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dc voltage step-up transformer based on a bilayernÄ1 quantum Hall system
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A bilayer electron system in a strong magnetic field at low temperatures, with total Landau-level filling
factor n51, can enter a strongly coupled phase, known as the~111! phase or the quantum Hall pseudospin
ferromagnet. In this phase there is a large quantized Hall drag resistivity between the layers. Here we consider
structures where the regions of~111! phase are separated by regions in which one of the layers is depleted by
means of a gate, and various of the regions are connected together by wired contacts. We note that with suitable
designs, one can create a dc step-up transformer where the output voltage is larger than the input, and we show
how to analyze the current flows and voltages in such devices.
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I. INTRODUCTION

Following earlier theoretical predictions,1–5 recent experi-
ments have revealed6 a unique behavior of coupled elec
tronic transport in a bilayer electronic system in the quant
Hall regime, when the two layers have a total Landau-le
filling factor n51 ~each layer separately being atn'1/2). If
the separation between the layers is sufficiently small, r
tive to the distance between electrons in a layer, the sys
can enter a strongly coupled state at low temperatures kn
as the (111) or quantum Hall pseudospin-ferromag
phase.2,7–10It was predicted for this phase, that if there is
tunneling between the layers, and a currentI is driven in one
of the layers~the ‘‘active layer’’!, with no net current flowing
in the other~‘‘passive’’! layer, then the voltage drop shou
be identical in the two layers. In the limit of zero temper
ture, this voltage drop should be purely perpendicular to
current, and equal toIh/e2 in each layer. Experiments hav
confirmed this quantization of the Hall drag resistance w
an accuracy of order 1023.

The properties of the (111) phase reflect a striking fo
of interlayer phase coherence, which may be understood
kind of superfluidity in the difference of the electric curren
in the two layers, and which shorts out any differences in
electric fields within the two layers.1–5 The coherent state ha
a broken symmetry that leads to a Goldstone collec
mode11 and to a giant zero-bias anomaly in the interlay
tunneling spectrum,12–15which have both been observed e
perimentally by Eisenstein and co-workers.16,17

In this work we use this equality of the Hall voltage b
tween the two layers to show that a properly construc
bilayer system, incorporating regions of the (111) pha
separated by regions where one of the layers is depleted,
serve as a dc voltage step-up transformer.18 More generally,
we show how to analyze the current flows and voltages
devices made up of alternating regions containing the (1
phase and regions where one or the other layer is deplete
a top or bottom gate. We assume throughout that there i
tunneling between the two layers, either because the ba
is too high, or because tunneling has been suppressed b
application of a parallel magnetic field.
0163-1829/2003/67~23!/235313~7!/$20.00 67 2353
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In 1965 Ivar Giaver realized a 1:1 dc transformer usi
flux flow resistance in magnetically coupled superconduct
layers.19 In quantum Hall effect bilayers the layer coupling
of electrostatic origin but the transformer action can
viewed within the composite boson picture as arising fro
the flow of Chern-Simons flux attached to the particles.
the case of a superconductor, flux flow is mostly perpendi
lar to the current flow. In the present case the Chern-Sim
flux is attached to the particles themselves and flows w
them, inducing a voltage drop in the secondary perpendic
to the current flow in the primary.5

The proof of the concept is most simply seen in the g
ometry of Fig. 1, where the upper active layer is used as
primary circuit, with N primary strips in parallel. A time-
independent voltageV1 will lead to a time-independent cur
rent I 1 in each of the strips, and this current is independen
N. The voltage across the passive layer, which acts as a
ondary circuit, will be V25NI1h/e2 when no current is
drawn. Clearly, we will haveV2 larger thanV1 if N is suffi-
ciently large. As we show below, the output impedance of
transformer is nonzero, so that if a nonzero currentI 2 is
drawn from the secondary, the ratio of the secondary to

FIG. 1. One version of the transformer, withN53 stages. Hori-
zontal stripes indicate regions where the upper layer is occup
shading indicates regions where the lower layer is occupied. A
with both stripes and shading have both layers occupied, with
system in the strongly coupled~111! phase at total Landau-leve
filling n51. The upper layer, divided into strips connected in p
allel, is used as the primary. If currentI 1 flows in each strip, then a
voltageV25NI1h/e2 is induced in the secondary layer, provided n
current is drawn.
©2003 The American Physical Society13-1
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primary voltage,V2 /V1, will decrease. If the currentI 1 is
held fixed and the drawn currentI 2 is increased, the second
ary voltageV2 will decrease, and the primary voltageV1 will
increase. Nevertheless, ifI 2 is sufficiently small, the second
ary voltage will remain larger than the primary.

Another possible geometry, having the strips connecte
series rather than in parallel, is illustrated in Fig. 2. A tim
independent currentI 1 flows in the primary layer, denote
layer 1. This current is driven by a battery with voltageV1.
The voltageV2 measured in the secondary circuit, when
current is drawn, is equal toNI1h/e2 for an N-stage device.
~Again, the voltage will be reduced when finite current
drawn from the secondary.! In this case, the voltageV1 in the
primary circuit is also proportional toN. However, we show
below that with proper design, the voltage dropV1 will be
smaller thanV2, so that voltage gain is achieved. By co
necting together several devices, with a the secondarie
series and the primaries in parallel, one can obtain an a
trarily large multiplication factor for the voltage.

The structures we discuss are inherently nonunifo
since one of the layers is depleted in parts of the sample
a consequence, the analysis of current flows and volt
drops is nontrivial. Below, we shall first carry out such
analysis for the case where no current is drawn from
secondary, and then consider the case whereI 2Þ0. We will
mostly analyze the device shown in Fig. 2, and discuss
device in Fig. 1 toward the end of the paper. We confi
ourselves to the situation where the dimensions of the tra
former are large compared to any relevant microsco
length, including the mean free path of any charge carri
We can then use macroscopic conductivity laws and K
choff’s equations to determine the current flows and volta
drops in each layer. It is important to distinguish between
classical and quantum aspects of our calculation: the strik
transport properties of the (111) phase, particularly the e
tence of a Hall voltage in a layer where no current is flowin
are a consequence of the quantum Hall effect. In contrast
nonuniform current distribution we find in some of the r
gimes we consider, and particularly the confinement of d
sipation to ‘‘hot spots,’’ is a consequence of the classi
Kirchoff’s laws for nonuniform systems in a magnetic fiel

II. RESISTANCES AND CURRENT FLOWS

Let us defineRN as the ratioV1 /I 1 for an N-stage device
of the type shown in Fig. 2, when no current is drawn fro
the secondary. In the limit whereN is large, we can ignore
end effects, and writeRN5NR* , whereR* is a constant,

FIG. 2. Alternate version of the transformer. Here the low
layer is used as the primary, while the upper layer, divided i
strips connected in series, is used as the secondary.
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assuming that all intermediate stages are identical to e
other. The value ofR* can be calculated by considering a
infinite periodic system, with the unit cell shown in Fig.
The primary layer occupies a region of widthw running
parallel to thex axis, which we label 0,y,w. The second-
ary layer is depleted in a short region, of lengthLd , which
we take here to be region2Ld/2,x,Ld/2. In the remainder
of the unit cell, of total lengthLc , both layers are occupied
and the system is in the~111! phase. We have assumed th
the voltage tabs attached to the secondary layer show
Fig. 2 are narrow, so they do not perturb the current fl
when no net current is drawn from the voltage contacts. T
there is no current flow in either layer across the bounda
at y50 andy5w.

We assume that in the parts of the sample where on
the layers is depleted, the other layer~whose filling factor is
'1/2) is in a compressible state, characterized by a resis
ity tensorr1 with

ryx
1 52rxy

1 [n1
21'2, ~1!

rxx
1 5ryy

1 [e!1. ~2!

