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Statistics of charge fluctuations in chaotic cavities

S. Pilgram and M. Bu¨ttiker
Département de Physique The´orique, Universite´ de Gene`ve, CH-1211 Gene`ve 4, Switzerland

~Received 4 February 2003; published 10 June 2003!

We consider the zero-frequency fluctuations of the charge inside a mesoscopic conductor in the large
capacitance limit. In analogy to current counting statistics, we derive the characteristic function of charge
fluctuations in terms of the scattering matrix of the conductor. Using random matrix theory, we evaluate the
characteristic function semianalytically for chaotic cavities. Our result is universal in the sense that it describes
not only the fluctuations of the charge but of any observable quantity inside the cavity. We discuss equilibrium
and nonequilibrium fluctuations and extend our theory to the case of contacts with arbitrary transparency.
Finally, we investigate the suppression of fluctuations in the small capacitance limit due to charge screening.
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The full counting statistics of current fluctuations in m
soscopic conductors have attracted the attention of many
oretical works during the last decade. In a pioneering pa
Levitov et al. explain the universality of current statistic
Coherent charge transfer through a two-terminal condu
can be seen as a probabilistic process governed by a s
transmission probabilities.1 In the following, several method
have been developed to obtain the full counting statistics
mesoscopic conductors. In the original work, the auth
used a fully quantum-mechanical approach and described
conductor by its unitary scattering matrix.2–4 Nazarov pro-
vided a description in terms of Keldysh-Green’s functio
that can be applied conveniently to conductors with a la
number of channels.5 De Jong characterized double barri
structures successfully by a fully classical method6 based on
the exclusion principle. Nagaev proposed a semiclass
diagrammatic scheme to obtain higher cumulants in a s
tematic manner.7,8 Recently, Pilgramet al. expressed the ful
counting statistics in terms of a saddle point solution to
semiclassical stochastic path integral.9

In parallel, different works addressed the statistics
quantities related to current, such as the phases in supe
ducting devices10,11or the momentum transfer from electron
to a bent conductor.12 The interpretation of the statistics o
these quantities is less intuitive, in general, these canno
characterized by transmission probabilities only. Moment
transfer, for example, is not quantized in contrast to cha
transfer.13

In this paper, we report on a quantity of fundamental
terest in physics: the fluctuations of charge inside a me
copic conductor. As soon as parts of a mesoscopic system
only coupled capacitively~i.e., metallic gates close to a me
soscopic conductor!, charge fluctuations play an importa
role. Decoherence for instance is described as an ave
over a fluctuating potential,14,15which then in turn is coupled
electrodynamically to the charge. Charge correlations a
contribute to nonequilibrium decoherence when a meas
ment process is taking place.16,17 These are as well at th
origin of Coulomb drag effects.18 Such models often assum
Gaussian fluctuations, which is justified in the wea
coupling limit. When coupling becomes stronger the no
Gaussian fluctuations should be taken into account. Meth
to calculate higher cumulants are, therefore, of great use
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In some sense, charge fluctuations are diametrically
posed to the fluctuations of current. For a current meas
ment, we may arbitrarily choose the cross section of the c
ductor. For a charge measurement, we are forced to de
exactly a volume of charge we are interested in.19 The choice
of this volume will necessarily influence the statistics
charge fluctuations. At this point, it becomes clear that s
tistics of charge noise are, in general, non-universal in c
trast to current noise. There is, however, a class of cond
tors in which we expect universality to be preserve
Disordered systems and in our case chaotic cavities. In
case, the charge of interest can be characterized by
single parameter, the dwell time of the electrons inside
volume of the cavity.20 Furthermore, the Hamiltonian of a
chaotic cavity is random, no basis nor any operator is p
ferred. Therefore, the fluctuations of any other internal o
erator, such as the dipolar moment, will obey the same u
versal statistics as the charge operator.

In this paper, we present a method based on random
trix theory21 to calculate the cumulants of charge noise
chaotic cavities analytically order by order. For the full ge
erating function, we show semianalytical results that we c
firmed numerically. We emphasize that the example of
chaotic cavity in the many channel limit can be treated
well in the semiclassical framework developed in Ref. 9.
we checked, the semiclassical results completely agree
the calculation presented here.

In Sec. I, we derive the generating function of char
fluctuations in terms of the scattering matrix. A similar e
pression for the second cumulant has been derived l
before.22 Results are, in particular, available for the geome
considered in this publication: the chaotic cavity.23 The
charge-charge correlation function has also been found
finite frequencies.24 These works all emphasize on the impo
tance of charge screening, interaction effects have to
taken into account. The charge in the cavity responds to
fluctuations of the internal electrostatic potential that is co
jugated with the charge.

