PHYSICAL REVIEW B 67, 235307 (2003

Electronic structure of rectangular quantum dots
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We study the ground-state properties of rectangular quantum dots by using the spin-density-functional theory
and quantum Monte Carlo methods. The dot geometry is determined by an infinite hard-wall potential to enable
comparison to manufactured, rectangular-shaped quantum dots. We show that the electronic structure is very
sensitive to the shape of the dot, and, at realistic sizes, the noninteracting picture determines the general
behavior. However, close to the degenerate points where Hund’s rule applies, we find spin-density-wave-like
solutions bracketing the partially polarized states. In the quasi-one-dimensional limit we find permanent
charge-density waves, and at a sufficiently large deformation or low density, there are strongly localized stable
states with a broken spin symmetry.
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[. INTRODUCTION the localization of the electrons due to the dominant Cou-
lomb interaction in the low-density limit. In our previous

During the rapid development of nanotechnology, the diswork,*® we found an agreement with their results for polygo-
coveries in the physics of small electronic structures haveal dots by using the spin-density-functional the®pFT).
concurrently opened new channels in this extremely activéVe extended the examination to larger electron numbers, in-
field of both theoretical and experimental research. Quanturnluding broken spin-symmetry configurations. Those states
dots, which fundamentally are confined electron bunches;orrespond to spin-density wavéSDW) found in the weak-
represent basic components of nanoelectronics. They hawenfinement limit of parabolic quantum dots and represent
been shown to possess many atomlike properties, such as thrergetically stable and accurate solutibifs!® Akbar and
specific shell structure, determined by the properties of théee'® also used the SDFT to calculate the addition energy
external confinemertt. spectrum for square quantum dots with different sizes.

In lithographically fabricated quantum dots the electrons Until now, the study of square-shaped quantum dots with
are strictly confined on the interface of the semiconductomla hard-wall confinement has not been generalized into arbi-
heterostructure, which makes the dot essentially twoitrary rectangular shapes. However, experiments have been
dimensional(2D). The lateral confinement, created by add-done on rectangular mesas of vertical dots by Austing
ing a voltage to the top gate electrodes, is most commonlet al,}” who applied electron-beam lithography with etching
approximated by the harmonic oscillator potential. In the isotechniques on a double-barrier heterostructfirehey mea-
tropic case, this modeling has been shown to lead to a similasured the addition spectrum with different deformation pa-
addition energy spectrum as measured in the experimentsameters as well as the magnetic field dependence on the
and adjustments in the model potential have made the agre€oulomb oscillations. In the same extensive study, they per-
ment even more precigsee Ref. 2 for a review formed SDFT calculations to simulate the external confine-

Deviations from parabolic confinement have most com-ment with an elliptic potential. That approximation was
monly been studied in connection with the far-infrared re-shown to be tentative, though insufficient for a general de-
sponse (FIR).3™" This is due to the generalized Kohn's scription of rectangular quantum dots. Leal® also stud-
theoren®? stating that FIR couples only to the center-of- ied elliptical dots with the SDFT, including additional har-
mass(c.m) motion which in the case of a perfect parabolic monic confinement in the direction, and obtained similar
potential can be separated from the relative motion. Since thaddition energy spectra.

c.m. motion has the same energy eigenvalues and dipole In the present paper, our secondary aim is to test the abil-
resonance frequencies as a single electron, no information aty of a hard-wall external confinement to approximate real
the internal degrees of freedom can be obtained. UYajinrectangular quantum dots, measured in the above-mentioned
studied FIR absorption for a two-electron square-well quanstudy. Our main purpose is, however, to clarify the electronic
tum dot by using exact diagonalization, and recent densitybehavior in a rectangular box, beginning from a basic text-
functional calculations of corner and side modes for triangubook example of quantum mechanics and leading to the dis-
lar and square dots have been done by n/&odrguez  cussion of the role of interactions and symmetry-broken so-
et al’ lutions in different regimes.

The ground-state electronic structure of square-shaped The outline of the paper is as follows. In Sec. Il we
quantum dots was first calculated by BrydhtHe used present the model Hamiltonian and the analytical shell struc-
configuration-interaction methods to examine the role of inture of a two-dimensional rectangular box. The computa-
teractions for two electrons. Creffietd al ! studied polygo- tional methods, a real-space SDFT technique and the varia-
nal two-electron quantum dots with numerically exact diago-tional Monte Carlo(VMC) method, are introduced in Sec.
nalization, concentrating on the Wigner crystallizati®ng.,  1ll. From the results in Sec. IV, we first give the chemical
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potentials and the addition energy spectra of rectangulai 1
guantum dots. Then we continue toward a deeper insight intc
the electronic structure, including the spin behavior in the
dot and the quasi-one-dimensional limit. The paper is fin-
ished with a summary in Sec. V.

