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Theoretical analysis of scanning capacitance microscopy

H. E. Ruda and A. Shik*
Electronic Material Group, University of Toronto, Toronto M5S 3E4, Canada

~Received 10 January 2003; published 10 June 2003!

A theoretical analysis of scanning capacitance microscopy is presented. By solving and matching the cor-
responding Laplace and Poisson equations for vacuum and semiconductor, the potential and charge distribu-
tions induced by a rounded tip in a semiconductor sample were found and used to calculate the capacity and
its voltage derivative. The results allow us to analyze the dependence of the capacitance on the semiconductor
doping level, applied voltage, and tip geometry, and to estimate the spatial resolution of such measurements.
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I. INTRODUCTION

Scanning capacitance microscopy~SCM! is a modern
characterization technique commonly used for analyz
doping profiles in semiconductor-based structures.1 Its wider
application is, however, limited by the absence of a comp
hensive theory describing the local capacity measured
SCM, its dependence on sample parameters, measurin
characteristics, and its spatial resolution. The theoretical
sis of SCM has been restricted to some numer
calculations1–5 without strictly formulated starting assump
tions, which does not allow one to estimate their feasibi
and trace the underlying behavior for this method. The o
paper containing analytical results6 describes the electric
field distribution outside of a sample but does not tr
screening in it and hence cannot be applied to the probl
of semiconductor diagnosis. In this work we develop an a
lytical theory of SCM describing the measured capacity a
its derivatives, their dependence on the applied volta
sample doping, and tip characteristics, as well as establis
the spatial resolution of the method.

II. POTENTIAL DISTRIBUTION IN VACUUM

A. General solution

The theoretical analysis of SCM begins with a determi
tion of the potential distribution between the tip and samp
and charge distribution in them. For this purpose a sim
model, which considers the tip as a metallic sphere, is u
ally applied~see, e.g., Ref. 1!. However, this model describe
a tip by a single parameter—curvature radiusR which is also
the external dimension of the electrode. This is an inadeq
description since, as will be shown below, the measured
pacity is determined by the macroscopic dimensions of
electrode, which in real structures may exceed the tip cu
ture radius by orders of magnitude. Moreover, even for t
simple spherical model, the authors do not discuss an
lytical solution, which could be found for this simple geom
etry and would provide the dependences onR and on the
distanced between the electrode and the sample, but res
themselves to some numerical results.

We solve analytically a more realistic model where the
curvature is not related to the electrode size and can be
ied independently. In this model the electrode surface is c
sidered as a hyperboloid of one sheet of revolution~Fig. 1!.
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We use the prolate spheroidal system of coordinates~j,h,f!
where f is the angle or rotation about thez axis while 1
<j,` and21<h<1 are related to the cylindrical coord
nates~r,z! by the transformation

r5
a

2
A~12h2!~j221!, z5

a

2
jh. ~1!

For a givenR andd, the parametera52Ad21Rd, and the
sample and tip surfaces correspond toh50 and h5(1
1R/d)21/2, respectively. If we assume that metallic tip h
the potentialV relative to the sample, to find the spati
distribution of the potential w1(j,h) ~the subscript
1 indicates the semispacez.0), we solve the Laplace equa
tion Dw150 with the boundary condition

w1@j,~11R/d!21/2#5V. ~2!

Other conditions require finiteness ofw1 at j51 ~the axis
r50) and atj→` and matching with the potential distribu
tion in semiconductor (z,0).

For these boundary conditions the variables in the Lapl
equation can be separated:w1(j,h);R(j)S(h), where
bothR(j) andS(h) are to be found from the same ordina
differential equation7

~12x2!y922xy81n~n11!y50.

Its solution is given in terms of Legendre functions of t
first Pn(x) and the secondQn(x) kind. In our casej can
acquire any value equal to or exceeding 1. For this rea
R(j);Pn(j) and contains noQn since allQn(j) are singu-
lar atj51. ForR(j) to remain finite atj→`, the parameter
n must lie between21 and 0. SincePn(j)5P2n21(j) ~see,
e.g., Ref. 8!, all nonequivalent eigenfunctions of our proble
fall within the interval

21/2<n<0.

The argument ofS(h) varies from 0 to (11R/d)21/2

,1. For this reason,S(h) may contain bothPn(h) and
Qn(h). After applying the boundary condition~2!, the fol-
lowing expression for the potential is obtained:
©2003 The American Physical Society09-1
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w1~j,h!5E
21/2

0

A~n!Pn~j!FPn~h!

2
Pn@~11R/d!21/2#

Qn@~11R/d!21/2#
Qn~h!Gdn1V, ~3!

whereA(n) is determined by the boundary condition at t
interfacez50 (h50). For capacity calculations the tota
potential distribution is not needed, but only the electric fie
at the sample interface:

F~j!52
]w1

]z
~z50!

52
1

jAd21Rd

]w1

]h
~h50!

52
Ap

jAd21Rd
E

21/2

0

A~n!Pn~j!

GS 11
n

2D
GS 1

2
1

n

2D
3F 2

p
sinS pn

2 D2
Pn@~11R/d!21/2#

Qn@~11R/d!21/2#
cosS pn

2 D Gdn

~4!

determining the induced charge.

B. A ‘‘metallic’’ sample

Equation~3! can be used to calculate the tip self-capac
C0 , i.e., the capacity between the tip and a planar meta
electrode having a very small screening length which has
influence on the measured capacity, which in this cas
caused exclusively by geometric characteristics of the ins
ment. The metallic electrode is an equipotential surface
that w1(j,0)50. For this case in Eq.~3!, A(n)52Vd(n)
and

FIG. 1. Schematic illustration of SCM measurements. T
shaded area corresponds to the space charge region in the sem
ductor sample.
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w1
0 ~h!5V

lnS 11h

12h D
lnS Ad1R1Ad

Ad1R2Ad
D 5const~j!. ~5!

For this potential distribution the profile of charge density
the z50 plane can easily be found:

s0~r!52
1

4p S ]f0

]z D
z50

52
V

2p lnS Ad1R1Ad

Ad1R2Ad
D jAd21Rd

52
V

2p lnS Ad1R1Ad

Ad1R2Ad
DAr21d21Rd

. ~6!

By integrating Eq.~6! over the whole interface the total in
duced charge can be found and, hence, the electrode cap
C0 . For infinite integration limits the solution is divergen
but if we restrict the integration to some radiusr m , as deter-
mined by the size of electrode, then

C05
2p

V E
0

r m
us0~r!urdr5

~Ar m
2 1d21Rd2Ad21Rd!

lnS Ad1R1Ad

Ad1R2Ad
D .

~7!

In the limit of a very large curvature radiusR@r m , d, Eq.~7!
reduces to the formula for a plane capacitorC05r m

2 /(4d).
In the following sections we discuss changes in the

capacity caused by the screening effects in a nonmet
~semiconductor! sample and information on the sample p
rameters that can be extracted from the capacity meas
ments. However, already some general remarks can be m
We see that the main contribution toC0 originates from dis-
tant regions with larger. For these regions the distance to t
tip exceeds the screening length in the semiconductor so
the influence of screening is negligible and local values
the surface charge density are given by Eq.~6!. This means
that the values of tip capacity are, in fact, determined by
macroscopic geometry of instrument, providing for ve
poor spatial resolution even for a very thin tip and contain
no information on the doping level and other characteris
of the sample. It will become apparent that in order to av
these difficulties and measure the semiconductor charact
tics with sufficient resolution, modulation methods need
used.

C. Smooth potential

In Sec. II B we discussed the limiting case of an equip
tential semiconductor surface whenA(n)52Vd(n). Now
we consider the situation when the potential at the interf
w1(j,0) is not constant but varies slowly, at characteris

e
on-
9-2
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THEORETICAL ANALYSIS OF SCANNING . . . PHYSICAL REVIEW B67, 235309 ~2003!
distances considerably exceedingR and d. This is a rather
realistic assumption. Many commercial SCM instruments
multiprobe instruments used simultaneously for scann
tunnel microscopy~STM! and atomic force microscop
~AFM!, whereR andd lie in nanometer region. At the sam
time, the characteristic distance of potential variations wit
the semiconductor is the screening lengthl21 ~see Sec. III!,
which in moderately doped semiconductors is at least
order of magnitude larger. This means that we are re
interested in values j@1. Using the corresponding
asymptotic formula forPn(j), gives

w1~j,0!5
1

p E
21/2

0

~2j!nA~n!

