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Noiseless scattering states in a chaotic cavity
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Shot noise in a chaotic cavity~Lyapunov exponentl, level spacingd, linear dimensionL), coupled by two
N-mode point contacts to electron reservoirs, is studied as a measure of the crossover from stochastic quantum
transport to deterministic classical transport. The transition proceeds through the formation offully transmitted
or reflected scattering states, which we construct explicitly. The fully transmitted states contribute to the mean

currentĪ , but not to the shot-noise powerS. We find that these noiseless transmission channels do not exist for

N&AkFL, where we expect the random-matrix resultS/2e Ī51/4. ForN*AkFL we predict a suppression of
the noise}(kFL/N2)Nd/p\l. This nonlinear contact dependence of the noise could help to distinguish ballistic
chaotic scattering from random impurity scattering in quantum transport.

DOI: 10.1103/PhysRevB.67.241301 PACS number~s!: 73.63.Kv, 05.45.Mt, 03.65.Sq, 72.70.1m
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Shot noise can distinguish deterministic scattering, ch
acteristic of particles, from stochastic scattering, characte
tic of waves. Particle dynamics is deterministic: A given in
tial position and momentum fix the entire trajectory.
particular, they fix whether the particle will be transmitted
reflected, so the scattering is noiseless. Wave dynamic
stochastic: The quantum uncertainty in position and mom
tum introduces a probabilistic element into the dynamics
it is noisy.

The suppression of shot noise in a conductor with de
ministic scattering was predicted many years ago from
qualitative argument.1 A better understanding, and a quan
tative description, of how shot noise measures the transi
from particle to wave dynamics in a chaotic quantum d
was put forward by Agam, Aleiner, and Larkin,2 and devel-
oped further in Ref. 3. The key concept is the Ehrenfest t
tE , which is the characteristic time scale of quantum cha4

The noise powerS}exp(2tE /tD) was predicted to vanish
exponentially with the ratio oftE and the mean dwell time
tD5p\/Nd in the quantum dot~with d the level spacing
andN the number of modes in each of the two point conta
through which the current is passed!. A recent measuremen
of the N dependence ofS is consistent with this prediction
for tE,tD , although an alternative explanation in terms
short-range impurity scattering describes the data equ
well.5

The theory of Ref. 2 introduces the stochastic elemen
means of long-range impurity scattering, and adjusts
scattering rate so as to mimic the effect of a finite Ehren
time. Here we take the alternative approach of explicitly co
structing noiseless channels in a chaotic quantum dot. Th
are scattering states which are either fully transmitted
fully reflected in the semiclassical limit. They are not d
scribed by random matrix theory.6 By determining what frac-
tion of the available channels is noiseless, we can dedu
precise upper bound for the shot-noise power. A random
trix conjecture for the remaining noisy channels gives
explicit form of S(N). We find that the onset of the classic
suppression of the noise is described not only by the Eh
fest time, but by the difference oftE and the ergodic timet0,
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which we introduce and calculate in this Rapid Communi
tion. The resulting nonlinear dependence of lnS on N may
help to distinguish between the competing explanations
the experimental data.5

We illustrate the construction of noiseless scattering sta
for the two-dimensional billiard with smooth confining po
tential U(x,y) shown in Fig. 1. The outer equipotential d
fines the area in thex-y plane which is classically accessib
at the Fermi energyEF5pF

2/2m ~with pF5\kF the Fermi
momentum!. The motion in the closed billiard is chaotic
with a Lyapunov exponentl. We assume the billiard to be
connected atx50 andx5L by two similar point contacts to
leads of widthW extended along the6x direction.

