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Analytical ansatz for self-consistent calculations of x-ray transmission and reflection
coefficients at graded interfaces
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We propose a particular analytical representation~ansatz! for analytical solution of Maxwell’s equations with
one-dimensional potential. The resulting expressions are presented as self-consistent equations for the calcu-
lation of x-ray reflection and transmission coefficients at the interfaces with an arbitrary potential profile. The
reported approach is testified for typical model potentials, and the convergence of the successive iterations for
improvement of solution accuracy is demonstrated. The equations derived in the paper can be used for the
solution of the inverse problem in x-ray reflectometry.
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I. INTRODUCTION

The calculation of reflectionR(q) and transmissionT(q)
coefficients of x-ray scattering from interfaces as a funct
of the normal component of the wave vectorq is an indis-
pensable part of the theoretical interpretation of experime
x-ray reflectivity and diffuse scattering data.1 For sharp ideal
interfaces, the analytical expressions for reflectionr s and
transmissionts are similar to Fresnel formulas in optics2

These expressions are used, for example, as a primary
proximation in distorted-wave Born approximation~DWBA!
describing the scattering of x ray from imperfect structur
However, real interfaces have the roughness, grating, or t
sition layers,3 which essentially modify the coefficientsR
andT. There are numerous ways to take this fact into acco
when simulating x-ray reflectivity~see, e.g., Ref. 3!. The
common approach is based on the averaging of the rea
terface structure over the lateral direction. Then the par
the scattering potential related to the averaged structur
proportional to the whole interface surface and gives
main contribution to the reflected wave field. The remain
part of the potential can be taken into account in the fram
work of DWBA. Thus, in the zeroth approximation, the on
dimensional wave equation has to be solved with a com
cated profile of the averaged electron density in the transi
layer. The most direct method is to use recurrent Parra
equations,4 which deliver a solution of the one-dimension
wave equation for arbitrary interface profile and with r
quired numerical precision. The numerical simulation
wave field, however, requires large computer resourc
when diffusely scattered intensity from multilayered stru
tures has to be calculated.5 The numerical results obtained b
solving the direct problem do not allow to construct t
model-free algorithms for the inverse problem6 because of
the lack of analytical relations between reflection coeffici
and electron density profile. Therefore, the applied x-ray
flectometry uses different approximate models for transit
layer at interface and renormalizes the reflection coeffic
by the Debye-Waller factor. The simplest form of this fact
is a kinematical Rayleigh approximation,1

RDW5r se
22q2s2

, ~1!
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with a single parameters, characterizing the effective width
of the transition layer. Another recognized renormalization
the reflection coefficient has been proposed by Nevot
Croce7 and corresponds to the statistical error function d
tribution of interface nonuniformity:

RNC5r se
22qps2

, r s5
q2p

q1p
, ts5

2q

q1p
, ~2!

where parameterp is determined by the normal compone
of the wave vector of transmitted wave. The interpolatio
between both mentioned expressions have been reporte
Refs. 8,9. The influence of the transition layer on specu
x-ray reflection can also be taken into account by the o
dimensional potential, which permits to find an analytic
solution.3,10

All the mentioned methods are model dependent and
not allow to establish the relation between electron-den
distribution and observed reflection coefficient, which is ne
essary for the solution of the inverse problem. Therefo
most of the modern approaches to the inverse problem
reflectometry~see, for example Ref. 11! use the formula for
reflection coefficient based on the first Born approximation12

Rkin5r s

1

r0
E

2`

`

dz
dr

dz
ei2qz, ~3!

where functionr(z) determines the distribution of electro
density within the transition layer andr0 is the density of
substrate. However, the applicability of the Born approxim
tion is limited either to the region of large values of mome
transferq, where the reflection coefficient is relatively sma
or to the density profiles with small gradients. Moreover, t
Born approximation does not describe well enough
phases of the transmission and reflection coefficients, wh
can essentially distort the solution of the inverse proble
The correct description of wave field phases is also impor
for the calculation of diffuse x-ray scattering and for inte
ference effects within the multilayered structures. Catich13

proposed the self-consistent method for the calculation
R(q) andT(q), which has wider applicability area in com
parison with Eq.~3!. The drawbacks of this method are th
ambiguity of results due to the model of self-consistency a
©2003 The American Physical Society17-1
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I. D. FERANCHUK et al. PHYSICAL REVIEW B 67, 235417 ~2003!
undefiniteness of algorithm for calculation of high-order a
proximations for improvement of accuracy. The on
dimensional profile is just an approximate description of
interface structure. Therefore, the solution accuracy for
one-dimensional wave equation does not play a crucial
for very rough interfaces, because in this case the succes
DWBA corrections are comparable with the precision of t
zeroth approximation.

