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Carbon nanotubes as nanoelectromechanical systems

S. Sapmaz, Ya. M. Blanter, L. Gurevich, and H. S. J. van der Zant
Department of NanoScience and DIMES, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
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We theoretically study the interplay between electrical and mechanical properties of suspended, doubly
clamped carbon nanotubes in which charging effects dominate. In this geometry, the capacitance between the
nanotube and the gate~s! depends on the distance between them. This dependence modifies the usual Coulomb
models and we show that it needs to be incorporated to capture the physics of the problem correctly. We find
that the tube position changes in discrete steps every time an electron tunnels onto it. Edges of Coulomb
diamonds acquire a~small! curvature. We also show that bistability in the tube position occurs and that
tunneling of an electron onto the tube drastically modifies the quantized eigenmodes of the tube. Experimental
verification of these predictions is possible in suspended tubes of sub-micron length.

DOI: 10.1103/PhysRevB.67.235414 PACS number~s!: 73.63.Nm, 46.70.Hg, 62.25.1g, 73.23.Hk
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I. INTRODUCTION

Nanoelectromechanical systems~NEMS! convert electri-
cal current into mechanical motion on a nanoscale and
versa. These systems can be viewed as the successo1 of
microelectromechanical devices~MEMS!, which operate at a
micron scale and are found in commercial applications.
improved performance is expected from NEM devices due
their small sizes, and higher eigenfrequencies. M~N!EMS
have already been used for high-precision measuremen
force,2 electric charge,3 the thermal conductance quantum4

and the Casimir force.5 From a fundamental point of view
NEM physics is an unexplored field in which new pheno
ena are likely to be found. Examples include tunneli
through moving barriers,6 additional sources of noise,7 and
shuttling mechanism for transport.8–10

Studies with NEMS have mostly been performed in d
vices made with silicon technology. Carbon nanotubes p
vide an interesting alternative because of their superior
chanical properties. These have already been implemente
nanotweezers,11,12 as switches in a random access mem
device,13 or as nanoscale actuators.14 In addition, recent the-
oretical calculations show that carbon nanotubes can als
used as nanoelectromechanical switches15,16 or as gigahertz
oscillators.17

In this paper, we study theoretically nanoelectromecha
cal effects in doubly clamped suspended carbon nanotu
Doubly clamped suspended single-wall and multiwall carb
nanotubes have been previously fabricated, and t
transport,18–21 acoustoelectric,22 thermal,23 and elastic24

properties have been measured. We consider a single-
carbon nanotube~SWNT! in which Coulomb-blockade ef
fects dominate transport, and demonstrate that a gate
nipulates the tube in an effective way. The applied gate v
age bends the tube, changes the stress, and thus influ
the electric and mechanical properties.

This paper is organized as follows. The following secti
describes the model with inclusion of the influence of init
stress and thermal fluctuations. We concentrate on the
where the junction capacitances are zero so that analy
expressions are obtained. Section III describes the influe
of nanoelectromechanical effects on Coulomb blockade
0163-1829/2003/67~23!/235414~7!/$20.00 67 2354
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shows that intrinsic bistability occurs when the tube
strained. Section IV discusses the eigenmodes and the i
ence on the initial strain on them. In Sec. V, junction capa
tances are no longer neglected and we also show the effe
a nonuniform charge distribution. We end with some rema
on the limitations of our model.

II. DISPLACEMENT, STRESS, AND ENERGY

A. Equilibrium position

We consider a SWNT~modeled as a rod of lengthL along
the x axis!, freely suspended between source and drain e
trodes, in the vicinity of a gate~see Fig. 1!. The nanotube is
attached to the electrodes via tunneling contacts. An elec
static force~gate voltage! bends the tube; the deviation from
a straight line is denoted byz(x) with 0,x,L. The elastic
energy of the bent tube is25

Wel@z~x!#5E
0

L

dxH EI

2
z921FT0

2
1

ES

8LE0

L

z82dxGz82J ,

~1!

whereE, I 5pr 4/4, andS5pr 2 are the elastic modulus, th
inertia moment, and the cross section, respectively. Here,r is
the ~external! radius of the tube. The first term in Eq.~1! is
the energy of an unstressed bent rod; other two terms
scribe the effect of the stress forceT̃5T01T. Here,T0 is the
residual stress which may result, e.g., from the fabricati
and the induced stressT is due to the elongation of the tub
caused by the gate voltage,

T5
ES

2LE0

L

z82dx. ~2!

To write down the electrostatic energy, we denote the
pacitances of the barriers connecting the nanotube with
source and drain asCL and CR , respectively~see Fig. 1!.
The capacitance to the gate per unit length isc(z). Approxi-
mating the gate by an infinite plane at a distanceR from the
nanotube, we obtain
©2003 The American Physical Society14-1



th
f t

te

r

-
e
ad

c-
ec

be

e
for
ss
nt

y

it

he
f the

t is

is-

te-
the

the
e

a
a

SAPMAZ, BLANTER, GUREVICH, AND VAN DER ZANT PHYSICAL REVIEW B67, 235414 ~2003!
c~z!5
1

2 ln
2~R2z!

r

'
1

2 ln
2R

r

1
z~x!

2R ln2
2R

r

, ~3!

where the Taylor expansion restricts validity toz!R. In this
limit, van der Waals forces between the nanotube and
substrate can be neglected. The electrostatic energy o
system reads

West@z~x!#

5
~ne!222ne~CLV1CGVG!

2~CL1CR1CG!

2
CL~CR1CG!V21CG~CL1CR!VG

2 22CLCGVVG

2~CL1CR1CG!
,

~4!

whereV andVG are the potentials of the source and the ga
respectively~the drain potential is set to zero!, ne is the
~quantized! excess charge on the nanotube, and for a unifo
charge distribution the capacitance to the gate equals

CG5E
0

L

c@z~x!#dx.

Note that the last term in Eq.~4! depends on the tube dis
placement and thus on the number of electrons. Therefor
can not be omitted as in the standard Coulomb-block
treatment that replaces this term by a constant makingWest a
periodic function of gate voltage.

In the following, we concentrate on the analytically tra
table caseCL ,CR50. The general case is considered in S
V. For a moment, we also assumeT050. In this situation,
the expression for the electrostatic energy simplifies to

West@z~x!#5
~ne!2

2CG@z#
2neVG

'

~ne!2ln
2R

r

L
2

~ne!2

L2R
E

0

L

z~x!dx2neVG .

~5!

FIG. 1. A schematic drawing of a suspended nanotube cap
tively coupled to a gate and clamped on both sides to metal p
that serve as tunnel contacts. A voltageV is applied to the left pad.
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Minimizing the energy,

Wn@z~x!#5Wel@z~x!#1West@z~x!#,

with respect toz, one finds the equation determining the tu
position,25

IEz-82Tz95K0[
~ne!2

L2R
, ~6!

whereK0 is the electrostatic force per unit length, which w
approximate by a constant. Higher-order terms are small
z!R. To solve Eq.~6!, we have to assume that the stre
force T is constant, and find it later from the self-consiste
condition @Eq. ~2!#.

The solution of Eq.~6! with the appropriate boundar
conditions@for the doubly-clamped rod,z(0)5z(L)5z8(0)
5z8(L)50] has the form

zn~x!5
K0L

2Tj F sinhjL

coshjL21
~coshjx21!2sinhjx1jx

2j
x2

L G , j5A T

EI
. ~7!

Substituting this into Eq.~2!, a relation between the stressT
and the external forceK0 is obtained. In the limiting cases,
reads

T5H K0
2L6S/~60480EI2!, T!EI/L2

~ES/24!1/3~K0L !2/3, T@EI/L2.
~8!

The first line corresponds to weak bending of the tube. T
energy associated with the bending exceeds the energy o
stress. Generally, it is realized forz&r . The second line
describes strong bending, when the tube displacemen
large (r ,z!R,L).

For the displacement of the tube centerzn
max5zn(L/2),

we find

zn
max50.003

~ne!2L2

Er4R
, T!

EI

L2 S n!
Er5R

e2L2 D
zn

max50.24
~ne!2/3L2/3

E1/3r 2/3R1/3
, T@

EI

L2 S n@
Er5R

e2L2 D . ~9!

