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Noiseless scattering states in a chaotic cavity
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Shot noise in a chaotic cavityapunov exponenk, level spacings, linear dimensioriL), coupled by two
N-mode point contacts to electron reservoirs, is studied as a measure of the crossover from stochastic quantum
transport to deterministic classical transport. The transition proceeds through the formdtithy todnsmitted
or reflected scattering states, which we construct explicitly. The fully transmitted states contribute to the mean
currentl, but not to the shot-noise powg&rWe find that these noiseless transmission channels do not exist for
N=krL, where we expect the random-matrix ressee |= 1/4. ForN= JkeL we predict a suppression of
the noisex (keL/N?)N¥7 X This nonlinear contact dependence of the noise could help to distinguish ballistic
chaotic scattering from random impurity scattering in quantum transport.
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Shot noise can distinguish deterministic scattering, charwhich we introduce and calculate in this Rapid Communica-
acteristic of particles, from stochastic scattering, characterigion. The resulting nonlinear dependence oElan N may
tic of waves. Particle dynamics is deterministic: A given ini- help to distinguish between the competing explanations of
tial position and momentum fix the entire trajectory. In the experimental dafa. _ _ _
particular, they fix whether the particle will be transmitted or ~ We illustrate the construction of noiseless scattering states
reflected, so the scattering is noiseless. Wave dynamics f8r the two-dimensional billiard with smooth confining po-
stochastic: The quantum uncertainty in position and momentential U(x,y) shown in Fig. 1. The outer equipotential de-
tum introduces a probabilistic element into the dynamics, sdines the area in the-y plar;e which is classically accessible
it is noisy. at the Fermi energ¥r=pg/2m (with pe=#kg the Fermi

The suppression of shot noise in a conductor with determomentun. The motion in the closed billiard is chaotic,
ministic scattering was predicted many years ago from thigVith @ Lyapunov exponent. We assume the billiard to be
qualitative argumenftA better understanding, and a quanti- connected at=0 andx=L by two similar point contacts to
tative description, of how shot noise measures the transitiolf2ds of widthW extended along the-x direction.
from particle to wave dynamics in a chaotic quantum dot, The be?‘(“ of electrons |nJecte_d through a point contact
was put forward by Agam, Aleiner, and Larkérand devel- into the billiard has a cross sectidil and transverse mo-
oped further in Ref. 3. The key concept is the Ehrenfest timéﬂenta n t.he range-¢ p.W’pW)' The number of channel

o N =pwW/% in the lead is much smaller than the number of

e, Which is the characteristic time scale of quantum cHaos.

The noise powelSxexp(—7=/m) was predicted to vanish
exponentially with the ratio ofz and the mean dwell time
mo=mh/NGS in the quantum dotfwith & the level spacing
andN the number of modes in each of the two point contacts
through which the current is passed recent measurement
of the N dependence of is consistent with this prediction
for 7e<7p, although an alternative explanation in terms of
shorts—range impurity scattering describes the data equally
well.

The theory of Ref. 2 introduces the stochastic element by
means of long-range impurity scattering, and adjusts the
scattering rate so as to mimic the effect of a finite Ehrenfest
time. Here we take the alternative approach of explicitly con-
structing noiseless channels in a chaotic quantum dot. These
are scattering states which are either fully transmitted or
fully reflected in the se_m|cla55|cal limit. '_I'hey are not de- FIG. 1. Selected equipotentials of the electron billiard. The outer
spnbed by ra”‘?'om matrix theo?)By c!etermlnlng what frac- equipotential is aEg, the other equipotentials are at increments of
tion of the available channels is noiseless, we can deduce(ﬁlGE,:. Dashed linesa and b show the sections described in the
precise upper bound for the shot-noise power. A random Magyt. Also shown is a flux tube of transmitted trajectories, all origi-
trix conjecture for the remaining noisy channels gives amating from a single closed contour in a transmission band, repre-
explicit form of S(N). We find that the onset of the classical senting the spatial extension of a fully transmitted scattering state.
suppression of the noise is described not only by the Ehrenfhe flux tube is wide at the two openings and squeezed inside the
fest time, but by the difference ot and the ergodic time, billiard.
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We now proceed to the construction of fully transmitted
scattering states. To this end we consider a closed coGtour
within a transmission band The starting points on the con-
tour define a family of trajectories that form a flux tube in-
side the billiard(see Fig. 1. The semiclassical wave function

P(x,Y) =2 \pa(x,y) exdiS,(x,y)/#] )

is determined as usual from the actiS§pand density, that
solve the Hamilton-Jacobi and continuity equations

|VS|?=2m(Eg—U), V-(pVS)=0. ()

——— The action is multivalued and the indexlabels the different
0 y/L ) (')'1 sheets. Typically, there are two sheets, one originating from
the upper half of the contout and one from the lower half.
The requirement thaty is single valued as one winds
around the contour imposes a quantization condition on the

