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Short-range correlations in a one-dimensional electron gas
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We use the Singwi-S|ander-Tosi-LandSSTL) approximation to investigate the short-range correlations in
a one-dimensional electron gas. We find out that the SSTL approximation satisfies the compressibility sum rule
somewhat better than the more widely used Singwi-Tosi-Lanth&jier approximation in the case of a one-
dimensional electron gas.
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[. INTRODUCTION concentrating on a comparison between STLS and SSTL per-
formances in the compressibility issue are presented in Sec.
Recent technological advances in fabrication technologie#l.
have made it possible to produce effectively one-dimensional
(1D) semiconductor structures or quantum witesThese Il. MODEL AND THEORY
progresses, indeed, have made the 1D electronic systems oneCurrently fabricated semiconductor quantum wires are
of the most attractive subjects of both theoretical and experipng 1D structures with a finite lateral width. We assume that
mental condensed matter physics for some decays. It is wedllectrons are constrained to move only in one direction by a
known that quantum confinement increases the role playeHarmonic confinement. Such a model yields the Coulomb
by many-body effects due to the severe restrictions in thenteraction between the electronsV(q)=(e? ¢,)
phase space as in 1D electronic systems. Naturally, there areexp’g?/4)Ko(b?q%/4), where Ko(x) is the modified
numerous theoretical investigations dedicated to understan@essel function of the second kind. The paramétés re-
ing these effect§:" lated to the confining potential, and it is a measure of the
The exchange and correlation effects describing theffective diameter of the quantum witéThe linear number
screening properties of a system of electrons interacting vigensityn is defined in terms of the spin and valley degen-
the long-range Coulomb interaction potential at high densigraciesy, andg,, respectively, and the Fermi wave number
ties is well explained by a mean-field approach: the randomg_ asn=g.g ke /7. In this paper, we usg,=1. The di-
phase approximatiofRPA). However, as the particle density mensionless density parametetis related to the linear den-
is lowered exchange-correlation effects become importanéity asrs=1/(2nay), wherea= e,/(e2m*) is the effective
and the RPA fails to explain the physjlcal properties of thegqpr radius in the semiconducting wire with background di-
system. The Singwi-Tosi-Land-Smder” (STLS) has been gjacyric constant, and electron effective mass* (we take
introduced as an |mprovemgnt over thr—; RPA to take |nt%:1)_ In this work, we employ the single-subband approxi-
account short-range correlation effects in terms of a locaj,ation which implies that the intersubband energy distance
field correction(LFC) which considers the repulsion hole ;g larger than the Fermi energy. In other words, electrons

around an electron_. . . . occupy only the first subband, which requires that
Extensive investigations of three-dimensional electron ga%(w/ZS’z)(b/a*) 7
B .

have clearly shown the importance of short-range correla-
tions at lower densities in determining the pair distribution
function g(r) at smallr.*® Although the STLS approxima-
tion gives a correct pair correlation function and ground-state The quantity having central importance in characterizing
energy, it fails to satisfy the compressibility sum rule. Ina many-body system is the wave-vector- and frequency-
order to satisfy the compressibility sum rule, there have beeflependent density-density response funcigg, »). In the
several attempt®'’ In the Singwi-Sjtander-Land-Tosi STLS theory, this function is given in terms of the LIBZq)
(SSTL approximation, the interaction potential entering theas
LFC expression is screened by the static dielectric function
in order to include the effect of screening on the effective x(0, @)= X0(9,) '
potential. 1-V(@)[1-G(a)]xo(q,»)
In this work, our main motivation is to inquire the perfor-
mance of both SSTL and STLS approaches in a 1D electro
gas as far as the compressibility is concerned. To the best aP
our knowledge, this is the first application of the SSTL ap-
proach in lower dimensions. _
The outline of this paper is as follows. The quantum wire 7q
model we assume in this work and the STLS and SSTL
formalisms are given in Sec. II. The results and a discussiowhere w- =|q%/2m* +2qkg /m*| are the boundaries of the