Il. MODEL AND THE SHELL STRUCTURE

Energy [Ha]

We define our quantum dot to be two-dimensional, i.e.,
strictly confined in thez direction. We use the effective-mass
approximation(EMA) to describe electrons moving in the
plane, surrounded by background material of GaAs with the
effective electron mass* =0.067n, and dielectric constant
e€=12.4. Energies are thus given inHa11.8572 meV and
lengths inag~9.79 nm.

The model Hamiltonian of am-electron system in an 1 15
external potential can be written as B
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V; N 2 FIG. 1. Lowest single-electron eigenenergies for rectangular
- om* +Vext(ri)

+ (1) qguantum dots as a function of the deformation.
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H=2,
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The external confinement in they plane is described by an
infinite hard-wall potential,

i< f|ri—fj|'
the lowest eigenvalues f&i=4,6, . . .,14. We can find for-

mation of stable configurations with certailN,(8) combina-
tions as local minima in the total-energy curve. Correspond-

0, Os=xs=pgL, OsysL ingly, the cusps indicate degeneracies of the states.
Vexd( X,Y) = (2 Accumulation of statesn(,1) at high deformation, which
& %, elsewhere L i i -
' ' can be seen in Fig. 1, is similar to the formation of Landau

Therefore, the area of the dot@.2, where the deformation bands in the Fock-Darwin energy spectra for the harmonic

parametesd defines the ratio between the side lengths of thePscillator potential at high magnetic fieléAs the deforma-
rectangle. tion is made stronger, the system becomes gradually quasi-

Let us now omit the mutual interactions of the electrons 0Ne-dimensional and the occupation of the electrons is deter-
and consider the single-electron states in a two-dimensiondfined by the quantization in the longer direction.
rectangular box. We need two quantum numbegsandn,,
to label all the needed eigenfunctions of two Cartesian coor- Ill. COMPUTATIONAL METHODS
dinates. Inside the box, we can write an explicit formula for

these functions as A. Spin-density-functional theory

We employ the usual self-consistent formulation of the

2 [newx| [ngmy density-functional theory, introduced by Kohn and SHam.
lﬂnx,ny: \/_sm AL Sin =1 (3 The single-electron wave functions are solved within the
Lve EMA from

Inserting the eigenfunctions to the stationary Sdiger
equation and setting the area of the rectagjlé= 72 give
now the energy eigenvalues in a simple form

13

~10Ha'
12 ( a)

— 16 Ha'
nZ ( a)
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Figure 1 shows these eigenvalues as a functiof.ofhe
degeneracies in the case & 1 introduce the magic elec-
tron numbers for a squar&y=2,6,8,12,16,20. .., corre-
sponding to closed shells. When the dot is squeezed, the
degeneracies are lifted, resembling the behavior of the ]

; ; ; ; ; ; 7 N=4 =
single-electron states in an anisotropic harmonic oscillator 30k N=10
potential. In the rectangular case, however, one cannot find 6 s ‘
such regularly located junctions of the eigenstates as in el- : 8 ’ : B
liptic dots. This is a direct consequence of the more con-
stricted symmetry of rectangular than harmonic quantum FIG. 2. Sum of the lowest-energy eigenvalugs, €, n , for
dots. This produces remarkable differences in the electron=4, 6, 8, 10, 12, and 14 noninteracting electrons as a function of
structures as will be shown below. Figure 2 gives the sums ahe deformation.

1
E”X’“y: 2

—_
—_

(- 8 Ha)

+ ,3n§) : (4)

—y
o

Energy [Ha]

235307-2



ELECTRONIC STRUCTURE OF RECTANGULAR QUANTUM DOTS PHYSICAL REVIEW 87, 235307 (2003

B. Variational quantum Monte Carlo method
$i,0(1)= € o(1), (5) The VMC (Ref. 29 method starts from constructing a
trial many-body wave function?V with desired properties
where the effective potential is a sum of the external, Har2nd with free variational parametess. The parameters are

V2+VI(r)

m*

tree, and exchange-correlation potentials, then optimized to converge toward the exact wave function
V¥, Using the optimized wave function, the expectation
(1) =Ver(F)+ Vi (r) +VI(r) 6) value of an observabla can be evaluated as the average of

€ XC "

the corresponding local quantity ~*AW¥. For example, en-

To calculateV(r), we use the local spin-density ap- ergy is found from the Hamiltonian operatbras

proximation(LSDA), 1 M (R))