FIG. 2. Section of phase spacemt= \/pZF—py2 andx=0, cor-
responding to line in Fig. 1. Each dot in this surface of section is
the starting point of a classical trajectory that is transmitted througlﬁandos‘(ad area,
the lead atx=L (black/red, or reflected back througk=0 (gray/
green. The points lie in narrow bands. Only the trajectories with § p,dy=(n+1/2)h. (4)
dwell timet<12mL/pg are shown. c

) ) The increment 1/2 accounts for the phase shift acquired at
channelsM = peL/% supported by a typical cross section of the two turning points on the contour. The quantum number
the billiard. WhileW/L <1 in general, the ratipy/pr de-  1=0,1,2... is thechannel index. The largest value of
pends on details of the potential near the point contact. Ipccurs for a contour enclosing an aréa. The number of
Pw/pr<1 one speaks of a collimated beam. This is typicalransmission channels; within bandj is therefore given by

has pw=pg (no collimation. We define rynn  have

=min(W/L,pw/pg) andr = max(W/L,pw/pg).

The classical phase space is four dimensional. By restrict- Nj=(Ap/h)exp(—\t;) for t;<7g, (59
ing the energy tcEg and takingx=0 we obtain the two-
dimensional section of phase space shown in Fig. 2. The N;=0 for tj>rg. (5b)

accessible values gf and p lie in a disc-shaped region of The time

areaA=Nh in this surface of section. Up to factors of order

unity, the disk has width ,;, and lengthr .« (if coordinate e=N"2n(Ag/h) =X "UN(NT min /T max)» (6)
and momentum are measured in unitsLodnd pg, respec-
tively). In Fig. 2 one has ,in=rmax- Each point in the disc
defines a classical trajectory that enters the billidod posi-

tive p,) and then leaves the billiard either through the same . By dec_omposmg one of thegej scattering states into a
lead (reflection or through the other leadransmission The given basis of transverse modes in the lead one constructs an

points lie in narrow bands, which we will refer to as “trans- elgenvegtor O.f the transmlssmn matnx.prod_uét The cor
mission bands” and “reflection bands.” responding eigenvalug , is equal to unity with exponential
; ; ; accuracy in the semiclassical limit>1. Because of the de-
I_t is ewdenfc fr_om Fig. 2 that the a_re_élj enclosed by a y f this ei | i binati f eigen-
typical transmissiorfor reflection bandj is much less than 9€Neracy of this eigenvalue any finéar combination ot €igen

A. For an estimate we consider the titfg, p,) that elapses vectors is again an eigenvector. This manifests itself in our
before transmission. Léf be the dwell time averaged over construction as an arbitrariness in the choice.of

the starting pointy, p, in a single band. The fluctuations of We observe in Fig.. 1 that the. spatial Qensity profile
t around the average are of the order of the titye p(x,y) of a fully transmitted scattering state is highly non-

~ MW py to cross the point contact, which is typicalit, . uniform. The flux tube is broa@idth of orderW) at the two

As we will see below, the area of the band decreases twith openi_ngs, but i.s '_squeezed down to very small_ width inside
as y the billiard. A similar effect was notédn the excited states

of an Andreev billiarda cavity connected to a superconduct-
_ or). Following the same argument we estimate the minimal
Aj=Agexp(—Atj) if t;>1/N ty. (D width of the flux tube adWy,=LN;/KeL.
The total number

above which there are no fully transmitted channels, is the
Ehrenfest time of this problem.

The prefactotdy= Ar in /T max depends on the degree of col-

. . . _ TE

limation. In Ref. 7 the symmetric casg,,="rmnax Was as- No=2 Nj:Nf P(t)dt 7
sumed, when4,= A. ] 0
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injected beam crosses the section for the first time over an
area Ojitiar Of Size I X min=nNN/peL. (Fig. 4 hasr i,
=Imax, DUt the estimates hold for amy,,<rmn.<1.) Further
crossings consist of increasingly more elongated areas. The
fifth crossing is shown in Fig. 4. The flux tube intersects line
b in a few disjunct area®;, of width rmn€ ™ and total
length r,,,&". (Due to conservation of the integrgib-dr
enclosing the flux tube, the total aréqO; decreases only
when particles leave the billiandThe typical separation of
adjacent areas isr (,,€"%) 1. To leave the billiard(through

FIG. 3. Dwell-time distribution for the billiard of Fig. 1. Elec- tN€ right contagtwithout a further crossing ob a particle
trons at the Fermi energy are injected through the left lead. Time i§hould pass through an aregna=r max<rmin- This is highly
in units of ML/pg . Inset: the same data on a semilogarithmic scaleMprobablé until the separation of the are@ becomes of
with larger bin size of the histogram. Three characteristic timeOrderr ,, leading to the ergodic time

scales are seehyy, 7, and 7y .

of fully transmitted and reflected channels is determined b
the dwell-time distributiorP(t).8 Figure 3 shows this distri-
bution in our billiard. One sees three different time scales.
The narrow peaks represent individual transmisgiefiec-
tion) bands. They consist of an abrupt jump followed by an
exponential decay with a time constapt. These exponen-
tial tails correspond to the borders of the bands, where th
trajectory bounces many times between the sides of the poi
contact. If we smootlP(t) over such short time intervals, an
exponential decay with time constamp=w#A/N&S is ob-
tained (inse). The decay starts at the so called “ergodic
time” 7. There are no trajectories leaving the cavity for

o=\ "tnr 2. 9)

Yhe ergodic time varies fromo=<\"1 for rp,=1 to 7,
=\"HN(KeL/N) for I pin=T max. The overlap of the areds;
and Oy is the mapping of the transmission band onto the
surface of sectionb. It has an areapglLr? e ™
=A(r min/Tman€ ™, leading to Eq(1).