A. Self-consistent equations

@

WhereXo(q,w) is the zero-temperature susceptibility of the
ninteracting electron gas and it is given by

£ @

0163-1829/2003/623)/2353145)/$20.00 67 235314-1 ©2003 The American Physical Society



MURAT TAS AND MEHMET TOMAK PHYSICAL REVIEW B 67, 235314 (2003

particle-hole continuum. The static structure factor is related 10 e
to the density-density response function through the
fluctuation-dissipation theorem as

0.8

1

S(q):__f“dwx(q,iw), 3

nmjo 0.6

—~

where we perform frequency integration along the imaginary,
axis by using Wick rotation. The static LFC arising from the 04
exchange-correlation effects and short-range Coulomb corre
lations is given by

dg’ g9’ v(q') ,
c@=-1f 5 S ugsaar @ |

0.2
i

The set of equationél), (3), and(4) has to be solved self-
consistently fory(q), S(q), andG(q) within the STLS ap- 10
proximation. In the RPAG(q)=0.

The SSTL approximation is different from the STLS ap-
proximation in that the interaction potential is screened by
the static dielectric function, which is expressed in the form

~ V(@xo(q) =
D=1 G V(@ xo@ ® 3

This is originally done to better satisfy the compressibility
sum rule in three-dimensional electron gas.

Finally, the pair correlation function can be calculated by 92
the Fourier transform of the static structure factor as

1 (e 00— . — . .
g(r)=1+ §Jo dqcogan)[S(q)—1]. (6) q/kr
FIG. 1. The local field correctios(q) for a quantum wire of
A. Ground-state energy and compressibility width b=2ag . (a) Comparison of the SST(solid line) and STLS

) ) dashed ling approximations at=2. (b) The SSTL performance
The calculation of the ground-state energy is an easy taskr —1, 1.5, and 2.

once the dielectric function is determined. The ground-state
energy per particles,, can be defined in terms of kinetic,

. P The isothermal compressibility is an important macro-
exchange, and correlation contributions as

scopic property of the system. It can be computed either by

o(T)= 8kin(Te) + EoxdT9) T &c(ls) @) g:;;li%l:e second derivative of the ground-state energy per
The gy(rs) for a 1D electron system may be expressed as
1 1 0 KO Srg dzsg 10
sg<rs>=skm<rs>+4—rsf0 dxfo daF(@)[S(a.n) - 1], T (0

tS)
where is the coupling constant arfel(q) =V(q)/(e%/ ).
The kinetic energy per particle of a 1D electron gas is give
aseyin(rs) = w2482,
The exchange energy per particle is given by

or by using the long-wavelength limit of the static dielectric
r{unctlon of the electron gas system, Jinye(q)=1
+V(q)n?k, which yields

ds(q)

- —1+—f dgF(qg )In dq

: 11

1 (2
Sexc(rs)=4—rsf0qu(Q)[q/2—1]- ©) 2+q

All the energies above are in effective Rydberg uniy* whereKo—32n* g3/ < is the free-electron gas compress-

=1/(2m*a *2)] ibility. We note that in Egs(8), (9), and(11), the wave num-
The correlation energy is the difference between théberq is normalized byke .

Hartree-Fock ground-state energy and any better calculation. The compressibility sum rule requires the compressibility

It can be computed via Eq7), if we know other terms. computed in the two different methods to be the same.
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Q/kF FIG. 3. The pair correlation functiog(r) (a) in the SSTL ap-

proximation (solid line), STLS approximationdashed ling and

Ref. 19(dotted ling atrs=2 andb=2aj. (b) SSTL performance

at rg=2 for quantum wire widths ob=ag (solid line), b=2ag
o(dashed ling andb=4aj (dotted line.

FIG. 2. The static structure fact&®(q) for a quantum wire of
width b=2ap . (@) Comparison of the SST(solid line) and STLS
(dashed lingapproximations at;=2. The dotted line is the result
of Tanatar(Ref. 19 which cannot be resolved since the results ar

almost identical(b) The SSTL performance at=1, 1.5, 2, and 3. o _
we observe that our STLS result is in good agreement with

Il RESULTS AND DISCUSSION that of Tanatd® at the same density. In Fig(® we plot

We solve the set of equatiofiggs. (1), (3), and(4)] that S(q) V\_/|th|n the SSTL apprQX|mat|on _fors=1, 1.5,_2, and
describes the density response, static structure factor, and te Notice that the large-limit of S(q) is correctly given as
local field correction self-consistently. The numerical accu-
racy attained in the calculations is 0.001%.

In Fig. 1(a) we compare the local field correctidgB(q)
calculated in the SSTL and STLS approximations for the
same wire radius and electron density. The most striking dif-
ference between the curves is their laggémits. The STLS
curve increases faster withand saturates at relatively small
g while SSTLG(q) saturates at a largey value. We also =
observe thatG(g— ) in the SSTL approximation is larger =
than that in the STLS approximation. On the other hand, ,
G(g—0)x1N(g—0) in both approximations as expected. - .
The SSTLG(q) behavior at different densities is displayed 10 b=2dp
in Fig. 1(b). We point out that with decreasing density
(equivalently with increasing,), the G(q) increases, which

1.0 . T . T . r . T

means that the correlations between electrons are getting im ¢ 1 2 3 4 5
portant. a/kr
The static structure factd®(q) in different approxima- FIG. 4. The inverse dielectric function in the SSTL approxima-

tions forrg=2 is shown in Fig. 2a). The curves obtained in tion (solid ling), STLS approximatiorfdashed ling and RPA(dot-
both SSTL and STLS approximations are similar. Moreoverted ling atrs=2 andb=2aj.
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B 7 T T TABLE |. Correlation energies ., (rs,b) per particle(in units
] of the effective Rydberg Ry for b=aj, b=2a}, andb=4aj
1 obtained within the SSTL approximation.

rs —é&corlls ,b:ag) —&cor(l's ,b:2ag) —&cor(r's 7b:4aé)

& 01  0.006731 0.002 100 0.000 633
= 02 0019901 0.006 502 0.002 033
< 04  0.054148 0.018 774 0.006 145
06  0.091337 0.033 444 0.011328

08  0.126239 0.048 900 0.017 139

N - 1 10 0156726 0.067 816 0.023271

1 20  0.249965 0.122 460 0.052 289

oAl e ] 3.0 0.289 631 0.155 645 0.073565

’ ' L orkp ! ° 40 0306768 0.174 948 0.088 268

50  0.313627 0.186 701 0.098 608

FIG. 5. The screening charge density near a point impurity in
the 1D electron gas withy=2 calculated in the SSTL approxima-
tion (solid ling), STLS approximatioridashed ling and RPA(dot-
ted line for b=2ag .

=2ag. Our findings for STLSg(0) are in good agreement
with the results of Ref. 7.
The inverse dielectric function in the SSTL approximation
1. As the density is lowere®(q) value is getting smaller as is plotted in Fig. 4. This is rather similar to the RPA result
expected. whereas the STLS &(q) is more pronounced. All curves
The probability of finding an electron atif another elec-
tron is located at the origin is given by the pair correlation 10 T T T T T T T -
functiong(r). We notice that for the same density, a snall )
value of g(0) is positive in both the STLS and SSTL ap- 00
proximations. Moreover, the STL§0) is greater than the 10
SSTL value as is seen in Fig(é@. Again we observe a very
good agreement between the STLS results of the preser z 20
work and Ref. 19. The behavior a@f(r) in the SSTL ap- >~ ,,
proximation forb/ag=1, 2, and 4, but at the same density, is <

via energy

shown in Fig. 8b). We find thatg(0) gets larger a® in- A0 SSTL .