Eg= lim M E

Mesee 2 YRy (YIHY), 10

LSDA
XC

V=52 = [ arnednn.an), @)

where theN-particle coordinate configuratioig are distrib-
uted agW|? and generated using the Metropolis algorithm.
wheree,. is the exchange-correlation energy per electron in  The variational principle guarantees that the total energy
a uniform electron gas of density=n;+n, and spin polar- given by the VMC method, using any trial wave function
ization {=(n;—n,)/n. We employ a recent analytic param- with proper particle symmetry, is always an upper bound for
etrization fore,., formulated in connection with diffusion the true total energy of the quantum state in question. The
Monte Carlo calculation$DMC) by Attaccaliteet al* It is  variance of the local energ¥ ~*H¥ diminishes as the trial

written as wave function approaches an eigenstate of the Hamiltonian,
and as a result it can be used not only as a measure of the
BT, 0)=e(rs,0)+ (e Ps—1)elf)(rg, )+ ag(rs) statistical error inEy, but also as a measure of the differ-

ence between the calculated and true enerfgigs Evy,

The variational parameters in the trial wave function are
optimized by minimizing the total energy. The minimization
process itself was done using the stochastic gradient
method®® The method has proven to be fast and reliable.

The variational wave functions used in this work are of
the form

e(rs,)=—2\2[(1+ )%+ (1-0)%?)/3mrg.  (9) N
\If:DTDliI;[j I(rij), (11

+al(rs)§2+a’2(rs)§4a (8)

wherer =1/\/7n is the density parameter for the 2D elec-
tron gas,a’s are density-dependent functions of the general
ized Perdew-Wang forrft 8=1.3386, ande, is the ex-
change energy given as

In Eq. (8), e® is the Taylor expansion oé, beyond the

fourth order inf at{=0. . ~ where the two first factors are Slater determinants for the two
The above parametrization fits to the DMC simulationsspin types, and is a Jastrow two-body correlation factor. We
over the whole range of spin polarization{@=<1). Thisis  neglect the three-body and higher correlations. This has

an essential extension to the often-used parametrization @hown to be very accurate in our previous VMC studigse,
Tanatar and Ceperlé§,which is based on DMC calculations e.g., Refs. 31-33 For the Jastrow factor we use

for systems with/=0 and 1. Gori-Giorgiet al?® have

shown that the improvement gained with the new parametri- Cr

zation is directly proportional to the electron density and the J(r) =exp( atbr

polarization of the system. In our recent paffane compare

different LSD functionals in small 2D quantum dots. We Wherea is fixed by the cusp condition to be 3 for a pair of

show that in comparison with the variational quantum Monte€qual spins and 1 for opposite ones énds a parameter,

Carlo(VMC) calculations, the new parametrization by Attac- different for both spin-pair possibilitie€ is the scaled Cou-

calite et al. gives more accurate results for the exchange corlomb strength. The single-particle states in the determinants

relation than the forms of Tanatar and Ceperley. are taken to be those for the noninteracting problem given in
We perform the numerical calculations in real space withEd- (3).

two-dimensional point grids without implicit symmetry re-

strictions. Through this approach, we can shape the external IV. RESULTS

potential almost arbitrarily in the computing region. The

number of grid points is 128128, which gives an error of

less than~1% in the total energy. To accelerate the numeri- We calculate the total energies of rectangular dots with

cal process, we apply the Rayleigh quotient multigriddifferent deformation parameters up to 16 electrons. We keep

method’ for the discretized single-electron ScHimger the dot area constanh= 2, through our calculations. The

equation(5). A detailed description of this method, general- density parameter, defined as=JVA/(Nw) (Ref. 13, thus

ized to an arbitrary number of lowest eigenenergy states, cagets values between 0.44 and 1.8. The electron density in our

be found in Ref. 28. guantum dots is therefore higher on the average than that of

: (12

A. Addition energy spectra
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4 FIG. 4. Addition energy spectra for rectangular quantum dots
N2 with different deformation parameters. The SDFT and VMC results
B o = ) i are given by pluses and crosses connected with solid and dotted
lines, respectively.
0 | | | | In Fig. 4 we show the addition energieg(N+1)
1 1.2 1.4 1.6 1.8 2 —u(N) for B=1—4. The spectra obtained with the SDFT