The beam of electrons injected through a point cont
into the billiard has a cross sectionW and transverse mo
menta in the range (2pW ,pW). The number of channelsN
.pWW/\ in the lead is much smaller than the number

FIG. 1. Selected equipotentials of the electron billiard. The ou
equipotential is atEF , the other equipotentials are at increments
0.19EF . Dashed linesa and b show the sections described in th
text. Also shown is a flux tube of transmitted trajectories, all ori
nating from a single closed contour in a transmission band, re
senting the spatial extension of a fully transmitted scattering st
The flux tube is wide at the two openings and squeezed inside
billiard.
©2003 The American Physical Society01-1
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channelsM.pFL/\ supported by a typical cross section
the billiard. WhileW/L!1 in general, the ratiopW /pF de-
pends on details of the potential near the point contac
pW /pF!1 one speaks of a collimated beam. This is typi
for a smooth potential, while a hard-wall potential typica
has pW.pF ~no collimation!. We define r min
5min(W/L,pW /pF) and r max5max(W/L,pW /pF).

The classical phase space is four dimensional. By rest
ing the energy toEF and takingx50 we obtain the two-
dimensional section of phase space shown in Fig. 2.
accessible values ofy and py lie in a disc-shaped region o
areaA5Nh in this surface of section. Up to factors of ord
unity, the disk has widthr min and lengthr max ~if coordinate
and momentum are measured in units ofL and pF , respec-
tively!. In Fig. 2 one hasr min.r max. Each point in the disc
defines a classical trajectory that enters the billiard~for posi-
tive px) and then leaves the billiard either through the sa
lead~reflection! or through the other lead~transmission!. The
points lie in narrow bands, which we will refer to as ‘‘tran
mission bands’’ and ‘‘reflection bands.’’

It is evident from Fig. 2 that the areaAj enclosed by a
typical transmission~or reflection! band j is much less than
A. For an estimate we consider the timet(y,py) that elapses
before transmission. Lett j be the dwell time averaged ove
the starting pointsy, py in a single band. The fluctuations o
t around the average are of the order of the timetW
.mW/pW to cross the point contact, which is typically!t j .
As we will see below, the area of the band decreases witt j
as

Aj.A0exp~2lt j ! if t j@1/l,tW . ~1!

The prefactorA05Ar min /r max depends on the degree of co
limation. In Ref. 7 the symmetric caser min5r max was as-
sumed, whenA05A.

FIG. 2. Section of phase space atpx5ApF
22py

2 andx50, cor-
responding to linea in Fig. 1. Each dot in this surface of section
the starting point of a classical trajectory that is transmitted thro
the lead atx5L ~black/red!, or reflected back throughx50 ~gray/
green!. The points lie in narrow bands. Only the trajectories w
dwell time t,12mL/pF are shown.
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We now proceed to the construction of fully transmitt
scattering states. To this end we consider a closed contoC
within a transmission bandj. The starting points on the con
tour define a family of trajectories that form a flux tube i
side the billiard~see Fig. 1!. The semiclassical wave functio

c~x,y!5(
s

Ars~x,y! exp@ iSs~x,y!/\# ~2!

is determined as usual from the actionSs and densityrs that
solve the Hamilton-Jacobi and continuity equations

u¹Su252m~EF2U !, ¹•~r¹S!50. ~3!

The action is multivalued and the indexs labels the different
sheets. Typically, there are two sheets, one originating fr
the upper half of the contourC and one from the lower half

The requirement thatc is single valued as one wind
around the contour imposes a quantization condition on
enclosed area,

R
C
pydy5~n11/2!h. ~4!

The increment 1/2 accounts for the phase shift acquired
the two turning points on the contour. The quantum num
n50,1,2, . . . is thechannel index. The largest value ofn
occurs for a contour enclosing an areaAj . The number of
transmission channelsNj within bandj is therefore given by
Aj /h, with an accuracy of order unity. In view of Eq.~1! we
have

Nj.~A0 /h!exp~2lt j ! for t j,tE , ~5a!

Nj50 for t j.tE . ~5b!

The time

tE5l21ln~A0 /h!5l21ln~Nrmin /r max!, ~6!

above which there are no fully transmitted channels, is
Ehrenfest time of this problem.

By decomposing one of theseNj scattering states into a
given basis of transverse modes in the lead one construc
eigenvector of the transmission matrix producttt†. The cor-
responding eigenvalueTj ,n is equal to unity with exponentia
accuracy in the semiclassical limitn@1. Because of the de
generacy of this eigenvalue any linear combination of eig
vectors is again an eigenvector. This manifests itself in
construction as an arbitrariness in the choice ofC.

We observe in Fig. 1 that the spatial density profi
r(x,y) of a fully transmitted scattering state is highly no
uniform. The flux tube is broad~width of orderW) at the two
openings, but is squeezed down to very small width ins
the billiard. A similar effect was noted7 in the excited states
of an Andreev billiard~a cavity connected to a superconduc
or!. Following the same argument we estimate the minim
width of the flux tube asWmin.LANj /kFL.

The total number

N05(
j

Nj5NE
0

tE
P~ t !dt ~7!

h
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of fully transmitted and reflected channels is determined
the dwell-time distributionP(t).8 Figure 3 shows this distri-
bution in our billiard. One sees three different time scal
The narrow peaks represent individual transmission~reflec-
tion! bands. They consist of an abrupt jump followed by
exponential decay with a time constanttW . These exponen
tial tails correspond to the borders of the bands, where
trajectory bounces many times between the sides of the p
contact. If we smoothP(t) over such short time intervals, a
exponential decay with time constanttD5p\/Nd is ob-
tained ~inset!. The decay starts at the so called ‘‘ergod
time’’ t0. There are no trajectories leaving the cavity fot
,t0. So the smoothed dwell-time distribution has the for

P~ t !5tD
21exp@~t02t !/tD#u~ t2t0!, ~8!

with u(t) the unit step function.
In order to findt0 we consider Fig. 4, where the sectio

of phase space along a cut through the middle of the billi
is shown~line b in Fig. 1!. It is convenient to measure th
momentum and coordinate alongb in units of pF andL. The

FIG. 3. Dwell-time distribution for the billiard of Fig. 1. Elec
trons at the Fermi energy are injected through the left lead. Tim
in units ofmL/pF . Inset: the same data on a semilogarithmic sc
with larger bin size of the histogram. Three characteristic ti
scales are seen:tW , t0, andtD .

FIG. 4. Section of phase space in the middle of the billia
along lineb in Fig. 1. The subscripti indicates the component o
coordinate and momentum along this line. Elongated black areaOj

show the positions of the fifth crossing of the injected beam w
this surface of section. The areaOinitial is the position of the first
crossing. Points insideOfinal leave the billiard without further cross
ing of line b. For times less than the ergodic timet0 there is no
intersection betweenOj andOfinal .
24130
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injected beam crosses the section for the first time over
area Oinitial of size r max3rmin5hN/pFL. ~Fig. 4 has r min
.rmax, but the estimates hold for anyr min,rmax,1.! Further
crossings consist of increasingly more elongated areas.
fifth crossing is shown in Fig. 4. The flux tube intersects li
b in a few disjunct areasOj , of width r mine

2lt and total
length r maxe

lt. ~Due to conservation of the integralrp•dr
enclosing the flux tube, the total area( jOj decreases only
when particles leave the billiard.! The typical separation o
adjacent areas is (r maxe

lt)21. To leave the billiard~through
the right contact! without a further crossing ofb a particle
should pass through an areaOfinal.r max3rmin . This is highly
improbable9 until the separation of the areasOj becomes of
order r max, leading to the ergodic time

t05l21ln r max
22 . ~9!

The ergodic time varies fromt0&l21 for r max.1 to t0
5l21ln(kFL/N) for r min.r max. The overlap of the areasOj
and Ofinal is the mapping of the transmission band onto t
surface of section b. It has an area pFLr min

2 e2lt

5A(r min /rmax)e
2lt, leading to Eq.~1!.

