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Carbon nanotubes as nanoelectromechanical systems
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We theoretically study the interplay between electrical and mechanical properties of suspended, doubly
clamped carbon nanotubes in which charging effects dominate. In this geometry, the capacitance between the
nanotube and the gd& depends on the distance between them. This dependence modifies the usual Coulomb
models and we show that it needs to be incorporated to capture the physics of the problem correctly. We find
that the tube position changes in discrete steps every time an electron tunnels onto it. Edges of Coulomb
diamonds acquire &mal) curvature. We also show that bistability in the tube position occurs and that
tunneling of an electron onto the tube drastically modifies the quantized eigenmodes of the tube. Experimental
verification of these predictions is possible in suspended tubes of sub-micron length.
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[. INTRODUCTION shows that intrinsic bistability occurs when the tube is
strained. Section IV discusses the eigenmodes and the influ-
Nanoelectromechanical systeifidEMS) convert electri-  ence on the initial strain on them. In Sec. V, junction capaci-
cal current into mechanical motion on a nanoscale and vicénces are no longer neglected and we also show the effect of
versa. These systems can be viewed as the succksgors @ nonuniform charge distribution. We end with some remarks
microelectromechanical devicGdEMS), which operate ata ©n the limitations of our model.
micron scale and are found in commercial applications. An

improved performance is expected from NEM devices due to Il. DISPLACEMENT. STRESS. AND ENERGY
their small sizes, and higher eigenfrequencieSNNMEMS o N
have already been used for high-precision measurements of A. Equilibrium position

force? electric phargé,the thermal conductance quanydm, We consider a SWNTmodeled as a rod of lengthalong
and the Casimir forc.From a fundamental point of view, the x axi), freely suspended between source and drain elec-
NEM physics is an unexplored field in which new phenom-rodes; in the vicinity of a gatésee Fig. 1 The nanotube is
ena are likely to be found. Examples include tunnelingattached to the electrodes via tunneling contacts. An electro-
through moving t_)arr|er§,addltlonallosources of noiseand  tatic force(gate voltagebends the tube: the deviation from
shuttling mechanism for transp&t _astraight line is denoted (x) with 0<x<L. The elastic

~ Studies with NEMS have mostly been performed in de-gnergy of the bent tube?s
vices made with silicon technology. Carbon nanotubes pro-
vide an interesting alternative because of their superior me- L El T ES/fL

i i i 0

chanical properties. These have already been implemented as v [z(x)]= f dx[—z”2+ 4 _f 7'2dx ZrZ} ,
nanotweezers:*? as switches in a random access memory 0 2 2 8LJo
device®® or as nanoscale actuatdfsin addition, recent the- 1)
oretical calculations show that carbon nanotubes can also be )
used as nanoelectromechanical switth&&or as gigahertz WhereE, | =ar*/4, andS=r? are the elastic modulus, the
oscillatorst’ inertia moment, and the cross section, respectively. Hése,

In this paper, we study theoretically nanoelectromechanithe (externa) radius of the tube. The first term in E€l) is
cal effects in doubly clamped suspended carbon nanotube€ energy of an unstressed bent rod; other two terms de-
Doubly clamped suspended single-wall and multiwall carborscribe the effect of the stress forte=Ty+ T. Here, T, is the
nanotubes have been previously fabricated, and theiresidual stress which may result, e.g., from the fabrication,
transportt®=2! acoustoelectrié’ thermal®®> and elasti®®  and the induced stredsis due to the elongation of the tube
properties have been measured. We consider a single-walhused by the gate voltage,
carbon nanotubé€SWNT) in which Coulomb-blockade ef-
fects dominate transport, and demonstrate that a gate ma- ES(L
nipulates the tube in an effective way. The applied gate volt- T= oL 7' 2dx. 2
age bends the tube, changes the stress, and thus influences 0
the electric and mechanical properties.

