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Analytical ansatz for self-consistent calculations of x-ray transmission and reflection
coefficients at graded interfaces
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We propose a particular analytical representat@rsatz for analytical solution of Maxwell's equations with
one-dimensional potential. The resulting expressions are presented as self-consistent equations for the calcu-
lation of x-ray reflection and transmission coefficients at the interfaces with an arbitrary potential profile. The
reported approach is testified for typical model potentials, and the convergence of the successive iterations for
improvement of solution accuracy is demonstrated. The equations derived in the paper can be used for the
solution of the inverse problem in x-ray reflectometry.
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[. INTRODUCTION with a single parameter, characterizing the effective width
of the transition layer. Another recognized renormalization of
The calculation of reflectioR(q) and transmissio(q) the reflection coefficient has been proposed by Nevot and
coefficients of x-ray scattering from interfaces as a functionCroce and corresponds to the statistical error function dis-
of the normal component of the wave vectpis an indis- tribution of interface nonuniformity:
pensable part of the theoretical interpretation of experimental
x-ray reflectivity and diffuse scattering ddt&or sharp ideal _g-p 29
interfaces, the analytical expressions for reflectignand Tg+p’ S q+p’
transmissiont are similar to Fresnel formulas in optits.
These expressions are used, for example, as a primary aphere parametep is determined by the normal component
proximation in distorted-wave Born approximatiBWBA) of the wave vector of transmitted wave. The interpolations
describing the scattering of x ray from imperfect structuresbetween both mentioned expressions have been reported in
However, real interfaces have the roughness, grating, or trafefs. 8,9. The influence of the transition layer on specular
sition layers® which essentially modify the coefficienR  X-ray reflection can also be taken into account by the one-
andT. There are numerous ways to take this fact into accourlimensional potential, which permits to find an analytical
when simulating x-ray reflectivitysee, e.g., Ref.)3 The solution®+°
common approach is based on the averaging of the real in- All the mentioned methods are model dependent and do
terface structure over the lateral direction. Then the part ofot allow to establish the relation between electron-density
the scattering potential related to the averaged structure @istribution and observed reflection coefficient, which is nec-
proportional to the whole interface surface and gives thessary for the solution of the inverse problem. Therefore,
main contribution to the reflected wave field. The remainingmost of the modern approaches to the inverse problem in
part of the potential can be taken into account in the frameteflectometry(see, for example Ref. 1lse the formula for
work of DWBA. Thus, in the zeroth approximation, the one- reflection coefficient based on the first Born approximatfon,
dimensional wave equation has to be solved with a compli-
cated profile of the averaged electron density in the transition Re —r if“’ dzd—p Qi20z 3)
layer. The most direct method is to use recurrent Parratt’s kin™ TS po) o dz '
equationd, which deliver a solution of the one-dimensional
wave equation for arbitrary interface profile and with re-where functionp(z) determines the distribution of electron
quired numerical precision. The numerical simulation ofdensity within the transition layer ang}, is the density of
wave field, however, requires large computer resourcessubstrate. However, the applicability of the Born approxima-
when diffusely scattered intensity from multilayered struc-tion is limited either to the region of large values of moment
tures has to be calculatédhe numerical results obtained by transferg, where the reflection coefficient is relatively small,
solving the direct problem do not allow to construct theor to the density profiles with small gradients. Moreover, the
model-free algorithms for the inverse probfetrecause of Born approximation does not describe well enough the
the lack of analytical relations between reflection coefficientphases of the transmission and reflection coefficients, which
and electron density profile. Therefore, the applied x-ray recan essentially distort the solution of the inverse problem.
flectometry uses different approximate models for transitionlhe correct description of wave field phases is also important
layer at interface and renormalizes the reflection coefficientor the calculation of diffuse x-ray scattering and for inter-
by the Debye-Waller factor. The simplest form of this factorference effects within the multilayered structures. Cafitha
is a kinematical Rayleigh approximation, proposed the self-consistent method for the calculation of
R(q) andT(q), which has wider applicability area in com-
. parison with Eq.(3). The drawbacks of this method are the
Rpw=r& 2977, (1)  ambiguity of results due to the model of self-consistency and
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undefiniteness of algorithm for calculation of high-order ap-
proximations for improvement of accuracy. The one-
dimensional profile is just an approximate description of the
interface structure. Therefore, the solution accuracy for the
one-dimensional wave equation does not play a crucial role
for very rough interfaces, because in this case the successive
DWBA corrections are comparable with the precision of the
zeroth approximation.

Nevertheless, the theory expressing the functiB{g)
andT(q) through the potential of the one-dimensional tran-
sition layer for arbitrary value aff without additional param-
etrization and out of the framework of perturbation theory
has a promising perspective for many applications. In the
present paper, a different approach, further called $ek-

consistent approaghfor the self-consistent calculation of Re™4? | A(p(z) I Teipz
the reflection and transmission coefficients is reported. The ~—P }
expressions obtained establish the analytical though nonlin- igz | u(z)

ear relation between the scattered x-ray wave field and den- ¢ | / |

sity profile of the transition layefSec. I). The algorithm is I Az) 1
approved for several model potentials and is shown to pro- |/ | z
vide high precision for calculated amplitudes and phases of I | .
coefficientsR(q) and T(q) (Sec. ll. The convergence of —O o g

high-order approximations is numerically studied, and an

asymptotic behavior of coefficients is found for small and FIG. 1. Sketch of scattering geometry and wave field distribu-
large values ofg (Sec. IV). Using the proposed analytical tion in the transition layer.

ansatz, the measured experimental data on x-ray reflectivity

are interpreted. The parameters of sample evaluated by usivglues of system parameters. The self-consistent approach
the SCA and conventional methods for the calculation offor the solution of Eq(5) assumes the use of some approxi-
reflection coefficients are found to be sometimes essentiallgnate formEgy(z) for function E(z) and finding parameters

different (Sec. V. for this form by Eq.(5). Specifically, in Ref. 13, function
Ey(z) has been taken as the solution of wave equation for
1. DERIVATION OF THE BASIC EXPRESSIONS sharp interface with variable positiary of interface. This

solution improves essentially the perturbation theory, but
The wave fieldE(z) of monochromatic x-ray beam re- does not eliminate the ambiguity in the reflection and trans-
flected from the substrate with the one-dimensional transitiomnission coefficients because of the dependence on the self-
layer on the top is defined by the equation consistency mode. Moreover, it does not allow to calculate
the successive corrections for the zeroth approximation.
To formulate the basics of the SCA, the potential function
E(z)=0. (4 and solutions are redefined in the following Wig. 1):

2

d+2+V()
— V4

The z axis is assumed to be perpendicular to the surface of
substratéFig. 1); the in-plane component of the wave vector
is conserved and the normal z component is expressed as
=k ssina with « being the incidence angle arkdbeing the +H(z—o)TEPZ (6)
wave number; functiorp(z) determines the normalized po-
tential of the transition layer with amplitudé=k?y,, where
Xo is the complex polarizability of sample material; the con-
ditions ¢(—)=0 and¢()=1 are fulfilled.

The integral form of Eq(4) is

¢o(z2)=H(z—o)+N(2)H(oc—2)H(z+ o),

E(z)=H(—z—0)[€%+Re 9%+ u(z)H(o0—2)H(z+ o)

Here H(z) is the Heaviside functionji(z) is a potential
function varied from zero to unity inside the transition layer
located between the planes with coordinates (in most
general caser—); coefficientsR and T in function E(2)
are the exact coefficients of reflection and transmission. By

_ _ VI e . definition, functionE(z) describes the transmitted wave at
E(z)=A€%%+Be '9%+ 2iq e'qu dz'e 9% o(z')E(Z") z=+= if the condition is satisfied:

z

p?=q2+V. @)

+e’iqu_:dz’eiqz/gp(z’)E(z’) : (5)

The functionu(z) is defined within the intervalz| <o

_ ) ) ] ) _ and satisfies the boundary conditionszat= o, as follows
Direct iterations of this equation with constamsand B from the discontinuity condition for the solution:

following from the boundary conditions result in the Born . _ '
series of perturbation theory, which is convergent not for all u(o)=TeP?, u(—o)=Re97+e7'9°, (8)
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Substituting Eq(6) into Eq. (5), we derive the relationship The system of equatior{40) for functionu(z) along with
boundary condition$8) is the exact consequence of primary
J” —iqé integral equation. However, the advantage of it is the implicit
dge A (§)u(é) o : , : .
-0 form of fast-oscillating terms in equations, which permits to
solve the integral equation for functiar(z) within the lim-
=gldz4 RgiazZ, ited interval, and the latter function is parametrized mainly
by the potential functior\(z). To approximately calculate
the self-consistent valud®(q) andT(q), some model form

Ad9Z4 Be iaz4 .leiqZ
2iq

+f dée 9T EPE

o

Z<-o, (ansatz for functionu(z) has to be chosen. This model func-
tion is expected to satisfy the following condition@) its
AgdZi Beiazy _{ e-iaz J' dEel¥én(&)u(é) variation is mainly determined by the potential functiin)
2iq - it satisfies boundary condition®), (iii) it does not include

any additional parameters. The simplest representation of

+f déeldeTelPe +e'qu dge'que'pf} =TePr? u(z), fulfilling the mentioned conditions, is
o z
2= Uo(2)=N(2) TEP?+[1—\(2)](Re 9+€9).  (11)
: : V| o . .
A%+ Be 1924 — e'qu dée 19T EPE _ _ , _
2iq o Ansatz(11) is the basic expression of the SCA and it can
. be considered as the zeroth-order iteration for the solution of
+eiqu dée 1IN (&) u(é) integral Eq.(10). The substitution of this ansatz into EG0)
z results in self-consistent equations for the calculation of the

reflection and transmission coefficients through the potential

. z . - .
+e—|qu d§e"qg)\(§)u(§) —u(z), function:
—0<z<o0. 9 [1 .VK(O)}R VL(p+q) _VK(2q)
Equating the coefficients at fast-oscillating exponents in both 2q q(p+qa) P 2q
parts, the constants are found toAe 0, B=R, whereas the
reflection and transmission coefficients and the funati(z)
should be defined from the following equations: VK(—20q) VL(p—q) VK(0)
—i R+ ———T(q) =1+ — —,
VT o V[ 2q a(p—q) 2q
R+ ——¢'lP q"+.—J’ dée'In(&)u(§) =0,
2q(p+q) 2ig) 45 TMEUE
VT

o V(e o K(r)= Udzérz)\(z)[l—h(z)],
el Pop qé =
TN +2iqf_gd§e AEHu(d)=1, L,

. VT . :
—Re 9zy __— gi(p-0)ogiqz o :
u(z)=Re +2q(p—q)e € L(r)=f dze™”\(z)\'(2), (12)

o

Y, _
*3iq dé[e e IH(E-2)
. I from which the result for the zeroth-order approximation fol-
+e 9@ OH (z— &) IN(&)u(€). (10 lows:

R(Q)= iVAK(2q)L(p—q)(p+a)—K(0)L(p+a)(p—q)]—2qVL(p+q)(p—q)
iVIK(—2q)L(p+q)(p—q)—K(0)L(p—aq)(p+q)]+2qVL(p—q)(p+q)

VAK?(0) —K(29)K(—2q)]+ 49

: . (13
iVA[K(=2q)L(p+q)(p—q)—K(0)L(p—q)(p+q)]+2qVL(p—q)(p+q)

T(g)=
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FIG. 2. Reflectiondecimal logarithmic bageand transmission coefficients and their phagesadiang calculated by different methods
for the Epstein profile.

