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Theoretical analysis of scanning capacitance microscopy
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A theoretical analysis of scanning capacitance microscopy is presented. By solving and matching the cor-
responding Laplace and Poisson equations for vacuum and semiconductor, the potential and charge distribu-
tions induced by a rounded tip in a semiconductor sample were found and used to calculate the capacity and
its voltage derivative. The results allow us to analyze the dependence of the capacitance on the semiconductor
doping level, applied voltage, and tip geometry, and to estimate the spatial resolution of such measurements.
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[. INTRODUCTION We use the prolate spheroidal system of coordinétego)
where ¢ is the angle or rotation about theaxis while 1
Scanning capacitance microscof$CM) is a modern <¢<oo and-—1<gn=<1 are related to the cylindrical coordi-

characterization technique commonly used for analyzingates(p,z) by the transformation
doping profiles in semiconductor-based structdrits.wider
application is, however, limited by the absence of a compre- a a
hensive theory describing the local capacity measured by pzi\/(l— 777)(57—1), =§§77. (N
SCM, its dependence on sample parameters, measuring tip

characteristics, and its spatial resolution. The theoretical ba- .
sis of SCM has been restricted to some numerical ©' @ 9ivenR andd, the parametea=2yd"+Rd, and the

calculationd~® without strictly formulated starting assump- sample_l?znd tip surfaces correspond #6-0 and 7=(1
tions, which does not allow one to estimate their feasibility  R/d) ", respectively. If we assume that metallic tip has
and trace the underlying behavior for this method. The oniyin€ PotentialV relative to the sample, to find the spatial
paper containing analytical resfitslescribes the electric distribution of the potential ¢, (£,7) (the subscript
field distribution outside of a sample but does not treat’ indicates the semispaze-0), we solve the Laplace equa-
screening in it and hence cannot be applied to the problendén A ¢ =0 with the boundary condition

of semiconductor diagnosis. In this work we develop an ana-

lytical theory of SCM describing the measured capacity and o[£ (1+R/d) Y2 =V. (2)

its derivatives, their dependence on the applied voltage,

sample doping, and tip characteristics, as well as establishinQther conditions require finiteness of, at £&=1 (the axis

the spatial resolution of the method. p=0) and at{— o and matching with the potential distribu-
tion in semiconductor4<0).
Il. POTENTIAL DISTRIBUTION IN VACUUM For these boundary conditions the variables in the Laplace

equation can be separated:, (¢,7)~R(£)S(7), where

bothR(¢) andS(#) are to be found from the same ordinary
The theoretical analysis of SCM begins with a determina-differential equatioh

tion of the potential distribution between the tip and sample,

and charge distribution in them. For this purpose a simple (1-x3)y"—2xy’ +v(v+1)y=0.

model, which considers the tip as a metallic sphere, is usu-

ally applied(see, e.g., Ref.)LIHowever, this model describes ts solution is given in terms of Legendre functions of the

atip by a single parameter—curvature radiihich is also  first p (x) and the secon®,(x) kind. In our caseé can

the external dimension of the electrode. This is an inadequatgcquire any value equal to or exceeding 1. For this reason

description since, as will be shown below, the measured caz(¢)~p (£) and contains n®, since allQ (&) are singu-

pacity is determined by the macroscopic dimensions of theyr a4t ¢—1. ForR(¢&) to remain finite ag— o, the parameter

electrode, which in real structures may exceed the tip curvay, st lie between-1 and 0. Sincd® ,(£)=P_,_ (&) (see,

ture radius by orders of magnitude. Moreover, even for thig, g Ref. 8, all nonequivalent eigenfunctions of our problem
simple spherical model, the authors do not discuss an angs|| within the interval

lytical solution, which could be found for this simple geom-
etry and would provide the dependencesRrand on the
distanced between the electrode and the sample, but restrict
themselves to some numerical results.