We have chosen the magnetic-field direction along the p
tive z axis, so thatryx

1 is positive, and we use units wher
h/e251 for intermediate steps of the calculation. In the c
herent (111) region, where both layers are occupied, the
no resistivity to a flow of an antisymmetric current. For
symmetric current, the Hall resistivity is quantizedryx

coh5

2rxy
coh51. The diagonal resistivity vanishes rapidly

low temperatures and we take it here to be a negligi
small, but non-zero, positive quantity. We carry out o
analysis of the current flow patterns assuming that the d
onal resistivities in each of the two phases do not fluctu

r
o

FIG. 3. Schematic unit cell of the device shown in Fig. 2 li
between vertical dotted lines atx56Lc /2. Shaded region contain
the ~111! phase, where both layers are occupied; unshaded re
between lines atx56Ld/2 has the upper layer depleted. Arrow
suggest the flow pattern of an ‘‘extra’’ inhomogeneous current,
sulting from they-direction current in the depleted region. To th
must be added a uniform current in thex direction, so that the tota
current isI 1. The inhomogeneous current is small compared to
uniform current in regime~i!, Ld /w!e, whereeh/e2 is the longi-
tudinal resistivity in the depleted region.
3-2
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with position. However, our results for the operation of t
device as a dc voltage step-up transformer are independe
that assumption.

Let ja(r ) andfa(r ) be the current density and the pote
tial in layera, andEa52“fa be the electric field in layer
a. In the geometry of Fig. 2 no current flows in the secon
ary layer, i.e.,j250. This is obviously true in the region
where this layer is depleted, but in fact, holds also in
coherent (111) regions. In these regions, the superflui
shorts out any antisymmetric electric fields, soE15E2, and
the potentials in the two layers differ only by a constant. T
antisymmetric current in the coherent region,j12 j2 , is a
supercurrent, so its curl and divergence both vanish.20 In
fact, the same holds for the total~symmetric! current: the
divergence“•( j11 j2)50 due to current conservation, an
the curl vanishes since“3E150 and the resistivities in the
(111) phase are independent of position. Thus the value
both j1,j2 in the coherent regions are determined by
boundary conditions: their normal component must vanis
the top and bottom edges,y50 andy5w, while the normal
component ofj2 must vanish also at the boundaries betwe
the coherent and depleted regions. Thus, currentj2 vanishes
everywhere, and no current flows in the secondary layer

The current distributionj1 in the active layer may be ana
lyzed by solving Kirchoff’s equations. It is useful to define
‘‘reduced potential’’V(r ) by

“f15“V2 ẑ3 j1. ~3!

V(r ) is the potential corresponding to a current densityj1(r )
in a system where the coherent regions are superfluids
both symmetric and antisymmetric currents, and where
depleted regions have a Hall resistivity ofn1

2121 rather than
n1

21. Within the depleted region

¹2V50, ~4!

and four boundary conditions should be imposed. The fi
two are

e]xV1~12n1
21!]yV50 at y50 andy5w, ~5!

which assure that the current at the edges is parallel to
edges. The other two,

V~x,y!5V0 at x52
Ld

2
, ~6!

V~x,y!50 at x5
Ld

2
, ~7!

result from the vanishing longitudinal resistivity at the (11
region. The value ofV0 is proportional toI 1 , and should be
chosen such that

E
0

w

dy jx
15I 1 , ~8!

where the current density is given by
23531
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j1~r !5
n1

2121

e21~12n1
21!2

ẑ3“V2
e

e21~12n1
21!2

“V.

~9!

The integral in Eq.~8! may be taken at any convenient valu
of x. Having defined the equation and boundary conditio
for V(r ), we notice thatV(r ) is the potential generated by
capacitor subject to voltageV0 and to unusual boundary con
ditions at the edges.

As we now show, there are three different regimes for t
problem, according to the ratio of the two dimensionless
rameters in our definition of the problem, the aspect ra
Ld /w and the longitudinal resistivitye. The regimes are~i!
Ld /w!e, ~ii ! e!Ld /w!1/e, and~iii ! 1/e!Ld /w.