GS 1

2
1

n

2DGS 1

2
1n D

GS 11
n

2DG~11n!

3FcosS pn

2 D2
pPn@~11R/d!21/2#

2Qn@~11R/d!21/2#

3sinS pn

2 D Gdn1V. ~8!

Similarly,

F~j!52
2

pjAd21Rd
E

21/2

0

~2j!nA~n!

GS 11
n

2DGS 1

2
1n D

GS 1

2
1

n

2DG~11n!

3FsinS pn

2 D2
pPn@~11R/d!21/2#

2Qn@~11R/d!21/2#
cosS pn

2 D Gdn.

~9!

At j@1 the main contribution to the integrals of Eqs.~8! and
~9! is given by smallunu and to good approximation, one ca
replace alln-dependent factors except (2j)nA(n) with their
values atn50, giving

F~j!5
2@w1~j,0!2V#

lnS Ad1R1Ad

Ad1R2Ad
D jAd21Rd

5
2@w1~j,0!2V#

lnS Ad1R1Ad

Ad1R2Ad
DAr21d21Rd

. ~10!

The expression~10! generalizes Eq.~6! to the case of a
smoothly varying boundary potential, giving the linear co
nection between the potential and its normal derivative at
interface. This allows us, in all further analysis, to consid
only the potential distribution within the sample~at z,0)
using Eq.~10! as the boundary condition which contains
of the information on the potential in vacuum and on the
parameters.
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III. SCREENED POTENTIAL IN A SEMICONDUCTOR

A. Linear and quasilinear screening

The potential profile induced by the tip inside a semico
ductor (z,0) is now considered. We assume that the ma
rial is n type with an electron concentrationn0 causing ef-
fective screening of the tip-induced electric field. F
nondegenerate electrons the equation for this cylindric
symmetric potentialw2(r,z) is

1

r

]

]r S r
]w2

]r D1
]2w2

]z2 5
kTl2

e FexpS ew2

kT D21G , ~11!

wherel5(4pn0e2/«kT)1/2 is the inverse screening lengt
and« is the semiconductor dielectric permittivity. The sol
tion for this potential should match that for the potent
distribution in vacuum, as found in Sec. II. Since the lat
satisfies the boundary condition~10!, it results in the follow-
ing boundary condition forw2 :

S ]w2

]z D
z50

52
2@w2~r,0!2V#

« lnS Ad1R1Ad

Ad1R2Ad
DAr21d21Rd

,

w2~z→2`!50. ~12!

The problem is easily solved for small applied voltageV
~of any sign! when the right side of Eq.~11! can be linear-
ized. In this case~corresponding to the well-known Deby
approximation!, the general solution of Eq.~11! is

w2
~1!~r,z!5E

0

`

A~ t !exp~2At21l2uzu!J0~ tr!dt, ~13!

whereA(t) can be found from the boundary condition of E
~12!. The superscript~1! in Eq. ~13! indicates the first-order
linear inV, character of our approximation. The problem h
no general analytical solution but can be simplified notic
ably in the case when the applied voltageV is dropped
mostly at the dielectric interval between the tip and t
sample, and only a minor part of it is screened within t
sample. This approach isa priori adequate for a relatively
larged but, as we will show later, its applicability is consid
erably wider including, in particular, the case of a very sha
tip. This means that the termw2(r,0), on the right-hand side
of Eq. ~12!, can be omitted andA(t)w2(r,0) can be deter-
mined giving

w2
~1!~r,z!5

2V

« lnS Ad1R1Ad

Ad1R2Ad
D

3E
0

` exp~2tAd21Rd2At21l2uzu!

At21l2
J0~ tr!dt.

~14!
9-3
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H. E. RUDA AND A. SHIK PHYSICAL REVIEW B 67, 235309 ~2003!
We use Eq.~14! for finding the applicability limits for this
expression. To do this, we take the maximal value ofw2

(1)

3(r,z) realized at the origin~0,0! and require it to be much
less thanV. Figure 2 showsw2

(1)(0,0)/V calculated for dif-
ferent relationships betweend, R, andl, when«512, as is
typical for most semiconductors. This shows that the
proximation is adequate not only fordl.1, which is clear,
but also for a tip with a very small radius of curvatureR. For
nanoscopes withR lying in nanometer region, the aboveme
tioned limits may be sufficiently wide. At very smalld, Eq.
~14! becomes inadequate, andw2

(1)(0,0) tends toV, as shown
by the dashed lines in Fig. 2.

The case of linear screening will be used below to prov
a number of important estimates, although it cannot be
rectly used for capacity calculations. As we have alrea
mentioned in Sec. II, the total charge and hence the tip
pacity as determined by Eq.~5!, as well as by Eq.~14!, has
the same asymptotic behavior at larger, and is divergent. It
cannot, therefore, be used for determination of the sam
parameters. The latter can be found only from differen
characteristics, e.g.,dC/dV, which will be the main focus of
further calculations. But in the linear case,C is independent
of the applied voltage, and so this approach is inapplica
Thus, all SCM measurements and their theoretical desc
tion should be conducted under nonlinear conditions, wh
will be discussed in the following subsection.

B. Adiabatic approximation

An analytical solution of Eq.~11! at large applied voltage
can be obtained in the adiabatic approximation assuming
the potential varies in thez direction much faster than alon
the interface. In this case, we can neglect ther derivatives in
Eq. ~11! and integrate once the resulting ordinary different
equation. Its solution, for which bothw2 anddw2 /dz van-
ish simultaneously atz→2`, connects these parameters
z50:

FIG. 2. Relative voltage drop in the semiconductor sample
two tip radii: lR51 ~curve 1! andlR50.1 ~curve 2!. The dashed
lines represent an interpolation for smalld.
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&kTl
S ]w2

]z D
z50

5sgn~V!AexpFew2~r,0!

kT G212
ew2~r,0!

kT
.

~15!

By excludingdw2 /dz from Eqs.~12! and~15! we obtain the
equation for the surface potentialw2(r,0)

&e@V2w2~r,0!#

l«kT lnS Ad1R1Ad

Ad1R2Ad
DAr21d21Rd

5sgn~V!AexpFew2~r,0!

kT G212
ew2~r,0!

kT
. ~16!

We will not discuss possible solutions for Eq.~16! at
smallV for two reasons. First, we have already obtained t
solution in Sec. III A and, secondly, as it will be shown late
the adiabatic approximation becomes inadequate in
limit. We restrict ourselves to the opposite limit of largeuVu
wheneuw2(r,0)u@kT. Contrary to the linear case, the sol
tions for V, w2(r,0).0 ~accumulation! and V, w2(r,0)
,0 ~depletion!, differ dramatically. For the case of deple
tion, the right side of Eq.~16! is asymptotically proportiona
to A2w2(r,0) and the equation has the solution

w2~r,0!5V2
kT

e
f ~r!1

kT

e
Af 2~r!22 f ~r!eV/kT,

~17!

f ~r!5
«2

4
ln2S Ad1R1Ad

Ad1R2Ad
D l2~r21d21Rd!. ~18!

At large r this potential distribution is proportional tof 21

and hence decreases asr22. This is a steeper decrease th
that for a linear potential~14!, which ensures convergenc
and good localization of the resulting charge, and hence
niteness and good spatial resolution for the nonlinear cap
ity.

For large positiveV analytical results can be obtaine
only in the limit w2(0,0)/V!1 and give

w2~r,0!5
2kT

e

3 lnS &eV

«kTl lnS Ad1R1Ad

Ad1R2Ad
DAr21d21RdD .

~19!

It is worth noting that the conditionsw2(0,0)/V!1 and
ew2(r,0)@kT do not contradict each other. As it was show
in Sec. III A, the first of them is related to the system geo
etry and high dielectric susceptibility of semiconductor a
does not imply smallness ofV.

r

9-4
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THEORETICAL ANALYSIS OF SCANNING . . . PHYSICAL REVIEW B67, 235309 ~2003!
Equation~17! is the basic formula that we use in furth
calculations and for this reason it is important to check
applicability of the adiabatic approximation used in its de
vation. To do this, we calculate the radial part of the Lapl
ian r21]w2 /]r1]2w2 /]r2 with w2 given by Eq.~17!, and
require it to be much less than the right side of Eq.~11!,
equal to 4pen0 /« in the region of complete depletion. Th
formula will contain the current value ofr, which we replace
with the characteristic r0[eV@«kTl ln(Ad1R
1Ad/Ad1R2Ad)#21 representing the radius of the com
plete depletion area, as determined from the expres
euw2(r0,0)u5kT. The resulting condition for the validity o
the adiabatic approximation iseuVu@2& ln(Ad1R
1Ad/Ad1R2Ad)«kT. For V measured by several volt
this condition is usually fulfilled even at room temperatu
For low-temperature measurements, a lower applied volt
can be used.

IV. CAPACITY CALCULATIONS

Once the potential distribution at the interfacew2(r,0)
5w1(r,0) is determined, the tip capacityC can be found.
Since, according to Eq.~12!, w2(r,0) is linearly related to
r-
l-
he

e

d
e

l

e

bu
a

rs
(
er
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(]w2 /]z)z50 , that is to the surface charge density in sem
conductor, we have

C5
1

lnS Ad1R1Ad

Ad1R2Ad
D

d

dV E
0

` @V2w2~r,0!#

Ar21d21Rd
rdr.

As has already been mentioned, the expression forC di-
verges~due to the first term in the integrand! and information
on the doping level of a sample must be obtain from
differential characteristic

dC

dV
5

21

lnS Ad1R1Ad

Ad1R2Ad
D

d2

dV2 E
0

` w2~r,0!

Ar21d21Rd
rdr.

~20!

Let us apply this formula for particular potential distribu
tions as calculated in the previous section. For large nega
w2(r,0), corresponding to the case of strong depletion a
given by Eq.~17!, we have
dC

dV
5

1

pe«n0 ln3S Ad1R1Ad

Ad1R2Ad
DAd21Rd2

V

8p«en0
F lnS Ad1R1Ad

Ad1R2Ad
D G22

. ~21!
ss
c-
is

e
r

rs,
th
e
e
of

to
ne
its
is
Equation~21! was derived with using the asymptotic fo
mula ~17!, which is only applicable at sufficiently high va
ues ofuw2(r,0)u. For this reason we need to prove that t
main contribution to the integral in Eq.~20! is given by the
region of smallr,r0 , whereeuw2(r,0)u.kT. To do this,
we note that the contribution from the undesirable regionr
.r0 is given by a formula similar to Eq.~21!, with d2

1Rd replaced byr2. Thus, for our approach to be valid, w
must require @«l ln@(Ad1R1Ad)/(Ad1R2Ad)#r#2

@euVi /(2kT). This is equivalent to 4euVu@kT and is defi-
nitely fulfilled in our limit of strong depletioneuw2(r,0)u
@kT.

The formula~21! is the central result of our theory an
requires a special discussion. We note first that its dep
dences on both the applied voltageV and the doping leve
n0 , having at large bias the formdC/dV;n0

21/2uVu21/2, dif-
fer qualitatively from those of a planar Schottky diod
where dC/dV;n0

1/2uVu23/2. This difference is due to two
facts: the essentially non-one-dimensional potential distri
tion and a division of the applied voltage between the
backlash and the space charge region in the sample.