We solve analytically a more realistic model where the tip The argument ofS(#») varies from 0 to (#R/d
curvature is not related to the electrode size and can be var<1. For this reasonS(») may contain bothP,(#) and
ied independently. In this model the electrode surface is con®,(7). After applying the boundary conditiof®), the fol-
sidered as a hyperboloid of one sheet of revolutieiy. 1). lowing expression for the potential is obtained:

A. General solution

—1/2<v=<0.

)71/2
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For this potential distribution the profile of charge density at
the z=0 plane can easily be found:
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FIG. 1. Schematic illustration of SCM measurements. The
shaded area corresponds to the space charge region in the semicon- 27In
ductor sample.
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dv+Vv, (3 By integrating Eq.(6) over the whole interface the total in-
’ duced charge can be found and, hence, the electrode capacity
Co,. For infinite integration limits the solution is divergent,

whereA(») is determined by the boundary condition at the bgt if we restric_t the integration to some radiys, as deter-
interfacez=0 (7=0). For capacity calculations the total Mined by the size of electrode, then
potential distribution is not needed, but only the electric field

\/p7+d7+Rd

PI(1+R/d)~ %2
- Qv[(1+ R/d)*1/2] Qv( 77)

2. 2 )
at the sample interface: Co=2—wjrm|ao(p)|pdp= (\/rm+d +Rd—d?+Rad)
\ n Jd+R+d
dp, Jd+R—\/d
F(§)=———(2=0) Y
In the limit of a very large curvature radil®>r,, d, Eq.(7)
_ 1 f??i —0 reduces to the formula for a plane capacmy‘:rfn/(4d).
B &Jd2+Rd 97 (7=0) In the following sections we discuss changes in the tip
capacity caused by the screening effects in a nonmetallic
v (semiconductgrsample and information on the sample pa-
J fo AIPLAE) 1+ 2 rameters that can be extracted from the capacity measure-
T T = VIFAS) —7oa— 1+ ments. However, already some general remarks can be made.
§Vd*+RdJ -1 r £+ Z) We see that the main contribution &, originates from dis-
2 2 tant regions with large. For these regions the distance to the
2 7v\  P,[(1+R/d)"Y2] v tip exceeds the screening length in the semiconductor so that
X —sin(—) - —7 cos{—) dv the influence of screening is negligible and local values of
m 2 Q,[(1+R/d)™ ] 2 the surface charge density are given by Ej. This means

(4)  that the values of tip capacity are, in fact, determined by the
macroscopic geometry of instrument, providing for very
poor spatial resolution even for a very thin tip and containing
no information on the doping level and other characteristics
of the sample. It will become apparent that in order to avoid

B. A “metallic” sample these difficulties and measure the semiconductor characteris-

. . . tics with sufficient resolution, modulation methods need be
Equation(3) can be used to calculate the tip self-capacity ,qoq

Coy, i.e., the capacity between the tip and a planar metallic
electrode having a very small screening length which has no
influence on the measured capacity, which in this case is
caused exclusively by geometric characteristics of the instru- In Sec. IIB we discussed the limiting case of an equipo-
ment. The metallic electrode is an equipotential surface, stential semiconductor surface whex(v)=—-Vé(v). Now

that ¢ (£,0)=0. For this case in Eq3), A(v)=—-Vé(v)  we consider the situation when the potential at the interface
and ¢ (£,0) is not constant but varies slowly, at characteristic

determining the induced charge.

C. Smooth potential
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distances considerably exceediRgand d. This is a rather lll. SCREENED POTENTIAL IN A SEMICONDUCTOR
realistic assumption. Many commercial SCM instruments are
multiprobe instruments used simultaneously for scanning
tunnel microscopy(STM) and atomic force microscopy The potential profile induced by the tip inside a semicon-
(AFM), whereR andd lie in nanometer region. At the same ductor <0) is now considered. We assume that the mate-
time, the characteristic distance of potential variations withirrial is n type with an electron concentration causing ef-
the semiconductor is the screening lenyth' (see Sec. 1),  fective screening of the tip-induced electric field. For
which in moderately doped semiconductors is at least aflondegenerate electrons the equation for this cylindrically
order of magnitude larger. This means that we are reallygymmetric potentialp_(p,2z) is

interested in valuesé>1. Using the corresponding

A. Linear and quasilinear screening

asymptotic formula foP (&), gives 19/ dp_ N P - KT\2 eo_ . "
) L pap\Pop | T 9 T e |FAKT (D
14
1 (o Fs+35)0 §+V) where = (47nye?/ekT)¥? is the inverse screening length
0. (&0 = —f (28)"A(v) ande is the semiconductor dielectric permittivity. The solu-
T2 Il 1+ 2|01+ v) tion for this potential should match that for the potential
distribution in vacuum, as found in Sec. Il. Since the latter
v\ P [(1+R/d)"12] satisfies the boundary conditigh0), it results in the follow-
x| c s<_ — v —s ing boundary condition fogp_ :
2 2Q,[(1+R/d)™ ]
xsin| —| |dv-+V. (8) ((790) _ 2[e-(p,0)—V]
2 9z o Jd+R+\d ’
z=0 Jp2+d?+Rd
p+d“+Rd
Similarly, [d+R \/—
v 1 _
it ¢_(z——)=0. (12)
FO=- | 20"A( e F(2+V
=7 > B v 1 The problem is easily solved for small applied voltage
meVdTERd w2 r §+ > I'l+v) (of any sign when the right side of Eq.11) can be linear-
ized. In this casdcorresponding to the well-known Debye
(mv\ wP[(1+RId)"Y] [ approximation, the general solution of Eq11) is
s 7)_ 2Q,[(1+Rid) 7] °°{7> @
9) go(_l)(p,z)=f0 A(t)exp( — Vt2+2N?|z])Jo(tp)dt, (13

At £>1 the main contribution to the integrals of E¢8) and
(9) is given by small+| and to good approximation, one can
replace allv-dependent factors except{?'A(v) with their
values atr=0, giving

whereA(t) can be found from the boundary condition of Eq.
(12). The superscriptl) in Eqg. (13) indicates the first-order,
linear inV, character of our approximation. The problem has
no general analytical solution but can be simplified notice-
ably in the case when the applied voltayeis dropped

B 2[¢.(£,0)—V] mostly at the dielectric interval between the tip and the
F(&)= \/dTJr Jd sample, and only a minor part of it is screened within the
£Jd?*+Rd sample. This approach & priori adequate for a relatively
Vd+ \/_ larged but, as we will show later, its applicability is consid-

erably wider including, in particular, the case of a very sharp

2[¢+(£,0-V] (10) tip. This means that the terg_(p,0), on the right-hand side
Jd+R+d IR of Eq. (12), can be omitted ané(t) ¢_(p,0) can be deter-
P mined giving
"\ arR- )

The expression10) generalizes Eq(6) to the case of a go(,l)(p,z)z

smoothly varying boundary potential, giving the linear con- Vd+ +d

nection between the potential and its normal derivative at the \/dT Jd

interface. This allows us, in all further analysis, to consider

only the potential distribution within the samplat z<0) = exp(— t\/d?+ Rd— Vt?+\?|z|)

using Eq.(10) as the boundary condition which contains all X fo NSy o(tp)dt
of the information on the potential in vacuum and on the tip

parameters. (14)
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FIG. 2. Relative voltage drop in the semiconductor sample for

two tip radii: \R=1 (curve ) and\R=0.1 (curve 2. The dashed
lines represent an interpolation for smell

We use Eq(14) for finding the applicability limits for this
expression. To do this, we take the maximal valuept?
X(p,z) realized at the origii0,0) and require it to be much
less thanV. Figure 2 ShOWSp(_l)(0,0)N calculated for dif-
ferent relationships betweeah) R and\, whene=12, as is

PHYSICAL REVIEW B 67, 235309 (2003

e (ﬁi)
V2KTA L 92 ],
ep_(p,0 ep_(p,0
=sgr(V)\/ex;{ ‘Pk(_II_J )}—1— (Pk(_f ).
(15

By excludingd¢_ /dz from Egs.(12) and(15) we obtain the
equation for the surface potential (p,0)

v2e[V—o¢_(p,0)]

Jd+R+d
kTIn| ——=
AekTlIn TR Jp2+d?+Rd
eo_(p,0) ep_(p,0
:sgr(V)\/exp{ (Pk('lf) —1- <Pk(TP ). (16)

We will not discuss possible solutions for E¢L6) at
smallV for two reasons. First, we have already obtained this
solution in Sec. lll A and, secondly, as it will be shown later,
the adiabatic approximation becomes inadequate in this
limit. We restrict ourselves to the opposite limit of largé
whene|¢_(p,0)|>kT. Contrary to the linear case, the solu-
tions for V, ¢_(p,0)>0 (accumulatioh and V, ¢_(p,0)

typical for most semiconductors. This shows that the ap=<0 (depletion, differ dramatically. For the case of deple-

proximation is adequate not only fai >1, which is clear,
but also for a tip with a very small radius of curvatiReFor
nanoscopes witR lying in nanometer region, the abovemen-
tioned limits may be sufficiently wide. At very smal| Eq.
(14) becomes inadequate, anff)(0,0) tends td/, as shown
by the dashed lines in Fig. 2.

The case of linear screening will be used below to provide
a number of important estimates, although it cannot be di-
rectly used for capacity calculations. As we have already

tion, the right side of Eq(16) is asymptotically proportional
to V—¢_(p,0) and the equation has the solution

kT kT
¢-(pO)=V=—flp)+ Vi2(p)—2f(p)eVIkT,
17

Vd+R+d
Vd+R-Vd

f(p)=%|n2 ))\Z(p2+d2+Rd). (18)

mentioned in Sec. Il, the total charge and hence the tip can; large p this potential distribution is proportional tb*

pacity as determined by E5), as well as by Eq(14), has
the same asymptotic behavior at laggeand is divergent. It

and hence decreases@s?. This is a steeper decrease than
that for a linear potentia{14), which ensures convergence

cannot, therefore, be used for determination of the samplgnd good localization of the resulting charge, and hence fi-
parameters. The latter can be found only from differentialhiteness and good spatial resolution for the nonlinear capac-

characteristics, e.gdC/dV, which will be the main focus of
further calculations. But in the linear case,s independent

ity.
For large positiveV analytical results can be obtained

of the applied voltage, and so this approach is inapplicableonly in the limit ¢ _(0,0)V<1 and give
Thus, all SCM measurements and their theoretical descrip-

tion should be conducted under nonlinear conditions, which

will be discussed in the following subsection.

B. Adiabatic approximation

An analytical solution of Eq(11) at large applied voltages

2kT
o_(p,0)=—

e
V2eV
xin iR+ d
KT In| 2| )2+ d?+ Rd
¢ (\/d+R—\/H P

can be obtained in the adiabatic approximation assuming that

the potential varies in the direction much faster than along
the interface. In this case, we can neglectglterivatives in

(19
It is worth noting that the conditiong (0,0)AV<1 and

Eq. (11) and integrate once the resulting ordinary differentialep_(p,0)>kT do not contradict each other. As it was shown

equation. Its solution, for which botlh_ andd¢_ /dz van-

in Sec. Il A, the first of them is related to the system geom-

ish simultaneously at— — o, connects these parameters atetry and high dielectric susceptibility of semiconductor and

z=0:

does not imply smallness &f.
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Equation(17) is the basic formula that we use in further (d¢_/9z),—, that is to the surface charge density in semi-
calculations and for this reason it is important to check theconductor, we have
applicability of the adiabatic approximation used in its deri-

vation. To do this, we calculate the radial part of the Laplac- 1 d (=[V—e_(p,0)]
ianp_lﬂgo_ /c?p+(92go_ /c?p2 with ¢ _ given by Eq.(17), and C= m av . mpdp.

require it to be much less than the right side of Etfl),
equal to 4reny/e in the region of complete depletion. The Jd+R-d

formula will contain the current value @f which we replace

with the characteristic po=eV[ekTAIn(yd+R  As has already been mentioned, the expressionCati-
+/d/Jd+R—/d)]?* representing the radius of the com- verges(due to the first term in the integranand infqrmation
plete depletion area, as determined from the expressiofn the doping level of a sample must be obtain from the
e|o_(po,0)|=KkT. The resulting condition for the validity of differential characteristic

the adiabatic approximation ise|V|>2v2In(yd+R

In

+/d/Jd+R—d)ekT. For V measured by several volts dc -1 d? = ¢_(p,0)

this condition is usually fulfilled even at room temperature. gy Jd+R+d dav2 J, mpdp'
For low-temperature measurements, a lower applied voltage In| ———=

can be used. Jd+R—d

(20)
IV. CAPACITY CALCULATIONS . . . _
Let us apply this formula for particular potential distribu-
Once the potential distribution at the interfage (p,0)  tions as calculated in the previous section. For large negative
=¢.(p,0) is determined, the tip capacity can be found. ¢ _(p,0), corresponding to the case of strong depletion and
Since, according to Eq12), ¢ _(p,0) is linearly related to given by Eq.(17), we have

dC 1
o . (21
dv | 3( d+R+/d \/d2 . Vv | d+R+ \/a)]z
eegnpin —_ +Rd— n
T JdrR—d gmeery| | Va1 R-d

Equation(21) was derived with using the asymptotic for- the role of the dielectric is played by an air layer of thickness
mula (17), which is only applicable at sufficiently high val- dg. If the thickness of the depletion layer in the semiconduc-
ues of|¢_(p,0)|. For this reason we need to prove that thetor is |, then the voltage drop in the semiconductor is
main contribution to the integral in E420) is given by the 2mengl?/e, the electric field at the interface ismengl/e,
region of smallp<p,, wheree|¢_(p,0)|>kT. To do this, and the electric field in air is times larger. By assuming the
we note that the contribution from the undesirable region total voltage drop i8/, we obtain the quadratic equation for
> po is given by a formula similar to Eq(21), with d?  |: 17+2eld=¢|V|/(2meny). Since the charge density is
+Rd replaced byp2. Thus, for our approach to be valid, we =€MNol, we obtain

must  require [e\ In[(yd+ R+ d)/(yd+R—d)]p]?

2
> e|V||/(2kT). This is equivalent to dV|>kT and is defi- c_ do_ S 22
nitely fulfilled in our limit of strong depletiore|¢_(p,0)| v dVv? v 2
>KkT. 16m2esn,| \/ d3—
2meeng

The formula(21) is the central result of our theory and
requires a special discussion. We note first that its depeRyhereSis the device area.
dences on both the applied voltayeand the doping level If we ignore numerical constants and logarithmic factors,
no, having at large bias the forehC/dV~ng ¥4V| Y2 dif-  Egs.(21) and(22) have some common features. They both
fer qualitatively from those of a planar Schottky diode, are inversely proportional ta, and to some degree of the
where dC/dV~ n(l)’2|v|‘3’2. This difference is due to two effective screening lengtth.;, equal to the square root of the
facts: the essentially non-one-dimensional potential distribuexpression containing the dielectric thickness and width of
tion and a division of the applied voltage between the airdepletion depletion layer, increasing witt4|. The essential
backlash and the space charge region in the sample. distinction between SCM and a MOS structure is related to

To demonstrate the role of these two contributing factorsthe fact that in the latter case the potential distribution is one
we compare our formula with that for a reverse bias¥d ( dimensional and the device capacity is proportional to its
<0) planar metal-dielectric-semiconductor structure whererea$S. In the case of SCM, the region of charge variation is
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0.9+ This potential becomes comparable with/e at the critical

08 voltage

0.7

OAS—- Vc~(8kT/E)|n(

Vd+R+d
Vd+R-d

which determines the region of applicabili(@1) and (23).
] 2 At V~ —V, the last term in the argument of the square root
0.3 in Eq. (21) is negligible, and the expression becomes voltage
independent. Since the same expression can be also obtained
] for a positive bias by direct substitution ¥f, we can use it
0.1+ as an estimate fad C/dV(0):

0.0 L T T T T T T T T T T T T T

AVd?+Rd,

0.5 5

0.4

dC/dV (arb.units)

0.2 1

(24)

1
Vd+R+d
Vd+R-d

For A Jd?+Rd<1, ¢(0,0)=V so that the role o¥/, is
restricted in all dimensions by the effective screening lengttplayed bykT/e. As a result, in Eq(21) in the whole area of
des SO that the role oBis played bydgﬁ_ This changes the its applicability the ternd?+ Rd can be neglected. As in the
voltage dependence and results in a qualitatively differenprevious casedC/dV at V~=V, has the same value for
dependence afC/dV on the doping level: at large depleting depletion and accumulation

bias it decreases withy in SCM geometry and increases for

dC
V (arb.units) d_V (0)=
meeng In®

2
FIG. 3. Schematic voltage dependencedd@/dV for samples ) d“+Rd
with two doping levelsn; (curve ) andn, (curve 2 wheren;

>n,.

MOS structures. dcC 1
Typically, SCM measurements are performed in the 7 (0)= : (25
ypically, - perfor dv Vd+R+\d
depletion regime but we present here calculations for accu- ’—wsnolenz
mulation voltage as well, since measurements in this regime Jd+R—d
were also reported in literatufeTo derivedC/dV for the
case of an accumulation potential, we must take E&§),
substitute it into Eq.(20) and integrate but not tgp=oo V. SPATIAL RESOLUTION
(which, in any case, would divergebut only top, corre- One of the most important characteristics of any scanning

sponding toeg_(p,0)=kT. The expression fop, appears ,rope technique is its spatial resolution. Though SCM may

to be the same as that found above for the case of depletio{jge the same equipment as STM or AFM, their resolutions
and differ by orders of magnitude. The probability of tunneling

dc JkT exponentially depends on the local distance between a tip

_ (23) and a sample and for properly prepared tips may drop dra-

av o[ Vd+R+ Jd matically at angstrom distances providing atomic scale spa-
2e\mngeV In JaiR-vd tial resolution. In SCM, resolution is determined by the spa-

tial distribution of the electric field governed by the Laplace
Now we are in a position to understand behavior of€gquation and its variation with coordinates is much slower.

dC/dV for all possible applied voltages. It is an asymmetricFOr this reason, the problem of SCM spatial resolution re-
curve with a maximum, shown schematically in Fig. 3,duires a special analysis. . _
which also agrees with the results of numerical simulation. AS Was mentioned above, SCM gives information on the

According to Eq(21), at large depleting voltage it decreases&lectrical properties of a sample only when screening no
~|V|~*2and at large accumulation voltages decreases co onger has a linear character. The spatial resolution of SCM

siderably faster~V~! [Eq. (23)]. The maximal value of will be determined by the condiyion of when the size of

dC/dV is reached for a near zero bias. Though our formulad€9ion where the potential drop inside a semiconductor is

(21), (23) have an asymptotic character and are correct Onlyarlge ehnoughb;‘or r}onlin?ar dsc_reening. If we sgcgezsﬂ;lly
at large bias, they allow us to establish a qualitative estimatg®'ve the problem formulated in Secs. I, I!I and find the
potential distribution in the system, the spatial resolution in

for_dC/dV(0). The latter depends on the parameterthe radial directionsp can be found from the equation

M JdZ+Rd. If N\/d?+Rd>1, then Eq(14) gives

2V ele_(8p,0)|=KT. (26)
(0,0 = — :
cln M A\Jd2+Rd For large applied voltagesip coincides with the critical
Jd+R-d radiusp, given above, so that
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254 presented in Fig. 4. One can see that for small bias, the
in-plane resolution of SCM is considerably worse than the
depth resolution, but for large depletion bias, resolution in
both directions become comparable and, moreover, the in-
plane resolution becomes even better than the depth resolu-
tion.

2.04

Sp A, BZA

VI. CONCLUSIONS

In this paper we developed a theory for SCM, a powerful
method for measuring the spatial distribution of doping lev-
els in semiconductors. The analysis shows that, contrary to
the standard capacity measurements made using bulk
Schottky contacts, the capacity itself is determined by the

V /KT macroscopic geometry of the sample and by the measuring
. . instrument, and hence can not be used for a local determina-
FIG. 4. Radial(1,3 and depth(2,4) resolution of SCM for the  tjon of the doping concentration. The latter can be found

cases\=RA=1 (1,2 anddr =1, R\ =0.1. The dashed lines rep- oy by using a modulation technique for measuring the de-
resent the low- and high-voltage asymptotic behavior beyond th?ivative dc/dv

areas of their applicability.

0.5 4

It is worth noting that, besides measurementsl6idV,
1 there exists another modulation technique, namely, scanning

so=elVIl ekTx | Vd+R+d 5 capacitance force microscop$CFM),*° based on the modu-
p=elV] e n _ (27) lation of the distance and measuring the force, proportional
Jd+R—d

to dC/d(d). It can be seen from Ed7) that this derivative,

For small voltagesgp is to be found numerically from the as well asC itself, is determined by large and diverges for
linear expression of Eq14). Figure 4 shows both answers an infinite sample. This explains why the modulation of only
for two different tip geometries. The solid lines are combinedq does not allow us to measure local sample characteristics,
from these expressions, taken in their respective areas @d voltage modulation is necessary in SCFM as well.
validity, and demonstrate the real behaviotdpf It is natural Analytical calculations show thatC/dV depends on the
that the in-plane spatial resolution should degréde in-  applied voltagev nonmonotonically, having a maximum at
creasep with the growth in applied voltage, since it is di- zero bias. At large positivéaccumulatio bias it decreases
rectly related to the expansion of the space charge region. —v/~1 whijle for large negativédepletion bias the decrease

By comparison, it would be interesting to calculate thejs |ess steep, proportional t¥| Y2 The slope of the linear
depth _resolutlon of the methoéiz as determined from_the (dC/dV)~2 versusV dependence is proportional to the dop-
conditione|e_(0,— 6z)| =kT. To find 6z for large applied  ing concentratiom, and can be used for its determination.
voltages, we note that E15) is the first integral of the The spatial resolution of SCM is incomparable with the
Poisson equatiofil) in the adiabatic approximation, and is resolution of STM and AFM with the same tip geometry, and
valid not only atz=0 but also at any<0. Assumingp s determined by the screening length within a semiconduct-
=0 and integrating over again, we have for the case of a jng sample. The resolution increases with applied bias due to

depleting potential {<0): the growth of the region of nonlinear screening.
1 (-1 dt
62=—— e (28
V2N Jeo_(00/kT\/exp(t) —t—1 ACKNOWLEDGMENT
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found from Eq.(14), as well asdp. These results are also Master University for useful discussions.

*Email address: shik@ecf.utoronto.ca 6D. B. Balagurov, A. V. Klyuchnik, and Y. E. Lozovik, Phys. Solid

1c. C. williams, Annu. Rev. Mater. ScR9, 471 (1999. State42, 371 (2000.

2y, Huang and C. C. Williams, J. Vac. Sci. Technol.1B, 369 C. Flammer, Spheroidal Wave FunctionéStanford University
(1994. Press, Stanford, CA, 1957

3J.s. McMurray, J. Kim, and C. C. Williams, J. Vac. Sci. Technol. 8M. Abramowitz and 1. A. StegunHandbook of Mathematical
B 15, 1011(1997). Functions(NBS, Washington, 1972

4. J. Kopanski, J. F. Marchiando, and J. R. Lowney, Mater. Sci.°M. von Sprekelsen, J. Isenbart, and R. Wiesendarigepub-
Eng., B44, 46 (1997. lished.

5J. F. Marchiando, J. J. Kopanski, and J. R. Lowney, J. Vac. Scil’K. Kobayashi, H. Yamada, and K. Matsushige, Appl. Phys. Lett.
Technol. B16, 463 (1998. 81, 2629(2002.

235309-7