This paper is organized as follows. The following section To write down the electrostatic energy, we denote the ca-
describes the model with inclusion of the influence of initial pacitances of the barriers connecting the nanotube with the
stress and thermal fluctuations. We concentrate on the caseurce and drain a€; and Cg, respectively(see Fig. 1
where the junction capacitances are zero so that analyticdlhe capacitance to the gate per unit lengtb(®). Approxi-
expressions are obtained. Section Il describes the influenamating the gate by an infinite plane at a distaRcigom the
of nanoelectromechanical effects on Coulomb blockade andanotube, we obtain
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L Minimizing the energy,
V.G, - Cy W[ 2(X)]=We [200)]+Wesf 2()],

_l with respect t, one finds the equation determining the tube
R position?®

c(z) - _ - 5

" ! J— (ne)
—|_ -|_ IEZ" ~T2'=Ko= "5, (6)
‘ Vo ‘ whereKj is the electrostatic force per unit length, which we
X< approximate by a constant. Higher-order terms are small for

z<R. To solve Eq.(6), we have to assume that the stress
FIG. 1. A schematic drawing of a suspended nanotube capacforce T is constant, and find it later from the self-consistent
tively coupled to a gate and clamped on both sides to metal padéondition[Eq. 2]
that serve as tunnel contacts. A voltagés applied to the left pad. The solution of Eq.(6) with the appropriate boundary
conditions[for the doubly-clamped rodz(0)=2z(L)=2'(0)

1 1 Z(Xx) =Z7'(L)=0] has the form
C(Z):ZI 2R-2 _ 2R +2R| R © <Ll sinheL
ira aar Z”(X):z_'f'g W(COShgx_l)_Sinhngr X
where the Taylor expansion restricts validityz&R. In this )
limit, van der Waals forces between the nanotube and the _gx_ = /l @)
substrate can be neglected. The electrostatic energy of the L] EI

system reads Substituting this into Eq(2), a relation between the stregs

and the external forcK is obtained. In the limiting cases, it

Wes{ z(X)]
2—2ne(C V+CgVs) reads
(ne)*—2n L cVe )
= 6 2 < 2
2(C_+ Cqt Co) _ K3L®S/(6048E1%), T<EI/L ®
5 5 (ES24)Y(KoL)?3,  T>EI/L2
CL(Cr+Cg)V?+Cg(CL+Cr)VE—2C CsVVg

The first line corresponds to weak bending of the tube. The
energy associated with the bending exceeds the energy of the
stress. Generally, it is realized fa<r. The second line
describes strong bending, when the tube displacement is
large t<z<R,L).

For the displacement of the tube cen&l*=z,(L/2),

2(C_+Cr+Cg) ’
(4)

whereV andVg are the potentials of the source and the gate
respectively(the drain potential is set to zerone is the
(quantized excess charge on the nanotube, and for a uniform

charge distribution the capacitance to the gate equals we find
C fL d Z'**=0 003(ne)2|'2 T< E| n< ErR
= | c[z(x)]dx. =0. , T<—= | n<
G o [ ( )] n Er4R L2 e2L2
Note that the last term in Eq4) depends on the tube dis- (ne)?3 23 El ErSR
placement and thus on the number of electrons. Therefore, it M= 024—————  T>—|n> ()]
can not be omitted as in the standard Coulomb-blockade EY/3 23RS L2 e’L?

treatment that replaces this term by a constant malipg a
periodic function of gate voltage.

In the following, we concentrate on the analytically trac-
table caseC, ,Cr=0. The general case is considered in Sec
V. For a moment, we also assuriig=0. In this situation,
the expression for the electrostatic energy simplifies to

(ne)?
WeslZ(X)]= 2Ca7] neVs

2R
(ne)?ln—

r _(ne)2 L

L2R Jo

3 z(x)dx—neVg.

(5

For a SWNT withr=0.65 nm,E=1.25 TPa,L =500 nm,
and R=100 nm (to be referred to as thE nanotubg the
crossover from weak to strong bendinf;-EI/L2, occurs
already atn~5-10. In the strong-bending regime, the dis-
placement of theE nanotube is(in nanometers z,'®*
=0.241?". Note that this regime is not accessible with state-
of-the-art silicon submicron devices, which are always in the

weak-bending limit.

B. Charge and energy

For comparison with experiments, we have to relate the
chargene to the gate voltage by minimizing the energy. The
expression for the energielastic plus electrostadiof the
tube at equilibrium in the limiting cases reads

235414-2
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varz,=([z(L/2) - z,(L/2)]?)

.
= EJ Dz(x)exd —W,[z]/kg® +Jz(L/2)]|;-0

Zmax (nm)

-1

X sz(x)exp(—Wn[z]/kB(@) , (11

where® is the temperature. Except far=0, the functional
integral in Eqg.(11) is not Gaussian and has to be linearized
FIG. 2. Calculated displacement as a function of gate voltage fo%mlg: Z]sea?]q'l#'zleb”r::nc:ghtj)téona(|z;() 'Ialtzgd (Z)r.“;l'hee rgma;n;lt
the E nanotube:r=0.65 nm, E=1.25 TPa,L=500 nm, andR ing ussi integ u ! w v
=100 nm. AtV;~0.5V, there is a crossover from weak bending _

varz,=kg®(L/2), 12
with a V4 dependence to strong bending withvg® dependence. n=ke®£(L/2) (12)

where{(x) solves the equation

(ne)> 2R ES ES
[ In——neVg Elg””——f zgzdxg”—TzﬁJ {'zpdx=8(x—L/2).

2L
(13

Wi =W — W=

0.0009ne)*L/(Er*R?), T<EI/L?

| 0.08ne)®¥Y(Er?RAL)3, T>EI/L2, (10

In the two limiting cases of weak and strong bendings, the
solution of Eq.(13) yields

The first two terms represent the electrostatic energy of a kgOL®192E1, n=0

straight tube, and the third one is due to the elastic degrees of Valz=1 oL/eT, n>ErSR/e2L2,
freedom(stress, bending, and change@f due to displace- S )
men. This nonlinear,nanomechanical ternis typically a  Where the stresg is still given by the lower line of Eq(8).
small correction. For th& nanotube, it becomes of the same 1hUS; the fluctuations in the tube position are expected to
order asW,, if n~3000 in which case Eq3) is not valid grow linearly with temperature. However, their magnitude is

anymore. The negative sign of the nanomechanical contribus—ma”' For theE nanotube, at 100 K the fluctuations in the

tion is easily understood. As the gate voltage changes, the 0 state are OT the order of 0.1 nm, and_at least an order of
. . . .. magnitude less in the strong-bending regime.
movable tube adjusts not only its charge but also its position, . :
In the calculations, we have assumed that the chaege

Whl(_:h leads to a lower energy as compared to the flxed:,Jl fixed quantity. Close to the degeneracy pPOIME®
position system.

. R . =WE9 ., thermal fluctuations may induce switching between
The value ofn which minimizes the energy is n+l, T ST
oy the states with chargeese and (n+1)e, in this case Eq(14)
is no longer valid. However, the range of voltages, where
switching is important, is narrow.

(14

. Vel 1 5
n=Int| ;——>=—~+5+n|,
2ein(2R/r) 2 Ill. COULOMB EFFECTS AND BISTABILITY

A. Coulomb blockade

with Int denoting the integer part of the expression. The Since the nanotube is attached to the electrodes by tunnel-

§mal| 00”‘3,3“0”’5” in the strong-bending regime is PTOPOT™ ing contacts, it is in the Coulomb-blockade regime. We de-
tional toVg®. Thus, the tube displacement., changes in - ¢ o 1he energy to add theth electron to the tube as,
discrete steps wheW is varied as shown in Fig. 2. The =W,—W,_,. Then, if the nanotube contains>0 elec-
envelope is proportional to/% (weak bending or V&®  trons, the conditions that current cannot figis Coulomb
(strong bending In the absence of charging effects and ten-plocked areS,<0, eV<S,, . In quantum dotsS, depends
sion, the displacement is given by the dashed line as previinearly on the biasv and gateV, voltages. Thus, in the
ously found in simulations of Ref. 15. Vs—V plane, regions with zero current are confined within
Coulomb diamonds, that are identical diamond-shape struc-
tures repeating along thé; axis.

The preceding considerations are restricted to the case of |n a suspended carbon nanotube, in addition to the purely
zero temperature. To understand the role of the temperatur€oulomb energy, we also have the nanomechanical correc-
we now evaluate the effect of thermal fluctuations on thetions. Generally, these corrections make the relations be-
equilibrium position of the tube. tween V and Vg, which describe the boundaries of

The variance of the position of the tube center at a giverCoulomb-blockade regions, nonlinear. Consequently, the
chargen can be generally represented as a functional inteCoulomb “diamonds” in suspended nanotubes are not dia-
gral: monds any more, but instead have a curvilinear shajith

C. Thermal fluctuations

235414-3
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the exception of the casg, =Cgr=0). Their size is also not 500l

the same and decreases with;|. Thus, the mechanical de- _

grees of freedomaffect the Coulomb-blockade diamonds. § T =200 B

However, since these effects originate from the nanome- 2

chanical term, which is typically a small correction, its influ- i 20

ence on Coulomb diamonds is small as well. ForEhsano- 8 S

tube, these effects do not exceed several percent for typical 4

gate voltages. 180
0 ) 03 : vV, (V) 1.0
0 1 2 3

B. Two-gate setup and bistability Vo)

To demonstrate that the nanomechanical effects cannot FIG. 3. Gate voltage dependence of the frequemgyof the
generally be omitted, we consider a suspended tube synfindamental mode for three different values of the residual stress.
metrically placed in between two gates and show below thalumbers are taken for tHenanotubgsee Fig. 2 The fundamental
bistability in the tube position occufé. mode of an unstressed tube is 140 Mizin horizontal ling. The

Figure 1 again presents the schematic setup, but the Su@gset is an enl_argement of tfig=0 curve of the_ main figure show-
pended tube is placed between two gates, labele@upnd N9 stepwise increases ef, whenever an additional electron tun-
down (D). Since up and down capacitances are connected i€!s onto the tube.
parallel, their sunCgs=C+ Cp matters. Assuming that the o . .
distance of the straight tube to both gates is the same, wlacementz(x,t) is time dependent, which provides an ex-
write ternal force—pSzto Eq. (6), wherep equals 1.35 g/cf

Equation(6) must be solved first with a constant stress, and
[t dx then the stress is found self-consistently. The tube displace-
Cup= Jo 2(R¥z) "’ (15) ment has a small ac componef on top of a large static
2 Inf one. The self-consistency procedure is essentially the same
and again leads to E@8). Thus, the dc component of the
Expanding this forz<R and calculating the electrostatic gate voltage determines the strdsand it therefore controls
force, we arrive at an equation similar to E@), with a  the eigenmodes.
constant force&K, that is replaced byz, where The frequencies of théransversgeigenmodes are found
from the requirement that the equation
(ne)?(In2R/r +2)

Y T ol R2An2Rr |ESZ — T2~ pSw?6z=0 (17)

We now solve this equation in the strong-bending regimewith the boundary condition 5z(0)= 6z(L) = 6z'(0)
For this purpos%r7 we disregard the terfEz”’, and use the = 6z'(L)=0 has a nonzero solution. This yields the follow-
boundary conditionsz(0)=z(L)=0. Multiple solutions ing equation for the frequenay,

emerge; the ones with the lowest energy are

yi-vs oo
2L [y | wx coshy;cosy,— 5 Wsmhylslnyz: 1
z=*— —Essin—L . (16) 1r2
T

Thus, the tube in the strong-bending regime can oscillate v ZZL
between the two symmetric positions. This creates a basis for T2
observation of quantum effects, as discussed in Ref. 26. We i i
emphasize once again that within this model, the multistabil!n the following, we restrict ourselves to the fundamental
ity is due to the charging of the tube in combination with the (I0West frequencyeigenmodew,. In the limiting cases, the

(JET AN+ £2)12 )\ = \/I;:?w, (18

nonlinearity. solutions of Eq(18) are
22.38.72+0.282, ¢£L<1
IV. EIGENMODES - [El &% ¢ 19
pS| méL t+27wL 72, £L>1.

The eigenfrequency of a particular eigenmode is an im-
portant, directly measurat3feproperty. In future experiments The second terms on the right-hand side represent small cor-
on suspended tubes, we expect that the eigenmodes influeneetions to the first ones.
tunneling(“phonon-assisted tunneling”in a similar way as The frequency dependeneg <L ~2 is associated with a
observed for a single ¢ molecule® Below, we demonstrate loose string, whilewo<L ~! means that the string is tied like
that the effect of the electrostatic interactions on the elastiin a guitar. Our results show that the behavior of the tube
properties (specifically, eigenfrequenciesis strong and crosses over from “loose” to “tied” a3/ increases. For the
changes the behavior qualitatively. fundamental mode, the crossover occurséat-1, corre-

To find the eigenmodes, we apply a gate voltage with asponding to the crossover from weak to strong bending. The
large dc(single gat¢ and a small ac component. The dis- middle curve in Fig. 3 shows the frequency of the fundamen-

235414-4



CARBON NANOTUBES AS NANOELECTROMECHANICAL SYSTEMS PHYSICAL REVIEW B7, 235414 (2003

tal mode as a function of gate voltageero residual stregs ok '

The arrow denotes the cross over from weak to strong bend- 5// 1000
ing.

The gate voltage dependence of the frequency is a step-
wise function, as shown in the inset of Fig. 3. Steps occur
whenever an additional electron tunnels onto the tube. For
the E nanotube, their height is-5 MHz, which is measur-
able. Note that the present submicron silicon devices are al-
ways in the weak-bending regime so that corrections due to
the second term in Eq19) are too small to be measured.
Furthermore, one should realize that frequency quantization
is only observable if the frequency itself is greater than the
inverse tunneling time for electrons.

We now consider the effect of a residual stresg+0).

First, we obtain the stress by solving E¢2). and(6) (in the

latter, T is replaced byT +T,). In particular, for a negative
stressT+Ty<0, To~—EI/L?, Eq.(2) acquires several so-
lutions. This signal€uler instability. the tube bends in the

absence of an external force. X FIG. 4. Above: Displacement as a function of gate voltage for
If the residual stress is larg&,>EI/L", the tube always  the E nanotube with finite capacitances to the leads. The four curves
acts like a tied stringupper curve in Fig. B The frequency  correspond to different values of the parameterdefined asC,
depends weakly oW for low voltages, and abov&~T,  =Cr=4Cs. The inset is an enlargement of the main figure. Be-
(denoted with the arromgrows with an envelopevg?’. For  low: The frequency of the fundamental mode normalized to the
negative T, the picture is qualitatively differenflower  fundamental frequency of an unstressed tubd)
curve in Fig. 3. Whereas for large gate voltages the enve-=22.38."2(El/pS)*?=141 MHz for the same parameters as
lope is still proportional td\/é’3, the frequency dives below above.
the value for an unstressed tup22.38E1/pS)Y?L =2, rep-
resented by the thin solid line in Fig,],3when the overall where Co=L/(2In2R/r) is the capacitance of the straight
stress becomes negative. It further drops to zero at the Eulexanotube to the gate. The results of the numerical solutions
instability threshold. for the displacement and the frequency of the fundamental
The qualitative difference between the various regimesnode are plotted in Fig. 4. For simplicity, we have taken
means that by measuring the gate voltage dependengg of C;=Cgr= ¢Cg; the four curves correspond to different val-
one can determine the sign ©f and get a quantitative esti- ues of the parametes. The curves withp=0 are the same
mate. On the other side, the gate effect can be used to turas the ones in Figs. 2 and 3.
the eigenfrequencies. We also mention that in the absence of The plots demonstrate that the qualitative picture remains
charging effects, the steps vanish but the overall shape of thbe same if we include finite capacitances to the leads. The

curves in Fig. 3 remains the same. steps observed fap=0 become skewed with the increase of
C, andCg (see inset of Fig. ¥ At a certain¢ these disap-
V. RELAXING THE APPROXIMATIONS pear. For¢>10 the plots are, on the scale presented, the
same.

While considering equilibrium displacement and eigen-
modes of the nanotube, we made a number of simplifying . o
approximations. In this section, we consider two of B. Nonuniform charge distribution

them—disregarding the capacitanc€ g and uniform Above, we have assumed a uniform charge distribution
distribution of the charge—and show that relaxing thesejong the nanotube. Rather than trying to analyze the effect
approximations affects the above results quantitatively, bufy general, we consider the opposite situation when the ex-

not qualitatively. cess charge is concentrated at one ptimbe more precise,
In this section, we consider the case of zero residual stresg a concise region of the tube radit)s, which may repre-
To=0. sent, for instance, a pinning center. This center is placed in
the middle of the nanotube. Though we believe that the
A. Finite capacitances to the leads charge distribution in suspended nanotubes is closer to uni-

form, this situation applies to a suspended quantum dot as
realized recently’
The gate-charge capacitanCg in this geometry is

We now relax the limitatiorC, ,Cg=0. For the general
case, Eq(6) still holds, however, the forc&, must be ad-
justed,

1 of; 1

Ko= —— [ne+(C_+Cr)Vs—CV]? C=r"7, (21)
0 LZR(CO+CR+CL)2[ (CL+CRr)Ve—CLV]

1 1
(20) r 2R
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and we proceed to obtain the equations of motion

L (ne)?
IEZ"—TZ'=F8| x—=|, F=
4R?