Equation (13) confirms the fact that the self-consistent Exact formulas for the coefficients are well known for this
calculation of the reflection and transmission coefficientscase(see, e.g., Ref.)3
permits to express them directly through the density profile

of the transition layer, though this rt_alatic_)n is more compl_i— q+p T(iqoe) TL—i(q+p)oe/2]

cated than that for the Born approximation. The successive R(Q)=— - - ,
approximations for the coefficients can be easily found be- q9-pT(=i90e) T'7i(q—p)oe/2]

cause Eq(13) is obtained from the exact integral equation

for function u(z). The procedure for finding*)(z) is the q+p I -i(q+p)oe/2]

following: Eq. (10) is iterated and new solutions are substi- T(q)= (19

2p I'(—i (=i '
tuted into the expressions for the reflection and transmission P I(~iqogl(~ipoe)

coefficients(see Sec. IV for details However, the zeroth anq integrals from Eq(13) are expressed for this potential
approximation is proved below to be very accurate and sufapgjytically:

ficient for experimental data interpretation.

< woir . moer(1+iogr/2)
Il. NUMERICAL RESULTS FOR MODEL POTENTIALS (r)= 4 sinf(mogr/2)’ (r)= 4 sinf(mogr/2)

In this section, the zeroth approximation of the SCA is (16

compared with the exact solutions for several model poten-
tials. The Epstein profil@ is the most frequently used ana-
lytical potential for modeling of the transition layer. The po-
tential function corresponding to this potential [she
parameteir in Eq. (6) is assumed to be equal to infinjty

Figures Za)—2(d) show the simulations of the reflection
and transmission coefficients and their phagesadians by
various methods(i) exact,(ii) Rayleigh approximatioril),
(i) Born approximation (3), (iv) approximation by
Caticha®® and (v) SCA. For all the cases, the values for
sample parameters correspond to silicon substratg,Re
o(z)=3[1+tanhz/og)]. (14 —1.512x10 %, 0g=49 A, CK, radiation. The large value
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FIG. 3. Reflectiondecimal logarithmic bageand transmission coefficients and their phagesadiang calculated by different methods
for the linear profile.

of o¢ for the transition layer width is used in order to com- the physical point of view. The solution for wave equation

pare various methods out of the framework of the perturbawith potential (17) can also be represented analytically

tion theory. through the Airy functionsAi andBi (Ref. 14 on interval
Figure 2 shows that the functiof®q), T(q) are incor- [—o,0]:

rectly simulated when using phenomenologi¢Rayleigh

and Born approximations, whereas both self-consistent solu- u(z)=C,Ai(uz—a)+C,Bi(nuz—a),

tions (Caticha and SCAfit well to the exact one for the

reflected intensityfFig. 2(b)]. However, the difference be- (VAR \Y

tween the latters is essential for the intensity of the transmit- n= ( ey a= ﬁ (18

ted radiatior{Fig. 2(@)] and especially for the phases of both
coefficients[Figs. 2c) and 2d)]. Thus, the only proposed Then the coefficient€; , andR(q), T(q) are found as the
SCA, in the paper, provides the best description for all of thesolutions of algebraic equation system following from the

scattering characteristics. The same comparison is shown ibntinuity conditions at the boundaries of the transition
Figs. 3a)—3(d) for the linear transition layer: layer:

1 e 1974+ R(q)e'97=C,Ai(— no—a)+C,Bi(—uo—a),
N2)= 5 (z+0). 17 ' ?
igle™'9"—R(q)e'""]

The latter model differs qualitatively from the Epstein profile

because of the discontinuity of the potential function deriva- =u[C1AI'(—po—a)+C,Bi'(—uo—a)],
tive at the boundaries of the transition layer. However, this _
model is closer to the real graded interfaces, because the T(q)e'%=C,Ai(uoc—a)+C,Bi(uo—a),

continuity of derivatives at the boundaries results in the ex- _
ponentially small, nevertheless, nonzero density value at the iqT(q)e'97=u[C,;Ai'(noc—a)+C,Bi'(no—a)].
infinite distances from the sample, which is not correct from (29
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FIG. 4. Effect of the imaginary part of the x-ray susceptibility on the scattering characteristics.

