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A bilayer electron system in a strong magnetic field at low temperatures, with total Landau-level filling
factor v=1, can enter a strongly coupled phase, known ag1ti# phase or the quantum Hall pseudospin
ferromagnet. In this phase there is a large quantized Hall drag resistivity between the layers. Here we consider
structures where the regions @f1L1) phase are separated by regions in which one of the layers is depleted by
means of a gate, and various of the regions are connected together by wired contacts. We note that with suitable
designs, one can create a dc step-up transformer where the output voltage is larger than the input, and we show
how to analyze the current flows and voltages in such devices.
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I. INTRODUCTION In 1965 Ivar Giaver realized a 1:1 dc transformer using
flux flow resistance in magnetically coupled superconducting

Following earlier theoretical predictions® recent experi-  layers®® In quantum Hall effect bilayers the layer coupling is
ments have reveal®da unique behavior of coupled elec- of electrostatic origin but the transformer action can be
tronic transport in a bilayer electronic system in the quantunviewed within the composite boson picture as arising from
Hall regime, when the two layers have a total Landau-levethe flow of Chern-Simons flux attached to the particles. In
filling factor v=1 (each layer separately beingat 1/2). If ~ the case of a superconductor, flux flow is mostly perpendicu-
the separation between the layers is sufficiently small, relalar to the current flow. In the present case the Chern-Simons
tive to the distance between electrons in a layer, the systeiffux is attached to the particles themselves and flows with
can enter a strongly coupled state at low temperatures knowthem, inducing a voltage drop in the secondary perpendicular
as the (111) or quantum Hall pseudospin-ferromagneto the current flow in the primary.
phase?’~It was predicted for this phase, that if there isno ~ The proof of the concept is most simply seen in the ge-
tunneling between the layers, and a curteistdriven in one  ometry of Fig. 1, where the upper active layer is used as the
of the layerdthe “active layer”), with no net current flowing primary circuit, with N primary strips in parallel. A time-
in the other(“passive”) layer, then the voltage drop should independent voltag¥; will lead to a time-independent cur-
be identical in the two layers. In the limit of zero tempera-rentl; in each of the strips, and this current is independent of
ture, this voltage drop should be purely perpendicular to théN. The voltage across the passive layer, which acts as a sec-
current, and equal tth/e? in each layer. Experiments have ondary circuit, will be V,=NI;h/e?> when no current is
confirmed this quantization of the Hall drag resistance withdrawn. Clearly, we will have/, larger thanV if N is suffi-
an accuracy of order 10. ciently large. As we show below, the output impedance of the

The properties of the (111) phase reflect a striking formtransformer is nonzero, so that if a nonzero currgnis
of interlayer phase coherence, which may be understood astsiawn from the secondary, the ratio of the secondary to the
kind of superfluidity in the difference of the electric currents
in the two layers, and which shorts out any differences in the
electric fields within the two layers.® The coherent state has
a broken symmetry that leads to a Goldstone collective
modé! and to a giant zero-bias anomaly in the interlayer
tunneling spectrun? > which have both been observed ex-
perimentally by Eisenstein and co-worké?s’

In this work we use this equality of the Hall voltage be-
tween the two layers to show that a properly constructed
bilayer system, incorporating regions of the (111) phase
separated by regions where one of the layers is depleted, may FIG. 1. One version of the transformer, with= 3 stages. Hori-
serve as a dc voltage step-up transforffidviore generally, . zontal stripes indicate regions where the upper layer is occupied;
we show how to analyze the current flows and voltages inpading indicates regions where the lower layer is occupied. Areas
devices made up of alternating regions containing the (111th both stripes and shading have both layers occupied, with the
phase and regions where one or the other layer is depleted Rystem in the strongly coupled1l) phase at total Landau-level
a top or bottom gate. We assume throughout that there is Mling »=1. The upper layer, divided into strips connected in par-
tunneling between the two layers, either because the barri@ilel, is used as the primary. If curreht flows in each strip, then a
is too high, or because tunneling has been suppressed by theltageV,=NI;h/e? is induced in the secondary layer, provided no
application of a parallel magnetic field. current is drawn.
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FIG. 2. Alternate version of the transformer. Here the lower ! F o !

layer is used as the primary, while the upper layer, divided into ! \ % - ]
strips connected in series, is used as the secondary. ol e : .

