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Acoustic phonon exchange, attractive interactions, and the Wentzel-Bardeen singularity
in single-wall nanotubes

A. De Martino and R. Egger
Institut für Theoretische Physik, Heinrich-Heine Universita¨t, D-40225 Düsseldorf, Germany
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We derive the effective low-energy theory for interacting electrons in metallic single-wall carbon nanotubes,
taking into account phonon exchange due to twisting, stretching, and breathing modes within a continuum
elastic description. In many cases, the nanotube can be described as a standard Luttinger liquid with possibly
attractive interactions. We predict surprisingly strong attractive interactions for thin nanotubes. Once the tube
radius reaches a critical valueR0'3.661.4 Å, the Wentzel-Bardeen singularity is approached, accompanied
by strong superconducting fluctuations. The surprisingly largeR0 indicates that this singularity could be
reached experimentally. We also discuss the conditions for a Peierls transition due to acoustic phonons.
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I. INTRODUCTION

Superconductivity in carbon nanotubes has lately gen
ated a lot of interest. Experimental observations include
unexpectedly strong proximity effect in single-wall nan
tubes~SWNT’s!,1,2 fluctuation superconductivity in ultrathin
SWNT’s,3 and intrinsic BCS-type behavior in ‘‘ropes’’ con
taining many SWNT’s.4 These experiments have in turn le
to a number of theoretical papers.5–8 In particular, the au-
thors of Refs. 5,6 argue that phonon exchange holds res
sible for some attractive electron-electron interaction. T
value or even order of magnitude of the electron-phon
coupling was, however, left open or simply extracted by
ting experimental curves. In this work, we wish to fill th
gap and provide a quantitative analysis of phonon-media
retarded electron-electron interactions in a metallic SWN
~The theory also holds qualitatively for a heavily dop
semiconducting SWNT.! Below we include the usual~repul-
sive! Coulomb interactions in the effective low-energ
theory valid at energiesuEu,vF /R, with Fermi velocityvF

and SWNT radiusR ~for notational convenience, we wil
often use units where\51). We assume that the SWNT
doped away from the charge neutrality point,EFÞ0, i.e., an
incommensurate situation, which is normally encountered
practice. Then electron-phonon and electron-electron U
klapp processes can be neglected.

Besides mediating possibly attractive interactions, the
fect of phonons on the electronic system could, in princip
lead to two instabilities: the well-known Peierls transition9

associated to the development of a charge-density wave;
the Wentzel-Bardeen~WB! singularity,10 associated to the
collapse of the system due to the onset of a negative c
pressibility beyond a critical value of the electron-phon
coupling. All these issues can be investigated by integra
out the phonons and studying the electron system alo
since the relevant backscattering electron-phonon inte
tions are weak.11 This is the approach taken in our paper. O
treatment of phonons expands on the recent work by Suz
and Ando,12 where the field theory foracoustic phononsand
their coupling to electrons in SWNT’s was derived. Optic
phonons were ignored in this theory as well as in ours,
0163-1829/2003/67~23!/235418~10!/$20.00 67 2354
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the breathing mode~which has finite frequencyvB as q
→0) is considered in both. The neglect of optical phono
should create no major problem for the issues at stake h
since they do not produce sizable attractive interactions n
WB singularity. Their relevance for the Peierls transition
discussed briefly below. The theory of Ref. 12 is analytica
tractable and, moreover, appears to be in excellent agree
with the local-density-functional calculations even for ultr
thin (R'2 Å) nanotubes.13 For instance, we find that the
frequency of the breathing mode computed in Ref. 13 co
cides to within 4% with the value extracted from the co
tinuum theory of Ref. 12. Furthermore, the predicted va
for the twist velocityvT below is consistent with Refs. 14,15
This is fortunate since the previous estimates for
electron-phonon coupling16,17were only qualitative in nature
and did not even agree on orders of magnitude. For rela
theoretical work on acoustic phonons and electron-pho
interactions in SWNT’s, see Ref. 18.

As we show in detail below, the phonon-mediated effe
tive attraction among electrons is very strong for sufficien
thin nanotubes. The dominant phonon exchange proce
involve two phonon modes, namely the stretching and
breathing mode. The stretching mode has a linear disper
characterized by a velocityvS , while the breathing mode ha
a finite frequencyvB at long wavelengths. Following genera
arguments,11,19 for a large part of the relevant paramet
space, the influence of the stretching mode is negligib
Then the system can be described as aLuttinger liquid ~LL !
with standard interaction parameterKc1 in the charged
channel,20 whereKc151 for noninteracting electrons. Pho
non exchange involving the breathing mode implies

Kc15
Kc1

0

A12~Kc1
0 !2RB /R

, ~1.1!

where RB is a length scale depending on the deformat
potential and the breathing mode frequencyvB . Estimates
for these parameters given below suggestRB52.460.9 Å.
Here Kc1

0 <1 characterizes the repulsive Coulomb intera
tions, whereKc1

0 '0.2 for unscreened interactions.20 Notice
that without external screening, phonon exchange is not
©2003 The American Physical Society18-1
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evant, andKc1'Kc1
0 . However, once the Coulomb intera

tions are externally screened off, e.g., by nearby gate e
trodes, we getKc1

0 '1, and Eq.~1.1! predicts surprisingly
strongattractive interactions(Kc1.1). For a (10,10) arm-
chair tube withR56.79 Å, the LL parameter is thenKc1

'1.3, i.e., significantly larger than the noninteracting val
These attractive interactions get stronger for thin
nanotubes.

As we discuss below, the neglect of the retarded inter
tion due to the stretching mode, leading to a~four-channel!
LL with interaction parameterKc1 given by Eq.~1.1! and
interaction parametersKl51 in the three neutral channe
~see below!, is valid providedR is sufficiently large com-
pared to the ‘‘critical radius’’Rc5(Kc1

0 )2R0, whereR0 is
slightly larger thanRB , R053.661.4 Å. Only in the imme-
diate vicinity of this radius, the retarded interaction media
by the stretching phonon mode has to be kept explicitly. T
critical radius defines the location of the so-called W
singularity.10 For R<Rc , our model breaks down, and
transition to a phase-separated state is expected. Pre
work by Loss and Martin21 studied the WB singularity in
detail for one-dimensional~1D! systems, but a concret
physical realization seemed out of reach due to the sm
ratio between sound and Fermi velocity in all systems c
sidered so far. We argue below that SWNT’s with screen
off interactions may offer the possibility to reach this elusi
singularity, which has never been observed experiment
This is remarkable since the ratio between sound and Fe
velocity is still small. However, in a SWNT the stretchin
and the breathing phonon modes collaborate in driving
system towards the WB singularity in a very efficie
manner.

Moreover, the closeness to the WB singularity holds
sponsible for rather strong superconducting fluctuatio
From our theory, estimates for the attractive interactions g
erated via phonon exchange are obtained. To describe
of the issues raised by the experiments of Refs. 3,4 i
quantitative way, it will however be important to also an
lyze the effect of the various intertube couplings in SWN
ropes or crystals in more detail. Employing a mean-field
proximation for Josephson couplings, the standard
Ginzburg-Landau description can be obtained.22 In this pa-
per, we focus on the phonon-mediated electron-electron
teraction within a given nanotube, and postpone a full d
cussion of experimentally relevant quantities to a futu
publication.23

The present paper also sheds light on the recent dis
sion about the possibility of a Peierls transition
SWNT’s.15,24–26Notably, even in the incommensurate situ
tion studied here, in principle a Peierls transition can occu27

although the resulting pseudogap is expected to be wiped
by quantum fluctuations.11 Within a mean-field approxima
tion, the Peierls transition due to optical phonons has b
studied in Refs. 24–26, resulting in a Kekule´-type modula-
tion. Since we only treat acoustic phonons, we have noth
to say about this issue. However, a recent theoretical w
including acoustic phonons has pointed out the possibility
a sizable Peierls gap in thin armchair SWNT’s.15 This Peierls
modulation was found to correspond to a twist distortion
23541
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the SWNT. Below we study arbitrary metallic SWNT’s, an
indeed confirm that the relevant Peierls distortion for an a
chair SWNT would correspond to tube twisting. In additio
we will find the proper mode for any metallic SWNT. Ou
findings follow from analyzing backscattering phonon e
change, which operates at the doping-dependent wave ve
2qF , where qF5uEFu/vF . Based on our essentially exa
results, we do not expect that the Peierls transition predic
in Ref. 15 is observable, at least not for an individual SWN
away from the neutrality point. According to our theory,
Peierls gap in the 1D sense11 could only be possible for very
thin SWNT’s and under rather stringent conditions.

The outline of the paper is as follows. In Sec. II, w
briefly summarize the elastic continuum theory for phono
and the electron-phonon interaction. The resulting effect
electron-electron interaction generated by the phonon
change is derived in Sec. III. The dominant forwar
scattering process, the Luttinger liquid with attractive int
actions, and the Wentzel-Bardeen singularity are discusse
Sec. IV. The remaining phonon exchange terms and
Peierls transition are studied in Sec. V. Some details conc
ing Sec. V have been transferred to the Appendix. Finally,
discuss the relevance of intertube phonon exchange and
clude in Sec. VI.

II. ACOUSTIC PHONONS AND ELECTRON-PHONON
COUPLING

Here we shall always assume a suspended~free-standing!
tube. With regard to the important phonon modes coupling
the low-energy electrons, this should be an accurate assu
tion both for SWNT’s embedded in a zeolite matrix3 or in a
rope.4 However, modifications may arise for individua
SWNT’s on a substrate, where phonon modes could
pinned. Let us then briefly summarize the main results
Ref. 12, where acoustic phonons in SWNT’s are descri
by an elastic continuum theory. The Euclidean action is

S5E dtd2r $~M /2!u̇Tu̇1U@u#1Uc@u#%, ~2.1!

where the row vectoruT(rW)5(ux ,uy ,uz) is the displacemen
field ~the symbolT stays for matrix transposition! and rW
5(x,y) denotes a point on the tube. The displacement fi
in this approximation does not discriminate among t
graphite sublattices, and hence will not describe opti
phonons. The coordinate system is chosen as follows. Ty
axis points along the tube, 0<x<2pR around the circum-
ference, andz denotes the direction perpendicular to the tu
surface. The elastic potential-energy density in Eq.~2.1! is
given by

U@u#5
1

2
$B~uxx1uyy!

21m@~uxx2uyy!
214uxy

2 #%,

where the strain tensor is defined by the relationsuyy
5]yuy , 2uxy5]yux1]xuy , and, due to the cylindrical ge
ometry, uxx5]xux1uz /R. Furthermore, the curvature
induced potential-energy density is
8-2
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ACOUSTIC PHONON EXCHANGE, ATTRACTIVE . . . PHYSICAL REVIEW B 67, 235418 ~2003!
Uc@u#5~a2J/2!@~]x
21]y

21R22!uz#
2.

In the above expressions,a52.46 Å is the lattice constant
and the carbon mass per unit area isM53.80
31027 kg/m2. The bulk modulusB and the shear modulu
m are accurately known for bulk graphite,28

B/M52.903108 m2/sec2,
~2.2!

m/M5vT
251.513108 m2/sec2.

Finally, the normal-force constant isJ/M56.19
3106 m2/sec2. Since J!B,m and the curvature-induce
terms are additionally suppressed in the long-wavelen
limit, terms related toJ are neglected in what follows. It is
then convenient to switch to Fourier space,

u~t,rW !5
1

bL (
vn ,qx

E dqy

2p
e2 i (vnt2qW •rW)u~vn ,qW !,

whereqW 5(qx ,qy), vn52pn/b with b51/kBT are Matsub-
ara frequencies,L52pR is the circumference of the tube
andqx5n/R, where integern denotes the discrete transver
momenta. The action~2.1! then reads

S5
1

2bL (
vn ,qx

E dqy

2p
uT~2vn ,2qW !A~vn ,qW !u~vn ,qW !,

~2.3!

whereA is given by the matrix

S Mvn
21Dqx

21mqy
2 Bqxqy 2 iD

qx

R

Bqxqy Mvn
21Dqy

21mqx
2

2 i ~B2m!
qy

R

iD
qx

R
i ~B2m!

qy

R
Mvn

21
D

R2

D
with D5B1m.

Our strategy is to integrate out phonons, which is va
unless the electron-phonon coupling is very strong and
soft phonon modes are present, see Ref. 11. These req
ments are met in our case. In order to proceed, we then n
the inverse ofA, whose general form is straightforward
obtain but not required here. The only transverse momen
relevant for the effective interaction isqx50, since only the
corresponding electronic states have to be kept at low-en
scales. Therefore we focus on this special limit hencefo
Puttingqy5q andqx50, the inverse ofA reads

A215S 1

l1
0 0

0
Mvn

2R21D

l2l3R2

i ~B2m!q

l2l3R

0 2
i ~B2m!q

l2l3R

Mvn
21Dq2

l2l3

D , ~2.4!
23541
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where

l i5M @vn
21e i

2~q!#, i 51,2,3 ~2.5!

are the eigenvalues ofA. Heree1
2(q)5vT

2q2 with vT in Eq.
~2.2!, and

e2,3
2 ~q!5~vB

2/2!@11q2R27E~q!# ~2.6!

with

E~q!5@112q2R2~128Bm/D2!1q4R4#1/2. ~2.7!

In the long-wavelength limit,qR!1, further simplifications
are possible. Although the theory is valid also for largerqR,
we shall make this inessential approximation whenever
propriate. To lowest order inqR, we obtain for the three
eigenmodes

e1
2~q!5vT

2q2, e2
2~q!5vS

2q2, e3
2~q!5vB

2 , ~2.8!

where

vS
254Bm/DM , vB

25D/MR2. ~2.9!

The eigenmodes corresponding tol1,2,3 are the twisting,
stretching, and breathing phonon modes, respectively.
sound velocities for the twisting and stretching modes arevT
andvS , and the breathing mode frequency isvB . From Eq.
~2.2!, we obtain the following estimates:

vT51.233104 m/sec,

vS51.993104 m/sec, ~2.10!

\vB5
0.14

R
eV Å.

Note that bothvS and vT are much smaller than the Ferm
velocity vF583105 m/sec. The stretching mode corre
sponds to the longitudinal-acoustic phonon, while the tw
ing and breathing ones correspond to transverse-aco
phonons.

Next we address the coupling of the phonon modes
electrons. The relevant electron states for a metallic SW
are spinorscpas(y),20 where p56 denotes the sublattice
~the honeycomb lattice has two basis atoms!, a56 labels
the two distinctK points, ands56 the spin. Suppressing
the a,s indices, the electron-phonon~el-ph! coupling corre-

sponds to Hamiltonian densitiesH el-ph
K,K8 for the twoK points,

H el-ph
K 5S V1 V2

V2* V1
D , H el-ph

K8 5S V1 V2*

V2 V1
D . ~2.11!

Here thedeformation potentialis

V15g1~uxx1uyy!, ~2.12!

whereg1'16 eV in bulk graphite.29 For a 2D graphite shee
this value should be multiplied by 3/2,12 and we therefore
take the estimateg1'20–30 eV. The off-diagonal terms in
the sublattice space arise from a bond-length change,
8-3
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V25g2e3ih~uxx2uyy12iuxy!, ~2.13!

whereh is the chiral angle, withh50 for zigzag tubes and
h5p/6 for armchair tubes. The respective coupling const
is g2'1.5 eV.12 Although both the free electron and the fre
phonon low-energy theories do not depend on chirality,
V2 term in the electron-phonon coupling does.

III. INTERACTIONS FROM PHONON EXCHANGE

We can now integrate out the phonons and obtain an
fective action for the electrons, which includes the phon
mediated retarded interaction. To that purpose, we eval
the Gaussian path integral for the phonons,

E Du expH 2
1

2LE @dq#@uT~2vn ,2q!A~vn ,q!u~vn ,q!

12VT~2vn ,2q!u~vn ,q!#J 5e2Sel-ph, ~3.1!

with the notation

E @dq#5
1

b (
vn

E
2`

` dq

2p
. ~3.2!

The resultSel-ph defines the phonon-mediated contribution
the electronic action. In Eq.~3.1!, we use the vector

V~vn ,q!5g1F(
a

ra~vn ,q!GM ~q!1
g2

2
e3ih@J11~vn ,q!

1J22~vn ,q!#N1~q!1
g2

2
e23ih@J12~vn ,q!

1J21~vn ,q!#N2~q!. ~3.3!

Fourier transformingV1 and V2 in Eqs. ~2.12! and ~2.13!
specifies the auxiliary vectorsMT(q)5(0,2 iq,1/R),
N1

T (q)5(q,iq,1/R), and N2(q)5N1* (2q). Using fermi-
onic Matsubara frequenciespn5(2n11)p/\b and analo-
gous integration measure*@dp#, the electronic densities ar

ra~vn ,q!5E @dp#c̄a~pn ,p!ca~pn1vn ,p1q!.

Similarly, electronic currents are defined as

Ja6~vn ,q!5E @dp#c̄a~pn ,p!t6ca~pn1vn ,p1q!.

~3.4!

The fermionic~Grassmann! fields represent spinors, wher
we have suppressed the sublattice and spin indices, and
matricest65t16 i t2 act in sublattice space. The integratio
over phonons is now straightforward, leading to the phon
mediated action contribution

Sel-ph52
1

2LE @dq#VT~2vn ,2q!AI 21~vn ,q!V~vn ,q!.

~3.5!

This form will be analyzed in the remainder of the paper
23541
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To make further progress, it is convenient to invoke t
Abelian bosonization scheme adapted to SWNT’s.20 To keep
the paper self-contained, we briefly review the ingredie
needed for our subsequent discussion. This requires fir
unitary transformation in the sublattice space, which tra
forms the free-electron Hamiltonian into the standard fo
containing right- and left-moving fields, cpas

5( r 5R/L56Uprc̃ ras , where

U5
2e2 ip/4

A2
S 1 1

i 2 i D .

Under the unitary transformation, we have to replacet2
→t3 , t3→t1 , and t1→t2. We then work in the trans-
formed picture, and omit the tilde in the field operato
henceforth. The bosonization formula for the electron ope
tor is20

c ras~y!5
h ras

A2pa
exp$ i ~rqFy1akFy1rA4pf ras!%,

~3.6!

whereh ras are Klein factors,kF is they projection of theK
point, andqF5uEFu/vF depends on the doping levelEF . The
chiral fieldsf ras are related to a pair of dual nonchiral bo
son fields fas5fRas1fLas and uas5fRas2fLas .
Switching to total/relative charge/spin fieldsfc6

5 1
2 (s(f1s6f2s) andfs65 1

2 (ss(f1s6f2s), and simi-
larly for the dual fields, the electronic action including th
repulsive forward-scattering Coulomb interactions, b
without phonon exchange, is described by a four-chan
(l5c1,c2,s1,s2) Luttinger liquid,20

S05(
l

1

2E @dq#
ufl~vn ,q!u2

ul
0Kl

0 @vn
21~ul

0!2q2#. ~3.7!

We ignore the small electron-electron backscatter
processes20 in this paper. The velocities areul

05vF /Kl
0 ,

where Kl
051 in all neutral channels (lÞc1). For the

charged channeluc1
0 5vF /Kc1

0 , where the Luttinger liquid
parameterKc1

0 depends on the electron-electron interacti
strength;Kc1

0 51 for the noninteracting problem. In the pre
ence of unscreened repulsive interactions,Kc1

0 '0.2. In the
rest of the paper, we shall use the symbolsul ,Kl without
superscript to denote the values of the effective parame
renormalized by the phonon exchange. After this short
view of bosonization for SWNT’s, we now analyze the va
ous terms in the phonon-mediated actionSel-ph in Eq. ~3.5!
using bosonization.

IV. ATTRACTIVE INTERACTIONS AND WENTZEL-
BARDEEN SINGULARITY

To begin with, there is a dominant forward-scattering te
coupling to the total electronic density, which in bosoniz
form readsr(y)5(2/Ap)]yfc1 . The respective contribu
tion to Eq.~3.5! is
8-4
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Sf52
g1

2

2LE @dq#r~2vn ,2q!D f~vn ,q!r~vn ,q!,

~4.1!

with the inverse propagator

D f~vn ,q!5MT~2vn ,2q!A21~vn ,q!M ~vn ,q!

5
Mvn

2~11q2R2!14mq2

l2l3R2
.

This is the only phonon exchange contribution of orderg1
2.

Due to the large deformation potential~as compared to the
couplingg2), it is indeed expected to be the dominant on

Notice that the twisting mode, corresponding to the eig
value l1, does not contribute toD f . In order to make ex-
plicit the contributions from the other two phonon branch
we can rewriteD f as follows:

D f~vn ,q!5
1

MR2 F Z2~q,m!

vn
21e2

2~q!
1

Z3~q,m!

vn
21e3

2~q!
G , ~4.2!

where we use the functions

Z2,3~q,L!56
R2

DE~q!
@2~11q2R2!Me2,3

2 ~q!14Lq2#;

~4.3!

E(q) is defined in Eq.~2.7!. The contribution~4.1! thus only
operates in the charged channel, there is no effect on
neutral channels. Including the actionS0 in Eq. ~3.7!, the
electronic action in the charged channel then takes the f

S@fc1#5
1

2vF
E @dq#ufc1~vn ,q!u2Fvn

21~uc1
0 !2q2

2gq2S Z2~q,m!

vn
21e2

2~q!
1

Z3~q,m!

vn
21e3

2~q!
D G , ~4.4!

where

g52vFg1
2/p2\MR3. ~4.5!

The term related toZ2 is due to the stretching mode, whil
the term related toZ3 comes from the breathing mode. A
pointed out above, the twisting mode drops out in t
forward-scattering phonon exchange term, despite its im
tance for the transport coefficients such as the hi
temperature conductivity.14 Notice that the retarded phono
exchange contribution comes with a minus sign, indicat
attractive interactions.

Further simplifications in Eq.~4.4! are then possible in the
long-wavelength limit. To lowest order inqR, Eq. ~4.3!
gives Z3(q,L)51 and Z2(q,L)5LvS

2q2/(D2L)vB
2 , so

that

Z2~q,m!

vn
21e2

2~q!
5

mvS
2q2/BvB

2

vn
21vS

2q2
, ~4.6!
23541
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Z3~q,m!

vn
21e3

2~q!
5

1

vn
21vB

2
. ~4.7!

The forward scattering due to the stretching mode does
create a significant attractive interaction since it is su
pressed by a factor (vS /vF)2 due to the linear dispersion o
this phonon mode.11 A significant attractive interaction ca
only be expected from the breathing mode. SincevB corre-
sponds to the room temperature for SWNT radiusR'4 Å,
see Eq.~2.10!, we neglect retardation effects from the brea
ing mode in what follows. This approximation can be fo
mally justified using the two-cutoff scheme of Ref. 19. Su
stitutingvn

21vB
2→vB

2 in Eq. ~4.7!, interactions mediated by
the breathing mode then simply renormalize parameter
the effective LL picture. Concerning the stretching mode,
Eq. ~4.6!, we do not make such approximation, and keep
influence on the WB singularity exactly.

Straightforward algebra then leads to exactly the act
studied before in Ref. 21,

S@fc1#5E @dq#
ufc1~vn ,q!u2

2uc1Kc1
Fvn

21uc1
2 q22

b2q4

vn
21vS

2q2G ,

~4.8!

with the parameter identifications

uc1
2 5~uc1

0 !22g/vB
2 ,

~4.9!
b25gmvS

2/BvB
2 .

The corresponding LL parameterKc1 is then given byKc1

5vF /uc1 , leading directly to Eq.~1.1! with the radiusRB
defined as

RB5
2g1

2

p2\vFD
52.460.9 Å. ~4.10!

The uncertainty in the estimate forRB largely results from
the uncertainties about the value forg1, see above. For this
action ~plus the standard free boson action for the neu
modes!, all correlation functions have been worked out
Ref. 21, and one can simply adapt their results to the fo
channel case encountered here.

At first sight, when the radiusR reaches the critical value
Rc5(Kc1

0 )2RB , a singularity is found, which corresponds
the WB singularity associated with the breathing phon
mode. However, due to the additional retarded interact
mediated by the stretching mode, i.e. the term;b2 in Eq.
~4.8!, this singularity is reached at an even larger radi
Following Ref. 21, the condition for the WB singularity i
b/vS5uc1 , leading to a critical radiusRc5(Kc1

0 )2R0 with

R05~D/B!RB53.661.4 Å. ~4.11!

The unexpectedly large value predicted forR0 suggests that
it may be possible to reach this elusive singularity in pra
tice. This may come as a surprise, since the standard rea
ing tells us that a small ratio between sound and Fermi
locity implies negligible effects due to acoustic-phon
exchange, and this ratio is rather small in SWNT’s. Howev
8-5
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the effective phonon exchange at work here involvestwo
phonon branches, namely the stretching mode withe2(q)
5vSuqu and the breathing mode withe3(q)5vB . These two
modes reinforce each other in driving the system towards
WB singularity. In addition, in SWNT’s one has a ve
strong deformation potential that provides very efficie
electron-phonon coupling.

An important conclusion in the context of nanotube s
perconductivity is that this forward-scattering phonon e
change process is very efficient in inducing attract
electron-electron interactions. To judge the importance of
stretching mode, we compare the scaling dimensions of v
ous order parameters computed~i! under a nonretarded Lut
tinger liquid description with LL parametersuc1 and Kc1

given in Eqs.~4.9! and ~1.1!, i.e., neglecting the stretchin
mode altogether, and~ii ! keeping both the breathing mod
and the retarded stretching mode, i.e., the action in Eq.~4.8!,
using a straightforward generalization of exact results fr
Ref. 21. Focusing on the scaling dimensions for char
density wave~CDW! and singlet superconductivity~SC! or-
der parameters,20 this comparison is shown in Fig. 1. Re
markably, concerning SC there is practically no difference
all. For the CDW order parameter, a significant difference
observed only in the close vicinity of the WB singularit
Sufficiently far away from the WB singularity, it is therefor
possible to neglect the stretching mode and describe the
tronic system as a Luttinger liquid with~possibly! attractive
interactions. The stretching mode then only affects the lo
tion of the WB singularity, but not the magnitude of th
nonretarded attractive interactions. The LL interacti
strength ~including Coulomb interactions and phonon e
change! is determined by the parameterKc1 , which de-
scribes the attractive interactions forKc1.1. With Eq.~1.1!,
we provide an estimate forKc1 as a function of the tube
radiusR, the interaction strength parameterKc1

0 , and vari-
ous material parameters.

FIG. 1. Comparison of the scaling dimensions as a function
radius R ~in Å! for SC ~lower curves! and CDW ~upper curves!
order parameters. Here we take the deformation potential coup
constantg1525 eV. The dashed curves give the nonretarded
prediction, while the solid curves rely on Eq.~4.8!. The dotted
vertical line denotes the location of the WB singularity. In the ca
of the SC order parameter, the dashed and the solid curves ca
be distinguished.
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V. OTHER PHONON EXCHANGE CONTRIBUTIONS AND
PEIERLS TRANSITION

Let us now consider the remaining terms in the phon
mediated action~3.5!. First, we combineJa6 defined in Eq.
~3.4!, with a51,256 labeling the twoK points, asJ11

1J225 iJc21JCDW and J121J2152 iJc21JCDW . Here
Jc25*@dp#(aac̄at2ca and JCDW5*@dp#(ac̄at1ca .
The reason for these definitions becomes clear once
transform these operators back to real space and trans
from sublattice to chiral space. In the bosonized for
Jc2(y)5(2/Ap)]yuc2 and

JCDW~y!5
4

pa
$cos~2qFy1Apfc1!cos~Apfc2!