B and VMC coincide well, especially fdi=<10. In the case of
FIG. 3. Calcglated chemical potgntials for rectangular quanturw];":,j‘rsgéJ ?faigtﬁ] tﬁ()a, ;22 cTri?rI]C (I;%riilglfri[g)?:lgﬁ\r}e?; ;ergg as
dots as a function of the deformation parameter. The SDFT an o i .
VMC results are given by pluses and crosses connected with son%dd'“of‘ energy fO,IN_4 corresponds to a half-filled s_hell
and dotted lines, respectively. according to Hund’s rule. The spectrum agrees _W(_ell W|t_h the
results of Akbar and Lé& for a square dot of a similar size.
Austing et all” with r¢=1.5. Nevertheless, we find that the  In general, the results for the rectangular quantum dot are
difference has no noticeable effect on our results. In Fig. 3/ery sensitive to the deformation. A& increases, the peaks
we show the SDFT and VMC results for the chemical potenfor N=4,12 rapidly vanish but reform abovye=1.2. For
tials, u(N)=E(N)—E(N—1), [E(0) set to zerd for vari-  N=8,14 the addition energy oscillates more smoothly, and in
ous values of3. The agreement between the results is goodlots withN=6,10 it varies relatively slowly, declining in the
and independent dfl and 8. As a consequence of the two- former and growing in the latter, in the rangs=1-1.5.
fold degeneracy in the eigenstates, the pairing of chemicahbove =2, the formation of an even-odd structure corre-
potential values dominates the picture. However, a closesponds to the filling of statesn{,1). In that regime, the
look reveals deviations from this tendency. Due to Hund'sgrowing amplitude in the peaks reflects the increasing spac-
rule, near the degenerate points in the single-electron speaig between the single-electron eigenstates shown in Fig. 1.
trum, the spins of the two highest-energy electrons are par- It is intriguing to compare qualitatively the evolution of
allel and they occupy different states. So, there are regimehe spectra in the regime ¢gf~1.3—1.5 to the experimental
in which x(N+1) andx(N—1) behave in the same way, results of Austinget all’ There are two difficulties in the
for exampleN=8 aspB~1.3— 1.5, corresponding to the de- direct comparison. First, the experimental mesa is much
generacy of the statesi(,n,)=(2,2) and (1,3). Similar ef- larger than the area where the electrons are actually confined,
fects in chemical potentials have been observed in measureausing uncertainty in the value for the deformation param-
ments of vertical quantum dots in magnetic fiéfdand in  eter. Second, there are evident irregularities in the experi-
calculations of elliptically deformed dots Due to the rather mental dots, leading to unexpected behavior in the spectrum
coarse spacing of oys values in Fig. 3, all the deviations as speculated by Austingt all’ In spite of these problems,
are not observable. A more detailed description as well as we can generally find similarities in the spectra. Compared
comparison to elliptic dots follow below. with the elliptic case, there is more tendency of forming
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FIG. 6. Spin polarization of a 12-electron rectangular quantum
dot in two SDW regimes.

Energy [Ha']

| differences of the crossing eigenstates. The triple crossing for

I N=16 atB~1.7 leads to two separaf=1 regimes around

: the degenerate point. In most cases, polarization occurs at
1 ———— | higher 8 values than the corresponding crossing of the non-

interacting states. Therefore, by taking the electron-electron

interaction into account, the effective deformation of the

| |
| |
: I : —3 S=0
N — eSO rectangle is lower than that of the bare external potential.
16 me e ] This is contrary to the result for elliptic dots obtained by Lee
14 . E—— ! etal,’® who concluded that the interactions tend to
12 o ‘ strengthen the bare potential by a factor-01.15-1.25. In-
10 ! \ tuitively, one would expect just an opposite behavior: in
8 — = hard-wall rectangular dots the maximum electron density is
6 [ [ E— pushed toward the shorter sides, whereas elliptic and har-
4 M—— J monic confinements favor pronounced density at the center.
2| { We will present this tendency explicitly in Sec. IV C.
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

As we show in Fig. 5, everng=1 state is bracketed by

B spin-density-wave-like solutions. In these regimes, the ex-

FIG. 5. Noninteracting eigenenergies and the ground-state spin%hange energy.galned In the' poIarlzeq state is relatively close
. . ; 0 the cost paid by occupying the higher-energy state. By

of N interacting electrons for rectangular dots as a function of de . . . .

formation 3. breaking the internal spin symmetry, the dot gains exchange-

correlation energy, which preserves it at the paramagi®etic

peaks for evei in both experiments and our approximation = 0_State instead of following Hund's rule wits=1. A

at ~1.3—1.5. This may result from the higher symmetry of Similar behavior was found in the study of elliptic dots for
the elliptic than rectangular dot, discussed in the context ofertain configurations’ In the resulting SDW-like solution,
the single-electron spectrum in Sec. II. