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Short-range correlations in a one-dimensional electron gas
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We use the Singwi-Sjo¨lander-Tosi-Land~SSTL! approximation to investigate the short-range correlations in
a one-dimensional electron gas. We find out that the SSTL approximation satisfies the compressibility sum rule
somewhat better than the more widely used Singwi-Tosi-Land-Sjo¨lander approximation in the case of a one-
dimensional electron gas.
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I. INTRODUCTION

Recent technological advances in fabrication technolog
have made it possible to produce effectively one-dimensio
~1D! semiconductor structures or quantum wires.1–5 These
progresses, indeed, have made the 1D electronic system
of the most attractive subjects of both theoretical and exp
mental condensed matter physics for some decays. It is
known that quantum confinement increases the role pla
by many-body effects due to the severe restrictions in
phase space as in 1D electronic systems. Naturally, there
numerous theoretical investigations dedicated to underst
ing these effects.6–13

The exchange and correlation effects describing
screening properties of a system of electrons interacting
the long-range Coulomb interaction potential at high den
ties is well explained by a mean-field approach: the rando
phase approximation~RPA!. However, as the particle densit
is lowered exchange-correlation effects become impor
and the RPA fails to explain the physical properties of
system. The Singwi-Tosi-Land-Sjo¨lander14 ~STLS! has been
introduced as an improvement over the RPA to take i
account short-range correlation effects in terms of a lo
field correction~LFC! which considers the repulsion ho
around an electron.

Extensive investigations of three-dimensional electron
have clearly shown the importance of short-range corr
tions at lower densities in determining the pair distributi
function g(r ) at small r .15 Although the STLS approxima
tion gives a correct pair correlation function and ground-st
energy, it fails to satisfy the compressibility sum rule.
order to satisfy the compressibility sum rule, there have b
several attempts.16,17 In the Singwi-Sjo¨lander-Land-Tosi
~SSTL! approximation, the interaction potential entering t
LFC expression is screened by the static dielectric func
in order to include the effect of screening on the effect
potential.

In this work, our main motivation is to inquire the perfo
mance of both SSTL and STLS approaches in a 1D elec
gas as far as the compressibility is concerned. To the be
our knowledge, this is the first application of the SSTL a
proach in lower dimensions.

The outline of this paper is as follows. The quantum w
model we assume in this work and the STLS and SS
formalisms are given in Sec. II. The results and a discuss
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concentrating on a comparison between STLS and SSTL
formances in the compressibility issue are presented in S
III.

II. MODEL AND THEORY

Currently fabricated semiconductor quantum wires
long 1D structures with a finite lateral width. We assume t
electrons are constrained to move only in one direction b
harmonic confinement. Such a model yields the Coulo
interaction between the electronsV(q)5(e2/e0)
3exp(b2q2/4)K0(b2q2/4), where K0(x) is the modified
Bessel function of the second kind. The parameterb is re-
lated to the confining potential, and it is a measure of
effective diameter of the quantum wire.18 The linear number
densityn is defined in terms of the spin and valley dege
eraciesgs andgn , respectively, and the Fermi wave numb
kF as n5gsgnkF /p. In this paper, we usegn51. The di-
mensionless density parameterr s is related to the linear den
sity asr s51/(2naB

!), whereaB
!5e0 /(e2m!) is the effective

Bohr radius in the semiconducting wire with background
electric constante0 and electron effective massm! ~we take
\51). In this work, we employ the single-subband appro
mation, which implies that the intersubband energy dista
is larger than the Fermi energy. In other words, electro
occupy only the first subband, which requires thatr s

.(p/25/2)(b/aB
!).7

A. Self-consistent equations

The quantity having central importance in characteriz
a many-body system is the wave-vector- and frequen
dependent density-density response functionx(q,v). In the
STLS theory, this function is given in terms of the LFCG(q)
as

x~q,v!5
x0~q,v!

12V~q!@12G~q!#x0~q,v!
, ~1!

wherex0(q,v) is the zero-temperature susceptibility of th
noninteracting electron gas and it is given by

x0~q,v!5
m!

pq
lnUv22v2

2

v22v1
2 U , ~2!

where v65uq2/2m!62qkF /m!u are the boundaries of th
©2003 The American Physical Society14-1
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particle-hole continuum. The static structure factor is rela
to the density-density response function through
fluctuation-dissipation theorem as

S~q!52
1

npE0

`

dvx~q,iv!, ~3!

where we perform frequency integration along the imagin
axis by using Wick rotation. The static LFC arising from th
exchange-correlation effects and short-range Coulomb co
lations is given by

G~q!52
1

nE2`

` dq8

2p

q8

q

V~q8!

V~q!
@S~q2q8!21#. ~4!

The set of equations~1!, ~3!, and ~4! has to be solved self
consistently forx(q), S(q), andG(q) within the STLS ap-
proximation. In the RPA,G(q)50.

The SSTL approximation is different from the STLS a
proximation in that the interaction potential is screened
the static dielectric function, which is expressed in the fo

e~q!512
V~q!x0~q!

11G~q!V~q!x0~q!
. ~5!

This is originally done to better satisfy the compressibil
sum rule in three-dimensional electron gas.

Finally, the pair correlation function can be calculated
the Fourier transform of the static structure factor as

g~r !511
1

2E0

`

dq cos~qr !@S~q!21#. ~6!

A. Ground-state energy and compressibility

The calculation of the ground-state energy is an easy
once the dielectric function is determined. The ground-s
energy per particle,«g , can be defined in terms of kinetic
exchange, and correlation contributions as

«g~r s!5«kin~r s!1«exc~r s!1«c~r s!. ~7!

The «g(r s) for a 1D electron system may be expressed a

«g~r s!5«kin~r s!1
1

4r s
E

0

1

dlE
0

`

dqF~q!@S~q,l!21#,

~8!

wherel is the coupling constant andF(q)5V(q)/(e2/e0).
The kinetic energy per particle of a 1D electron gas is giv
as«kin(r s)5p2/48r s

2 .
The exchange energy per particle is given by

«exc~r s!5
1

4r s
E

0

2

dqF~q!@q/221#. ~9!

All the energies above are in effective Rydberg units@Ry!

51/(2m!aB
!2)#.

The correlation energy is the difference between
Hartree-Fock ground-state energy and any better calcula
It can be computed via Eq.~7!, if we know other terms.
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The isothermal compressibilityk is an important macro-
scopic property of the system. It can be computed either
using the second derivative of the ground-state energy
particle,

k0

k
5

8r s
4

p2

d2«g

drs
2

, ~10!

or by using the long-wavelength limit of the static dielectr
function of the electron gas system, limq→0e(q)51
1V(q)n2k, which yields

k0

k
511

4r s

p2 E0

`

dqF~q!lnU22q

21qU dS~q!

dq
, ~11!

wherek0532m!r s
3aB

!3/p2 is the free-electron gas compres
ibility. We note that in Eqs.~8!, ~9!, and~11!, the wave num-
ber q is normalized bykF .

The compressibility sum rule requires the compressibi
computed in the two different methods to be the same.

FIG. 1. The local field correctionG(q) for a quantum wire of
width b52aB

! . ~a! Comparison of the SSTL~solid line! and STLS
~dashed line! approximations atr s52. ~b! The SSTL performance
at r s51, 1.5, and 2.
4-2
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III. RESULTS AND DISCUSSION

We solve the set of equations@Eqs.~1!, ~3!, and~4!# that
describes the density response, static structure factor, an
local field correction self-consistently. The numerical acc
racy attained in the calculations is 0.001%.

In Fig. 1~a! we compare the local field correctionG(q)
calculated in the SSTL and STLS approximations for
same wire radius and electron density. The most striking
ference between the curves is their large-q limits. The STLS
curve increases faster withq and saturates at relatively sma
q while SSTL G(q) saturates at a largerq value. We also
observe thatG(q→`) in the SSTL approximation is large
than that in the STLS approximation. On the other ha
G(q→0)}1/V(q→0) in both approximations as expecte
The SSTLG(q) behavior at different densities is displaye
in Fig. 1~b!. We point out that with decreasing densi
~equivalently with increasingr s), theG(q) increases, which
means that the correlations between electrons are getting
portant.

The static structure factorS(q) in different approxima-
tions for r s52 is shown in Fig. 2~a!. The curves obtained in
both SSTL and STLS approximations are similar. Moreov

FIG. 2. The static structure factorS(q) for a quantum wire of
width b52aB

! . ~a! Comparison of the SSTL~solid line! and STLS
~dashed line! approximations atr s52. The dotted line is the resul
of Tanatar~Ref. 19! which cannot be resolved since the results
almost identical.~b! The SSTL performance atr s51, 1.5, 2, and 3.
23531
the
-

e
f-

,

m-

r,

we observe that our STLS result is in good agreement w
that of Tanatar19 at the same density. In Fig. 2~b! we plot
S(q) within the SSTL approximation forr s51, 1.5, 2, and
3. Notice that the large-q limit of S(q) is correctly given as

e

FIG. 3. The pair correlation functiong(r ) ~a! in the SSTL ap-
proximation ~solid line!, STLS approximation~dashed line!, and
Ref. 19~dotted line! at r s52 andb52aB

! . ~b! SSTL performance
at r s52 for quantum wire widths ofb5aB

! ~solid line!, b52aB
!

~dashed line!, andb54aB
! ~dotted line!.

FIG. 4. The inverse dielectric function in the SSTL approxim
tion ~solid line!, STLS approximation~dashed line!, and RPA~dot-
ted line! at r s52 andb52aB

! .
4-3
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MURAT TAŞ AND MEHMET TOMAK PHYSICAL REVIEW B 67, 235314 ~2003!
1. As the density is lowered,S(q) value is getting smaller a
expected.

The probability of finding an electron atr if another elec-
tron is located at the origin is given by the pair correlati
functiong(r ). We notice that for the same density, a smar
value of g(0) is positive in both the STLS and SSTL a
proximations. Moreover, the STLSg(0) is greater than the
SSTL value as is seen in Fig. 3~a!. Again we observe a very
good agreement between the STLS results of the pre
work and Ref. 19. The behavior ofg(r ) in the SSTL ap-
proximation forb/aB

!51, 2, and 4, but at the same density,
shown in Fig. 3~b!. We find thatg(0) gets larger asb in-
creases andg(0) is negative for b5aB

! . The one-
dimensional interaction potentialV(q) is weakened asb in-
creases. Investigation ofg(r ) as a function ofr s showed that
g(0) becomes negative forr s.5.1 in the STLS approxima
tion, and r s.2.1 in the SSTL approximation whenb

FIG. 5. The screening charge density near a point impurity
the 1D electron gas withr s52 calculated in the SSTL approxima
tion ~solid line!, STLS approximation~dashed line!, and RPA~dot-
ted line! for b52aB

! .

FIG. 6. The correlation energy per particle as a function ofr s in
the SSTL~solid line! and STLS~dashed line! approximations for
b52aB

! . The dotted line shows the results of Ref. 21, and the s
circles show those of Ref. 7.
23531
nt

52aB
! . Our findings for STLSg(0) are in good agreemen

with the results of Ref. 7.
The inverse dielectric function in the SSTL approximati

is plotted in Fig. 4. This is rather similar to the RPA resu
whereas the STLS 1/e(q) is more pronounced. All curves

n

d

FIG. 7. Normalized inverse compressibility by using th
ground-state energy per particle and dielectric function in the SS
approximation for a quantum wire of width~a! b5aB

! and ~b! b
52aB

! .

TABLE I. Correlation energies«cor(r s ,b) per particle~in units
of the effective Rydberg Ry!) for b5aB

! , b52aB
! , and b54aB

!

obtained within the SSTL approximation.

r s 2«cor(r s ,b5aB
!) 2«cor(r s ,b52aB

!) 2«cor(r s ,b54aB
!)

0.1 0.006 731 0.002 100 0.000 633
0.2 0.019 901 0.006 502 0.002 033
0.4 0.054 148 0.018 774 0.006 145
0.6 0.091 337 0.033 444 0.011 328
0.8 0.126 239 0.048 900 0.017 139
1.0 0.156 726 0.067 816 0.023 271
2.0 0.249 965 0.122 460 0.052 289
3.0 0.289 631 0.155 645 0.073 565
4.0 0.306 768 0.174 948 0.088 268
5.0 0.313 627 0.186 701 0.098 608
4-4
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have a discontinuity in the derivative atq52kF .
The density of screening chargedr at a distancer from a

static point impurity of unit charge located at the center
the wire is given by the relation20

dr~r !5E dq

2p
eiqrF 1

e~q!
21G . ~12!

The dr calculated atb52aB
! and r s52 is given in Fig. 5.

The SSTL and RPA curves are shallow and similar as a re
of the 1/e(q) behavior whereas STLS curve shows a dee
minimum. The screening charge density has the Friedel
cillations at large distance as in the 3D case.16

The correlation energy is one of the main properties of
system. We present our«cor results for the SSTL and STLS
approaches in Fig. 6. It is seen that the STLS approxima
leads to a larger value for the correlation energy compare
the SSTL approximation. The difference between«cor results
of the two models increases with increasingr s . We find out
that our results for the STLS approximation are very close
those of Gold and Calmels7 and Tanatar and Bulutay21 who
used the same quantum model as we employ. The small
ference should be attributed to the methods used in the
culations; the three-sum-rule approach for the local field c
rection is used in Ref. 7, whereas in Ref. 21, Ric
approach22 is used for the correlation energy calculation.
Table I, we give some numerical results for the correlat
energy for differentb andr s within the SSTL approximation

The compressibility sum-rule calculation is the main a
of the present work. We investigate the compressibility s
rule in the SSTL approximation for wire widthsb5aB

! and
b52aB

! . The results are plotted in Fig. 7. The inverse n
malized compressibility computed via both the energy a
dielectric functions is larger~in magnitude! in the same den-
sity range for the wire with smallerb, where the interaction
potential is stronger. In Fig. 8, we compare our STLS co
pressibility results with those of Refs. 7 and 21. The res
are in very good agreement. We notice that for the same w
width, b52aB

! , the difference between the compressibil
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computed by using the ground-state energy per particle
the long-wavelength limit of the dielectric function is small
in the SSTL approximation.

In summary, we have studied the short-range correlati
in a one-dimensional electron gas by using the SSTL
proximation. The performance of the SSTL approximation
compared with the more widely used STLS approximatio
We conclude that the SSTL approximation compares w
with the STLS approximation when the static structure fa
tor, pair correlation function, and dielectric function are co
sidered. The most important finding of this work is that t
SSTL approximation satisfies the compressibility sum r
somewhat better than the STLS approximation.
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FIG. 8. Compressibility based on the ground-state energy
particle and dielectric function in the STLS approximation~solid
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! . The solid circles are the
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