Nevertheless, the theory expressing the functionsR(q)
andT(q) through the potential of the one-dimensional tra
sition layer for arbitrary value ofq without additional param-
etrization and out of the framework of perturbation theo
has a promising perspective for many applications. In
present paper, a different approach, further called SCA~self-
consistent approach!, for the self-consistent calculation o
the reflection and transmission coefficients is reported.
expressions obtained establish the analytical though non
ear relation between the scattered x-ray wave field and d
sity profile of the transition layer~Sec. II!. The algorithm is
approved for several model potentials and is shown to p
vide high precision for calculated amplitudes and phase
coefficientsR(q) and T(q) ~Sec. III!. The convergence o
high-order approximations is numerically studied, and
asymptotic behavior of coefficients is found for small a
large values ofq ~Sec. IV!. Using the proposed analytica
ansatz, the measured experimental data on x-ray reflect
are interpreted. The parameters of sample evaluated by u
the SCA and conventional methods for the calculation
reflection coefficients are found to be sometimes essent
different ~Sec. V!.

II. DERIVATION OF THE BASIC EXPRESSIONS

The wave fieldE(z) of monochromatic x-ray beam re
flected from the substrate with the one-dimensional transi
layer on the top is defined by the equation

F d2

dz2
1q21Vw~z!GE~z!50. ~4!

The z axis is assumed to be perpendicular to the surface
substrate~Fig. 1!; the in-plane component of the wave vect
is conserved and the normal z component is expressedq
5k sina with a being the incidence angle andk being the
wave number; functionw(z) determines the normalized po
tential of the transition layer with amplitudeV5k2x0, where
x0 is the complex polarizability of sample material; the co
ditions w(2`)50 andw(`)51 are fulfilled.

The integral form of Eq.~4! is

E~z!5Aeiqz1Be2 iqz1
V

2iq FeiqzE
z

`

dz8e2 iqz8w~z8!E~z8!

1e2 iqzE
2`

z

dz8eiqz8w~z8!E~z8!G . ~5!

Direct iterations of this equation with constantsA and B
following from the boundary conditions result in the Bo
series of perturbation theory, which is convergent not for
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values of system parameters. The self-consistent approa13

for the solution of Eq.~5! assumes the use of some appro
mate formE0(z) for function E(z) and finding parameters
for this form by Eq.~5!. Specifically, in Ref. 13, function
E0(z) has been taken as the solution of wave equation
sharp interface with variable positionz0 of interface. This
solution improves essentially the perturbation theory,
does not eliminate the ambiguity in the reflection and tra
mission coefficients because of the dependence on the
consistency mode. Moreover, it does not allow to calcul
the successive corrections for the zeroth approximation.

To formulate the basics of the SCA, the potential functi
and solutions are redefined in the following way~Fig. 1!:

w~z!5H~z2s!1l~z!H~s2z!H~z1s!,

E~z!5H~2z2s!@eiqz1Re2 iqz#1u~z!H~s2z!H~z1s!

1H~z2s!Teipz. ~6!

Here H(z) is the Heaviside function;l(z) is a potential
function varied from zero to unity inside the transition lay
located between the planes with coordinates6s ~in most
general cases→`); coefficientsR and T in function E(z)
are the exact coefficients of reflection and transmission.
definition, functionE(z) describes the transmitted wave
z51` if the condition is satisfied:

p25q21V. ~7!

The functionu(z) is defined within the intervaluzu,s
and satisfies the boundary conditions atz56s, as follows
from the discontinuity condition for the solution:

u~s!5Teips, u~2s!5Reiqs1e2 iqs. ~8!

FIG. 1. Sketch of scattering geometry and wave field distrib
tion in the transition layer.
7-2
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Substituting Eq.~6! into Eq. ~5!, we derive the relationship

Aeiqz1Be2 iqz1
V

2iq
eiqzF E

2s

s

dje2 iqjl~j!u~j!

1E
s

`

dje2 iqjTeipjG5eiqz1Re2 iqz,

z,2s,

Aeiqz1Be2 iqz1
V

2iq H e2 iqzF E
2s

s

djeiqjl~j!u~j!

1E
s

z

djeiqjTeipjG1eiqzE
z

`

dje2 iqjTeipjJ 5Teipz,

z.s,

Aeiqz1Be2 iqz1
V

2iq FeiqzE
s

`

dje2 iqjTeipj

1eiqzE
z

s

dje2 iqjl~j!u~j!

1e2 iqzE
2s

z

dje2 iqjl~j!u~j!G5u~z!,

2s,z,s. ~9!

Equating the coefficients at fast-oscillating exponents in b
parts, the constants are found to beA50, B5R, whereas the
reflection and transmission coefficients and the functionu(z)
should be defined from the following equations:

R1
VT

2q~p1q!
ei (p1q)s1

V

2iqE2s

s

djeiqjl~j!u~j!50,

VT

2q~p2q!
ei (p2q)s1

V

2iqE2s

s

dje2 iqjl~j!u~j!51,

u~z!5Re2 iqz1
VT

2q~p2q!
ei (p2q)seiqz

1
V

2iqE2s

s

dj@eiq(z2j)H~j2z!

1e2 iq(z2j)H~z2j!#l~j!u~j!. ~10!
23541
h

The system of equations~10! for functionu(z) along with
boundary conditions~8! is the exact consequence of prima
integral equation. However, the advantage of it is the impl
form of fast-oscillating terms in equations, which permits
solve the integral equation for functionu(z) within the lim-
ited interval, and the latter function is parametrized main
by the potential functionl(z). To approximately calculate
the self-consistent valuesR(q) andT(q), some model form
~ansatz! for functionu(z) has to be chosen. This model fun
tion is expected to satisfy the following conditions:~i! its
variation is mainly determined by the potential function,~ii !
it satisfies boundary conditions~8!, ~iii ! it does not include
any additional parameters. The simplest representation
u(z), fulfilling the mentioned conditions, is

u0~z!5l~z!Teipz1@12l~z!#~Re2 iqz1eiqz!. ~11!

Ansatz~11! is the basic expression of the SCA and it c
be considered as the zeroth-order iteration for the solutio
integral Eq.~10!. The substitution of this ansatz into Eq.~10!
results in self-consistent equations for the calculation of
reflection and transmission coefficients through the poten
function:

F12 i
VK~0!

2q GR~q!1
VL~p1q!

q~p1q!
T~q!5 i

VK~2q!

2q
,

2 i
VK~22q!

2q
R~q!1

VL~p2q!

q~p2q!
T~q!511 i

VK~0!

2q
,

K~r !5E
2s

s

dzeirzl~z!@12l~z!#,

L~r !5E
2s

s

dzeirzl~z!l8~z!, ~12!

from which the result for the zeroth-order approximation fo
lows:
R~q!5
iV2@K~2q!L~p2q!~p1q!2K~0!L~p1q!~p2q!#22qVL~p1q!~p2q!

iV2@K~22q!L~p1q!~p2q!2K~0!L~p2q!~p1q!#12qVL~p2q!~p1q!
,

T~q!5
V2@K2~0!2K~2q!K~22q!#14q2

iV2@K~22q!L~p1q!~p2q!2K~0!L~p2q!~p1q!#12qVL~p2q!~p1q!
. ~13!
7-3
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FIG. 2. Reflection~decimal logarithmic base! and transmission coefficients and their phases~in radians! calculated by different method
for the Epstein profile.
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Equation ~13! confirms the fact that the self-consiste
calculation of the reflection and transmission coefficie
permits to express them directly through the density pro
of the transition layer, though this relation is more comp
cated than that for the Born approximation. The succes
approximations for the coefficients can be easily found
cause Eq.~13! is obtained from the exact integral equatio
for function u(z). The procedure for findingu(1)(z) is the
following: Eq. ~10! is iterated and new solutions are subs
tuted into the expressions for the reflection and transmis
coefficients~see Sec. IV for details!. However, the zeroth
approximation is proved below to be very accurate and s
ficient for experimental data interpretation.

III. NUMERICAL RESULTS FOR MODEL POTENTIALS

In this section, the zeroth approximation of the SCA
compared with the exact solutions for several model pot
tials. The Epstein profile10 is the most frequently used ana
lytical potential for modeling of the transition layer. The p
tential function corresponding to this potential is@the
parameters in Eq. ~6! is assumed to be equal to infinity#

w~z!5 1
2 @11tanh~z/sE!#. ~14!
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Exact formulas for the coefficients are well known for th
case~see, e.g., Ref. 3!:

R~q!52
q1p

q2p

G~ iqsE!

G~2 iqsE!

G2@2 i ~q1p!sE/2#

G2@ i ~q2p!sE/2#
,

T~q!5
q1p

2p

G2@2 i ~q1p!sE/2#

G~2 iqsE!G~2 ipsE!
, ~15!

and integrals from Eq.~13! are expressed for this potentia
analytically:

K~r !5
psE

2r

4 sinh~psEr /2!
, L~r !5

psEr ~11 isEr /2!

4 sinh~psEr /2!
.

~16!

Figures 2~a!–2~d! show the simulations of the reflectio
and transmission coefficients and their phases~in radians! by
various methods:~i! exact,~ii ! Rayleigh approximation~1!,
~iii ! Born approximation ~3!, ~iv! approximation by
Caticha,13 and ~v! SCA. For all the cases, the values f
sample parameters correspond to silicon substrate: Rex05
21.51231025, sE549 Å, CuKa radiation. The large value
7-4
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FIG. 3. Reflection~decimal logarithmic base! and transmission coefficients and their phases~in radians! calculated by different method
for the linear profile.
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of sE for the transition layer width is used in order to com
pare various methods out of the framework of the pertur
tion theory.

Figure 2 shows that the functionsR(q), T(q) are incor-
rectly simulated when using phenomenological~Rayleigh!
and Born approximations, whereas both self-consistent s
tions ~Caticha and SCA! fit well to the exact one for the
reflected intensity@Fig. 2~b!#. However, the difference be
tween the latters is essential for the intensity of the transm
ted radiation@Fig. 2~a!# and especially for the phases of bo
coefficients@Figs. 2~c! and 2~d!#. Thus, the only proposed
SCA, in the paper, provides the best description for all of
scattering characteristics. The same comparison is show
Figs. 3~a!–3~d! for the linear transition layer:

l~z!5
1

2s
~z1s!. ~17!

The latter model differs qualitatively from the Epstein profi
because of the discontinuity of the potential function deri
tive at the boundaries of the transition layer. However, t
model is closer to the real graded interfaces, because
continuity of derivatives at the boundaries results in the
ponentially small, nevertheless, nonzero density value at
infinite distances from the sample, which is not correct fro
23541
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the physical point of view. The solution for wave equatio
with potential ~17! can also be represented analytica
through the Airy functionsAi and Bi ~Ref. 14! on interval
@2s,s#:

u~z!5C1Ai~mz2a!1C2Bi~mz2a!,

m5S 2
V

2s D 1/3

, a5
V

2l2
. ~18!

Then the coefficientsC1,2 andR(q), T(q) are found as the
solutions of algebraic equation system following from t
continuity conditions at the boundaries of the transiti
layer:

e2 iqs1R~q!eiqs5C1Ai~2ms2a!1C2Bi~2ms2a!,

iq@e2 iqs2R~q!eiqs#

5m@C1Ai8~2ms2a!1C2Bi8~2ms2a!#,

T~q!eiqs5C1Ai~ms2a!1C2Bi~ms2a!,

iqT~q!eiqs5m@C1Ai8~ms2a!1C2Bi8~ms2a!#.
~19!
7-5
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FIG. 4. Effect of the imaginary part of the x-ray susceptibility on the scattering characteristics.
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The integrals for the SCA are calculated analytically
this case:

K~r !5
1

s2r 3
~sinsr 2sr cossr !,

L~r !5
i

s2r 2
~sinsr 2sreisr !. ~20!