To demonstrate the role of these two contributing facto
we compare our formula with that for a reverse biasedV
,0) planar metal-dielectric-semiconductor structure wh
n-

,

-
ir

,

e

the role of the dielectric is played by an air layer of thickne
d0 . If the thickness of the depletion layer in the semicondu
tor is l, then the voltage drop in the semiconductor
2pen0l 2/«, the electric field at the interface is 4pen0l /«,
and the electric field in air is« times larger. By assuming th
total voltage drop isV, we obtain the quadratic equation fo
l: l 212« ld5«uVu/(2pen0). Since the charge density iss
5en0l , we obtain

dC

dV
5S

d2s

dV2 5
S

16p2e«n0SAd0
22

V

2pe«n0
D 3 , ~22!

whereS is the device area.
If we ignore numerical constants and logarithmic facto

Eqs. ~21! and ~22! have some common features. They bo
are inversely proportional ton0 and to some degree of th
effective screening lengthdeff , equal to the square root of th
expression containing the dielectric thickness and width
depletion depletion layer, increasing withuVu. The essential
distinction between SCM and a MOS structure is related
the fact that in the latter case the potential distribution is o
dimensional and the device capacity is proportional to
areaS. In the case of SCM, the region of charge variation
9-5



gt

en
g
r

h
c
im

tio

o
ric
3
n
es
o

la
n
a
er

ot
ge

ained

e
r

ing
ay
ns
g
tip
ra-
pa-
a-

ce
er.
re-

he
no

CM
of
r is
lly
e
in

H. E. RUDA AND A. SHIK PHYSICAL REVIEW B 67, 235309 ~2003!
restricted in all dimensions by the effective screening len
deff so that the role ofS is played bydeff

2 . This changes the
voltage dependence and results in a qualitatively differ
dependence ofdC/dV on the doping level: at large depletin
bias it decreases withn0 in SCM geometry and increases fo
MOS structures.

Typically, SCM measurements are performed in t
depletion regime but we present here calculations for ac
mulation voltage as well, since measurements in this reg
were also reported in literature.9 To derive dC/dV for the
case of an accumulation potential, we must take Eq.~19!,
substitute it into Eq.~20! and integrate but not tor5`
~which, in any case, would diverge!, but only to r0 corre-
sponding toew2(r,0).kT. The expression forr0 appears
to be the same as that found above for the case of deple
and

dC

dV
.

AkT

2eApn0«V ln2S Ad1R1Ad

Ad1R2Ad
D . ~23!

Now we are in a position to understand behavior
dC/dV for all possible applied voltages. It is an asymmet
curve with a maximum, shown schematically in Fig.
which also agrees with the results of numerical simulatio5

According to Eq.~21!, at large depleting voltage it decreas
;uVu21/2 and at large accumulation voltages decreases c
siderably faster,;V21 @Eq. ~23!#. The maximal value of
dC/dV is reached for a near zero bias. Though our formu
~21!, ~23! have an asymptotic character and are correct o
at large bias, they allow us to establish a qualitative estim
for dC/dV(0). The latter depends on the paramet
lAd21Rd. If lAd21Rd@1, then Eq.~14! gives

w2
~1!~0,0!5

2V

« lnS Ad1R1Ad

Ad1R2Ad
D lAd21Rd

.

FIG. 3. Schematic voltage dependence ofdC/dV for samples
with two doping levelsn1 ~curve 1! and n2 ~curve 2! where n1

.n2 .
23530
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This potential becomes comparable withkT/e at the critical
voltage

Vc;~«kT/e!lnS Ad1R1Ad

Ad1R2Ad
D lAd21Rd,

which determines the region of applicability~21! and ~23!.
At V;2Vc the last term in the argument of the square ro
in Eq. ~21! is negligible, and the expression becomes volta
independent. Since the same expression can be also obt
for a positive bias by direct substitution ofVc , we can use it
as an estimate fordC/dV(0):

dC

dV
~0!.

1

pe«n0 ln3S Ad1R1Ad

Ad1R2Ad
DAd21Rd

. ~24!

For lAd21Rd!1, w2
(1)(0,0)5V so that the role ofVc is

played bykT/e. As a result, in Eq.~21! in the whole area of
its applicability the termd21Rd can be neglected. As in th
previous case,dC/dV at V;6Vc has the same value fo
depletion and accumulation

dC

dV
~0!.

1

Ap«n0kT ln2S Ad1R1Ad

Ad1R2Ad
D . ~25!