1 ] 1

primary voltage,V,/V;, will decrease. If the current, is _ZLC 0 %

held fixed and the drawn curreht is increased, the second- —x >

ary voltageV, will decrease, and the primary voltayg will FIG. 3. Schematic unit cell of the device shown in Fig. 2 lies

Increase. Nev'erthele.ss,la‘ is sufficiently sr_nall, the second- between vertical dotted lines at =L ./2. Shaded region contains
ary voltage will remain larger than the primary. _the (111) phase, where both layers are occupied; unshaded region
Another possible geometry, having the strips connected iRepyeen lines ak=+L/2 has the upper layer depleted. Arrows
series rather than in parallel, is illustrated in Fig. 2. A time-gggest the flow pattern of an “extra” inhomogeneous current, re-

independent currenlt; flows in the primary layer, denoted gyiting from they-direction current in the depleted region. To this
layer 1. This current is driven by a battery with voltage ~ must be added a uniform current in tkelirection, so that the total
The voltageV, measured in the secondary circuit, when nocurrent isl,. The inhomogeneous current is small compared to the
current is drawn, is equal td1,h/e? for an N-stage device. uniform current in regiméi), Ly/w<e, whereeh/e? is the longi-
(Again, the voltage will be reduced when finite current istudinal resistivity in the depleted region.
drawn from the secondajyin this case, the voltagé, in the
primary circuit is also proportional thl. However, we show assuming that all intermediate stages are identical to each
below that with proper design, the voltage drdp will be  other. The value oR* can be calculated by considering an
smaller thanV,, so that voltage gain is achieved. By con- infinite periodic system, with the unit cell shown in Fig. 3.
necting together several devices, with a the secondaries ifthe primary layer occupies a region of widti running
series and the primaries in parallel, one can obtain an arbparallel to thex axis, which we label & y<w. The second-
trarily large multiplication factor for the voltage. ary layer is depleted in a short region, of lendtl, which

The structures we discuss are inherently nonuniformye take here to be region L 4/2<x<L4/2. In the remainder
since one of the layers is depleted in parts of the sample. Asf the unit cell, of total lengti.., both layers are occupied,
a consequence, the analysis of current flows and voltagend the system is in th@11) phase. We have assumed that
drops is nontrivial. Below, we shall first carry out such anthe voltage tabs attached to the secondary layer shown in
analysis for the case where no current is drawn from the=ig. 2 are narrow, so they do not perturb the current flow
secondary, and then consider the case whgred. We will  when no net current is drawn from the voltage contacts. Thus
mostly analyze the device shown in Fig. 2, and discuss theéhere is no current flow in either layer across the boundaries
device in Fig. 1 toward the end of the paper. We confineaty=0 andy=w.
ourselves to the situation where the dimensions of the trans- We assume that in the parts of the sample where one of
former are large compared to any relevant microscopighe layers is depleted, the other layemhose filling factor is
length, including the mean free path of any charge carriers=1/2) is in a compressible state, characterized by a resistiv-
We can then use macroscopic conductivity laws and Kir4ty tensorp?® with
choff’s equations to determine the current flows and voltage
drops in each layer. It is important to distinguish between the pl=—pl=vt=2, (1)
classical and quantum aspects of our calculation: the striking X Y
transport properties of the (111) phase, particularly the exis-
tence of a Hall voltage in a layer where no current is flowing,

are a consequence of the quantum Hall effect. In contrast, thge, a6 chosen the magnetic-field direction along the posi-

nonuniform current distribution we find in some of the re- tive 7 axis. so thatol. is positive. and we use units where
gimes we consider, and particularly the confinement of dis; |, ~, e tpwf P j .
/le“=1 for intermediate steps of the calculation. In the co-

sipation to “hot spots,” is a consequence of the classica (111 : here both | ied. there |
Kirchoff’s laws for nonuniform systems in a magnetic field. eren .( = ) region, where bo ayers are occupied, there 1s

no resistivity to a flow of an antisymmetric current. For a

Il RESISTANCES AND CURRENT FLOWS syrrl(rjrhletrlc current., the Hall r¢3|.st.|V|ty is .quanuze@.X =

—pxy =1. The diagonal resistivity vanishes rapidly at

Let us defineR as the ratiov, /1, for an N-stage device low temperatures and we take it here to be a negligibly
of the type shown in Fig. 2, when no current is drawn fromsmall, but non-zero, positive quantity. We carry out our
the secondary. In the limit whend is large, we can ignore analysis of the current flow patterns assuming that the diag-

end effects, and writ&Ry=NR*, whereR* is a constant, onal resistivities in each of the two phases do not fluctuate