The curves in Figs. 3~a–d!, simulated at the same paramet
values as for the tangential profile, depict the results of
exact, SCA, Born, Rayleigh, and Caticha13 approximations.
The decrease in the reflection coefficientR is slower in the
case of the transition layer of finite width~power law! than in
the case of the layer with tangential profile~exponential law!
at large incidence angles, which corresponds better to
experimental data~see Sec. V!. One more specific feature o
reflection from the linear graded interface is the set of lo
minima in R(a), caused by derivative discontinuity at th
boundaries of the transition layer. The experimental obse
tion of these local gaps seems to be difficult because they
expected at large angles, where the intensity is pretty l
Besides, in real structures the boundaries of the transi
layer are not strictly defined, thus intensity is effectively a
23541
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eraged over these local gaps. Nevertheless, the above s
comparison of different methods for the linear layer is im
portant because it demonstrates that the only proposed
consistent approach describes, with high accuracy, the
structure of the x-ray reflectivity.

Figures 4~a–d! show the influence of the imaginary pa
of the potential on the reflection coefficient and its phase
the Epstein potential and different approximations, (uImx0
u51/40uRex0u). One can see that the SCA takes correc
into account the radiation absorption in real medium a
conformity with the exact results is even better in this ca

IV. CONVERGENCE OF SUCCESSIVE APPROXIMATIONS

Ansatz ~11!, proposed as an approximate wave fie
within the transition layer, is not an exact solution for Ma
well’s equations, but it gives a simple functional relatio
between the wave field and potential. The numerical simu
tions presented above show reasonable and uniform accu
of ansatz for the calculation of coefficientsR(q) andT(q) in
entire range of the system parameters. Nevertheless,
comparison of results by the proposed SCA and exact s
tion of Maxwell’s equations for the wave field is necessary
seems to be difficult to find a strict mathematical proof f
the convergence of successive approximations of the S
7-6



en

b

nt

c

ca
-
on
th
b
n

x-
of

m
n

cal
tant
se

yti-
is
of

s

a-
e:

s:

ANALYTICAL ANSATZ FOR SELF-CONSISTENT . . . PHYSICAL REVIEW B 67, 235417 ~2003!
and therefore we demonstrate here just a numerical evid
of this convergence. Improvement of ansatz~11! accuracy in
the framework of the self-consistent approach is realized
the iterations of the exact integral equations~10!. These it-
erations are defined by recurrent formulas for coefficie
R(s)(q) andT(s)(q) and functionu(s)(z):

R(s)~q!52
p2q

p1q
e2iqs1

V

2iqE2s

s

djFp2q

p1q
eiq(2s2j)2eiqjG

3l~j!u(s21)~j!,

T(s)5
2q~p2q!

V
e2 i (p2q)s

3F12
V

2iqE2s

s

dje2 iqjl~j!u(s21)~j!G ,
u(s)~z!5R(s21)e2 iqz1

VT(s21)

2q~p2q!
ei (p2q)seiqz

1
V

2iqE2s

s

dj@eiq(z2j)H~j2z!

1e2 iq(z2j)H~z2j!#l~j!u(s21)~j!, ~21!

and the exact values are determined as a limit of sequen

R~q!5 lim
s→`

R(s),

where the primary terms are given by approximations~11!
and~13!. Figure 5 shows the successive approximations,
culated by Eqs.~21! for the transition layer with linear pro
file ~17!. The differences between the successive iterati
are hardly distinguishable, so quickly they converge to
exact solution, and this fact actually demonstrates the sta
ity of the zeroth approximation. Analogous results are fou
for other model potentials~not shown here!.
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The self-consistent approach for the solution of Ma
well’s equations presented in this paper is a direct analog
operator method for Schro¨dinger equation, which is proved
to be effective for the solution of many problems of quantu
mechanics.15 The coincidence of the zeroth approximatio
with the exact solution in limiting cases, where the analyti
methods can be used, is shown in Ref. 15 to be an impor
feature of any uniformly suitable approximation. For the ca
with an arbitrary potential studied in this paper, such anal
cal results can be found in two limit cases. The first one
the region of incidence angles less than the critical angle
total external reflection (q2,uVu), where the equation
p5Aq21V5 ik is fulfilled. For real potential, the integral
for the SCA are represented asK(q)5K* (2q), L(q)
5L* (2q), and substitution of these equations into Eq.~13!
demonstrates the fulfillment of the SCA zeroth approxim
tion to the exact condition in the considered angular rang

uR(0)~q!u251, q2,uVu. ~22!

In the second limit case of large incidence angles (q2

@uVu), one can use the following estimations for integral

K~q!52
i

q F E
2s

s

dzeiqzl8~z!2L~q!G ,
L~q!.

eiqsl8~s!

iq
1O~q22!,

L~p2q!.
i ~p2q!

2 Fs2E
2s

s

dzl2~z!G . ~23!

Substituting these expressions into Eq.~13!, the reflectivity
is written as

R(0)~q!.
V

2q2E2s

s

dze2iqzl8~z!,
the area,
FIG. 5. Convergence of SCA successive approximations for x-ray reflection and transmission coefficients. The inset shows
where various approximations have most of the differences. The second and third approximations are indistinguishable.
7-7
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I. D. FERANCHUK et al. PHYSICAL REVIEW B 67, 235417 ~2003!
i.e., for large value ofq, the SCA zeroth approximation i
equivalent to the Born approximation~3!, which is asymp-
totically exact at large angles.

Thus, the proposed ansatz is believed to be a unifor
suitable approximation for electromagnetic wave field, sc
tered from the one-dimensional graded interface, since it
isfies all the limiting cases and its successive approximat
converge to the exact solution. The fast convergence of
cessive approximations points to the fact that the reflecti

FIG. 6. X-ray reflectivity simulated by classical Parratt’s forma
ism ~solid line! and reflectivities by Nevot-Croce, Born, and SC
methods for~a! sinusoidal,~b! error function profiles, and~c! by
means of linear model potential~see comments in the text!.
23541
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curves in the third and fourth iterations are hardly dist
guishable and fit well the exact solution. This fast conv
gence has been shown15 to be a specific feature of iterationa
approach in comparison with the additive correction a
proach, used in conventional perturbation theory. The c
vergence rate of successive iterations obtained for x-ray
flectivity in the present work correlates well with the resu

FIG. 7. Inverse problem solutions for~a! sinusoidal,~b! error
function profiles with different value ofs, and~c! for linear model
profile.
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of various problems solved by the analogous iterat
method~see Ref. 15 and references therein!.

V. INTERPRETATION OF THE MEASURED X-RAY
REFLECTIVITY

The resulting expressions~11! and ~13! derived in this
work can be used for both thedirect ~simulation of the scat-
tered intensity from known potential of transition layer! and
inverse ~determination of density profile from x-ra
reflectivity6! problems. Besides, the diffusely scattered inte
sity can also be calculated by DWBA using nonperturbat
representation~11! for wave field instead of the convention
zeroth approximation based on the solution for sh
interface.3 To illustrate the sensitivity of the direct problem
solution to the model of interface and to the method of sim
lation, we use two potential profiles, which have no ex
solution but are widely used for modeling of the real grad
interface, error function profile, and sine profile:

w1~z!5
x0

2
@11F~z/sA2!#, F~x!5

2

Ap
E

0

x

dte2t2,

w2~z!5
x0

2 F11sin
pz

2sG . ~24!

The potentialw2(z) takes into account the natural limits o
roughness amplitude. For both potentials, we use the fu
tions R1,2

num(a) calculated by Parratt’s formalism as ‘‘mea
sured’’ reflectivities@Figs. 6~a–c!, solid lines#. Then various
methods forR1,2(a) simulation have been used and the
terface parameters for the best fit between the theoretical
measured reflectivities have been found. In such a way,
ferent methods for an approximate solution of the inve
problem for the graded interface are compared. In the s
consistent approach, the following integrals for potential~24!
are used:

FIG. 8. Measured x-ray reflectivity~solid line! from Si0.65Ge0.35

substrate and best fits by different methods.
23541
n

-
e

p

-
t
d

c-

nd
if-
e
lf-

K252
p2 sinqs

4q~q2s22p2!
,

L25
p2

8 F sinqs

~q2s22p2!
2

4 cosqs

~4q2s22p2!
G ,

K15
2

iqsA2p
E

0

`

dze2z2/2s2
F~z/sA2!sin~qz!,

L15 iqK1 . ~25!