A. Regime „i…: L d Õw™e

We start with the first regime. WhenLd /w→0, the sys-
tem is very wide and the edges may be neglected. Far f
the edgesj x

1 , Ey
1 are independent of position. They are th

equal toI 1 /w, both in the (111) region and in the deplete
region, while]yV vanishes. In the (111) region, the electr
field is purely perpendicular to the current, but this is not tr
in the depleted region, where the longitudinal resistivity
nonzero. Substituting these values ofj x

1 , Ey
1 in the relation

E5r1j we obtain

j y
15n1Fe I 1

w
2Ex

1G5
I 1

w

12n1
21

e
, ~10!

Ex
15

I 1

w H e2
12n1

21

n1e J , ~11!

and V05Ex
1d. These results apply throughout the deplet

region, except for small regions, with dimensions of ord
Ld , close to the top and bottom edges, aty50 andy5w.
~See Sec. II C, below.! The integrated currentI y

15Ldj y
1

leaves the depleted region neary50, and spreads out into
the (111) region, where it eventually flows up towards t
upper edge and back into the depleted region neary5w.
This extra current flow is shown by arrows in Fig. 3. Th
integrated current flow across the midliney5w/2 in the
~111! region, must be exactly equal and opposite to the in
grated vertical currentI y

1 in the depleted region, as there ca
be no net current flow in they direction. Since a curren
density j y at a point in the (111) region must be driven by
Hall electric field in thex direction, we see that*Ex

1dx along
the midline of a (111) region, say from the pointx5Ld/2 to
the pointx5Lc2Ld/2, must be equal toI y

1 . Adding in the
contribution from the fieldEx in the depleted region, we se
that the total voltage drop along the midline of a unit ce
say from the pointx52Ld/2 to x5Lc2Ld/2, is equal to
I 1R* , with

R* 5
Ld

we
@~12n1

21!21e2#. ~12!
3-3
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We see thatR* can be made arbitrarily small by using
sample with a large widthw, and by making the lengthLd of
depleted region as small as possible.

Since there is no current flow across the edges aty50
and y5w, we see thatEx

1 and Ex
2 both vanish along thes

edges in the (111) regions. Potentialsfa are therefore con-
stants along each of these edges, in a given (111) region
the potential difference betweeny50 andy5w in a given
layer is just the Hall voltage,I 1. The difference in potentia
between layer 1 and layer 2 is an arbitrary constant that
no effect on the current flows or voltage drops along
layers. Thus, if the edges of the secondary layer are c
nected together as shown in Fig. 2, and no current is dr
from the secondary circuit, we obtainV25NI1h/e2 as
claimed in the Introduction.

B. Regime„ii …: e™L d Õw™eÀ1

Naively, one might expect the analysis above to hold
long asLd!w, but, in fact this is not the case. As ofte
happens at the interface of materials with different Hall
sistivities in the regime of strong magnetic fields, the curr
distribution can become very inhomogeneous, when the H
angle is large, and this can have a major effect on the volt
drop~see, e.g., Ref. 21, and references therein!. However, the
analysis again becomes simple in regime~ii !, where e is
small compared to bothLd /w andw/Ld . We can understand
this regime by taking the limite→0 with Ld andw fixed. In
this case the boundary conditions~5!–~7! imply that the re-
duced potentialV(x,y) is a constant along each boundary
the depleted region, with the exception of two hot spots
corners where two boundaries meet. At these corners, the
a discontinuity inV, or more accurately, a very rapid chan
of the potential, on a length scale of ordereLd . In the limit
e→0, the resulting divergence of the electric field leads t
finite total current crossing the boundary between the~111!
region and the depleted region in the corner, with a fin
amount of dissipation. Everywhere other than at the cor
hot spots the electric fields remain finite and, thus, there is
dissipation other than at these corners.