V. SPATIAL RESOLUTION

One of the most important characteristics of any scann
probe technique is its spatial resolution. Though SCM m
use the same equipment as STM or AFM, their resolutio
differ by orders of magnitude. The probability of tunnelin
exponentially depends on the local distance between a
and a sample and for properly prepared tips may drop d
matically at angstrom distances providing atomic scale s
tial resolution. In SCM, resolution is determined by the sp
tial distribution of the electric field governed by the Lapla
equation and its variation with coordinates is much slow
For this reason, the problem of SCM spatial resolution
quires a special analysis.

As was mentioned above, SCM gives information on t
electrical properties of a sample only when screening
longer has a linear character. The spatial resolution of S
will be determined by the condiyion of when the size
region where the potential drop inside a semiconducto
large enough for nonlinear screening. If we successfu
solve the problem formulated in Secs. II, III and find th
potential distribution in the system, the spatial resolution
the radial directiondr can be found from the equation

euw2~dr,0!u5kT. ~26!

For large applied voltages,dr coincides with the critical
radiusr0 given above, so that
9-6
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dr[euVuF«kTl lnS Ad1R1Ad

Ad1R2Ad
D G21

. ~27!

For small voltages,dr is to be found numerically from the
linear expression of Eq.~14!. Figure 4 shows both answer
for two different tip geometries. The solid lines are combin
from these expressions, taken in their respective area
validity, and demonstrate the real behavior ofdr. It is natural
that the in-plane spatial resolution should degrade~dr in-
creases! with the growth in applied voltage, since it is d
rectly related to the expansion of the space charge regio

By comparison, it would be interesting to calculate t
depth resolution of the methoddz as determined from the
condition euw2(0,2dz)u5kT. To find dz for large applied
voltages, we note that Eq.~15! is the first integral of the
Poisson equation~11! in the adiabatic approximation, and
valid not only atz50 but also at anyz,0. Assumingr
50 and integrating overz again, we have for the case of
depleting potential (V,0):

dz5
1

&l
E

ew2~0,0!/kT

21 dt

Aexp~ t !2t21
~28!

with w2(0,0),0 given by Eq.~17!. For small voltages,dz is
found from Eq.~14!, as well asdr. These results are als
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FIG. 4. Radial~1,3! and depth~2,4! resolution of SCM for the
casesdl5Rl51 ~1,2! anddl51, Rl50.1. The dashed lines rep
resent the low- and high-voltage asymptotic behavior beyond
areas of their applicability.
23530
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presented in Fig. 4. One can see that for small bias,
in-plane resolution of SCM is considerably worse than
depth resolution, but for large depletion bias, resolution
both directions become comparable and, moreover, the
plane resolution becomes even better than the depth res
tion.

VI. CONCLUSIONS

In this paper we developed a theory for SCM, a power
method for measuring the spatial distribution of doping le
els in semiconductors. The analysis shows that, contrar
the standard capacity measurements made using
Schottky contacts, the capacity itself is determined by
macroscopic geometry of the sample and by the measu
instrument, and hence can not be used for a local determ
tion of the doping concentration. The latter can be fou
only by using a modulation technique for measuring the
rivative dC/dV.

It is worth noting that, besides measurements ofdC/dV,
there exists another modulation technique, namely, scan
capacitance force microscopy~SCFM!,10 based on the modu
lation of the distanced and measuring the force, proportion
to dC/d(d). It can be seen from Eq.~7! that this derivative,
as well asC itself, is determined by larger and diverges for
an infinite sample. This explains why the modulation of on
d does not allow us to measure local sample characteris
and voltage modulation is necessary in SCFM as well.

Analytical calculations show thatdC/dV depends on the
applied voltageV nonmonotonically, having a maximum a
zero bias. At large positive~accumulation! bias it decreases
;V21 while for large negative~depletion! bias the decrease
is less steep, proportional touVu21/2. The slope of the linear
(dC/dV)22 versusV dependence is proportional to the do
ing concentrationn0 and can be used for its determination

The spatial resolution of SCM is incomparable with t
resolution of STM and AFM with the same tip geometry, a
is determined by the screening length within a semicondu
ing sample. The resolution increases with applied bias du
the growth of the region of nonlinear screening.
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