For a SWNT withr 50.65 nm, E51.25 TPa,L5500 nm,
and R5100 nm ~to be referred to as theE nanotube!, the
crossover from weak to strong bending,T;EI/L2, occurs
already atn;5 – 10. In the strong-bending regime, the d
placement of theE nanotube is ~in nanometers! zn

max

50.24n2/3. Note that this regime is not accessible with sta
of-the-art silicon submicron devices, which are always in
weak-bending limit.

B. Charge and energy

For comparison with experiments, we have to relate
chargene to the gate voltage by minimizing the energy. Th
expression for the energy~elastic plus electrostatic! of the
tube at equilibrium in the limiting cases reads

ci-
ds
4-2
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Wn
eq[Wst2dW5

~ne!2

L
ln

2R

r
2neVG

2H 0.0009~ne!4L/~Er4R2!, T!EI/L2

0.08~ne!8/3/~Er2R4L !1/3, T@EI/L2.
~10!

The first two terms represent the electrostatic energy o
straight tube, and the third one is due to the elastic degree
freedom~stress, bending, and change ofCG due to displace-
ment!. This nonlinear,nanomechanical termis typically a
small correction. For theE nanotube, it becomes of the sam
order asWst if n;3000 in which case Eq.~3! is not valid
anymore. The negative sign of the nanomechanical contr
tion is easily understood. As the gate voltage changes,
movable tube adjusts not only its charge but also its posit
which leads to a lower energy as compared to the fix
position system.

The value ofn which minimizes the energy is

n5IntS VGL

2e ln~2R/r !
1

1

2
1dnD ,

with Int denoting the integer part of the expression. T
small correctiondn in the strong-bending regime is propo
tional to VG

5/3. Thus, the tube displacementzmax changes in
discrete steps whenVG is varied as shown in Fig. 2. Th
envelope is proportional toVG

2 ~weak bending! or VG
2/3

~strong bending!. In the absence of charging effects and te
sion, the displacement is given by the dashed line as pr
ously found in simulations of Ref. 15.

C. Thermal fluctuations

The preceding considerations are restricted to the cas
zero temperature. To understand the role of the tempera
we now evaluate the effect of thermal fluctuations on
equilibrium position of the tube.

The variance of the position of the tube center at a giv
chargen can be generally represented as a functional in
gral:

FIG. 2. Calculated displacement as a function of gate voltage
the E nanotube:r 50.65 nm, E51.25 TPa, L5500 nm, andR
5100 nm. AtVG'0.5 V, there is a crossover from weak bendi
with a VG

2 dependence to strong bending with aVG
2/3 dependence.
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varzn[^@z~L/2!2zn~L/2!#2&

5
]2

]J2E Dz~x!exp@2Wn@z#/kBQ1Jz~L/2!#uJ50

3F E Dz~x!exp~2Wn@z#/kBQ!G21

, ~11!

whereQ is the temperature. Except forn50, the functional
integral in Eq.~11! is not Gaussian and has to be lineariz
around the equilibrium solutionzn(x), Eq. ~7!. The remain-
ing Gaussian integral can be calculated, and we arrive a

varzn5kBQz~L/2!, ~12!

wherez(x) solves the equation

EIz 992
ES

2LE zn8
2dxz92

ES

L
zn9E z8zn8dx5d~x2L/2!.

~13!

In the two limiting cases of weak and strong bendings,
solution of Eq.~13! yields

varzn5H kBQL3/192EI, n50

kBQL/8T, n@Er5R/e2L2,
~14!

where the stressT is still given by the lower line of Eq.~8!.
Thus, the fluctuations in the tube position are expected
grow linearly with temperature. However, their magnitude
small. For theE nanotube, at 100 K the fluctuations in th
n50 state are of the order of 0.1 nm, and at least an orde
magnitude less in the strong-bending regime.

In the calculations, we have assumed that the chargene is
a fixed quantity. Close to the degeneracy pointsWn

eq

5Wn11
eq , thermal fluctuations may induce switching betwe

the states with chargesne and (n11)e, in this case Eq.~14!
is no longer valid. However, the range of voltages, whe
switching is important, is narrow.

III. COULOMB EFFECTS AND BISTABILITY

A. Coulomb blockade

Since the nanotube is attached to the electrodes by tun
ing contacts, it is in the Coulomb-blockade regime. We d
fine the energy to add thenth electron to the tube asSn
5Wn2Wn21. Then, if the nanotube containsn.0 elec-
trons, the conditions that current cannot flow~is Coulomb
blocked! areSn,0, eV,Sn11. In quantum dots,Sn depends
linearly on the biasV and gateVg voltages. Thus, in the
VG2V plane, regions with zero current are confined with
Coulomb diamonds, that are identical diamond-shape st
tures repeating along theVG axis.

In a suspended carbon nanotube, in addition to the pu
Coulomb energy, we also have the nanomechanical cor
tions. Generally, these corrections make the relations
tween V and VG , which describe the boundaries o
Coulomb-blockade regions, nonlinear. Consequently,
Coulomb ‘‘diamonds’’ in suspended nanotubes are not d
monds any more, but instead have a curvilinear shape~with

r

4-3
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the exception of the caseCL5CR50). Their size is also no
the same and decreases withuVGu. Thus, the mechanical de
grees of freedomaffect the Coulomb-blockade diamond
However, since these effects originate from the nanom
chanical term, which is typically a small correction, its infl
ence on Coulomb diamonds is small as well. For theE nano-
tube, these effects do not exceed several percent for typ
gate voltages.

B. Two-gate setup and bistability

To demonstrate that the nanomechanical effects ca
generally be omitted, we consider a suspended tube s
metrically placed in between two gates and show below
bistability in the tube position occurs.26

Figure 1 again presents the schematic setup, but the
pended tube is placed between two gates, labeled up~U! and
down (D). Since up and down capacitances are connecte
parallel, their sumCG5CU1CD matters. Assuming that th
distance of the straight tube to both gates is the same
write

CU,D5E
0

L dx

2 ln
2~R7z!

r

. ~15!

Expanding this forz!R and calculating the electrostat
force, we arrive at an equation similar to Eq.~6!, with a
constant forceK0 that is replaced bygz, where

g5
~ne!2~ ln2R/r 12!

2L2R2ln2R/r
.

We now solve this equation in the strong-bending regim
For this purpose25 we disregard the termIEz-8, and use the
boundary conditionsz(0)5z(L)50. Multiple solutions
emerge; the ones with the lowest energy are

z56
2L2

p2
A g

ES
sin

px

L
. ~16!

Thus, the tube in the strong-bending regime can oscil
between the two symmetric positions. This creates a basi
observation of quantum effects, as discussed in Ref. 26.
emphasize once again that within this model, the multista
ity is due to the charging of the tube in combination with t
nonlinearity.

IV. EIGENMODES

The eigenfrequency of a particular eigenmode is an
portant, directly measurable22 property. In future experiment
on suspended tubes, we expect that the eigenmodes influ
tunneling~‘‘phonon-assisted tunneling’’! in a similar way as
observed for a single C60 molecule.10 Below, we demonstrate
that the effect of the electrostatic interactions on the ela
properties ~specifically, eigenfrequencies! is strong and
changes the behavior qualitatively.

To find the eigenmodes, we apply a gate voltage wit
large dc~single gate! and a small ac component. The di
23541
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placementz(x,t) is time dependent, which provides an e
ternal force2rSz̈ to Eq. ~6!, wherer equals 1.35 g/cm3.
Equation~6! must be solved first with a constant stress, a
then the stress is found self-consistently. The tube displa
ment has a small ac componentdz on top of a large static
one. The self-consistency procedure is essentially the s
and again leads to Eq.~8!. Thus, the dc component of th
gate voltage determines the stressT and it therefore controls
the eigenmodes.

The frequencies of the~transverse! eigenmodes are found
from the requirement that the equation

IEdz+2Tdz92rSv2dz50 ~17!

with the boundary condition dz(0)5dz(L)5dz8(0)
5dz8(L)50 has a nonzero solution. This yields the follow
ing equation for the frequencyv,

coshy1cosy22
1

2

y1
22y2

2

y1y2
sinhy1siny251

y1,25
L

A2
~Aj414l26j2!1/2, l5ArS

EI
v. ~18!

In the following, we restrict ourselves to the fundamen
~lowest frequency! eigenmodev0. In the limiting cases, the
solutions of Eq.~18! are

v05AEI

rSH 22.38L2210.28j2, jL!1

pjL2112pL22, jL@1.
~19!

The second terms on the right-hand side represent small
rections to the first ones.