The integrals for the SCA are calculated analytically ineraged over these local gaps. Nevertheless, the above shown
this case: comparison of different methods for the linear layer is im-
portant because it demonstrates that the only proposed self-
1 consistent approach describes, with high accuracy, the fine
K(r)=——(sinor —or cosar), structure of the x-ray reflectivity.
o r Figures 4a—0d show the influence of the imaginary part
of the potential on the reflection coefficient and its phase for
i i or the Epstein potential and different approximatior{$mf o
L(r)= ﬁ(s'n‘”_‘”e )- (20 |=1/40Rey,|). One can see that the SCA takes correctly
into account the radiation absorption in real medium and
The curves in Figs. (@—d, simulated at the same parameter conformity with the exact results is even better in this case.
values as for the tangential profile, depict the results of the
exact, SCA, Bom, Rayleigh, and Catichapproximations. /- o\VERGENCE OF SUCCESSIVE APPROXIMATIONS
The decrease in the reflection coefficiéhis slower in the
case of the transition layer of finite widfpower law than in Ansatz (11), proposed as an approximate wave field
the case of the layer with tangential profiexponential laww  within the transition layer, is not an exact solution for Max-
at large incidence angles, which corresponds better to thevell’s equations, but it gives a simple functional relation
experimental datésee Sec. ¥ One more specific feature of between the wave field and potential. The numerical simula-
reflection from the linear graded interface is the set of locations presented above show reasonable and uniform accuracy
minima in R(«), caused by derivative discontinuity at the of ansatz for the calculation of coefficierR¢q) andT(q) in
boundaries of the transition layer. The experimental observeentire range of the system parameters. Nevertheless, the
tion of these local gaps seems to be difficult because they ammparison of results by the proposed SCA and exact solu-
expected at large angles, where the intensity is pretty lowtion of Maxwell’'s equations for the wave field is necessary. It
Besides, in real structures the boundaries of the transitioseems to be difficult to find a strict mathematical proof for
layer are not strictly defined, thus intensity is effectively av-the convergence of successive approximations of the SCA,
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and therefore we demonstrate here just a numerical evidence The self-consistent approach for the solution of Max-
of this convergence. Improvement of ans@tf) accuracy in  well’s equations presented in this paper is a direct analog of
the framework of the self-consistent approach is realized byperator method for Schdinger equation, which is proved
the iterations of the exact integral equatiqi$). These it- to be effective for the solution of many problems of quantum
erations are defined by recurrent formulas for coefficientsnechanics® The coincidence of the zeroth approximation
RO)(q) andT®(q) and functionu®(z): with the exact solution in limiting cases, where the analytical
methods can be used, is shown in Ref. 15 to be an important
p—q . . A feature of any uniformly suitable approximation. For the case
g€ 9= \ith an arbitrary potential studied in thi h analyti-
p+q y potential studied in this paper, such analyti
cal results can be found in two limit cases. The first one is
XN(EUST(g), the region of incidence angles less than the critical angle of
total external reflection °<|V|), where the equation