3sin~Apfs1!sin~Apfs2!1@sin↔cos#%.

~5.1!

These expressions show thatJc2 is just the current density in
the c2 channel, whereasJCDW is the intersublattice CDW
order parameter.20 The phonon interactions involvingJCDW
are therefore important in relation to the Peierls transit
and describe phonon backscattering processes.

From Eq.~3.5!, we then obtain several other contribution
in addition to theg1

2 term in Sec. IV, namelyS8 andS9 due
to theg2

2 andg1g2 terms, respectively. Let us start withS8
5Sc28 1SCDW8 , where

Sc28 52
g2

2

L E @dq#uJc2~vn ,q!u2@sin2~3h!D1~vn ,q!

1cos2~3h!D2~q!# ~5.2!

and

SCDW8 52
g2

2

L E @dq#uJCDW~vn ,q!u2@cos2~3h!D1~vn ,q!

1sin2~3h!D2~q!#. ~5.3!

The inverse propagators areD2(q)5q2/l1 and

D1~vn ,q!5
Mvn

2~11q2R2!14Bq2

l2l3R2

5
1

MR2 F Z2~q,B!

vn
21e2

2~q!
1

Z3~q,B!

vn
21e3

2~q!
G . ~5.4!

The functionsZ2,3 were defined in Eq.~4.3!. In principle,
there is another contribution toS8 from mixed terms involv-
ing the product ofJc2 andJCDW . However, such terms van
ish for a doped SWNT by virtue of momentum conservatio
In real space, this is reflected by the oscillatory cos(2qFy)
factor appearing inJCDW . Since this factor is absent inJc2 ,
we ignore the mixed terms in what follows. The second co
tribution to the action reads

f

ng
L

e
not
8-6
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S95
g1g2

L
sin~3h!E @dq#rc1~2vn ,2q!

3Dm~vn ,q!Jc2~vn ,q! ~5.5!

with

Dm~vn ,q!5
Mvn

2~12q2R2!

l2l3R2

5
1

MR2 F Z̃2~q!

vn
21e2

2~q!
1

Z̃3~q!

vn
21e3

2~q!
G , ~5.6!

where Z̃2,3(q)57(12q2R2)MR2e2,3
2 (q)/DE(q), with

E(q) given in Eq. ~2.7!. At long wavelengths, this yields
Z̃2(q)52vS

2q2/vB
2 andZ̃3(q)51. Then Eq.~5.6! simplifies

to

Dm~vn ,q!R21!5
vn

2/D

vn
21vS

2q2
. ~5.7!

Again, there is, in principle, another contribution that aris
from mixing rc1 with JCDW . However, this contribution
also vanishes by virtue of momentum conservation and
disregarded.

Next, we analyze these additional terms using boson
tion, starting with the forward-scattering termSc28 , which
can be treated along the same lines as the forward-scatt
term in thec1 channel, see Sec. IV. Neglecting retardati
in the breathing mode as above, the long-wavelength ac
for the bosonic fielduc2 including Sc28 is

S@uc2#5
1

2vF
E @dq#uuc2~vn ,q!u2H vn

21vF
2q2

2g8q2F sin2~3h!S 1

vB
2

1
4B2q2R2/D2

vn
21vS

2q2 D
1cos2~3h!

q2R2

vn
21vT

2q2G J , ~5.8!

with the parameterg852vFg2
2/p2\MR3. Amusingly, the

contributions of different phonon modes are weighted
chirality-dependent factors. In particular, for zigzag tub
(h50) only the twisting mode contributes, whereas for ar
chair tubes (h5p/6) only breathing and stretching mode
do. Again we obtain a WB singularity but now in thec2
channel at a corresponding critical radiusR08
52g2

2/p2\vFm. Inserting the parameter values given abo
due to the small ratiog2 /g1, the critical radius is exceed
ingly small, R08'0.02 Å. Using the same reasoning as
Sec. IV, the effect ofSc28 again leads to a LL action in th
c2 channel, with a renormalization ofuc2 andKc2 . How-
ever, such renormalizations amount to small changes of
order of 1023 even for very thin SWNT’s. ThereforeSc28
does not imply observable consequences and is om
henceforth.
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Next we focus onS9 which mixes thec1 andc2 sectors
and constitutes another forward-scattering mechanism. F
we observe that this term vanishes for zigzag tubesh
50). Neglecting again retardation in the breathing mode a
keeping only terms to lowest order inqR, we find from Eq.
~5.7!

S95ekE @dq#fc1~2vn ,2q!uc2~vn ,q!
vn

2q2

vn
21vS

2q2
,

~5.9!

with e5g2 /g1 andk5sin(3h)vFRB /\R. Introducing the no-
tationFT5(fc1 ,uc1 ,fc2 ,uc2), the total action@including
Eq. ~4.8! andS9] can be written as

S5
1

2E @dq#FT@S01eS1#F, ~5.10!

whereS0 is a block-diagonal matrix in (c1,c2) space, and
S1 contains the mixing term due toS9. Sincee!1, we pro-
ceed by expanding to first order ine. This allows the explicit
calculation of scaling dimensions of all order parameters
interest. The details about this calculation are contained
the Appendix, and the main results are shown in Fig.
Clearly, the effect ofS9 is also very small, even for very thin
tubes. Neglecting this term, only the termSCDW8 describing
the backscattering phonon exchange remains.