Pr= p;yE e<1. (2
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with position. However, our results for the operation of the sl
device as a dc voltage step-up transformer are independent of ji(r)= —————7XVV—- ————VV.
. 2 _ . —1\2 2 _ . —1\2
that assumption. e+(1-vy7) e+(1-v7)
Letj%(r) and ¢“(r) be the current density and the poten- 9

tial in layer a, andE“= —V ¢ be the electric field in layer , i i

a. In the geometry of Fig. 2 no current flows in the second-The integral in Eq(8) may be taken at any convenient value
ary layer, i.e.j2=0. This is obviously true in the regions of x. Having def_med the equation and poundary conditions
where this layer is depleted, but in fact, holds also in thefor V(r), we notice thav/(r) is the potential generated by a
coherent (111) regions. In these regions, the superfluiditf@Pacitor subject to voltagé, and to unusual boundary con-
shorts out any antisymmetric electric fields, Bb=E2, and  ditions at the edges.

the potentials in the two layers differ only by a constant. The AS We now show, there are three different regimes for this
antisymmetric current in the coherent regigh—j2 , is a problem, according to the ratio of the two dimensionless pa-

supercurrent, so its curl and divergence both vaffisn ~ rameters in our definition of the problem, the aspect ratio
fact, the same holds for the totédymmetrig current; the Lo/W and the longitudinal resistivitg. The regimes aréi)
divergenceV - (j1+j2)=0 due to current conservation, and La/W<¢, (i) e<Lq/w<1/e, and(iii) 1/e<Lq/w.

the curl vanishes sincé X E1=0 and the resistivities in the

(111) phase are independent of position. Thus the values of A. Regime (i): Lg/w<e

both j%,j? in the coherent regions are determined by the We start with the first regime. Whelng/w—0, the sys-
boundary conditions: their normal component must vanish att gime. ' y

the top and bottom edgeg=0 andy=w, while the normal em is very wide and the edges may be neglected. Far from

. l l . .
component of? must vanish also at the boundaries betweeriN® €dges, Ey are independent of position. They are then

the coherent and depleted regions. Thus, culjfemainishes equ_al t0|1/.W’ both in the (111) region and_in the deplete_d
everywhere, and no current flows in the secondary layer. region, whileg v vanls_hes. In the (111) region, .th? electric
The currént distributio! in the active layer may be ana- field is purely perpendicular to the current, but this is not true

lyzed by solving Kirchoff's equations. It is useful to define a in the depleted region, where the longitudinal resistivity is
“reduced potential™V(r) by nonzero. Substituting these valuesjgf Ey in the relation

E=p'j we obtain

Vot=vVV-2zxjl. (3) | S
: 1 1+
V(r) is the potential corresponding to a current dengiy) jy=vi e~ i} v e (10
in a system where the coherent regions are superfluids for
both symmetric and antisymmetric currents, and where the 71
depleted regions have a Hall resistivityf *— 1 rather than E:I_:I_l[ 6_ 1-n ] (11)
v L. Within the depleted region X w vie |’
V2v=0, (4) and Vo= Eid. These results apply throughout the depleted

. ) _ region, except for small regions, with dimensions of order
and four boundary conditions should be imposed. The fwsf_d' close to the top and bottom edgesyat0 andy=w.

two are (See Sec. IIC, below.The integrated currenty=Lgjy
_ leaves the depleted region nea+=0, and spreads out into
1 _ _ _
eVt (1-v;)ayV=0 at y=0andy=w, (5 e (111) region, where it eventually flows up towards the

which assure that the current at the edges is parallel to tHgPPer edge and back into the depleted region neaw.

edges. The other two, This extra current flow is shown by arrows in Fig. 3. The
integrated current flow across the midliye=w/2 in the
Ly (111) region, must be exactly equal and opposite to the inte-
V(xy)=V, at x=-— > (6) grated vertical currem\i in the depleted region, as there can

be no net current flow in thg direction. Since a current
densityj, at a point in the (111) region must be driven by a
V(x,y)=0 at x= L_ (7)  Hallelectric field in thex direction, we see thaftExdx along

2 the midline of a (111) region, say from the point L4/2 to
the pointx=L.—Lg4/2, must be equal td))l,. Adding in the
contribution from the fielcg, in the depleted region, we see
that the total voltage drop along the midline of a unit cell,
say from the pointx=—L4/2 to x=L.—Ly4/2, is equal to
I,R*, with

result from the vanishing longitudinal resistivity at the (111)
region. The value o¥, is proportional tal;, and should be
chosen such that
w "
fo dy]lela (8)

Lg
* 9 _ . -1\2 2
where the current density is given by R WE[(l i)t ed (12
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& 5 & A % g % « A 9, Hall region and the vacuum, are represented by bonds in the
0, %, %, ) o model. Each bond is assigned a directional arrow, oriented so
) | | that the Hall conductance,,= 1/p,, of the region on the
— — y yX
9. —‘ @ @ @ ) @ @ @ R left-hand side of the bond is algebraically larger than the Hall
¢, . (10 ¢, conductance on the rightAn insulating region is assigned a
o, A g B g A g ' B g Hall conductancer,,=0.) For each bongk, we denote the

absolute value of the difference in these Hall conductivities
FIG. 4. Network model when there is no dissipation in the in-by ¢,>0. Note that if one were to reverse the sign of the
terior of the sample. Lines with arrows are bonds, with orientationmagnetic field, the signs of the Hall conductances would
as described in the text. Double lines are metallic leads. Numbers ighange, as would the directions of the arrows, dyitwould
circles denote the Hall conductivity,, (in units of €2/h) within be unchanged.
each region. Potentials on the bonds, i_n the primary layer 1, and on | gt ¢# denote the potentia:y)l on bondu, which is a
the leads, are denoted la, , ¢y, etc. Dissipation occurs at nodes constant along the length of the bond. In the network model,
labeledA and at the contacts to the leads. the bond carries a curreit,=c,¢,, and an energy flux
i ., With positive signs denoting transport in the direction
We see thaR* can be made arbitrarily small by using a of the arrow. Although the current flow in the original prob-
sample with a large widtlv, and by making the lengthy of  lem is not actually confined to the edges and boundaries, the
depleted region as small as possible. details of the flow are irrelevant to a computation of the
Since there is no current flow across the edgeg=a0  voltage drop along the edges. The voltage difference between
andy=w, we see thaE)l( and E)Z( both vanish along these any two points on the boundaries of a given Hall region is
edges in the (111) regions. Potential$ are therefore con- completely determined by the total Hall current crossing a
stants along each of these edges, in a given (111) region, atide joining the two points, if the diagonal resistivity is zero.
the potential difference betwegn=0 andy=w in a given  Thus there is no error introduced by associating the currents
layer is just the Hall voltagd,;. The difference in potential with the boundaries.
between layer 1 and layer 2 is an arbitrary constant that has Nodes in the network, where three bonds come together,
no effect on the current flows or voltage drops along theepresent the meeting point of three Hall regions. Current
layers. Thus, if the edges of the secondary layer are corsonservation requires that the current leaving a node must
nected together as shown in Fig. 2, and no current is drawaqual the current entering, while energy conservation dictates
from the secondary circuit, we obtai,=NI;h/e? as that the energy flux leaving the node be equal to or smaller
claimed in the Introduction. than the energy entering. There are two types of nodes.
When there are two bonds with arrows pointing into the node
N . (labeledu=1,2), and one pointing outabeledu=3), then
B. Regime(ii): e<L4/w<e the potentials on the incoming bonds are arbitrary, and the
Naively, one might expect the analysis above to hold agotential on the outgoing bond is determined by current con-
long asLg<w, but, in fact this is not the case. As often servation:
happens at the interface of materials with different Hall re-
sistivities in the regime of strong magnetic fields, the current
distribution can be%:ome very in%omggeneous, when the Hall b3=(P101+ ¢207)/ 0, (13
angle is large, and this can have a major effect on the voltage
drop(see, e.g., Ref. 21, and references theré¢iowever, the  with o3=0,+0,. On the other hand, for a node with one
analysis again becomes simple in regifiii¢, where e is  incoming bond and two outgoing bonds, the requirements of
small compared to bothy/w andw/L4. We can understand current and energy conservation dictate that the potentials on
this regime by taking the limie— 0 with Ly andw fixed. In  the outgoing bonds be equal to the potential on the incoming
this case the boundary conditiof®—(7) imply that the re- bond.
duced potential/(x,y) is a constant along each boundary of  In addition to the nodes described above, we include ad-
the depleted region, with the exception of two hot spots, atlitional junctions to represent an Ohmic contact with a me-
corners where two boundaries meet. At these corners, theretigllic lead. For an ideal contact, the condition is that the
a discontinuity inV, or more accurately, a very rapid change potential on the bond leaving the contact is the same as the
of the potential, on a length scale of ordery. In the limit ~ voltage in the metallic lead. The potential on the incoming
€—0, the resulting divergence of the electric field leads to a&ond is arbitrary(For a nonideal contact, one may include a
finite total current crossing the boundary between (ttie))  series resistance, which leads to an additional voltage drop if
region and the depleted region in the corner, with a finitethere is net current flowing into or out of the lepd.
amount of dissipation. Everywhere other than at the corner Using the above rules, we see that the there are no poten-
hot spots the electric fields remain finite and, thus, there is ntial differences among the three bonds connected to each of
dissipation other than at these corners. the nodes labele® in Fig. 4. However, there are voltage
The voltage drop in regiméi) can be calculated using a drops at the nodes marked If the net current in thex
simple network model, illustrated in Fig. 4The hot spots direction isl;, then we must havé;=v,(p,— ¢dp) = (¢
where dissipation takes place are markdh this figure) — ¢p)=v1(P.— dyg), etc. Then we findp,— d.= dp— by
The boundaries between different Hall regions, or between & |1,R*, where
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close to the interfaces, at=+L4/2, the current is concen-
trated in a smaller interval, of heighteL 4, at the hot-spot
corner.