We explain in detail the evaluation of the characteris
function for an open cavity in equilibrium in Sec. II. W
present results for the nonequilibrium case and contacts
arbitrary transparency in Sec. III. We briefly discuss how
include interaction effects into our calculation scheme. As
©2003 The American Physical Society08-1
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application, we finally estimate the contribution of the no
Gaussian fluctuations to dephasing of electrons passing
chaotic cavity.

I. GENERATING FUNCTION

We consider a mesoscopic conductor as shown in Fig
The conductor is described by a HamiltonianĤ0. The elec-
trostatic potentialU on the conductor can be varied. The fu
Hamiltonian is, therefore,Ĥ5Ĥ01UQ̂, where Q̂ is the
charge operator. In analogy to current statistics,4 we define
the following characteristic function~we set\51):

x t~U !5^eit [ Ĥ01(U/2)Q̂]e2 i t [ Ĥ02(U/2)Q̂]&

5K T̂Kexpi
U

2 E E
0

t

dt8~6 !Q̂~ t8!L . ~1!

The first line of Eq.~1! in the Heisenberg picture will serv
as a starting point for our calculation. The second line in
interaction picture contains the Keldysh time ordering ope
tor T̂K and an integral** along the Keldysh contour from
zero tot and back again. The6 sign is positive on the uppe
Keldysh contour and negative on the lower contour. The
teraction representation allows us to verify that the deriva
Cn5(2 i )n]nln x(U)/]UnuU50 generates thenth cumulant of
charge fluctuations.

The Fourier transform of this characteristic function is t
probability distribution of charge integrated over tim
*0

t dt8Q(t8), a quantity without direct physical meaning. D
vided by the elementary chargee, it can be understood as th
time spent by all electrons in the cavity after timet. Alterna-
tively, it can be divided by a geometrical capacitanceCg to
obtain the probability distribution of the phase, which is t
potential integrated over timet. In this paper, we mainly
concentrate on the characteristic function itself that gener
the moments of zero-frequency charge fluctuations.

Using the procedure of Refs. 2,4, the time evolution o
erators defined in Eq.~1! can be expressed by the unita
scattering matrix of the mesoscopic conductor and we ob

FIG. 1. Example of a mesoscopic conductor considered in
paper: the chaotic cavity. We calculate the statistics of the chargQ
inside the cavity.U is the electrostatic potential of the cavity,V1 ,V2

are the applied voltages,N1 ,N2 are the number of channels in th
contacts,G is the contact transparency,kT is the temperature, and
Cg is the geometrical capacitance of the cavity.
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ln x t5
t

2pE dE Tr lnF12nE1nES†S E,2
U

2 DSS E,1
U

2 D G .
~2!

The energy integral reaches from the bottom of the band
infinity. The matrixS(E,U) is the energy and potential de
pendent scattering matrix that links incoming and outgo
current amplitudes. The matrixnE is diagonal and contains
the Fermi occupation factors (nE) i i 5ni(E)5@11exp((E
2eVi)/kT)#21 of channeli on its diagonal. In practice, it is
useful to subtract the background charge. We consider s
rately the characteristic function at zero temperature
voltage that can be expressed by the eigenvalues of the
tering matrixeifn:

ln x0~U !5 i
t

2pE
0

dEH(
n

~fn~U/2!2fn~2U/2!!J .

~3!

It is obvious from Eq.~3! that all even cumulants vanish a
zero temperature and voltage. The odd cumulants excep
first vanish after disorder averaging,25 becausê ]kfn /]Uk&
50 for k.1. In the presence of disorder, subtracti
ln x0(U) from Eq. ~2! is thus equivalent to subtracting th
background charge. We arrive at the following symmet
expression for the characteristic function:

ln x5
t

2pE2`

0

dE Tr lnFnE1~12nE!S†S E,
U

2 DSS E,2
U

2 D G
1

t

2pE0

`

dE Tr lnF ~12nE!1nES†S E,2
U

2 DSS E,
U

2 D G .
~4!

At equilibrium, one can easily check that Eq.~4! generates
only even cumulants. The characteristic function then o
depends on the eigenvalueseifn of the scattering matrix and
is symmetric with respect toU°2U.

II. AVERAGE FOR A CHAOTIC CAVITY

So far we have been very general. Equation~4! can be
applied to any mesoscopic conductor, as soon as its sca
ing matrix is known.26 We now investigate more closely th
generic example of a many-mode chaotic cavity~we neglect
weak localization corrections!. In this case, the average o
products of at most four energy~potential! dependent scat
tering matrices is known.20,27It remains, nevertheless, a non
trivial problem to calculate the average of the logarithms
Eq. ~4!, which contain infinitely high powers of scatterin
matrices. We solve this problem in two steps. First, we
press the characteristic function through a Green’s funct
We then calculate the average of this Green’s function us
a method developed in Ref. 21.

We define the following Green’s functions:

is
8-2
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Feq~z,U !5K 1

z2Aeq~U !
L , Fneq~z,U !5K 1

z2Aneq~U !
L .

~5!

The brackets denote the disorder average. The matriceA
abbreviate products of scattering matrices

Aeq5S†~2U/2!S~U/2!,

Aneq5S11
† ~2U/2!S11~U/2!1S21

† ~2U/2!S21~U/2!. ~6!

The dimension of the full scattering matrix isN3N, its
block S11 ~the reflection matrix! measuresN13N1. We in-
troduce the temperaturekT, the applied voltageV5V1
2V2.0, and the integration timet. The characteristic func
tions at equilibrium (kT@eV) and for transport (kT!eV)
can then be written as integrals over the variablez of the
Green’s functions:

xeq~U !5
tkT

2p E
1

`

dz
ln~z!

11z
@2N1~11z!Tr„Feq~2z,U !

1Feq~2z,2U !…#, ~7!

and

xneq~U !5
teV

2p E
0

` dz

11z
@N11~11z!Tr Fneq~2z,U !#.

~8!

To outline the principles of the calculations, we first specia
discuss the simplest case of an open cavity at equilibrium
Brouwer and Bu¨ttiker,20 we introduce the potential depen
dence of the scattering matrix via a virtual stub described
a M3M reflection matrix

r s~U !52eieUF, f5Tr F. ~9!

The tracef is linked to the mean level density byf
52pdn/(edU)52pNF and to the dwell time byf5Gt
whereG is the total dimensionless conductance into the c
ity ande is the elementary charge. The stub is assumed to
very large compared to the exits of the cavity; then the p
cise structure of the matrixF becomes unimportant for th
calculation. The total scattering matrix of the chaotic cav
may be expressed as the geometrical sum

S~U !5Uaa1Uab„12r s~U !Ubb…
21r s~U !Uba . ~10!

For an open chaotic cavity, the (N1M )3(N1M ) matrix U
is distributed according to the circular ensemble of unit
matrices. It is divided into blocksUaa of sizeN3N andUbb
of size M3M . The average over this ensemble can be c
ried out by means of a diagrammatic technique.21 The tech-
nical details of this average are presented in appendix A.
trace of the Green’s function turns out to be

Tr Feq5N
1

z2y~z,U !
, ~11!

wherey is the root of a cubic Dyson equation

z2z~12 ieUt!y2~11 ieUt!y21y350. ~12!
23530
s

y

-
be
-

y

r-

e

Unfortunately, the analytic solution of this polynomia
equation is rather cumbersome. But we have two ways
continue. If we are only interested in the first few cumulan
of charge fluctuations, we may expand the rooty up to a
certain order in the potentialU:

y5y01y1U1y2U21y3U31••• ~13!

and then solve the cubic equation order by order~As a side
product of our calculation, we can obtain in the same w
the average Tr^„S†(2U/2)S(U/2)…n& by expandingy in
powers of 1/z). We then obtain the following expansion o
the characteristic function

ln xeq~U !5N1

tkT

2p H 2~eUt!21
1

12
~eUt!4

2
1

45
~eUt!61•••J . ~14!

The equilibrium fluctuations of the charge in the open cav
are non-Gaussian. In the following section, we will stu
how this result depends on the back-reflection probabi
12G of the leads.

If we are interested in the full characteristic function, w
can find the root of Eq.~12! numerically and then carry ou
the integration in Eq.~7!. The result is plotted in Fig. 2. The
diamonds indicate a numerical check that was performed
numerically averaging over a large set of scattering matric
This fully numerical solution is very time consuming com
pared to finding roots of the Dyson equation. The largeU
limit of the characteristic function can be determined analy
cally to be lnx(U→`)52pNtkT/12. The characteristic func
tion x is, therefore, properly behaved for large timest
@(NkT)21. As discussed in Ref. 4, this is the range of v
lidity of Eq. ~2!. Out of equilibrium, the applied voltage
plays the role of the temperaturet@(NeV)21.

III. RESULTS

The generalization of our approach to cavities with ba
reflection at the contacts is not completely straightforwa

FIG. 2. Comparison of semianalytical and numerical results
the logarithm of the characteristic function of equilibrium char
fluctuations in an open cavity. We chooseM5160 for the size of
the numerical random Hamiltonian describing the cavity.
8-3
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On the one hand, the scattering matrix as given in Eq.~10!
must be extended and its average^S(U)& is no longer zero.
This complication modifies the averaging procedure for
Green’s functions. We discuss the crucial points in Appen
B. On the other hand, the calculation becomes lengthy
requires some algebraic software.

We use the parametersN5N11N2 for the total number
of channels andl5(N12N2)/N to describe the asymmetr
of the cavity ~see Fig. 1!. The transmission probability to
pass one of the contacts of the cavity is denoted byG. For
simplicity, we choose it to be the same in both contacts.

For the cumulants of fluctuations at equilibrium, we o
tain

C2
eq5NG

kTt

p
~et!2,

C4
eq5NG

kTt

p
~et!4~22G!,

C6
eq5NG

kTt

p
~et!6~24224G18G2!. ~15!

The dwell time is given byt ande is the unity charge. This
result is universal in the sense that it describes also the
tuations of any other operator inside the cavity. One has s
ply to replace the constant (et) by other units. It is interest-
ing to note that the higher cumulants increase w
decreasing transparency of the leads. We observe the s
behavior for nonequilibrium charge fluctuations and for c
rent fluctuations in chaotic cavities8. Towards the limit of
tunneling contacts, the non-Gaussian fluctuations get st
ger.

In the transport regime, the characteristic function can
written in the following way:

ln xneq5
NteV

2p (
n

Kn~G!Ln~l!~ ieUt!n. ~16!

The functionsKn and Ln describe the dependence of th
cumulants on transparency of the contacts and asymmet
the cavity. The first few coefficients are given by

K15G, K25G~22G!, K35G~323G1G2!,

L15
11l

2
, L25

12l2

8
, L352

l~12l2!

12
. ~17!

These factors are plotted in Fig. 3 as a function of transp
ency and asymmetry. The higher the cumulant, the slo
the factorsKn diminish towards the tunneling limit. The plo
indicates a nonanalytic behavior forG→0 and n→`. A
similar effect occurs in extremely asymmetric cavities
ulu.1; Non-Gaussian fluctuations are enhanced.

Up to now we considered a completely noninteract
system (Cg@e2NF). We now relax the conditionCg
@e2NF by including the effect of charge screening. In t
many-channel limit considered here, Coulomb blockade
fects are unimportant. Interaction effects can then be tre
by including a self-consistent response of the electrost
23530
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potential U ~the bottom of the band! to the charge
fluctuations.23 We introduce a fluctuating electrostatic pote
tial U5U01dU(t) that is coupled capacitively to the fluc
tuations of the total screened charge on the cavitydQscr
5CgdU. We then have to include the response of cha
cumulantsCn to fluctuations of the potentialdU, the so-
called cascade corrections.7,8 In the case of cavities this pro
cedure is almost trivial, because only the first cumulant
chargeC1, the mean charge, depends on the electrost
potential, see appendix C. It turns out that the screened
mulants differ from the unscreened cumulants by a unive
prefactor~in the linear bias regime!,

Cn
scr5S 11

e2NF

Cg
D 2n

Cn . ~18!

An identical prefactor has been obtained in Ref. 23 for
second cumulant. This simple result relies on two facts.
cumulants higher than one do not depend on the electros
potential, because correlators of scattering matri
^(S†(U1)S(U2))n& only depend on the differenceU12U2
after disorder averaging. Furthermore, the density of sta
NF depends, in principle, on the particular scattering mat
Only in the many channel limit, we can considerNF andCn
as being independent when averaging over disorder. In g
eral, a relation as simple as Eq.~18! cannot be expected.

IV. APPLICATION: PHASEFLUCTUATIONS

In this section, we estimate the contribution of the no
Gaussian fluctuations to the dephasing of electrons pass

FIG. 3. Parameter dependence of nonequilibrium cumulant
charge noise. Upper panel: Each cumulantCn depends on transmis
sionG. The prefactors of low cumulants tend to zero in the tunn
ing limit, whereas high cumulants stay important. Lower pan
Each cumulant depends on the asymmetryl5(N12N2)/(N1

1N2). Cumulants higher than two may change their signs.
8-4
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chaotic cavity. This allows us to formulate a validity cond
tion for the Gaussian approximation. Models for dephas
in chaotic cavities have been considered for instance in R
29,28. Dephasing rates in cavities have been measure
Huibers et al.30 and Hackenset al.31 Dephasing due to
charge fluctuations has been treated in the scattering for
ism in Refs. 15,32,33.

We approximate the dynamical phase picked up by
electron in the cavity by

f.eE
0

t

dt8U~ t8!5
e

Cg
E

0

t

dt8Qscr~ t8!. ~19!

The screened charge is denoted byQscr, its statistics is in the
long-time limit given by Eq.~18!. We consider the phasef
to be a classically fluctuating field15 ~with non-Gaussian fluc-
tuations! and average the phase over equilibrium charge fl
tuations,

^eif&.expH 2
1

2

e2

Cg
2

C2
scr1

1

24

e4

Cg
4

C4
scr2•••J . ~20!

Here, we assumed additionally that fluctuations on the t
scale oft behave as fluctuations in the long-time limit. Th
is justified at high temperatureskT@t21 if the frequency
dependence of the response function]^Q&/]U ~see Appen-
dix C! may be neglected. We combine Eqs.~15! and ~18!,
and insert the cumulants into Eq.~20!. A comparison of sec-
ond and fourth cumulants gives the following condition f
the validity of the Gaussian approximation

1

G2

Cm
2

Cg
2

22G

12
!1, ~21!

where we introduced the electrochemical capacitanceCm
21

5Cg
211(e2NF)21 and the dimensionless conductanceG

5GN. Note thatCm,Cg , therefore condition~21! always
holds in the large conductance limit considered in this pa
Nevertheless, Eq.~21! indicates that the non-Gaussian co
rections become important in the limit of few channe
There are strongest in the charge neutral limitCm5Cg and
increase in the tunneling limitG→0.

V. CONCLUSIONS

In this paper, we described a way to calculate higher
mulants of charge fluctuations inside a mesoscopic condu
in the long-time limit. We first derived a general generati
functional for such fluctuations in terms of the scatteri
matrix of a noninteracting mesoscopic system. As a spec
example we considered a chaotic cavity and showed how
average the generating functional over disorder using
random matrix theory. We then studied the dependence o
generating functional on parameters as the asymmetr
transparency of the leads attached to the cavity. We find
higher cumulants contribute most to fluctuations in the t
neling limit. Finally we calculated the suppression of flu
tuations in the presence of screening. Although higher cu
lants of charge fluctuations are probably not direc
23530
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measurable, their knowledge is of great practical importan
It allows for instance to study decoherence effects due
fluctuations beyond the Gaussian theory.
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APPENDIX A: DISORDER AVERAGE OF GREEN’S
FUNCTIONS

In this appendix, we discuss how to average the poten
dependent Green’s functions~5! in the equilibrium case. In
Ref. 21, Brouwer and Beenakker present a procedure to
culate the distribution of transmission eigenvalues of cha
cavities from a disorder averaged Green’s function. We ad
this procedure to our purposes. In a first step, the serie
Eq. ~10! is reexpressed in a compact formulation by intr
ducing the following set of matrices:

S̃5S S~U/2! 0

0 S†~2U/2!
D , C5S 0 1

1 0D ,

F̃~z!5S 0 F8~z!

F~z! 0 D , T85S t 0 0 0

0 0 t† 0D , ~A1!

T5T8T, R85S r 8 0 0 0

0 r s~U/2! 0 0

0 0 ~r 8!† 0

0 0 0 r s
†~2U/2!

D .

The transmission and reflection matricest,r , andr 8 describe
the back reflection in the contacts. Without barriers, we h
t51 andr5r 850. The fluctuating part of the scattering ma
trix then is

dS̃5T8~12ŨR8!21ŨT, Ũ5S U 0

0 U†D , ~A2!

whereU is the uniformly distributed unitary random matrix
The matrix Green’s functionF̃ that contains the desire
Green’s function~5! as off-diagonal element can be writte
as differenceF̃5F̃12F̃2. Both components

F̃65
1

2Az
C

1

Az7S̃C
~A3!

can be averaged separately. According to Brouwer
Beenakker,21 they obey a Dyson equation

F̃65X6~11S6~ F̃6!F̃6! ~A4!

with a self-energy matrixS65S6(F̃6) depending on the
Green’s functionF̃6. The matrixX6 is defined asX5R8
1TCT 8z21/2. The equation for the self-energy may now b
expanded up to first order in 1/M , whereM is the dimension
8-5
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of the virtual potential dependent stub~9!. After impurity
averaging and some algebra, we obtain that the self-ener
of the form

S656
y

Az
S 1

1 D ~A5!

and fulfills Eq.~12!.

