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Acoustic phonon exchange, attractive interactions, and the Wentzel-Bardeen singularity
in single-wall nanotubes
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We derive the effective low-energy theory for interacting electrons in metallic single-wall carbon nanotubes,
taking into account phonon exchange due to twisting, stretching, and breathing modes within a continuum
elastic description. In many cases, the nanotube can be described as a standard Luttinger liquid with possibly
attractive interactions. We predict surprisingly strong attractive interactions for thin nanotubes. Once the tube
radius reaches a critical vallRy,~3.6+ 1.4 A, the Wentzel-Bardeen singularity is approached, accompanied
by strong superconducting fluctuations. The surprisingly laRgeindicates that this singularity could be
reached experimentally. We also discuss the conditions for a Peierls transition due to acoustic phonons.
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I. INTRODUCTION the breathing moddwhich has finite frequency»sg as q
—0) is considered in both. The neglect of optical phonons
Superconductivity in carbon nanotubes has lately genershould create no major problem for the issues at stake here,
ated a lot of interest. Experimental observations include asince they do not produce sizable attractive interactions nor a
unexpectedly strong proximity effect in single-wall nano- WB singularity. Their relevance for the Peierls transition is
tubes(SWNT's),1? fluctuation superconductivity in ultrathin discussed briefly below. The theory of Ref. 12 is analytically
SWNT's? and intrinsic BCS-type behavior in “ropes” con- tractable and, moreover, appears to be in excellent agreement
taining many SWNT'¢. These experiments have in turn led W|_th the Iocal—densﬂy—fungtlonal_ calculations even for ultra-
to a number of theoretical paper€ In particular, the au- thin (R=2 A) nanotubes? For instance, we find that the
thors of Refs. 5,6 argue that phonon exchange holds respoff€duency of the breathing mode computed in Ref. 13 coin-
sible for some attractive electron-electron interaction. Thefides 10 within 4% with the value extracted from the con-

value or even order of magnitude of the electron-phonoriinuum th_eory of _Ref. 12. Fu_rthermpre, thg predicted value
coupling was, however, left open or simply extracted by fit- or the twist velocityv + below is consistent with Refs. 14,15.

ting experimental curves. In this work, we wish to fill this This is fortunate SInce 1§he Previous e_stlr_nates for the
. e . . lectron-phonon coupliftf!’ were only qualitative in nature
gap and provide a quantitative analysis of phonon—medlate§

tarded elect lect int " . tallic SWNT nd did not even agree on orders of magnitude. For related
retarded electron-electron Interactions - a metaflic theoretical work on acoustic phonons and electron-phonon
(The theory also holds qualitatively for a heavily doped

. . . interactions in SWNT's, see Ref. 18.
semiconducting SWNT.Below we include the usudtepul- As we show in detail below, the phonon-mediated effec-

sive) Coulomb interactions in the effective low-energy (e attraction among electrons is very strong for sufficiently
theory valid at energiefE| <vg /R, with Fermi velocityve  thin nanotubes. The dominant phonon exchange processes
and SWNT radiusR (for notational convenience, we will jnyolve two phonon modes, namely the stretching and the
often use units wheré=1). We assume that the SWNT is preathing mode. The stretching mode has a linear dispersion
doped away from the charge neutrality pols# 0, i.e., an  characterized by a velocitys, while the breathing mode has
incommensurate situation, which is normally encountered i finite frequencywg at long wavelengths. Following general
practice. Then electron-phonon and electron-electron Umargument$® for a large part of the relevant parameter
klapp processes can be neglected. space, the influence of the stretching mode is negligible.
Besides mediating possibly attractive interactions, the efThen the system can be described asitinger liquid (LL)
fect of phonons on the electronic system could, in principlewith standard interaction parametét., in the charged
lead to two instabilities: the well-known Peierls transition, channef® whereK, =1 for noninteracting electrons. Pho-

associated to the development of a charge-density wave; anbn exchange involving the breathing mode implies
the Wentzel-BardeefWB) singularity!® associated to the

collapse of the system due to the onset of a negative com- KO
pressibility beyond a critical value of the electron-phonon Ko = s , (1.2
coupling. All these issues can be investigated by integrating V1-(Kg,)®Re/R

out the phonons and studying the electron system alone,

since the relevant backscattering electron-phonon interagvhere Rg is a length scale depending on the deformation
tions are weaR! This is the approach taken in our paper. Ourpotential and the breathing mode frequenay. Estimates
treatment of phonons expands on the recent work by Suzuuf@r these parameters given below suggegt=2.4+0.9 A.

and Ando'2 where the field theory foacoustic phononand ~ Here K, <1 characterizes the repulsive Coulomb interac-
their coupling to electrons in SWNT's was derived. Opticaltions, Wherel<8+~0.2 for unscreened interactioffSNotice
phonons were ignored in this theory as well as in ours, buthat without external screening, phonon exchange is not rel-
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evant, anK ., ~K?, . However, once the Coulomb interac- the SWNT. Below we study arbitrary metallic SWNT's, and
tions are externally screened off, e.g., by nearby gate eledndeed confirm that the relevant Peierls distortion for an arm-
trodes, we geK?, ~1, and Eq.(1.1) predicts surprisingly ~chair SWNT would correspond to tube twisting. In addition,
strongattractive interactiong K., >1). For a (10,10) arm- We will find the proper mode for any metallic SWNT. Our
chair tube withR=6.79 A, the LL parameter is theK,. findings follow from analyzing backscattering phonon ex-
~1.3, i.e., significantly larger than the noninteracting value change, which operates at the doping-dependent wave vector

These attractive interactions get stronger for thinnerdr, Wherege=|Eg|/ve. Based on our essentially exact
nanotubes. results, we do not expect that the Peierls transition predicted

As we discuss be|ow' the neg|ect of the retarded interaci.n Ref. 15 is Observable, at least not for an individual SWNT

tion due to the stretching mode, leading t¢faur-channel ~ away from the neutrality point. According to our theory, a
LL with interaction parameteK., given by Eq.(1.1) and  Peierls gap in the 1D seriseould only be possible for very
interaction parameter, =1 in the three neutral channels thin SWNT's and under rather stringent conditions.