— . V (o
R(S)(C])Z - %EZIqU‘F mj df

g 20(p—q) _, . _ p=+gZ+ V=i« is fulfilled. For real potential, the integrals
T():Te (P for the SCA are represented a§(q)=K*(—q), L(q)
=L*(—q), and substitution of these equations into ELp)
V (o Cige (s-1) demonstrates the fulfillment of the SCA zeroth approxima-
X|1- 2iq ﬂrdfe AMOUE(E) |, tion to the exact condition in the considered angular range:
Ts-1) IRO(q)[2=1, ¢?<|V]. (22
)(z7)=R(Dg-iaz. _—__ qi(p-g)ogiqz
uH(2)=R © +2q(p—q)e © In the second limit case of large incidence angleg (
v >|V|), one can use the following estimations for integrals:
*3iq dé[e 1 IH(¢-2) :
. i o .
. K(q)=——“ dze¥\'(z)-L(q) |,
+e 9T IH(Z- HINHUED(E), (2D al’-e
and the exact values are determined as a limit of sequence, eI\’ (o)
L(@)=—5—*+0(@ 2,
R(q)=limR®,
S—® .
_ _ o i(p—q) T
where the primary terms are given by approximati¢h® Lip—@)=—%—|o— | dA%(2)|. (23)

and(13). Figure 5 shows the successive approximations, cal-
culated by Eqs(21) for the transition layer with linear pro- - gypstituting these expressions into E#3), the reflectivity
file (17). The differences between the successive iterationg \yritten as

are hardly distinguishable, so quickly they converge to the

exact solution, and this fact actually demonstrates the stabil- V (o

ity of the zeroth approximation. Analogous results are found RO)(q)= _J dze92)\ ' (z),

for other model potentialéhot shown herg 29%) -«
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FIG. 5. Convergence of SCA successive approximations for x-ray reflection and transmission coefficients. The inset shows the area,
where various approximations have most of the differences. The second and third approximations are indistinguishable.
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methods for(a) sinusoidal,(b) error function profiles, andc) by ) ) )
means of linear model potentiédee comments in the téxt FIG. 7. Inverse problem solutions fda) sinusoidal,(b) error

function profiles with different value of, and(c) for linear model

i.e., for large value ofy, the SCA zeroth approximation is Profile.
equivalent to the Born approximatig®), which is asymp-
totically exact at large angles. curves in the third and fourth iterations are hardly distin-

Thus, the proposed ansatz is believed to be a uniformlguishable and fit well the exact solution. This fast conver-
suitable approximation for electromagnetic wave field, scatgence has been sholvrio be a specific feature of iterational
tered from the one-dimensional graded interface, since it sagpproach in comparison with the additive correction ap-
isfies all the limiting cases and its successive approximationgroach, used in conventional perturbation theory. The con-
converge to the exact solution. The fast convergence of sustergence rate of successive iterations obtained for x-ray re-
cessive approximations points to the fact that the reflectivityflectivity in the present work correlates well with the results
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FIG. 8. Measured x-ray reflectivit§solid line) from Si) <G, 35
substrate and best fits by different methods. FIG. 9. The potential profiles corresponding to reflectivities
simulated in Fig. 8.
of various problems solved by the analogous iteration
method(see Ref. 15 and references thejein w2 sinqo
Kp=————,
© aq(ePo?- )
V. INTERPRETATION OF THE MEASURED X-RAY
REFLECTIVITY 2 .
sinqo 4 cosqo

(q20%— 72 N (4q20?—72) |’

The resulting expressiondl) and (13) derived in this
work can be used for both thdirect (simulation of the scat-
tered intensity from known potential of transition layand B
inverse (determination of density profile from x-ray KFLJ
reflectivity’) problems. Besides, the diffusely scattered inten- iqo\/ﬁ 0
sity can also be calculated by DWBA using nonperturbative
representatiofll) for wave field instead of the conventional L,=igKj. (25
zeroth approximation based on the solution for sharp
interface® To illustrate the sensitivity of the direct problem Figures 6a,b show that the measured reflectivity can be
solution to the model of interface and to the method of simu-modeled well by all approximations, however, the conven-
lation, we use two potential profiles, which have no exactional methodgNevot-Croce, Borpgive the best fit at the
solution but are widely used for modeling of the real gradedvalue of parameters, which is essentially different than the
interface, error function profile, and sine profile: exact valuer=49 A, used for the simulation of measured

curve. As a result, there is a noticeable discrepdiys.