APPENDIX B: EXTENSION TO CAVITIES WITH
BARRIERS

In the presence of back reflection at the contacts, we h
to modify the summation carried out by Brouwer a
Beenakker.21 Now the scattering matrix of the leads is give
by t5 iAG and r5r 85A12G. The additional complication
due to barriers arises from the fact that the mean of
scattering matrixS̄ is no longer zero. The needed form of th
matrix C is given by

C5S 0 C1

C2 0 D . ~B1!

In order to obtain the density of transmission eigenvalues
in Ref. 21, one chooses

C15S 1 0

0 0D , C25S 0 0

0 1D ~B2!

and exploits the fact thatC1 ,C2 ,S̄ commute andC1C250.
These conditions do not hold in our case. The matrixC con-
tains more entries. In equilibrium, for instance, we needC1
5C251. We overcome this problem by replacingC through
a matrixC8 that encounters the back reflection in the lea

C85C~12RCz21/2!21, R5S r 0

0 r†D . ~B3!
23530
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One can easily verify that this substitution generalizes
Green’s function introduced in Eq.~A3! to the case of barri-
ers at the contacts. The rest of the calculation follows
lines of Appendix A.

APPENDIX C: SCREENED CHARGE FLUCTUATIONS

In this appendix, we explain the derivation of Eq.~18!
using the cascade principle~for an introduction to cascad
corrections, we refer the reader to Refs. 7–9!. Charge and
potential fluctuations of the cavity are linked via the capa
tanceCg :

dQscr5CgdU, dQscr5dQ1
]^Q&
]U

dU. ~C1!

The charge fluctuations are composed of bare fluctuation
constant potentialdQ and the linear response]^Q&/]U
52e2NF to dU ~the screening charge!. The fluctuations of
dQ are known from the noninteracting problem@see Eqs.
~15! and~16!#. Solving Eq.~C1! for the total charge fluctua
tions dQscr , the third cumulant without cascade correctio
may be written as

^~dQscr!
3&5S 11

e2NF

Cg
D 23

^~dQ!3&. ~C2!

The two possible cascade corrections are given by7

3
]^~dQscr!

2&
]U

^dUdQscr&, 3
]2^dQscr&

]U2
^dUdQscr&

2.

~C3!

But these corrections are zero, because^(dQscr)
2& does not

depend onU and ^dQscr& depends linearly onU. Cascade
corrections to all higher cumulants vanish in the same w
Equation~18! is therefore valid for arbitraryn.
B

ky,

ev.

ett.

In
iated
y of
1L.S. Levitov and G.B. Lesovik, Pis’ma Zh. Eksp. Teor. Fiz.58,
225 ~1993! @JETP Lett.58, 230 ~1993!#.

2H. Lee, L.S. Levitov, and A.Yu. Yakovets, Phys. Rev. B51, 4079
~1995!.

3B.A. Muzykantskii and D.E. Khmelnitskii, Phys. Rev. B50, 3982
~1994!.

4L.S. Levitov, H. Lee, and G.B. Lesovik, J. Math. Phys.37, 4845
~1996!.

5Yu.V. Nazarov and D.A. Bagrets, Phys. Rev. Lett.88, 196801
~2002!.

6M.J.M. de Jong, Phys. Rev. B54, 8144~1996!.
7K.E. Nagaev, Phys. Rev. B66, 075334~2002!.
8K.E. Nagaev, P. Samuelsson, and S. Pilgram, Phys. Rev. B66,

195318~2002!.
9S. Pilgram, A.N. Jordan, E.V. Sukhorukov, and M. Bu¨ttiker, Phys.

Rev. Lett.90, 206801~2003!.
10W. Belzig and Yu.V. Nazarov, Phys. Rev. Lett.87, 067006~2001!.
11W. Belzig and Yu.V. Nazarov, Phys. Rev. Lett.87, 197006~2001!.
12M. Kindermann and C.W.J. Beenakker, Phys. Rev. B66, 224106
~2002!.

13A. Tajic, M. Kindermann, and C.W.J. Beenakker, Phys. Rev.
66, 241301~2002!.

14B.L. Altshuler, A.G. Aronov, and D. Khmelnitzkii, J. Phys. C15,
7367 ~1982!.
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