(see below is valid providedR is sufficiently large com- ~ The outline of the paper is as follows. In Sec. Il, we
pared to the “critical radius"Rcz(K2+)2Ro, whereR is briefly summarize the elagtlc continuum theory for phono_ns
slightly larger tharRg, Ry=23.6+1.4 A. Only in the imme- and the electron-phonon interaction. The resulting effective

diate vicinity of this radius, the retarded interaction mediatecf!€ctron-electron interaction generated by the phonon ex-
by the stretching phonon mode has to be kept explicitly. Thi€hange is derived in Sec. Ill. The dominant forward-
critical radius defines the location of the so-called Wa Scattering process, the Luttinger liquid with attractive inter-
singularity’® For R<R,, our model breaks down, and a actions, and the Wentzel-Bardeen singularity are discussed in

transition to a phase-separated state is expected. Previog€C: V. The remaining phonon exchange terms and the
work by Loss and Martift studied the WB singularity in Peierls transition are studied in Sec. V. Some details concern-

detail for one-dimensional(1D) systems, but a concrete ing Sec. V have been transferred to the Appendix. Finally, we

physical realization seemed out of reach due to the smaffiscuss the relevance of intertube phonon exchange and con-

ratio between sound and Fermi velocity in all systems con¢lude in Sec. V.

sidered so far. We argue below that SWNT’s with screened-

off interactions may offer the possibility to reach this elusive 1. ACOUSTIC PHONONS AND ELECTRON-PHONON
singularity, which has never been observed experimentally. COUPLING

This is remarkable since the ratio between sound and Fermi
velocity is still small. However, in a SWNT the stretching
and the breathing phonon modes collaborate in driving th%u
system towards the WB singularity in a very efficient h

manner. P ; L
rope? However, modifications may arise for individual

Moreover, the closeness to the WB singularity holds re \
sponsible for rather strong superconducting fluctuation .S.WNTS on a substrate, where phonon modes could be

From our theory, estimates for the attractive interactions geanned' Let us then briefly summarize the main results of

erated via phonon exchange are obtained. To describe mo@?f' 12, where acoustic phonons in SWNTS are _despribed
of the issues raised by the experiments of Refs. 3,4 in Qy an elastic continuum theory. The Euclidean action is

guantitative way, it will however be important to also ana-

lyze the effect of the various intertube couplings in SWNT S:J drd?r{(M/2)u"u+U[u]+Uul}, (2.1

ropes or crystals in more detail. Employing a mean-field ap-

proximation for Josephson couplings, the standard 1D T, ) i

Ginzburg-Landau description can be obtaiRgdh this pa-  Where the row vectou'(r) = (uy,uy,u;) is the displacement

per, we focus on the phonon-mediated electron-electron irfield (the symbolT stays for matrix transpositignand r

teraction within a given nanotube, and postpone a full dis—=(X,y) denotes a point on the tube. The displacement field

cussion of experimentally relevant quantities to a futurein this approximation does not discriminate among the

publication?® graphite sublattices, and hence will not describe optical
The present paper also sheds light on the recent discughonons. The coordinate system is chosen as followsyThe

sion about the possibility of a Peierls transition in axis points along the tube,<Ox<2#R around the circum-

SWNT's1%24~26Notably, even in the incommensurate situa-ference, and denotes the direction perpendicular to the tube

tion studied here, in principle a Peierls transition can oétur, surface. The elastic potential-energy density in E31) is

although the resulting pseudogap is expected to be wiped ogiven by

by quantum fluctuation. Within a mean-field approxima-

tion, the Peierls transition due to optical phonons has been 1

studied in Refs. 24—26, resulting in a Kekuige modula- Ulul= 5{B (Ut Uyy) =+ il (U= Uyy) 2+ AUy I},

tion. Since we only treat acoustic phonons, we have nothing

to say about this issue. However, a recent theoretical workvhere the strain tensor is defined by the relatians

including acoustic phonons has pointed out the possibility of=dyuy, 2u,,=dyu,+d,uy, and, due to the cylindrical ge-

a sizable Peierls gap in thin armchair SWN¥&his Peierls  ometry, u,=d,U,+u,/R. Furthermore, the curvature-

modulation was found to correspond to a twist distortion ofinduced potential-energy density is

Here we shall always assume a suspen@ies-standing

be. With regard to the important phonon modes coupling to
e low-energy electrons, this should be an accurate assump-
tion both for SWNT’s embedded in a zeolite matror in a
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UJlul=(a?E/)[(d5+ 5+ R ?)u,]?. where

In the above expressiona=2.46 A is the lattice constant, N=M[w?+eX(q)], i=1,23 (2.5
and the carbon mass per unit area ¥=3.80 2 5 )
%107 kg/m2. The bulk modulusB and the shear modulus 2re the eigenvalues @t. Here €(q)=v7q” with v+ in Eq.
w are accurately known for bulk graphitg, (2.2), and

B/IM=2.90<10° m?/se¢, €540)=(wp/2)[1+¢°R*FE(q)] (2.6)
(2.2 i
wIM=02=151x10° m?/sed. with
— 2p2 2 44 1/2
Finally, the normal-force constant isZE/M=6.19 E(9)=[1+29°R(1-8Bu/A%)+q"R"] 2.7

X 10° m*/se¢. Since Z<B,u and the curvature-induced |n the long-wavelength limitgR<1, further simplifications
terms are additionally suppressed in the long-wavelengtire possible. Although the theory is valid also for larg&;
||m|t terms related tQ:’, are negleCted in what follows. It is we shall make this inessential approx|mat|on whenever ap-

then convenient to switch to Fourier space, propriate. To lowest order iR, we obtain for the three
dq eigenmodes
e _y N q-r)
ui7,r n U(wq,
(n0= wHqu (0n. 9. 1(q)=v79% () =v5d’ e(q)=ws, (28

whereq=(qy,dy), w,=2mn/B with f=1/kgT are Matsub- where
ara frequencies,.=2=R is the circumference of the tube,

2
andqg,=n/R, where integen denotes the discrete transverse US 4Bu/AM, wB AMR®. 2.9
momenta. The actiof2.1) then reads The eigenmodes corresponding Xq , 5 are the twisting,
q stretching, and breathing phonon modes, respectively. The
qy uT > - = sound velocities for the twisting and stretching modesvare
L A 1 u 1 1 . .
Z,BL wnqu U (= en. @A Qu(wn.q) andvg, and the breathing mode frequencyig. From Eq.
(2.3 (2.2), we obtain the following estimates:
Whereé is given by the matrix vr=1.23x10* m/sec,
M w2+ A2+ pa? Ba,d, N % vs=1.99x 10 mi/sec, (2.10
2 2 2 q 3 _0l4 A
Baxdly Mof+Adj+ua; —i(B—p) o ws="g &V
q q A Note that bothvg andvy are much smaller than the Fermi
|Aﬁx i(B—,u)Ey M w + - velocity v=8x10° m/sec. The stretching mode corre-
R sponds to the longitudinal-acoustic phonon, while the twist-
with A=B+ ing and breathing ones correspond to transverse-acoustic

; ; o . .phonons.
Our strategy is to integrate out phonons, which is validP .
unless the electron-phonon coupling is very strong and/or Next we address the coupling of the phonon mOdeS to
soft phonon modes are present, see Ref. 11. These requir%I_ectro_ns. The relevz%nt electron states for a metallic SWNT
ments are met in our case. In order to proceed, we then ne € Spinorsyp,,(y),”" wherep=+ denotes the sublattice
the inverse ofA, whose general form is straightforward to

(the honeycomb lattice has two basis atpms= = labels
obtain but not required here. The only transverse momentur[ﬂ

the two distinctK points, ando= = the spin. Suppressing
relevant for the effective interaction ¢g=0, since only the € a,0 indices, the electron- phondal PR coupling corre-

corresponding electronic states have to be kept at low-energiPonds to Hamiltonian densitiés s, for the twoK points,
scales. Therefore we focus on this special limit henceforth.

. - - . V, V, , vV, V3
Puttingg,=q andq,=0, the inverse oA reads 3K ko[ V1 V2 2.19)
. — el-ph™ V; Vl ' el-ph V2 Vl
o 0 0 Here thedeformation potentials
1
1 0 Mw%RZ-I—A I(B—,U,)q Vl:gl(uxx+ uyy)v (212
A = , (24 . . .
— Ao\ gR2 AaNgR @4 whereg;~16 eV in bulk graphité® For a 2D graphite sheet
i(B—u)q Maw2+Aq? this value should be multiplied by 3/2,and we therefore
0o - ©ma @nT A4 take the estimatg;~20-30 eV. The off-diagonal terms in

AoN3R Aoh3 the sublattice space arise from a bond-length change,
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V=063 7(Uy— Uyy+ 2iUy,) (2.13 To make further progress, it is convenient to invoke the
2 92 XX yy Xy/ s . . .

_ _ _ _ Abelian bosonization scheme adapted to SWN{ %o keep
where 7 is the chiral angle, withy=0 for zigzag tubes and e paper self-contained, we briefly review the ingredients
n=/6 for arrlr;chaw tubes. The respective coupling constanheeded for our subsequent discussion. This requires first a
is g,~1.5 eV.* Although both the free electron and the free pitary transformation in the sublattice space, which trans-
phonon low-energy theories do not depend on chirality, th§orms’the free-electron Hamiltonian into the standard form
V, term in the electron-phonon coupling does. containing  right- and left-moving fields, .,

=3 iUy 1 , Where
IIl. INTERACTIONS FROM PHONON EXCHANGE r=riL==+Up¥irao

We can now integrate out the phonons and obtain an ef- —e "1 1
fective action for the electrons, which includes the phonon- U= 2 \io—il
mediated retarded interaction. To that purpose, we evaluate
the Gaussian path integral for the phonons, Under the unitary transformation, we have to replage

— 73, T3— T, and ry— 1. We then work in the trans-

1 . ! : : !
f Du exp{_zf [dl[u"(— @y, — DA(w,,q)U(@,,q) formed picture, and omit the tilde in the field operators
— henceforth. The bosonization formula for the electron opera-

tor is?°
+2VT(_wn1_q)u(wn!q)]]:e_sel_ph! (31)
77 aog .
with the notation Urac(y)= \/Zr_meXp[l(quer aKey +1 VAT o0},
1 < dq (3.6
| a-53 [ 52 32 | | .
B oy J-w2m where 7, ., are Klein factorskg is they projection of theK

point, andgr=|Eg|/v depends on the doping levgL . The
chiral fields ¢, are related to a pair of dual nonchiral bo-
son fields ¢a(7: ¢Rao’+ ¢Laa’ and 0(10': ¢Ra0'_ ¢Lao"
Jo .. Switching to total/relative charge/spin fieldsg
> pa<wn,Q>}M<Q>+ S (00,0)  =33,(b1,* ba,) aNd bs. =33 ,0(h1,~ ¢5,), and simi-
“ larly for the dual fields, the electronic action including the
9o .. repulsive forward-scattering Coulomb interactions, but
+J, (w,,q)INL(q)+ 7e‘3"’[J1,(wn,q) without phonon exchange, is described by a four-channel
(A=c+,c—,s+,s—) Luttinger liquid?°

The resultS,, 1, defines the phonon-mediated contribution to
the electronic action. In Eq3.1), we use the vector

V(w,,9)=01

+J2:(@n, @) IN_(q). 3.3 ,
Foungr transformmg{l and V, in Equ. (2.12 and (2.13 Sozz EJ' [dd] A 0n0 [wﬁ+(u2)2q2]. 3.7)
specifies the auxiliary vectorsM '(q)=(0,—iq,1R), X uyK

N}(9)=(a.iq,1R), and N_(q)=N*(—q). Using fermi- _ _
onic Matsubara frequencigs,=(2n+1)7/48 and analo- We ignore the small electron-electron backscattering

gous integration measufddp], the electronic densities are Processes in this paper. The velocities arne}=ve/K?,
where K?=1 in all neutral channels\+c+). For the
charged channal®, =v:/K?, , where the Luttinger liquid
parameterKg + depends on the electron-electron interaction
strength;K2+= 1 for the noninteracting problem. In the pres-
ence of unscreened repulsive interactidd$, ~0.2. In the

— rest of the paper, we shall use the symbo|sK, without
Jax(wy ,Q):f [dp]¥a(Pn . P) T+ a(Pnt @y, p+0). superscript to denote the values of the effective parameters

(3.9 renormalized by the phonon exchange. After this short re-

The fermionic(G field t spi h view of bosonization for SWNT's, we now analyze the vari-
e fermionic(Grassmannfie S represent spinors, Where ., o tarms in the phonon-mediated act&f, in Eq. (3.5
we have suppressed the sublattice and spin indices, and PaH ing bosonization

matricesr. = 7, * i 7, act in sublattice space. The integration

over phonons is now straightforward, leading to the phonon-
mediated action contribution IV. ATTRACTIVE INTERACTIONS AND WENTZEL-

BARDEEN SINGULARITY

pol®n,0)= f [dP]¥a(Pn.P) Yol Pnt @n,P+Q).

Similarly, electronic currents are defined as

Sel-ph=~ %f [dalVT(— @, — DA™ (wn,9)V(wn,9). To begin with, there is a dominant forward-scattering term
coupling to the total electronic density, which in bosonized
(3.9 form readSp(y)=(2/\/F)&y¢c+. The respective contribu-
This form will be analyzed in the remainder of the paper. tion to Eq.(3.5 is
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oi Z4(a, 1
sf=—if [dalp(~wq,~ DD wn,A)p(wn,a), ) _ (4.7

The forward scattering due to the stretching mode does not
create a significant attragtive interaction since it is sup-
T 1 pressed by a factowg/vg)“ due to the linear dispersion of
Di(@n,@)=M (= on,~q)A"(wn,q)M(wn,q) this phonon modé! A significant attractive interaction can
2 252 2 only be expected from the breathing mode. Siaggcorre-

= Man(1+q"R) +4uq ] sponds to the room temperature for SWNT radiis4 A,
AoAgR? see Eq(2.10, we neglect retardation effects from the breath-
ing mode in what follows. This approximation can be for-
\ ; mally justified using the two-cutoff scheme of Ref. 19. Sub-
Due to the large deformation potenti@s compared to the gty ting w2+ w2 — w? in Eq. (4.7), interactions mediated by
coupllnggz), It IS mc_let_ed expected to be the_dommant ON€.the preathing mode then simply renormalize parameters in

Notice that the twisting mode, corresponding to the eigeny,q effective LL picture. Concerning the stretching mode, see
value\,, does not contribute t@¢. In order to make ex- g4 (4.6 we do not make such approximation, and keep its
plicit the contributions from the other two phonon branches; s ,ence on the WB singularity exactly.
we can rewriteD; as follows: Straightforward algebra then leads to exactly the action
studied before in Ref. 21,

with the inverse propagator

This is the only phonon exchange contribution of orgér

ZZ(qllu’) + ZS(Q!IU/)

D Q)= , (4.2
lon @)= Frel o2r Q) wi+eXq) “2 B et (@n@?| , , , b’
n n S e ]= | [dol—F——| ontuc. Q" ———— 51|,
. 2Uc+ K whtvy
where we use the functions
(4.9
R? _— 5 ) with the parameter identifications
Z4q,A)==* [—(1+a°R)Me; 5(q) +4AQ7];
’ AE(q) ’ 2 (1012 v/ 2
(4.3 Ugs =(Ucy )"~ v/ wg,
4.9
E(q) is defined in Eq(2.7). The contribution(4.1) thus only b?= yuv3/Bws. 9

operates in the charged channel, there is no effect on the ) ) )
neutral channels. Including the acti@ in Eq. (3.7), the The corresponding LL parametr.. is then given byKe,.

electronic action in the charged channel then takes the forr{j?el;iFn{aLéiC;’s leading directly to Eq(1.1) with the radiusRg

240 1292 297
w2+ (ud,)%q Ro=— L —24+09 A, (4.10
m?hoeA

(4.4 The uncertainty in the estimate f&tg largely results from
the uncertainties about the value @, see above. For this
action (plus the standard free boson action for the neutral

where modes, all correlation functions have been worked out in

Ref. 21, and one can simply adapt their results to the four-
y=2vpg7/ T*AMR?, (4.5  channel case encountered here.
At firg,t sight, when the radiuR reaches the critical value
. R.=(K?,)?Rg, a singularity is found, which corresponds to
:)hoeinttzrdmorjtlafbdoéfs t%%mteviisftri%r; trzf) dt;reg;[g;)nsg (;E?dii' @]Si’sthe WB singularity associated wi'Fh the breathing phon_on
Y T mode. However, due to the additional retarded interaction
forward-scattering phonon exchange term, despite its impor-

tance for the transport coefficients such as the high—mEdIatGd by the stretching mode, i.e. the terb® in Eg.

temperature conductivit{? Notice that the retarded phonon (4.8, t.hls singularity is reaqhed at an even I_arger Fad'.us-
A . ; . - .. Following Ref. 21, the condition for the WB singularity is
exchange contribution comes with a minus sign, indicatin

_ X I . ~ 0 12 .
attractive interactions. go/vs— Uc4 , leading to a critical radiuR.= (K¢, )“Rq with

Further simplifications in Eq4.4) are then possible in the Ro=(A/B)Rg=3.6-1.4 A (4.11)
long-wavelength limit. To lowest order igR, Eq. (4.3 0 B '
gives Z5(q,A)=1 and Z,(q,A)=Av20%/(A—A)w3, so The unexpectedly large value predicted Ry suggests that

1
swﬁ]:gJ [da]|bes (0,002

ZZ(qvlu‘) Zg(q’lu‘)
wites(q)  wi+edq)

2

’

The term related t@, is due to the stretching mode, while

that it may be possible to reach this elusive singularity in prac-
tice. This may come as a surprise, since the standard reason-
Z(qp) pmvig¥Bw? ing tells us that a small ratio between sound and Fermi ve-
> 2 - 7 2.7 (4.6 locity implies ne_gllglk_)le_ effects due to acoustic-phonon
wptex(q)  wptug exchange, and this ratio is rather small in SWNT'’s. However,
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1.4 ; v - v V. OTHER PHONON EXCHANGE CONTRIBUTIONS AND
PEIERLS TRANSITION

Let us now consider the remaining terms in the phonon-
mediated actior§3.5). First, we combingl .. defined in Eq.
(3.4), with a=1,2==* labeling the twoK points, asJ;,
+J, =id;_+Jcpw and J;_+J,, =—iJ._+Jcpw- Here
Jo-=JldplZapp,moth, and Jepw=[[dPIZ aT1tbs-

The reason for these definitions becomes clear once we

/’/’// transform these operators back to real space and transform

from sublattice to chiral space. In the bosonized form,
0.8 ; . . . ch(y):(Z/ﬁ)ayacf and

Scaling dimensions

FIG. 1. Comparison of the scaling dimensions as a function of ~ J.pu(y)= i{cos(Zqu—i— Vrdes)cos\mee )
radiusR (in A) for SC (lower curve$ and CDW (upper curves ma
order parameters. Here we take the deformation potential couplin . . .
const;ntgl:ZS eV. The dashed curves give thepnonretardedpLLg X sin( \/;¢s+)sm(\/;d>s_)+[sm<—>cos]}.
prediction, while the solid curves rely on E.8). The dotted (5.1
vertical line denotes the location of the WB singularity. In the case
of the SC order parameter, the dashed and the solid curves cannbhese expressions show tliat is just the current density in
be distinguished. the c— channel, whereadcpy is the intersublattice CDW
order parameté®’ The phonon interactions involvindicpy
are therefore important in relation to the Peierls transition
and describe phonon backscattering processes.

From Eq.(3.5, we then obtain several other contributions
g} addltlon to theg1 term in Sec. IV, namels’ andS” due
to the 92 andg,g, terms, respectively. Let us start wis

=S[_+Stpw: Where

the effective phonon exchange at work here involtes
phonon branches, namely the stretching mode witf)
=vg|q| and the breathing mode wity(q) = wg . These two
modes reinforce each other in driving the system towards th
WB singularity. In addition, in SWNT's one has a very
strong deformation potential that provides very efficient™
electron-phonon coupling.

An important conclusion in the context of nanotube su-
perconductivity is that this forward-scattering phonon ex-
change process is very efficient in inducing attractive
electron-electron interactions. To judge the importance of the +cog(37)D_(a)] (5.2
stretching mode, we compare the scaling dimensions of vari-
ous order parameters comput@dunder a nonretarded Lut- and
tinger liquid description with LL parametens., and K.,
given in Egs.(4.9 and(1.1), i.e., neglecting the stretching , 92
mode altogether, andi) keeping both the breathing mode SCDW:_TJ [dallcoud @n.@)[*[cOS(37)D + (wn,Q)
and the retarded stretching mode, i.e., the action in(£8),
using a straightforward generalization of exact results from +sir?(37)D_(q)]. (5.3
Ref. 21. Focusing on the scaling dimensions for charge-
density wave(CDW) and singlet superconductivigsC) or-  The inverse propagators ae (q)=g?/\; and
der parameter? this comparison is shown in Fig. 1. Re-

2
st~ [ 14q13. (0, QISP (0r.0)

markably, concerning SC there is practically no difference at Mw?(1+0?R?) +4Bq?

all. For the CDW order parameter, a significant difference is D,(w,,q)= 5

observed only in the close vicinity of the WB singularity. A2AgR

Sufficiently far away from the WB singularity, it is therefore 1 7.(0.B 7.(0.B

possible to neglect the stretching mode and describe the elec- — 2(9.B) 3(9.B) (5.4)
tronic system as a Luttinger liquid witfpossibly attractive MR?| w2+ €5(q) wi+e3(q)|

interactions. The stretching mode then only affects the loca-

tion of the WB singularity, but not the magnitude of the The functionsZ,; were defined in Eq(4.3). In principle,
nonretarded attractive interactions. The LL interactionthere is another contribution ® from mixed terms involv-
strength (including Coulomb interactions and phonon ex-ing the product ofl,_ andJcpy. However, such terms van-
change¢ is determined by the paramet&r.,, which de- ish for a doped SWNT by virtue of momentum conservation.
scribes the attractive interactions #0g, > 1. With Eq.(1.2), In real space, this is reflected by the oscillatory cqsg®
we provide an estimate fdk., as a function of the tube factor appearing idcpy. Since this factor is absent i _
radiusR, the interaction strength parameté&, and vari-  we ignore the mixed terms in what follows. The second con-
ous material parameters. tribution to the action reads
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14

0192 .
S”=1TZSIFI(377)J [ddlpe+(—wn,—Q)

XDl @n,d)de—(@n,0) (5.5 gl
5.,
with o
£
©
- Mwi(1-q°R?) 2
w, B H—] 1
mt@n- 4 oA 3R? 3
_ 1] Z(@  Zya) ] 56
MR? “’ﬁ"’fg(cﬂ w§+€§(O|)' ' 083 4 5 R 3 7 )

5 _—(1_2R2 2 2 ;
\I/Evhere . 2213'(q)E_ +(21 qAItQI)M R 62’3(?)/At$1(q)t,h' W.ItTd FIG. 2. Comparison of the scaling dimensions as a function of
(9) given in Eq.(2.7). ong wavelengins, this yields iusr (in A) for the SC(lower curve and the CDW(upper

Zy(q)= —v%qzlwé andZ;(q)=1. Then Eq(5.6) simplifies  curve order parameter, computed with=0 (dashed curvésand

to €=0.06 (solid curve$. The calculation employs Eq4.8). Taking
g,=25 eV, the value=0.06 corresponds tg,=1.5 eV. We con-

wﬁ/A sider the case of an armchair tube=f 77/6), where the effect o8’

Dm(w,,q<R™H)= (5.7 is most pronounced.

a)ﬁ-i-vngl
Again, there is, in principle, another contribution that arises Next we focus or§8” which mixes thec+ andc— sectors
from mixing pes with Jepw. However, this contribution @and constitutes another forward-scattering mechanism. First,

also vanishes by virtue of momentum conservation and i§/€ observe that this term vanishes for zigzag tubes (
disregarded. =0). Neglecting again retardation in the breathing mode and

Next, we analyze these additional terms using bosonizakeeping only terms to lowest order gR, we find from Eq.
tion, starting with the forward-scattering ter8{_, which
can be treated along the same lines as the forward-scattering

2.2
term in thec+ channel, see Sec. IV. Neglecting retardation ”_ f _ _ @nd
in the breathing mode as above, the long-wavelength action S'=ex | [dQ]¢e; (—wn,—q)0c(wn ’q)wﬁJrvéqz'
for the bosonic fieldd._ including S_ is (5.9

with e=g,/g9, and k=sin(3n)veRs/AR. Introducing the no-

1 . . .
qgc_]zz_f [dq]| 6. (wn,q)|? wﬁ+v§q2 tation® "= (e, ,Ocs , Do ,Qc,), the total actiorfincluding
UF Eq. (4.8) andS"] can be written as

1  4B2g°R%/AZ
sin2(377)(—2+2q—

1
s:—f dql® TSy + €S, ]D, 5.1
o2 Ty 5 [dq] [§o 6_1] (5.10

—v'q?

whereS; is a block-diagonal matrix inq+,c—) space, and

2p2
+co§(377)2q—22 (5.8 S contains the mixing term due ®'. Sincee<1, we pro-
ontuTq ceed by expanding to first order én This allows the explicit

with th rametery’ = 20 <02/ w2AMR3. Amusinalv. th f:alculation of scal!ng dimensipns of all prder parameters qf
€ parametery vrQa/ usingly, the interest. The details about this calculation are contained in

contributions of different phonon modes are weighted by,

chirality-dependent factors. In particular, for zigzag tubesthe Appendix, and the main results are shown in Fig. 2.

(»=0) only the twisting mode contributes, whereas for arm_?lsarly,Nthel efftt_act ?[E ":‘ also velry ;mi”’ even l;lor ve_rk)J/_ thin
chair tubes = m/6) only breathing and stretching modes ubes. Neglecting this term, only the teiB3py describing

do. Again we obtain a WB singularity but now in tlee- theLb?cksc;ﬁtterlntg dph?r?g’] exci[hangeArert'rr\]alnz. i
channel at a corresponding critical radiusR; et us then study cow (ErM. AS S describes an

=295/ m*hvgu. Inserting the parameter values given above effective interaction involvingcpy, this part monitors the
due %0 the ;mé” rati@. /a.. the critical radius is exceed- ‘possibility of a Peierls transition. In order to keep the discus-
. , @2/91, . . sion transparent, we focus on the static limit. Then &)
ingly small, R)~0.02 A. Using the same reasoning as in

Sec. 1V, the effect ofS,_ again leads to a LL action in the reduces to

c— channel, with a renormalization of,_ andK._ . How- 95

ever, such renormalizations amount to small changes of the Scow=— _Lf [dalldcow @n, )% (5.1
order of 102 even for very thin SWNT’s. Therefor§, H

does not imply observable consequences and is omittefiransforming to real space, using the bosonized expression
henceforth. of Jcpw in EQ. (5.2), we find two relevant terms. The first

235418-7



A. DE MARTINO AND R. EGGER PHYSICAL REVIEW B67, 235418 (2003

term is spatially oscillating with wave vectogd, whereqg As mentioned in the Introduction, the phonon-mediated
was defined after Eq3.6). Such a term violates momentum attractive interaction can only drive the system into a true
conservation, and can be dropped on large length scales. Fadperconducting phase if intertube couplings are taken into
mally this follows by noting that it averages to zero. In ad-account. This will be studied in detail elsewhé&tdn order
dition, a second term is produced, leading to a small renorto gain preliminary insights about the intertube phonon ex-
malization of the LL parametersu, and K,. This change effects in a rope of SWNT’s or a multiwall nanotube,
renormalization represents a direct generalization of the ondét us briefly contemplate a simplified model of two parallel
two-channel theory of Voit and Schifzto the four-channel SWNT'’s and study phonon exchange in the presence of elas-
case of interest here. We do not give any details here, sindéc couplings between both tubes. We shall focus on the
the relevant dimensionless coupling constamjém°R, and  breathing mode alone, which will produce the most impor-
the resulting renormalizations are again of order 3,0.e.,  tant effects, and moreover neglect the intertube Coulomb in-
unobservable. Nevertheless, we confirm the finding of Refteractions. This is expected to be a reasonable approximation
15 that the relevant Peierls distortion mode for armchaiif the long-range tails of the interactions are externally
SWNT’s is given by a twist distortion, see E¢p.3. For  screened, but it is straightforward to include these interac-
arbitrary chiral angley, however, the relevant distortion in- tions in the theory in any case. In the long-wavelength limit,
volves a linear combination of all three phonon modes. Fithe breathing mode can be approximated as a dispersionless
nally, we mention that on half filling, the oscillatory contri- mode, leading to the free-phonon action

bution could survive. However, its scaling dimension
suggests that this term is strongly irrelevant unless the
electron-electron backscattering gaps out the neutral chan-
nels. For very thin tubes, these gaps may be sufficiently
pronouncet’ to allow for Eq.(5.11) to be a relevant pertur- Whereu; is the radial componentuf) of the displacement
bation. Provided ., <2, one could possibly expect a small field on tubei,

(twist) Peierls gap in this nearly commensurate situation, see
Ref. 15. However, this would require a detailed analysis of
additional phonon exchange processes, neglected above due
to incommensurability. Away from half filling, we do not see

a possibility for this gap to survive. and «a;,a, are dimensionless parameters. While one can
compute these parameters from a microscopic force-constant
model, here we take them simply as phenomenological pa-
rameters. On general grounds, they must obeyoQ <1,

In this paper, we have studied acoustic-phonon exchang&here «; ;=0 in the absence of intertube couplings. With
mechanisms operating in an individual metallic SWNT. Thetotal electronic densitiep; on tubei=1,2, the dominant
description of phonons within an elastic continuum modelelectron-phonon interaction is due to the deformation poten-
allows for an explicit analytical progress, and we havetial (3.3), producing a contribution
shown that integrating out the phonon system can produce
very substantial attractive electron-electron interactions. For
sufficiently large tube radius, the system can be described by
a standard Luttinger liquid theory, where the interaction pa- _ . . _ _ _ _
rameterK . is renormalized away from the value?, <1 10 the action. We can d|agonal_|ze this action by introducing
describing the theory without phonons but fully taking into Symmetric - and  antisymmetric_ combinationsig o= (uy
account Coulomb interactions. We have shown tkat ~ *U2)/v2 and pga=(p1*p,)/\2. Integrating out the
>1 corresponding to attractive interactions is possible, iPhonons, the forward-scattering contribution in the chan-
particular once the Coulomb interactions are externallyn€l leads to a Luttinger liquid, but with renormalized
screened. These attractive interactions are basically mediat®@rameters,
via a breathing phonon mode. For thin SWNT's, one also has )
to take into account a retarded branch describing a stretching Sc+]= } E J [dd] |¢j,c+| [02+(U; .1)202]
mode. The combined effect of the stretching and the breath- 25 UjcsKjer ™ " J.et '
ing mode then produces a Wentzel-Bardeen singularity at a (6.1
critical radiusR,~3.6 A. Nanotubes may then offer the pos-
sibility to reach this singularity in experiments. Remarkably,
all other mechanisms, e.g., backscattering phonon exchange, 0
turn out to be extremely inefficient in mediating effective K _ Ke+
electron-electron interactions. In particular, based on our slac+™ J1—(K?%,)2Rg/fysR’
analysis, it should be extraordinarily difficult to observe ot Bl
traces of the Peierls transition. As our treatment is essentiallwherefg,=1+ o+ «; .
exact, we believe that this also invalidates some earlier There are now two types of superconducting order param-
theories that were mainly based on the mean-fielceters. Focusing on the most important singlet superconduct-
approximations. ing fluctuations, there is one operator describing a Cooper

M
S=or [dq]i’j;zui<—wn,—q>An<wn>u,—<wn,q%

wﬁ-f—wé(l-i— a)) —atwé

— 03 witwi(l+a))’

Aij(wn)=

VI. DISCUSSION AND CONCLUSIONS

(91/277R2)f [da]l 2, pi(—wn,—ui(w,,0)
i=1,2

whereug, o+ =vp/Kga e+ - The interaction parameters are

(6.2
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pair on the same tub@©T%%,, and another one where the Sec. V. With the notatior™= (e ,fc+ ,de—,0c-), the
electrons forming the Cooper pair reside on different tubesfull action in the total/relative charge channels is E810

Oisngeéoy with explicit form with the block-diagonal matri>§0=diag(éC+ ,éc_), where
2 244
A u beq*/ve )
Ogg%DN U‘/’l,raa'wl,frfafo'l A - 25 > —lwp(q
raoc éc+: UF wn+vsq ’
inter _iwnq qu2
Osso™ 2 0¥1rac2-r1—a—o» , .
rao VEQ —lwnq
where 15, 4 _is the_ elect_ron spinor on tube 1/2. From Eq. éc‘_ —iwyq  veg? )’
(6.1), the scaling dimensions of these operators are as fol- .
lows Furthermore, the mixing term leads to a mat8x, whose
only nonzero entry is N
intra 1 1 1 2.2 2 242
Asscnzg 6+ m*‘ Kooy’ (6.3 (Sp)14= (Sp)ar= k@ (wp+vsa),
L L where « is defined after Eq(5.9). We then expand to first
Aiggegnzg(m K +Ka,c+). (6.4 Orderine,
' +€S)) =51 - €S, 15,5, 1+ O(€2
Two conclusions can be drawn from the inspection of these (§O —l) §0 §0 —1§0 ()
scaling dimensions. First, for the intertube couplings with 0O H
sufficiently larger thana,, attractive interactions within a =S ek yT -
given tube are increased. Second, whenelgr..,>1, _ 0

which holds true in the absence of Coulomb interactions, th&ome algebra yields for the matrik the following result:
intratube superconducting order parameter is always more —

relevant than the intertube one. In other words, we expect ((ivan/Q)P vipP )

that Cooper pairs predominantly form on a given tylpeit H= , i ,
not across different tubes. Remarkably, this conclusion does - P (lvpwy/q)P
not depend on the values af ;. Clearly, this finding will be  where

important in the theoretical analysis of the experiments on

SWNT ropes and related systems. Of course, within a single- F QP v2,F QP

. . B , ipr B
or double-tube model, there is no true superconducting tran-  P= 2 T o o P = ST
sition. To realistically compare with experimentally observed p==1 @ntuigd B==1 wntuigh

critical temperatures, it will be crucial to study ropes or mul- yerej=0,1,2 and we denoted;.=vs,v,. =ve. The ve-

tiwal_l tubes composed of many individual tubes. locities vo-=v. and the coefficients ;,C, are given in
Finally, we briefly address the role of electron-electronpes 21-

backscattering, which has been neglected in our study. From

Ref. 20, backscattering is expected to open small gaps that 202 =u2, +v27 (U2, —v3)?2+4b?,
depend exponentially on the radiBsWhile forR>5 A, the B

gap is extremely small and of no relevance in practice, for v2—p2

ultrathin tubes R~2 A) the gaps may be more important. FBZZB—25’

However, in this limit also the band structure may change in vg—vig

a profound way due to hybridization af ando orbitals, and

the analysis of Ref. 20 cannot simply be taken over. In ad- Ugs vé—u§+ b2/u§+
dition, the presence of the Wentzel-Bardeen singularity poses CBZU— %

an intrinsic lower limit to the validity and self-consistency of A Vg~ U-p

our effective low-energy approach. With the predicted valuerinally, the coefficient®Q? are defined by
Ro~3.6 A, we therefore do not expect that backscattering

leads to dramatic changes to the picture put forth in this —v2
paper. Qo= — :
(209 (i-vd)
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APPENDIX: PERTURBATIVE TREATMENT OF S’

—y2

In this appendix, we briefly describe some details con- Q=7 7
cerning the perturbative treatment 8f, see Eq.(5.9), in (vE—vg)(vE—v%)

235418-9



A. DE MARTINO AND R. EGGER
With this, it is straightforward to compute correlation func-

tions for the bosonic field. Th&=0 equal-time correlation
functions(®;(x)®;(0)) are given by

(Pi(x)®;(0))=— f—;m([x% a?)/L3),

wherea and L, are UV and IR cutoff lengths. The only
nonzero entries 0G;; are G3z=Gy,=1 and

Gl].:% UFFB/UB,

PHYSICAL REVIEW B67, 235418 (2003
Gi=— sm@; FsQflvig,
G222% Uc+Cplug,
Goz=— GK; UiﬁFBQiﬁ.

With this, the scaling dimension of any operator
exdia'®(X)] is found asa'Ga/4rr.
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