Substituting Eq(8) into Eq. (7) we arrive at the number

o of fully transmitted and reflected channels:

No=N6(7e— 70)[1—el70~&)/7], (10

Te— To=N"IN(N%/KgL). (11

< 75. So the smoothed dwell-time distribution has the form There are no fully transmitted or reflected channelsf

P(t)=7p 'exf (mo—t)/ 751 0(t— 7o),

with 6(t) the unit step function.

In order to findry we consider Fig. 4, where the section A
of phase space along a cut through the middle of the biIIiarq]
is shown(line b in Fig. 1). It is convenient to measure the
momentum and coordinate alobgn units of pg andL. The

—_—

P /pg

o

initial

'-10.5 0

w/L

0.5

<10, and hence iN< kgL. Notice that the dependence of
8 e and 7y separately on the degree of collimation drops out

of the differencerg— 5. The number of noiseless channels
is therefore insensitive to details of the confining potential.
n Ehrenfest timexIn(N¥keL) has appeared before in con-
ection with the Andreev billiard® but the role of collima-
tion (and the associated finite ergodic tinmveas not consid-
ered there.

Equations(5) and(8) imply that the majority of noiseless
channels group in bands havilg>1, which justifies the
semiclassical approximation. The total number of these
noiseless bands iN(—Ng)/A 75, which is much less than
bothN—Ng andN,. Because of this inequality the relatively
short trajectories contributing to the noiseless channels are
well separated in phase space from other, longer trajectories
(cf. Fig. 2.

The shot-noise powes is related to the transmission ei-
genvalues b¥

N
S=2eTg*1kE T(1-Tp), (12)
=1

FIG. 4. Section of phase space in the middle of the billiard,with | the time-averaged current ang= 3,7, the dimen-
along lineb in Fig. 1. The subscripf indicates the component of - sjonless conductance. T, fully transmitted or reflected
coordinate and momentum along this line. Elongated black &eas ~hannels havé,=1 or 0, hence they do not contribute to the

show the positions of the fifth crossing of the injected beam with
this surface of section. The aré€y,;;y is the position of the first

noise. The remaininil — N channels contribute at most 1/4

crossing. Points insid®j., leave the billiard without further cross- P& channel t&Sg2el. Using thatg=N/g for largeN, we
ing of line b. For times less than the ergodic timg there is no ~ arrive at an upper bound for the noise powexel(1l

intersection betwee®; and Oyny .

—Ng/N).
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For a more quantitative description of the noise power weThere theN dependence of the shot noise was fittedFas

need to know the distributiof(7) of the transmission ei-

=3(1-to/mp)=7(1—consxXN), where to is some

genvalues for theN— N, noisy channels, which cannot be N-independent time. Equatiaii3) predicts a more complex
described semiclassically. We expect the distribution to hav®l dependence, a plateau followed by a decrease Bs In

the same bimodal for®(7)= 717 Y41—7) Y2 as in the

—NIn(N%keL), which could be observable if the experiment

caseNy=0.% This expectation is motivated by the earlier extends over a larger range Nf
observation that thil, noiseless channels are well separated \We mention two other experimentally observable features

in phase space from tié— Ng noisy ones. Using this form
of P(7) we find that the contribution t&g2el per noisy
channel equaljé?(l—?)P(?)de 1/8, half the maximum

value. The Fano factdf =S/2el is thus estimated as

1
F=7 for N=vkeL, (133
1
F:Z(kFL/NZ)Nﬁlﬂ'ﬁ}\ for N= kFL (13b)

This result should be compared with that of Ref.FZ:
=2(keL) "N The ratio F'/F=exd (2N 77N)In(N/
keL)] is always close to unitfbecauseN /i =N/kgL
<1). But F—% and F'—3% are entirely different forN

<keL, which is the relevant regime in the experimént.

of the theory presented here. The reduction of the Fano fac-
tor described by Eq(13) is the cumulative effect of many
noiseless bands. The appearance of new bands with increas-
ing N introduces a fine structure iIR(N), consisting of a
series of cusps with a square-root singularity near the cusp.
The second feature is the highly nonuniform spatial exten-
sion of open channels, evident in Fig. 1, which could be
observed with the scanning tunneling microscopy technique
of Ref. 12. From a more general perspective the noiseless
channels constructed in this paper show that the random ma-
trix approach may be used in ballistic systems only for suf-
ficiently small openingsN= kgL is required. For largeN

the scattering becomes deterministic, rather than stochastic,
and random matrix theory starts to break down.
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