dze—22/20'2q)(2/0-\/§)5in(qz);

Xo 2 (x ) 7(a,b] between the original potential profile and the profiles
¢1(2)= 7[1+<D(Z/U\/§)], O(x)= \/——f dte™", corresponding to the values shown in Fig. 6. In opposite,
0 the SCA delivers the correct value af at which the best fit
is found.
_ Xo s Figures 6c) and 7c) illustrate the opposite side of the
¢2(2)= 2 1+Sln2_o'}' (24 problem. The solution of the inverse problem is known to be

dependent both on the method of simulation and on the
The potentiale,(z) takes into account the natural limits of choice of the model potential profile. To illustrate this fact,
roughness amplitude. For both potentials, we use the funahe reflectivity for the original error function profile has been
tions R[“zm a) calculated by Parratt’s formalism as “mea- fitted to the curves simulated by means of Parratt's algo-
sured” reflectivities|Figs. §a—0, solid lined. Then various rithm, the SCA, and Born approximation, and using the lin-
methods forR; ) simulation have been used and the in-ear profile. The parameter being found from the condition
terface parameters for the best fit between the theoretical araf the best fit[Fig. 6(c)] differs from the exact value 49 A
measured reflectivities have been found. In such a way, diffor all methods, but the result of the Born approximation is
ferent methods for an approximate solution of the inversdar out of the experimental accuracy. The comparison of the
problem for the graded interface are compared. In the selfknown measured potential profile and the profiles found by
consistent approach, the following integrals for poter{@4) different methods with the same model potential is shown in
are used: Fig. 7(c). These results demonstrate that the Born approxi-
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mation is not applicable for the solution of the inverse prob-tion. The x-ray reflectivities for all analytical models have

lem, when the graded interface is thick or possesses largeeen calculated by using both the SCA and Parratt’s formal-

roughness. ism. The curves resulting from these two approaches are not
Finally, Figs. 8 and 9 show the results of the approximatedistinguishable in the picture, but they noticeably differ from

solution of the inverse problem using the experimentallythe result of the Born approximation.

measured, at G€,, wavelength x-ray reflectivity from Figure 9 shows the density profiles for the considered

Sip 565G &35 Substrate (Rgo=2x10°). In this example, it sample reconstructed on the basis of the methods listed in the

is not our goal to obtain a perfect coincidence of the theoretpicture legend. The figure demonstrates a high sensitivity of

ical and experimental curves, which can be reached by takinthe solution of the inverse problem to the choice of the the-

into account the instrumental function of reflectometer, dif-oretical method and the model for simulation of the direct

fuse x-ray scattering, and background noise of the detectoproblem.

These factors, being applied to the curve simulated by the

SCA, elimin_ate the long-wave oscillations a_nd result in a VI. CONCLUSIONS

very good fit between the measured and simulated curves

(not shown here The aim of Figs. 8 and 9, however, is to  The analytical representatigansatz for electromagnetic

demonstrate the essential dependence of reconstruct&dve field has been proposed, which describes the scattering

sample parameters on the choice of both the model profilef x-ray radiation from the one-dimensional graded interface

and the method of simulation. The surface is known to bewith arbitrary density profile. This ansatz gives an accurate

very rough in this sample and nonperturbative method has toonformity of x-ray reflectivity spectra to interface density

be used to calculate the solution of the direct problem. Weprofile in the entire range of the reflection angles and without

tried several methods for the simulation of x-ray reflectivity additional parametrization. The derived expression for wave

on the basis of various models for the density profiles of thdields can be used to adequately solve the inverse problem

transition layer. All the models are parametrized by variablefor x-ray scattering as well as to enhance the accuracy of

o; the only parameter used to fit the simulated curve to thaliffuse scattering calculation on the basis of DWBA.

measured intensity. Figure 8 shows that the phenomenologi-

cal approximationgRayleigh, Nevot-Crogeand analytical ACKNOWLEDGMENTS
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