Let us then study theSCDW8 term. As this describes an
effective interaction involvingJCDW , this part monitors the
possibility of a Peierls transition. In order to keep the disc
sion transparent, we focus on the static limit. Then Eq.~5.3!
reduces to

SCDW8 52
g2

2

mLE @dq#uJCDW~vn ,q!u2. ~5.11!

Transforming to real space, using the bosonized expres
of JCDW in Eq. ~5.1!, we find two relevant terms. The firs

FIG. 2. Comparison of the scaling dimensions as a function
radius R ~in Å! for the SC ~lower curve! and the CDW~upper
curve! order parameter, computed withe50 ~dashed curves! and
e50.06 ~solid curves!. The calculation employs Eq.~4.8!. Taking
g1525 eV, the valuee50.06 corresponds tog251.5 eV. We con-
sider the case of an armchair tube (h5p/6), where the effect ofS9
is most pronounced.
8-7
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term is spatially oscillating with wave vector 4qF , whereqF
was defined after Eq.~3.6!. Such a term violates momentum
conservation, and can be dropped on large length scales.
mally this follows by noting that it averages to zero. In a
dition, a second term is produced, leading to a small ren
malization of the LL parametersul and Kl . This
renormalization represents a direct generalization of the o
two-channel theory of Voit and Schulz11 to the four-channel
case of interest here. We do not give any details here, s
the relevant dimensionless coupling constant isR08/p

3R, and
the resulting renormalizations are again of order 1023, i.e.,
unobservable. Nevertheless, we confirm the finding of R
15 that the relevant Peierls distortion mode for armch
SWNT’s is given by a twist distortion, see Eq.~5.3!. For
arbitrary chiral angleh, however, the relevant distortion in
volves a linear combination of all three phonon modes.
nally, we mention that on half filling, the oscillatory contr
bution could survive. However, its scaling dimensi
suggests that this term is strongly irrelevant unless
electron-electron backscattering gaps out the neutral c
nels. For very thin tubes, these gaps may be sufficie
pronounced20 to allow for Eq.~5.11! to be a relevant pertur
bation. ProvidedKc1,2, one could possibly expect a sma
~twist! Peierls gap in this nearly commensurate situation,
Ref. 15. However, this would require a detailed analysis
additional phonon exchange processes, neglected above
to incommensurability. Away from half filling, we do not se
a possibility for this gap to survive.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have studied acoustic-phonon excha
mechanisms operating in an individual metallic SWNT. T
description of phonons within an elastic continuum mo
allows for an explicit analytical progress, and we ha
shown that integrating out the phonon system can prod
very substantial attractive electron-electron interactions.
sufficiently large tube radius, the system can be describe
a standard Luttinger liquid theory, where the interaction
rameterKc1 is renormalized away from the valueKc1

0 <1
describing the theory without phonons but fully taking in
account Coulomb interactions. We have shown thatKc1

.1 corresponding to attractive interactions is possible,
particular once the Coulomb interactions are externa
screened. These attractive interactions are basically med
via a breathing phonon mode. For thin SWNT’s, one also
to take into account a retarded branch describing a stretc
mode. The combined effect of the stretching and the bre
ing mode then produces a Wentzel-Bardeen singularity
critical radiusR0'3.6 Å. Nanotubes may then offer the po
sibility to reach this singularity in experiments. Remarkab
all other mechanisms, e.g., backscattering phonon excha
turn out to be extremely inefficient in mediating effectiv
electron-electron interactions. In particular, based on
analysis, it should be extraordinarily difficult to obser
traces of the Peierls transition. As our treatment is essent
exact, we believe that this also invalidates some ear
theories that were mainly based on the mean-fi
approximations.
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As mentioned in the Introduction, the phonon-mediat
attractive interaction can only drive the system into a tr
superconducting phase if intertube couplings are taken
account. This will be studied in detail elsewhere.23 In order
to gain preliminary insights about the intertube phonon
change effects in a rope of SWNT’s or a multiwall nanotub
let us briefly contemplate a simplified model of two paral
SWNT’s and study phonon exchange in the presence of e
tic couplings between both tubes. We shall focus on
breathing mode alone, which will produce the most imp
tant effects, and moreover neglect the intertube Coulomb
teractions. This is expected to be a reasonable approxima
if the long-range tails of the interactions are externa
screened, but it is straightforward to include these inter
tions in the theory in any case. In the long-wavelength lim
the breathing mode can be approximated as a dispersion
mode, leading to the free-phonon action

S5
M

2LE @dq# (
i , j 51,2

ui~2vn ,2q!Ai j ~vn!uj~vn ,q!,

whereui is the radial component (uz) of the displacement
field on tubei,

Ai j ~vn!5S vn
21vB

2~11a l ! 2a tvB
2

2a tvB
2 vn

21vB
2~11a l !

D ,

and a t ,a l are dimensionless parameters. While one c
compute these parameters from a microscopic force-cons
model, here we take them simply as phenomenological
rameters. On general grounds, they must obey 0<a t,l<1,
where a t,l50 in the absence of intertube couplings. Wi
total electronic densitiesr i on tube i 51,2, the dominant
electron-phonon interaction is due to the deformation pot
tial ~3.3!, producing a contribution

~g1/2pR2!E @dq# (
i 51,2

r i~2vn ,2q!ui~vn ,q!

to the action. We can diagonalize this action by introduc
symmetric and antisymmetric combinations,us/a5(u1

6u2)/A2 and rs/a5(r16r2)/A2. Integrating out the
phonons, the forward-scattering contribution in thec1 chan-
nel leads to a Luttinger liquid, but with renormalize
parameters,

S@c1#5
1

2 (
j 5s,a

E @dq#
uf j ,c1u2

uj ,c1K j ,c1
@vn

21~uj ,c1!2q2#,

~6.1!