R*=(v;'-1). (14

C. Crossover between regimesi) and (i)

Comparing Eqgs(12) and (14) , we see that the two ex-
pressions foR* become equal when the aspect ratig/w
is of order e, suggesting that this is indeed the boundary
between regimesi) and (i), as claimed. In fact, one can
obtain an exact expression f&* that is valid throughout
this crossover regime. To do this, let us consider the proble
where bothe and the aspect ratiby/w are very small, but
with arbitrary ratio between them. It is convenient to think of
L4 as fixed, withw very large and very small. As discussed

D. Regime(iii) e <L y4/w

It is clear that the length-independent expressionRor
given by Eg.(14) must break down, ifLy is sufficiently
large. Wherl 4/w> e~ * [regime(iii )], the resistance of each
mtage is proportional to the longitudinal resistivity of the de-
pleted region, and is given by

R* = eL g /w. (19

above for the case of regim@), the reduced potentidl on
the lower edgey=0) will be a constant, equal %¢,, except

for a small interval, of ordeeL/d near the right corner, at

x=Lg4/2, while on the upper edgeyEw) we haveV=0
except for a small interval near the left corner, at
—Lg/2.

We may solve Eqsi4), (6), and(7) by writing

XV,
el + 2 (Ane*kn)q_ Bnekny)

VoY) Vo= T+ 3

X sink,(x+L4/2), (15

wheren is summed over positive integers akg= 7n/Ly.
The coefficientdA,,,B,, are determined by the values \éfat
y=0 andy=L. We see that as long as<e !, one has

e Yoy
n n ’

(16)

Forn> e !, the coefficients fall off more rapidly thanri/
The total current flowing in th& direction can be found
most conveniently by evaluating integré8) at the center
line, x=0. The first term in Eq(15) gives rise to a “bulk”
contribution ,12%= (Voew/L)[ (1— v1 )%+ €?]72 , which
is the same as that obtained earlier in redignThe second

term in Eq.(15) gives rise to an “edge current,” concentrated
in regions of ordelLy near the upper and lower edges, and

This regime is of no interest, if we want to create a device
with smallR*.

The crossover between regim@s and (iii) may also be
solved analytically by considering a depleted region where
both e andw/L4 are very small, but with an arbitrary ratio
between them. This problem may be solved by a method
similar to that used for the crossover between regithesnd
(ii). In fact, the two problems may be related by a duality
transformation, in which the electric fields and the currents
are interchanged, and the spatial coordinates are rotated by
90 degrees. The final result now is that resistaRteis the
sum of the results given by Eqggl4) and (18).

E. Total resistanceRy

Equations(12), (14), and(18) give R*, the resistance for
each of the N—1) intermediate depleted regions, in the
three aspect-ratio regimes. To this we must add the resistance
arising from the Ohmic contacts to the depleted end tabs in
Fig. 2. If the lengthsL;; of the end tabs are such that the
aspect ratid_j/w is in the intermediate regime, large com-
pared toe but small compared te !, then the resistance of
the end tabs may be analyzed using the network model, as
illustrated in Fig. 4. We readily find that the combined added
resistance of the two end tabs is equal te; 2—1. This
resistance is composed of !, the two-terminal resistance
of the depleted system, and 11, the resistance associ-
ated with the interface between the depleted and (111) parts.
Thus we find a total resistance in layer 1 of

