abov
finite spin-phonon coupling in the presence of finit
frequency phonons.26,29–32This is in contrast to the adiabati
limit, where dimerization occurs for infinitesimal coupling.24

Numerical studies of models with both e-ph and e-e int
actions, in which the charge degrees of freedom are reta
~Peierls-Hubbard and extended Peierls Hubbard mod!,
have addressed the effect of interactions on the dimeriza
amplitude16,18and the excited states.21 Detailed studies of the
phase diagrams have in the past been limited by the s
lattice sizes accessible when both e-e and e-ph interac
are included.17 The situation is rapidly improving, howeve
as modern quantum Monte Carlo29,37,41 and density matrix
renormalization group21,30 methods can now access mode
with both e-e and e-ph interactions on chains with seve
hundred sites.

Here we consider a 1D extended Hubbard model w
on-site ~U! and nearest-neighbor~V! e-e interactions and
couple it to dispersionless optical bond phonons via mod
tion of the electron kinetic energy. We study the transiti
from a Mott insulating state, with dominant spin-spin corr
lations, to a Peierls~dimerized! spin-gapped state. Since th
parameter space of this model is rather large, with a b
phonon frequency (v0) and an e-ph coupling (a) in addition
to the e-e couplings, we have limited our study to a phy
cally reasonable ratioU/V54 of the e-e parameters.

In Sec. II we define the model and the various physi
quantities that we have calculated using a quantum Mo
Carlo method~stochastic series expansion41!. In Sec. III we
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discuss several signals that we have used to detect the M
Peierls transition. In Sec. IV we present the phase diagram
the (v0 ,a) plane for a fixed value of the on-site interactio
U that has previously been used in models of polyacetyle
We also discuss the effects of varying the e-e interact
strength at fixedv0. We map the model to a spin-Peier
model for largeU and V, and compare the Mott-Peierl
boundary with known spin-Peierls results. In Sec. V we su
marize our results and discuss some future prospects.

II. MODEL AND OBSERVABLES

The Hamiltonian is given by

H52t(
i ,s

~11a@ai
†1ai # !~ci 11,s

† ci ,s1ci ,s
† ci 11,s!

1m(
i

ni1U(
i

S ni ,↑2
1

2D S ni ,↓2
1

2D
1V(

i
~ni21!~ni 1121!1v0(

i
ai

†ai , ~1!

whereai
†(ai) creates~annihilates! a phonon on the bond be

tween sitesi and i 11, ci ,s
† (ci ,s) is the spin-s electron cre-

ation~annihilation! operator, andni5ni ,↓1ni ,↑ . For the half-
filled band that we study here, the chemical potentialm
50. We set the single-electron hoppingt to unity. For the e-e
interactions, we first take the valuesU52.5 andV5U/4,
which have previously been used as values correspon
approximately to what is expected in polyacetylene.20 We
will also consider other values ofU, keeping the ratio fixed
at U/V54. We study the system as a function of the ba
phonon frequencyv0 and the e-ph interactiona.

The dispersionless optical phonons we use are diffe
from the bare SSH phonons, which have vanishing ene
for momentumq→0. However, these acoustic phonons d
couple from the electronic low-energy states involved in
Peierls instability and therefore only the optical phono
close toq5p need to be kept.10,19 Hence, in this regard we
expect the optical phonons in Eq.~1! to be equivalent to fully
quantum mechanical SSH phonons. In the noninterac
limit ( U,V→0), the ground state should therefore be
dimerized Peierls insulator for any nonzeroa.10

To obtain numerically exact ground state results we h
used the stochastic series expansion~SSE! quantum Monte
Carlo method41 for periodic chains with up toN5256 sites.
The SSE method is a finite-temperature technique base
importance sampling of the diagonal elements of the Tay
expansion ofe2bH, whereb is the inverse temperature;b
5t/T. Ground state expectation values can be obtained u
sufficiently largeb, and there are then no approximatio
beyond the statistical errors. Typically,b52N or 4N was
sufficient for the quantities presented here to have conver
to their ground state values. Using the recently develo
‘‘operator loop’’ update,41 the electronic degrees of freedo
are treated in the same manner as in the absence
phonons.37 The phonons are also treated in the occupat
number basis directly with the SSE representation42 ~i.e.,
3-2
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PEIERLS TRANSITION IN THE PRESENCE OF . . . PHYSICAL REVIEW B 67, 245103 ~2003!
slightly different from the interaction picture used for th
phonons in Refs. 29 and 43!. At the ~low! energy scales tha
we are interested in here, the number of phonons per bon
small ~typically ,10) and there are no problems in using
truncated basis~the truncation can be arbitrarily large in th
SSE!.