The frequency dependencev0}L22 is associated with a
loose string, whilev0}L21 means that the string is tied lik
in a guitar. Our results show that the behavior of the tu
crosses over from ‘‘loose’’ to ‘‘tied’’ asVG increases. For the
fundamental mode, the crossover occurs atjL;1, corre-
sponding to the crossover from weak to strong bending. T
middle curve in Fig. 3 shows the frequency of the fundam

FIG. 3. Gate voltage dependence of the frequencyv0 of the
fundamental mode for three different values of the residual str
Numbers are taken for theE nanotube~see Fig. 2!. The fundamental
mode of an unstressed tube is 140 MHz~thin horizontal line!. The
inset is an enlargement of theT050 curve of the main figure show
ing stepwise increases ofv0 whenever an additional electron tun
nels onto the tube.
4-4
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tal mode as a function of gate voltage~zero residual stress!.
The arrow denotes the cross over from weak to strong be
ing.

The gate voltage dependence of the frequency is a s
wise function, as shown in the inset of Fig. 3. Steps oc
whenever an additional electron tunnels onto the tube.
the E nanotube, their height is;5 MHz, which is measur-
able. Note that the present submicron silicon devices are
ways in the weak-bending regime so that corrections du
the second term in Eq.~19! are too small to be measure
Furthermore, one should realize that frequency quantiza
is only observable if the frequency itself is greater than
inverse tunneling time for electrons.

We now consider the effect of a residual stress (T0Þ0).
First, we obtain the stress by solving Eqs.~2! and~6! ~in the
latter, T is replaced byT1T0). In particular, for a negative
stressT1T0,0, T0;2EI/L2, Eq. ~2! acquires several so
lutions. This signalsEuler instability: the tube bends in the
absence of an external force.

If the residual stress is large,T0@EI/L2, the tube always
acts like a tied string~upper curve in Fig. 3!. The frequency
depends weakly onVG for low voltages, and aboveT;T0

~denoted with the arrow! grows with an envelope}VG
2/3. For

negative T0, the picture is qualitatively different~lower
curve in Fig. 3!. Whereas for large gate voltages the env
lope is still proportional toVG

2/3, the frequency dives below
the value for an unstressed tube@22.38(EI/rS)1/2L22, rep-
resented by the thin solid line in Fig. 3#, when the overall
stress becomes negative. It further drops to zero at the E
instability threshold.

The qualitative difference between the various regim
means that by measuring the gate voltage dependence ov0,
one can determine the sign ofT0 and get a quantitative est
mate. On the other side, the gate effect can be used to
the eigenfrequencies. We also mention that in the absenc
charging effects, the steps vanish but the overall shape o
curves in Fig. 3 remains the same.

V. RELAXING THE APPROXIMATIONS

While considering equilibrium displacement and eige
modes of the nanotube, we made a number of simplify
approximations. In this section, we consider two
them—disregarding the capacitancesCL,R and uniform
distribution of the charge—and show that relaxing the
approximations affects the above results quantitatively,
not qualitatively.

In this section, we consider the case of zero residual st
T050.

A. Finite capacitances to the leads

We now relax the limitationCL ,CR50. For the genera
case, Eq.~6! still holds, however, the forceK0 must be ad-
justed,

K05
1

L2R

C0
2

~C01CR1CL!2
@ne1~CL1CR!VG2CLV#2,

~20!
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where C05L/(2 ln 2R/r) is the capacitance of the straigh
nanotube to the gate. The results of the numerical soluti
for the displacement and the frequency of the fundame
mode are plotted in Fig. 4. For simplicity, we have tak
CL5CR5fCG ; the four curves correspond to different va
ues of the parameterf. The curves withf50 are the same
as the ones in Figs. 2 and 3.

The plots demonstrate that the qualitative picture rema
the same if we include finite capacitances to the leads.
steps observed forf50 become skewed with the increase
CL andCR ~see inset of Fig. 4!. At a certainf these disap-
pear. Forf.10 the plots are, on the scale presented,
same.

B. Nonuniform charge distribution

Above, we have assumed a uniform charge distribut
along the nanotube. Rather than trying to analyze the ef
in general, we consider the opposite situation when the
cess charge is concentrated at one point~to be more precise
in a concise region of the tube radiusr ), which may repre-
sent, for instance, a pinning center. This center is place
the middle of the nanotube. Though we believe that
charge distribution in suspended nanotubes is closer to
form, this situation applies to a suspended quantum do
realized recently.27

The gate-charge capacitanceCG in this geometry is

C5
1

1

r
2

1

2R

, ~21!

FIG. 4. Above: Displacement as a function of gate voltage
theE nanotube with finite capacitances to the leads. The four cur
correspond to different values of the parameterf, defined asCL

5CR5fCG . The inset is an enlargement of the main figure. B
low: The frequency of the fundamental mode normalized to
fundamental frequency of an unstressed tubeV
522.38L22(EI/rS)1/25141 MHz for the same parameters a
above.
4-5
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and we proceed to obtain the equations of motion

IEz+2Tz95FdS x2
L

2D , F[
~ne!2

4R2
, ~22!

where we again setCL5CR50.
The solution with the same boundary conditions as pre

ously,z(0)5z(L)5z8(0)5z8(L)50, and withz, z8, andz9
all continuous atx5L/2, is

z~x!5
F

2EIj3 H tanh
jL

2
@coshjx21#2sinhjx1jxJ

~23!

for 0,x,L/2. For L/2,x,L, the coordinatex should be
replaced by (L2x) becausez(x)5z(L2x). As before,j
5(T/EI)1/2 and Eq. ~2! is used to obtain the stress se
consistently,

T5H F2L4S/~30720EI2!, T!EI/L2

~1/2!~ESF2!1/3, T@EI/L2.
~24!

Consider now the strong-bending regime and compare
results for the stressTu for the uniform @lower line of Eq.
~8!# and Tn for the concentrated@lower line of Eq. ~24!#
charge distributions,

Tn5TuSA3L

4R D 2/3

. ~25!

For L@R, we formally haveTn@Tu . This means that
for the same gate voltage, more stress is induced at
nanotube if the charge is concentrated at one point. A
the displacement of the tube is greater in the concentr
case,

zmax
n 50.87S L

RD 1/3

zmax
u .

Thus, if the charge distribution is concentrated, NEM
are ‘‘more effective’’ than for the uniform charge. For th
E nanotube, the ratio of nonuniform to uniform maxim
displacement is 1.49. The difference between unifo
and nonuniform charge distributions is illustrated
Fig. 5.

VI. DISCUSSION

The presented model is simplified in many respects. M
chanical degrees of freedom are introduced via class
theory of elasticity: The nanotube~modeled by a rod! is con-
sidered as incompressible and without internal structure. T
is justified, since so far the theory of elasticity has describ
all existing experiments on carbon nanotubes well. F
SWNT’s it has also been supported by simulations~Ref. 15!.
Creation of defects in SWNT starts at deformations of
order of 10%. For larger deformations~see, e.g., Ref. 28!, we
expect strong deviations from the behavior we describe,
23541
i-

e

he
o,
ed

-
al

is
d
r

e

ut

this typically lies outside our applicability rangez!R. We
have neglected damping, which is also expected to origin
from the creation of the defects and to be irrelevant in t
range. We also disregarded quantum effects~cotunneling and
finite spacing of quantum levels of electrons in the tub!.
These issues need to be clarified for a detailed compar
with the experimental data, and will be a subject of futu
research.

Our main result is that the nanotube can be manipula
by the gate voltage, which determines its deformat
and stress, and modifies the eigenmodes. Though the e
modes of nanotube ropes have been measured in Re
three years ago, thestrain dependenceof the eigenmodes
was only recently reported in Ref. 29, which was publish
after this manuscript had been submitted for publicati
Reference 29 demonstrates this effect for singly-clam
multiwall carbon nanotubes. We expect that our predictio
will soon be tested in experiments on doubly clamp
SWNTs.

We also mention one more paper published after the s
mission of our manuscript, Ref. 27, which shows measu
ments on a suspended quantum dot. Though the focus o
study was on carbon nanotubes, all the calculations can
immediately applied to this case as well.
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FIG. 5. Displacement of the center of theE nanotube~above!
and the frequency of the fundamental eigenmode~below! for uni-
form charge distribution and for the case that the charge is con
trated at one point.V is the fundamental frequency of an unstress
tube.
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