. . h h
falling off exponentially away from these edges. As we are Ry =[(N—1)R* +(2v; }— D]5~[(N-1)R*+3]-.
e e

considering the situation where>L4, the edge current is
independent o#v, and simply adds to the bulk current. In the

(19

limit e<1, the edge current is derived entirely from the ﬁrSt(Having arrived at the presentation of our final formulas, we

term in Eq.(9) (i.e., the Hall termn and it leads to a total

contribution1299%=V/ /(v; 1~ 1), which is the same as the

result in regime(ii).?? Thus we find, fore<1 andLg<w,
including the crossover region between reginfigsand (ii),
the resistanc®* of a depleted region is given by

1 1

+
R* »i'—1 L (1—»;Y)2+€?]

eW

7

Although the edge current near the center lie0Q is
spread out over a region of heightL 4, we note that very

now restore the factor di/e?.) For a device containing two
voltage tabs in regiméi) and ong(111) region (N=1), this
gives resistanc®, ~3h/e?.

We note then that in order to ha¥g>V,, with the de-
vice in Fig. 2, we must choose the aspect ratjdw of the
intermediate depleted regions to be smaller thaRor tech-
nical reasons, it may be difficult to attach an Ohmic contact
to a very short end tab whose lendt} is smaller thanew.

On the other hand, it should be possible to fabricate a device
where the lengthk of the intermediate depleted regions are
very short, by using narrow wires as top gates. Although the
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additional resistancB* for each intermediate stage is small
compared tch/e? in this case, the total resistance cannot be
smaller than the value=3h/e? for a single stage device.

From Eq.(19), we see that in order to have a larger voltage
in the secondary than in the primary, even for very small

values ofL4/ew, the number of stagdd must be=4.

F. Effect of finite current in secondary

PHYSICAL REVIEW B67, 235313(2003

Ill. ADDITIONAL REMARKS

Throughout our analysis, we have assumed that the di-
mensions of the system are large enough for us to use mac-
roscopic constitutive relations for the current and voltage in
each region. For the geometry of Fig. 2, the most critical
requirement for our analysis is that the length of the de-
pleted region must be larger than the mean free path of qua-
siparticles in the single-layer phase, so that a macroscopic

We now consider what happens if there is a finite currentesistivity may be used. In general, for a large but finite
I, drawn from the secondary. The linearity of the circuit system, there will be corrections to the macroscopic equa-

means that we can write
V;=Al;+Cl,, (20)
V,=BI;—Dl,, (21)

whereA=Ry andB=Nh/e? as given above, an€ and D
are constants to be determined now. If welsetO with |,

tions arising from the boundaries between regions, which

could either increase or decrease the total resistance. How-
ever, the boundary contribution to the resistance should de-
crease as the reciprocal of the length of the boundary, so that
the boundary contribution becomes negligible in the macro-

scopic limit.

#0, we have effectively interchanged the roles of the pri-

mary and secondary layers. We see from this tRat

=Nh/e?. Also, if the tabs for the contacts to layer 2 have an

1

aspect ratio betweena and € -, we see thaD will be N

IV. CONCLUSIONS

In summary, in this paper we have considered two pos-

times the resistance of the primary layer of a single-stagsible geometries for a quantum Hall bilayer device, which
device:D~3Nh/e?. The output impedance of the secondaryshould be able to act as a dc transformer with voltage gain,

is appropriately defined as

N,
iy,
1

=D. (22)

If the secondary circuit is closed by a load resistaRceve
find
V, BR

V., AR+AD+BC’ 23

G. Structure in Fig. 1

Finally we consider the structure shown in Fig. 1, which

and analyzed the current flow patterns in these geometries. In
particular, our analysis permits us to calculate the voltage
differences between any two points on the edge of the
sample, in either layer, given the total current flow in each
layer. The methods we have used for this analysis are appli-
cable more generally, to composite systems where all com-
ponents of the systems are characterized by a longitudinal
resistivity much smaller than the Hall resistivity. Finally, ex-
periments to test our proposals for a dc voltage step-up trans-
former, and to measure the voltage drops in various geom-
etries, would help strengthen our understanding of the
interlayer correlations and phase coherence found in strongly
coupledv=1 bilayer systems.

we may analyze in a manner similar to the above. If the

aspect ratios of the depleted regions are all in the intermedi-

ate regimee<L4/w< e, and we definé; as the current in

eachprimary strip, then we obtain the following results for

the constants in Eqs(20)—(23): A~3h/e?,C=h/e’ B
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