Figures 6~a,b! show that the measured reflectivity can
modeled well by all approximations, however, the conve
tional methods~Nevot-Croce, Born! give the best fit at the
value of parameterss, which is essentially different than th
exact values549 Å, used for the simulation of measure
curve. As a result, there is a noticeable discrepancy@Figs.
7~a,b!# between the original potential profile and the profil
corresponding to the valuess shown in Fig. 6. In opposite
the SCA delivers the correct value ofs, at which the best fit
is found.

Figures 6~c! and 7~c! illustrate the opposite side of th
problem. The solution of the inverse problem is known to
dependent both on the method of simulation and on
choice of the model potential profile. To illustrate this fa
the reflectivity for the original error function profile has bee
fitted to the curves simulated by means of Parratt’s al
rithm, the SCA, and Born approximation, and using the l
ear profile. The parameters being found from the condition
of the best fit@Fig. 6~c!# differs from the exact value 49 Å
for all methods, but the result of the Born approximation
far out of the experimental accuracy. The comparison of
known measured potential profile and the profiles found
different methods with the same model potential is shown
Fig. 7~c!. These results demonstrate that the Born appro

FIG. 9. The potential profiles corresponding to reflectiviti
simulated in Fig. 8.
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mation is not applicable for the solution of the inverse pro
lem, when the graded interface is thick or possesses l
roughness.

Finally, Figs. 8 and 9 show the results of the approxim
solution of the inverse problem using the experimenta
measured, at CuKa , wavelength x-ray reflectivity from
Si0.65Ge035 substrate (Rex05231025). In this example, it
is not our goal to obtain a perfect coincidence of the theo
ical and experimental curves, which can be reached by ta
into account the instrumental function of reflectometer, d
fuse x-ray scattering, and background noise of the dete
These factors, being applied to the curve simulated by
SCA, eliminate the long-wave oscillations and result in
very good fit between the measured and simulated cu
~not shown here!. The aim of Figs. 8 and 9, however, is
demonstrate the essential dependence of reconstru
sample parameters on the choice of both the model pro
and the method of simulation. The surface is known to
very rough in this sample and nonperturbative method ha
be used to calculate the solution of the direct problem.
tried several methods for the simulation of x-ray reflectiv
on the basis of various models for the density profiles of
transition layer. All the models are parametrized by varia
s; the only parameter used to fit the simulated curve to
measured intensity. Figure 8 shows that the phenomeno
cal approximations~Rayleigh, Nevot-Croce! and analytical
model profiles with the exponential decrease of the reflec
coefficient~error function, Epshtein! do not permit to fit the
measured curve in the entire range of the reflection ang
The linear model seems to be most adequate for data des
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tion. The x-ray reflectivities for all analytical models hav
been calculated by using both the SCA and Parratt’s form
ism. The curves resulting from these two approaches are
distinguishable in the picture, but they noticeably differ fro
the result of the Born approximation.

Figure 9 shows the density profiles for the conside
sample reconstructed on the basis of the methods listed in
picture legend. The figure demonstrates a high sensitivity
the solution of the inverse problem to the choice of the t
oretical method and the model for simulation of the dire
problem.

VI. CONCLUSIONS

The analytical representation~ansatz! for electromagnetic
wave field has been proposed, which describes the scatte
of x-ray radiation from the one-dimensional graded interfa
with arbitrary density profile. This ansatz gives an accur
conformity of x-ray reflectivity spectra to interface densi
profile in the entire range of the reflection angles and with
additional parametrization. The derived expression for wa
fields can be used to adequately solve the inverse prob
for x-ray scattering as well as to enhance the accuracy
diffuse scattering calculation on the basis of DWBA.
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