The voltage drop in regime~ii ! can be calculated using
simple network model, illustrated in Fig. 4.~The hot spots
where dissipation takes place are markedA in this figure.!
The boundaries between different Hall regions, or betwee

FIG. 4. Network model when there is no dissipation in the
terior of the sample. Lines with arrows are bonds, with orientat
as described in the text. Double lines are metallic leads. Numbe
circles denote the Hall conductivitysxy ~in units of e2/h) within
each region. Potentials on the bonds, in the primary layer 1, an
the leads, are denoted byfa ,fb , etc. Dissipation occurs at node
labeledA and at the contacts to the leads.
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Hall region and the vacuum, are represented by bonds in
model. Each bond is assigned a directional arrow, oriente
that the Hall conductancesxy51/ryx of the region on the
left-hand side of the bond is algebraically larger than the H
conductance on the right.~An insulating region is assigned
Hall conductancesxy50.! For each bondm, we denote the
absolute value of the difference in these Hall conductivit
by sm.0. Note that if one were to reverse the sign of t
magnetic field, the signs of the Hall conductances wo
change, as would the directions of the arrows, butsm would
be unchanged.

Let fm denote the potentialf1 on bondm, which is a
constant along the length of the bond. In the network mod
the bond carries a currenti m5smfm , and an energy flux
i mfm , with positive signs denoting transport in the directio
of the arrow. Although the current flow in the original prob
lem is not actually confined to the edges and boundaries,
details of the flow are irrelevant to a computation of t
voltage drop along the edges. The voltage difference betw
any two points on the boundaries of a given Hall region
completely determined by the total Hall current crossing
line joining the two points, if the diagonal resistivity is zer
Thus there is no error introduced by associating the curre
with the boundaries.

Nodes in the network, where three bonds come toget
represent the meeting point of three Hall regions. Curr
conservation requires that the current leaving a node m
equal the current entering, while energy conservation dicta
that the energy flux leaving the node be equal to or sma
than the energy entering. There are two types of nod
When there are two bonds with arrows pointing into the no
~labeledm51,2), and one pointing out~labeledm53), then
the potentials on the incoming bonds are arbitrary, and
potential on the outgoing bond is determined by current c
servation:

f35~f1s11f2s2!/s3 , ~13!

with s35s11s2. On the other hand, for a node with on
incoming bond and two outgoing bonds, the requirements
current and energy conservation dictate that the potential
the outgoing bonds be equal to the potential on the incom
bond.

In addition to the nodes described above, we include
ditional junctions to represent an Ohmic contact with a m
tallic lead. For an ideal contact, the condition is that t
potential on the bond leaving the contact is the same as
voltage in the metallic lead. The potential on the incomi
bond is arbitrary.~For a nonideal contact, one may include
series resistance, which leads to an additional voltage dro
there is net current flowing into or out of the lead.!

Using the above rules, we see that the there are no po
tial differences among the three bonds connected to eac
the nodes labeledB in Fig. 4. However, there are voltag
drops at the nodes markedA. If the net current in thex
direction is I 1, then we must haveI 15n1(fa2fb)5(fc
2fb)5n1(fc2fd), etc. Then we findfa2fc5fb2fd
5I 1R* , where

-
n
in

on
3-4
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R* 5~n1
2121!. ~14!

C. Crossover between regimes„i… and „ii …

Comparing Eqs.~12! and ~14! , we see that the two ex
pressions forR* become equal when the aspect ratioLd /w
is of order e, suggesting that this is indeed the bounda
between regimes~i! and ~ii !, as claimed. In fact, one ca
obtain an exact expression forR* that is valid throughout
this crossover regime. To do this, let us consider the prob
where bothe and the aspect ratioLd /w are very small, but
with arbitrary ratio between them. It is convenient to think
Ld as fixed, withw very large ande very small. As discussed
above for the case of regime~ii !, the reduced potentialV on
the lower edge (y50) will be a constant, equal toV0, except
for a small interval, of ordereL/d near the right corner, a
x5Ld/2, while on the upper edge (y5w) we haveV50
except for a small interval near the left corner, atx5
2Ld/2.