Substituting Eq.~8! into Eq. ~7! we arrive at the numbe
N0 of fully transmitted and reflected channels:

N05Nu~tE2t0!@12e(t02tE)/tD#, ~10!

tE2t05l21ln~N2/kFL !. ~11!

There are no fully transmitted or reflected channels iftE

,t0, and hence ifN,AkFL. Notice that the dependence o
tE andt0 separately on the degree of collimation drops o
of the differencetE2t0. The number of noiseless channe
is therefore insensitive to details of the confining potent
An Ehrenfest time} ln(N2/kFL) has appeared before in con
nection with the Andreev billiard,10 but the role of collima-
tion ~and the associated finite ergodic time! was not consid-
ered there.

Equations~5! and~8! imply that the majority of noiseless
channels group in bands havingNj@1, which justifies the
semiclassical approximation. The total number of the
noiseless bands is (N2N0)/ltD , which is much less than
bothN2N0 andN0. Because of this inequality the relativel
short trajectories contributing to the noiseless channels
well separated in phase space from other, longer trajecto
~cf. Fig. 2!.

The shot-noise powerS is related to the transmission e
genvalues by11

S52e Īg21(
k51

N

Tk~12Tk!, ~12!

with Ī the time-averaged current andg5(kTk the dimen-
sionless conductance. TheN0 fully transmitted or reflected
channels haveTk51 or 0, hence they do not contribute to th
noise. The remainingN2N0 channels contribute at most 1/
per channel toSg/2e Ī. Using thatg5N/2 for largeN, we
arrive at an upper bound for the noise powerS,e Ī(1
2N0 /N).
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For a more quantitative description of the noise power
need to know the distributionP(T) of the transmission ei-
genvalues for theN2N0 noisy channels, which cannot b
described semiclassically. We expect the distribution to h
the same bimodal formP(T)5p21T 21/2(12T)21/2 as in the
caseN050.6 This expectation is motivated by the earli
observation that theN0 noiseless channels are well separa
in phase space from theN2N0 noisy ones. Using this form
of P(T) we find that the contribution toSg/2e Ī per noisy
channel equals*0

1T(12T)P(T)dT51/8, half the maximum

value. The Fano factorF5S/2e Ī is thus estimated as

F5
1

4
for N&AkFL, ~13a!

F5
1

4
~kFL/N2!Nd/p\l for N*AkFL. ~13b!

This result should be compared with that of Ref. 2:F8
5 1

4 (kFL)2Nd/p\l. The ratio F8/F5exp@(2Nd/p\l)ln(N/
kFL)# is always close to unity~becauseNd/p\l.N/kFL
!1). But F2 1

4 and F82 1
4 are entirely different forN

&AkFL, which is the relevant regime in the experimen5
ot-

hy

e
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There theN dependence of the shot noise was fitted asF
5 1

4 (12tQ /tD)5 1
4 (12const3N), where tQ is some

N-independent time. Equation~13! predicts a more complex
N dependence, a plateau followed by a decrease as lnF}
2N ln(N2/kFL), which could be observable if the experime
extends over a larger range ofN.

We mention two other experimentally observable featu
of the theory presented here. The reduction of the Fano
tor described by Eq.~13! is the cumulative effect of many
noiseless bands. The appearance of new bands with inc
ing N introduces a fine structure inF(N), consisting of a
series of cusps with a square-root singularity near the cu
The second feature is the highly nonuniform spatial ext
sion of open channels, evident in Fig. 1, which could
observed with the scanning tunneling microscopy techni
of Ref. 12. From a more general perspective the noise
channels constructed in this paper show that the random
trix approach may be used in ballistic systems only for s
ficiently small openings:N&AkFL is required. For largerN
the scattering becomes deterministic, rather than stocha
and random matrix theory starts to break down.

This work was supported by the Dutch Science Foun
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