. . @

where we again sef; =Cr=0.

The solution with the same boundary conditions as previ-
ously,z(0)=z(L)=2z'(0)=z'(L)=0, and withz, z’', andz”
all continuous ak=L/2, is

F L .
z2(X)= 2EIE { tanh7[cosr'§x— 1]—sinhéx+ éx
(23)

for 0<x<L/2. ForL/2<x<L, the coordinatex should be 0 1 2

replaced by I(—x) becausez(x)=z(L—x). As before, & VG V)

=(T/EN*? and Eq.(2) is used to obtain the stress self-

consistently, FIG. 5. Displacement of the center of tlenanotube(above
and the frequency of the fundamental eigenmduow) for uni-

F2L*S/(3072EI%), T<EI/L? form charge distribution and for the case that the charge is concen-
= (1/2)(ESF2)1’3, T>EI/L2 (29) :rabted at one poin{} is the fundamental frequency of an unstressed

ube.

Consider now the strong-bending regime and compare the ) ) ) o
results for the stress, for the uniform[lower line of Eq.  this typically lies outside our applicability range<R. We

(8)] and T, for the concentratedlower line of Eq.(24)]  have neglected damping, which is also expected to originate

charge distributions, from the creation of the defects and to be irrelevant in this
range. We also disregarded quantum efféctsunneling and
J3L\| %3 finite spacing of quantum levels of electrons in the jube
Tn:Tu(ﬁ) (259 These issues need to be clarified for a detailed comparison

with the experimental data, and will be a subject of future
For L>R, we formally haveT,>T,. This means that 'esearch. , ,
for the same gate voltage, more stress is induced at the Our main result is that the nanotube can be manipulated

nanotube if the charge is concentrated at one point. Alsd?y the gate voltage, which determines its deformation
the displacement of the tube is greater in the concentrate@nd stress, and modifies the eigenmodes. Though the eigen-

case, modes of nanotube ropes have been measured in Ref. 22
three years ago, thstrain dependencef the eigenmodes
. L\Y3 was only recently reported in Ref. 29, which was published
Zmax=0-84 5| Zmax: after this manuscript had been submitted for publication.

Reference 29 demonstrates this effect for singly-clamped

Thus, if the charge distribution is concentrated, NEMSytiwall carbon nanotubes. We expect that our predictions
are “more effective _than for the_ uniform charge. For_the will soon be tested in experiments on doubly clamped
E nanotube, the ratio of nonuniform to uniform maximal SWNTs

displacement is 1.49. The difference between uniform
and nonuniform charge distributions is illustrated in
Fig. 5.

We also mention one more paper published after the sub-
mission of our manuscript, Ref. 27, which shows measure-

ments on a suspended quantum dot. Though the focus of our
study was on carbon nanotubes, all the calculations can be
VI. DISCUSSION immediately applied to this case as well.

The presented model is simplified in many respects. Me-
chanical degrees of freedom are introduced via classical
theory of elasticity: The nanotulfenodeled by a ropis con- ACKNOWLEDGMENTS
sidered as incompressible and without internal structure. This
is justified, since so far the theory of elasticity has described We thank Yu. V. Nazarov, P. Jarillo-Herrero, L. P. Kou-
all existing experiments on carbon nanotubes well. Fomwenhoven, and C. Dekker for discussions. This work was
SWNT's it has also been supported by simulatidRef. 15.  supported by the Netherlands Foundation for Fundamental
Creation of defects in SWNT starts at deformations of theResearch on Matte(FOM) and ERATO. H.S.Jv.d.Z. was
order of 10%. For larger deformatiofsee, e.g., Ref. 38we  supported by the Dutch Royal Academy of Arts and Sciences
expect strong deviations from the behavior we describe, butKNAW).
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