We may solve Eqs.~4!, ~6!, and~7! by writing

V~x,y!5V02
xV0

Ld
1(

n
~Ane2kny1Bnekny!

3sinkn~x1Ld/2!, ~15!

wheren is summed over positive integers andkn5pn/Ld .
The coefficientsAn ,Bn are determined by the values ofV at
y50 andy5L. We see that as long asn!e21, one has

An'2
V0

pn
~21!n,

Bn'2
V0

pn
e2knw. ~16!

For n.e21, the coefficients fall off more rapidly than 1/n.
The total current flowing in thex direction can be found

most conveniently by evaluating integral~8! at the center
line, x50. The first term in Eq.~15! gives rise to a ‘‘bulk’’
contribution ,I x

bulk5(V0ew/Ld)@(12n1
21)21e2#22 , which

is the same as that obtained earlier in region~i!. The second
term in Eq.~15! gives rise to an ‘‘edge current,’’ concentrate
in regions of orderLd near the upper and lower edges, a
falling off exponentially away from these edges. As we a
considering the situation wherew@Ld , the edge current is
independent ofw, and simply adds to the bulk current. In th
limit e!1, the edge current is derived entirely from the fi
term in Eq. ~9! ~i.e., the Hall term! and it leads to a tota
contribution I x

edge5V0 /(n1
2121), which is the same as th

result in regime~ii !.22 Thus we find, fore!1 andLd!w,
including the crossover region between regimes~i! and ~ii !,
the resistanceR* of a depleted region is given by

1

R*
5

1

n1
2121

1
ew

Ld@~12n1
21!21e2#

~17!

Although the edge current near the center linex50 is
spread out over a region of height'Ld , we note that very
23531
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close to the interfaces, atx56Ld/2, the current is concen
trated in a smaller interval, of height'eLd , at the hot-spot
corner.

D. Regime„iii … eÀ1™L d Õw

It is clear that the length-independent expression forR*
given by Eq. ~14! must break down, ifLd is sufficiently
large. WhenLd /w.e21 @regime~iii !#, the resistance of eac
stage is proportional to the longitudinal resistivity of the d
pleted region, and is given by

R* 5eLd /w. ~18!

This regime is of no interest, if we want to create a dev
with small R* .

The crossover between regimes~ii ! and ~iii ! may also be
solved analytically by considering a depleted region wh
both e and w/Ld are very small, but with an arbitrary rati
between them. This problem may be solved by a meth
similar to that used for the crossover between regimes~i! and
~ii !. In fact, the two problems may be related by a dual
transformation, in which the electric fields and the curre
are interchanged, and the spatial coordinates are rotate
90 degrees. The final result now is that resistanceR* is the
sum of the results given by Eqs.~14! and ~18!.

E. Total resistanceRN

Equations~12!, ~14!, and~18! give R* , the resistance for
each of the (N21) intermediate depleted regions, in th
three aspect-ratio regimes. To this we must add the resist
arising from the Ohmic contacts to the depleted end tab
Fig. 2. If the lengthsLd8 of the end tabs are such that th
aspect ratioLd8/w is in the intermediate regime, large com
pared toe but small compared toe21, then the resistance o
the end tabs may be analyzed using the network mode
illustrated in Fig. 4. We readily find that the combined add
resistance of the two end tabs is equal to 2n1

2121. This
resistance is composed ofn1

21, the two-terminal resistance
of the depleted system, andn1

2121, the resistance assoc
ated with the interface between the depleted and (111) p
Thus we find a total resistance in layer 1 of

RN5@~N21!R* 1~2n1
2121!#

h

e2
'@~N21!R* 13#

h

e2
.

~19!

~Having arrived at the presentation of our final formulas,
now restore the factor ofh/e2.! For a device containing two
voltage tabs in regime~ii ! and one~111! region (N51), this
gives resistanceR1'3h/e2.

We note then that in order to haveV2.V1, with the de-
vice in Fig. 2, we must choose the aspect ratioLd /w of the
intermediate depleted regions to be smaller thane. For tech-
nical reasons, it may be difficult to attach an Ohmic cont
to a very short end tab whose lengthLd8 is smaller thanew.
On the other hand, it should be possible to fabricate a de
where the lengthsLd of the intermediate depleted regions a
very short, by using narrow wires as top gates. Although
3-5



ll
b
.
ge
a

en
it

ri

an

ag
ry

ch
th
ed

r

e

e

di-
ac-
in

cal

ua-
opic
ite
ua-
ich
ow-
de-
that
ro-

os-
ch
ain,
s. In
ge

the
ch
pli-

om-
inal
x-
ans-
om-
the
ngly

eral
ipt.
03

B. I. HALPERIN, ADY STERN, AND S. M. GIRVIN PHYSICAL REVIEW B67, 235313 ~2003!
additional resistanceR* for each intermediate stage is sma
compared toh/e2 in this case, the total resistance cannot
smaller than the value'3h/e2 for a single stage device
From Eq.~19!, we see that in order to have a larger volta
in the secondary than in the primary, even for very sm
values ofLd /ew, the number of stagesN must be>4.

F. Effect of finite current in secondary

We now consider what happens if there is a finite curr
I 2 drawn from the secondary. The linearity of the circu
means that we can write

V15AI11CI2 , ~20!

V25BI12DI 2 , ~21!

whereA5RN and B5Nh/e2 as given above, andC and D
are constants to be determined now. If we setI 150 with I 2
Þ0, we have effectively interchanged the roles of the p
mary and secondary layers. We see from this thatC
5Nh/e2. Also, if the tabs for the contacts to layer 2 have
aspect ratio betweene and e21, we see thatD will be N
times the resistance of the primary layer of a single-st
device:D'3Nh/e2. The output impedance of the seconda
is appropriately defined as

Z52S ]V2

]I 2
D

I 1

5D. ~22!

If the secondary circuit is closed by a load resistanceR, we
find

V2

V1
5

BR

AR1AD1BC
. ~23!

G. Structure in Fig. 1

Finally we consider the structure shown in Fig. 1, whi
we may analyze in a manner similar to the above. If
aspect ratios of the depleted regions are all in the interm
ate regimee,Ld /w,e21, and we defineI 1 as the current in
eachprimary strip, then we obtain the following results fo
the constants in Eqs.~20!–~23!: A'3h/e2,C5h/e2,B
5Nh/e2,D'(N12)h/e2. In this case we obtain a voltag
ratio V2 /V1'N/3, which exceeds unity providedN>4. For
large N, the output impedance is lower than that of the g
ometry in Fig. 2.
.
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III. ADDITIONAL REMARKS

Throughout our analysis, we have assumed that the
mensions of the system are large enough for us to use m
roscopic constitutive relations for the current and voltage
each region. For the geometry of Fig. 2, the most criti
requirement for our analysis is that the lengthLd of the de-
pleted region must be larger than the mean free path of q
siparticles in the single-layer phase, so that a macrosc
resistivity may be used. In general, for a large but fin
system, there will be corrections to the macroscopic eq
tions arising from the boundaries between regions, wh
could either increase or decrease the total resistance. H
ever, the boundary contribution to the resistance should
crease as the reciprocal of the length of the boundary, so
the boundary contribution becomes negligible in the mac
scopic limit.

IV. CONCLUSIONS

In summary, in this paper we have considered two p
sible geometries for a quantum Hall bilayer device, whi
should be able to act as a dc transformer with voltage g
and analyzed the current flow patterns in these geometrie
particular, our analysis permits us to calculate the volta
differences between any two points on the edge of
sample, in either layer, given the total current flow in ea
layer. The methods we have used for this analysis are ap
cable more generally, to composite systems where all c
ponents of the systems are characterized by a longitud
resistivity much smaller than the Hall resistivity. Finally, e
periments to test our proposals for a dc voltage step-up tr
former, and to measure the voltage drops in various ge
etries, would help strengthen our understanding of
interlayer correlations and phase coherence found in stro
coupledn51 bilayer systems.
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