creases andg(0) is negative for b=ag. The one- sok b=as via DF . i

dimensional interaction potenti&l(q) is weakened ab in-

creases. Investigation gfr) as a function of ;¢ showed that 60 ‘

g(0) becomes negative for>5.1 in the STLS approxima- 70 ! ! ! ! . . .

tion, and rs>2.1 in the SSTL approximation wheb 00 05 L0 15 ;_-0 630 s a0
s
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1.0 via energy

-0.08

*Q i 2.0
[=3 U -
S e
O
W 012 SSTL .
| -3.0 via DF ™ 7]
L b= 2a% N
-0.16 [ 40 F i
I ) ) ) ) 5.0 1 1 1 1 1 1 1
0205 1o 20 30 10 5.0 0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
rs TS
FIG. 6. The correlation energy per particle as a functionsoh FIG. 7. Normalized inverse compressibility by using the

the SSTL(solid line) and STLS(dashed ling approximations for  ground-state energy per particle and dielectric function in the SSTL
b=2ag . The dotted line shows the results of Ref. 21, and the solicapproximation for a quantum wire of widtte) b=ag and (b) b
circles show those of Ref. 7. =2aj.
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have a discontinuity in the derivative at= 2k .

The density of screening char@g at a distance from a
static point impurity of unit charge located at the center of
the wire is given by the relatiéh

1|. (12)

S _fﬂ iqr| _—__ _
p(r)= 5. € ()
The 8p calculated ab=2aj andrs=2 is given in Fig. 5.
The SSTL and RPA curves are shallow and similar as a resul
of the 1k(q) behavior whereas STLS curve shows a deeper
minimum. The screening charge density has the Friedel os
cillations at large distance as in the 3D cd%e.
The correlation energy is one of the main properties of the 70— ———'"———— = 10
system. We present out.,, results for the SSTL and STLS s
approaches in Fig. 6. It is seen that the STLS approximation
leads to a larger value for the correlation energy compared to FIG. 8. Compressibility based on the ground-state energy per
the SSTL approximation. The difference betweep, results partlcle and dielectric fur_1ct|on in the* STLS ap_proxlmatlim)lld
of the two models increases with increasing We find out line) and Ref. 21(dashed lingfor b:_ 2ag . The solid circles are the
that our results for the STLS approximation are very close t¢€sults of Ref. 7.computed only via the ground-state energy.
those of Gold and Calméisnd Tanatar and Bulutaywho
used the same quantum model as we employ. The small ditomputed by using the ground-state energy per particle and
ference should be attributed to the methods used in the calhe long-wavelength limit of the dielectric function is smaller
culations; the three-sum-rule approach for the local field corin the SSTL approximation.
rection is used in Ref. 7, whereas in Ref. 21, Rice’s Insummary, we have studied the short-range correlations
approacf is used for the correlation energy calculation. Inin a one-dimensional electron gas by using the SSTL ap-
Table I, we give some numerical results for the correlationproximation. The performance of the SSTL approximation is
energy for differenb andr ¢ within the SSTL approximation. compared with the more widely used STLS approximation.
The compressibility sum-rule calculation is the main aimWe conclude that the SSTL approximation compares well
of the present work. We investigate the compressibility sunwith the STLS approximation when the static structure fac-
rule in the SSTL approximation for wire widths=ag and  tor, pair correlation function, and dielectric function are con-
b=2aj. The results are plotted in Fig. 7. The inverse nor-Sidéred. The most important finding of this work is that the
malized compressibility computed via both the energy and®STL approximation satisfies the compress_|bll|ty sum rule
dielectric functions is largefin magnitude in the same den- Somewhat better than the STLS approximation.
sity range for the wire with smallds, where the interaction
potential is stronger. In Fig. 8, we compare our STLS com-
pressibility results with those of Refs. 7 and 21. The results
are in very good agreement. We notice that for the same wire We thank Professor B. Tanatar and Dr. C. Bulutay for
width, b=2ag, the difference between the compressibility useful discussions.
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