The Mott and Peierls phases can be characterized u
the static spin~S! and bond~B! structure factors and susce
tibilities, as will be further discussed in Sec. III. The stru
ture factors are defined by

SS~q!5
1

N (
k,l

eiq(k2 l )^Sk
zSl

z&, ~2!

SB~q!5
1

N (
k,l

eiq(k2 l )^KkKl&, ~3!

where K j5(s5↑,↓(cj 11,s
† cj ,s1H.c.) is the kinetic energy

operator on thei th bond. The corresponding static suscep
bilities are given by

xS~q!5
1

N (
k,l

eiq(k2 l )E
0

b

dt^Sk
z~t!Sl

z~0!&, ~4!

xB~q!5
1

N (
k,l

eiq(k2 l )E
0

b

dt^Kk~t!Kl~0!&. ~5!

Direct evidence of the presence or absence of the spin
charge gaps can also be obtained from spin and charge
nessesrc andrs , which are defined as the second derivat
of the internal energy per site with respect to phase fac
multiplying the kinetic energy;rc,s5]2E(fc,s)/]fc,s

2 .44

The SSE estimators for all these observables can be foun
Ref. 37.

III. DETECTING THE MOTT-PEIERLS TRANSITION

For our choice ofV5U/4, the ground state in the limit o
zero e-ph interaction (a50) is a Mott insulator with no spin
gap ~but finite charge gap! and is characterized by a 1/r
decay of the staggered spin-spin correlations.35,37The transi-
tion to a dimerized Peierls state is marked by the deve
ment of a staggered kinetic energy modulation, and w
hence be signalled by divergent peaks atq5p in the bond-
order structure factor@Eq. ~3!# and susceptibility@Eq. ~5!#.
The dimerization is accompanied by the opening of a s
gap, the charge gap remaining finite. Hence theq5p peak in
the spin structure factor and susceptibility@Eqs.~2! and~4!#,
which diverge in the Mott phase, become nondivergent in
Peierls state.

In the adiabatic limit, the system is dimerized for anya
.0. We here present several results showing that the Pe
transition occurs at a critical couplingac.0 when v051
and U52.5. The phase diagrams discussed in Sec. IV
based on the same signals for the transition at other e-e
plings andv0.

Since the charge gap is finite in both the Mott and Peie
states, the charge stiffnessrc should vanish in the thermody
namic limit for all a. The upper panel of Fig. 1 showsrc as
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a function ofa for several system sizesN. As N grows,rc

indeed rapidly converges to zero for alla, in agreement to
our expectations. The Mott state has no spin gap~finite spin
stiffness! whereas the Peierls state has a finite spin gap~zero
spin stiffness!. If the Peierls transition occurs at a critica
coupling ac.0, it should be of the Kosterliz-Thoules
type,35 where the spin stiffness changes discontinuously fr
a finite value fora<ac to zero fora.ac . The spin stiffness
graphed in the lower panel of Fig. 1 shows a jump devel
ing with increasingN, indicating a critical couplingac
'0.3.

The spin stiffness data do not easily yield a more accu
estimate of the critical coupling. As discussed in the cont
of the spin-Peierls model,29 logarithmic corrections lead to
large finite-size effects fora'ac . A more accurate estimat
can be obtained from the scaling behavior of the finite-s
staggered bond and spin susceptibilities.29 It is known from
bosonization studies that in the Mott phase the equal-t
staggered spin and bond correlations both decay with
tancer as 1/r , up to multiplicative logarithmic corrections.35

At the Mott-Peierls phase boundary, the log corrections
be expected to disappear,45 and this can be used as a criterio
for the phase transition. In the dimerized Peierls phase
bond correlation function approaches a constant at long
tances, whereas the spin correlations decay exponential
is convenient to study the associated static susceptibil
defined in Eqs.~4! and~5!, which in a critical state scale with
one power ofN higher than the structure factors@Eqs.~2! and
~3!#. In the Peierls phasexS(p)/N should converge to 0 and
xB(p)/N should diverge, whereas in the Mott pha
xS(p)/N should diverge logarithmically andxB(p)/N

FIG. 1. Charge~upper panel! and spin~lower panel! stiffness
constants vs e-ph coupling for several different system sizes av0

51 andU52.5.
3-3
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SENGUPTA, SANDVIK, AND CAMPBELL PHYSICAL REVIEW B67, 245103 ~2003!
should approach zero logarithmically~the log corrections for
spin and bond correlations are different35!. Figure 2 shows
both quantities versus ln(N) for several values ofa. The
expected behavior is indeed observed, and within statis
errors bothxS(p)/N andxB(p)/N are independent ofN for
the largest chains whena'0.26.

Additional confirmation of the critical coupling is ob
tained by studying the behavior ofSS(q)/q asq→0. It has
been shown35,46 that if the ground state is gapless in the sp
sector, thenSS(q)/q→1/p as q→0, whereas if there is a
spin gap,SS(q)/q→0. Even a very small spin gap can b
detected this way, since it is in practice sufficient to see t
pSS(q)/q decays below 1 for smallq to conclude that a spin
gap must be present. In Fig. 3 we present results for diffe
values ofa. The curves fora<0.26 are above 1 for allq,
and the decay towards 1 is very slow. The asymptotic
proach to 1 can be expected to be logarithmic.47 On the other
hand, thea>0.30 curves drop below 1. From these resu
we estimateac50.2860.01, which is compatible with the
q5p quantities in Fig. 2. In general, we have found th
SS(q)/q, which indirectly signals the opening of a spin ga
is the easiest and most reliable way to detect a bond-ord
state~also see Ref. 37!.

IV. PHASE DIAGRAMS

The critical coupling depends on the parameters of
Hamiltonian, in particular, the bare phonon frequencyv0.
Using the above criteria for distinguishing the Mott a
Peierls phases, we have calculatedac as a function ofv0,

FIG. 2. Finite-size scaling of the staggered bond-order~upper
panel! and spin~lower panel! susceptibility forv0 /t51 and several
values ofa. The dashed lines show theN-independent behavio
expected at the Mott-Peierls transition.
24510
al

at

nt

-

s

t
,
ed

e

keepingU52.5 andV50.625. As shown in Fig. 4,ac de-
creases linearly to zero for smallv0. This phase diagram is
hence consistent with the knownac50 for adiabatic
phonons.

For polyacetylene Fradkin and Hirsch10 used rescaled
phonon parameters, which in our units correspond tov0
50.067,a50.052. This point is indicated in Fig. 4, and, i
accordance with the strong dimerization of polyacetylene
well within the Peierls phase.

As argued above, the e-ph coupling in the present mo
is similar to that in the SSH model for the purpose of stud
ing the dimerization transition. This implies that in the lim
of (U,V)→0, we should be able to reproduce previous S
results. In particular, according to Fradkin and Hirsch,10 ac
should be zero even for finite frequency phonons. To ve
this, we have studiedac as a function of (U,V), keeping a
fixed ratio ofU/V54. With this ratio the ground state for a
U is a Mott insulator with zero spin gap in the limit o
vanishing e-ph interaction.37 We have studied only a singl

FIG. 3. SS(q)/q vs q for several values ofa aroundac for N
5128. The curves fora>0.30 dip below 1 for smallq, indicating
the presence of a spin gap.

FIG. 4. Phase diagram forU52.5 andV50.625. The squares
with error bars show the critical e-ph coupling separating the M
~M! and Peierls~P! insulating phases. The circle corresponds
phonon parameters previously used for polyacetylene~Ref. 10!.
3-4
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PEIERLS TRANSITION IN THE PRESENCE OF . . . PHYSICAL REVIEW B 67, 245103 ~2003!
phonon frequency,v051. The resulting phase diagram
presented in Fig. 5. The critical e-ph coupling decrea
monotonically with decreasing (U,V), but the smallness o
the spin gap as (U,V)→0 makes it hard to obtain reliabl
results belowU50.4. We can therefore not make a defin
statement about this limit. Nevertheless, our results are c
sistent with a power-law behaviorac;Ug with g'0.3, but
a logarithmic form forU→0 can also not be excluded.

For largeU,V, and with the ratioV5U/4, the extended
Hubbard model can be mapped onto the spin-1

2 Heisenberg
chain with exchange couplingJ54t2/(U2V) ~this mapping
becomes invalid forV'U/2, where phase transitions t
bond-ordered and charge-ordered phases occur35–37!. Carry-
ing out this transformation for the full electron-phono
model @Eq. ~1!# the phonon-modulated exchange is

J~xi !5
4t2~11axi !

2

U2V
, ~6!

wherexi5ai
†1ai . Under the assumption that the nonline

term ;(axi
2) can be neglected, which is nota priori clear

when a is not small, we obtain exactly the spin-Peie
model considered in, e.g., Refs. 29 and 32:

HSP5(
i

~J1gxi !Si•Si 111v0(
i

ai
†ai , ~7!

with

J5
4t2

U2V
, g5

8at2

U2V
. ~8!

For model~7!, an analytic expression for the critical spin
phonon couplingg has been obtained for the whole range
bare phonon frequenciesv0 /J.32 The form, Eq.~12! of Ref.
32, is expected to be exact in the anti-adiabatic limit,v0 /J
→`, which here corresponds toU→`. It is in good agree-
ment with numerical~SSE! results29 for the spin-Peierls tran
sition even for frequencies as low asv0 /J50.25. In Fig. 5
we compare our SSE results for the extended Peie

FIG. 5. Phase diagram forv051 andV5U/4. The squares with
error bars show the critical e-ph coupling. The solid curve sho
the form ac;U0.3. The dashed curve shows the transition for t
corresponding spin-Peierls model~Ref. 32!.
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Hubbard model with the spin-Peierls form forU up to 10.
The transition curve crosses the Mott-Peierls transition cu
at U'8, and is not in good agreement away from this poi
The spin-Peierls criticala increases linearly withU as U
→`, whereas the Mott-Peierls boundary has a slower
crease withU. The poor agreement for smallU is not sur-
prising, as the mapping to the spin chain, with couplingJ
given by Eq.~8!, can only be expected to be good for larg
U, and the form used for the spin-Peierls transition curve
not expected to be quantitatively accurate for very smallv/J
~corresponding here to smallU).32 Considering, however
that the analytical form is accurate for the spin-Peierls mo
with v0 /J50.25,29,32 and that the nonlinear spin-phono
coupling should be negligible for smalla, the disagreemen
for the small-U region in Fig. 5 must be due to the poo
correspondence between the full electron model and the
chain with the lowest-orderJ in Eq. ~8!. The poor agreemen
for U.8 indicates that the nonlinear spin-phonon te
(axi)

2 doesbecomes important asU→`.
One effect of the nonlinear coupling term is to renorm

ize J: Writing xi
25^xi

2&1D(xi
2), the renormalizedJ is given

by

Jeff5
4t2~11a2^xi

2!&
U2V

, ~9!

i.e., Jeff.J. Evaluation the spin-Peierls transition curve u
ing Jeff instead ofJ clearly would reduceac for givenU and
bring the result closer to the actual Mott-Peierls curve in F
5. However, we have not evaluated^xi

2& for a quantitative
test of this effect. In any case, if^xi

2& is large there is also no
reason to expect that the remaining nonlinear coupl
a2D(xi

2) can be neglected ifa is not small. This issue
clearly deserves further study.

V. SUMMARY

In summary, we have studied several aspects of the ph
diagram of an extended 1D Hubbard model coupled to o
cal bond phonons. We have demonstrated that the stoch
series expansion technique37,41 can be used for large
electron-phonon chains~here up to 256 sites! to compute
several different quantities that signal the opening of the s
gap at the Mott-Peierls transition. The spin gap boundar
also in good agreement with direct probes of the bond or
~i.e., kinetic-energy correlation functions and susceptibilit
at q5p).

Our phase diagrams are in agreement with what is ge
ally expected, but to our knowledge they have not been co
puted quantitatively before. For large e-e couplings, we h
pointed out the relevance of an effective nonlinear sp
phonon coupling in the mapping of the Hubbard model to
spin chain. Because of this, standard spin-phonon mod
where the nonlinear term is not included, cannot be expec
to reproduce fully the phase diagrams of electron-phon
models.

The methods that we have used here should also be
plicable to systems away from half-filling. We plan such c
culations aimed at studying the stability of the soliton lattic

s

3-5
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which is formed in doped systems in the adiabatic limit,7,20,48

in the presence of finite-frequency phonons. A previo
quantum Monte Carlo study has indicated that the soli
lattice is stable.16 However, open boundary conditions we
used for relatively small chains, and therefore the issue
whether this is a stable phase on an infinite lattice remain
be clarified.
m
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