whereus/a,c15vF /Ks/a,c1 . The interaction parameters are

Ks/a,c15
Kc1

0

A12~Kc1
0 !2RB / f s/aR

, ~6.2!

where f s/a511a l7a t .
There are now two types of superconducting order para

eters. Focusing on the most important singlet supercond
ing fluctuations, there is one operator describing a Coo
8-8



e
e

q.
fo

es

th
o
e

o

o
gl
ra
ed
ul

on
ro
th

fo
t.
i

ad
s

of
lu
in
hi

G

n

t

ACOUSTIC PHONON EXCHANGE, ATTRACTIVE . . . PHYSICAL REVIEW B 67, 235418 ~2003!
pair on the same tube,OSSC0
intra , and another one where th

electrons forming the Cooper pair reside on different tub
OSSC0

inter , with explicit form

O SSC0
intra ;(

ras
sc1,rasc1,2r 2a2s ,

O SSC0
inter ;(

ras
sc1,rasc2,2r 2a2s ,

wherec1/2,ras is the electron spinor on tube 1/2. From E
~6.1!, the scaling dimensions of these operators are as
lows

DSSC0
intra 5

1

8 S 61
1

Ks,c1
1

1

Ka,c1
D , ~6.3!

DSSC0
inter 5

1

8 S 61
1

Ks,c1
1Ka,c1D . ~6.4!

Two conclusions can be drawn from the inspection of th
scaling dimensions. First, for the intertube couplings witha t
sufficiently larger thana l , attractive interactions within a
given tube are increased. Second, wheneverKa,c1.1,
which holds true in the absence of Coulomb interactions,
intratube superconducting order parameter is always m
relevant than the intertube one. In other words, we exp
that Cooper pairs predominantly form on a given tube, but
not across different tubes. Remarkably, this conclusion d
not depend on the values ofa l ,t . Clearly, this finding will be
important in the theoretical analysis of the experiments
SWNT ropes and related systems. Of course, within a sin
or double-tube model, there is no true superconducting t
sition. To realistically compare with experimentally observ
critical temperatures, it will be crucial to study ropes or m
tiwall tubes composed of many individual tubes.

Finally, we briefly address the role of electron-electr
backscattering, which has been neglected in our study. F
Ref. 20, backscattering is expected to open small gaps
depend exponentially on the radiusR. While for R.5 Å, the
gap is extremely small and of no relevance in practice,
ultrathin tubes (R'2 Å) the gaps may be more importan
However, in this limit also the band structure may change
a profound way due to hybridization ofp ands orbitals, and
the analysis of Ref. 20 cannot simply be taken over. In
dition, the presence of the Wentzel-Bardeen singularity po
an intrinsic lower limit to the validity and self-consistency
our effective low-energy approach. With the predicted va
R0'3.6 Å, we therefore do not expect that backscatter
leads to dramatic changes to the picture put forth in t
paper.
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APPENDIX: PERTURBATIVE TREATMENT OF S8

In this appendix, we briefly describe some details co
cerning the perturbative treatment ofS8, see Eq.~5.9!, in
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Sec. V. With the notationFT5(fc1 ,uc1 ,fc2 ,uc2), the
full action in the total/relative charge channels is Eq.~5.10!
with the block-diagonal matrixS05diag(Ac1 ,Ac2), where

Ac15S uc1
2

vF
q22

b2q4/vF

vn
21vS

2q2
2 ivnq

2 ivnq vFq2
D ,

Ac25S vFq2 2 ivnq

2 ivnq vFq2 D .

Furthermore, the mixing term leads to a matrixS1, whose
only nonzero entry is

~S1!145~S1!415kvn
2q2/~vn

21vS
2q2!,

wherek is defined after Eq.~5.9!. We then expand to firs
order ine,

~S01eS1!215S0
212eS0

21S1S0
211O~e2!

5S0
212ekS 0 H

HT 0
D .

Some algebra yields for the matrixH the following result:

H5S ~ ivFvn /q!P vF
2P

P 8 ~ ivFvn /q!PD ,

where

P5 (
b56,i

FbQi
b

vn
21v ib

2 q2
, P 85 (

b56,i

v ib
2 FbQi

b

vn
21v ib

2 q2
.

Here i 50,1,2 and we denotedv165vS ,v265vF . The ve-
locities v06[v6 and the coefficientsFb ,Cb are given in
Ref. 21:

2v6
2 5uc1

2 1vS
27A~uc1

2 2vS
2!214b2,

Fb5
vb

22vS
2

vb
22v2b

2
,

Cb5
uc1

vb

vb
22vS

21b2/uc1
2

vb
22v2b

2
.

Finally, the coefficientsQi
b are defined by

Q0
65

2v6
2

~v6
2 2vS

2!~v6
2 2vF

2 !
,

Q1
65

2vS
2

~vS
22vF

2 !~vS
22v6

2 !
,

Q2
65

2vF
2

~vF
22vS

2!~vF
22v6

2 !
.
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With this, it is straightforward to compute correlation fun
tions for the bosonic field. TheT50 equal-time correlation
functions^F i(x)F j (0)& are given by

^F i~x!F j~0!&52
Gi j

4p
ln~@x21a2#/L0

2!,

where a and L0 are UV and IR cutoff lengths. The onl
nonzero entries ofGi j areG335G4451 and

G115(
b

vFFb /vb ,
y

,

.
v

23541
G1452ekvF
2(

b,i
FbQi

b/v ib ,

G225(
b

uc1Cb /vF ,

G2352ek(
b,i

v ibFbQi
b .

With this, the scaling dimension of any operat
exp@iaTF(x)# is found asaTGa/4p.
s.
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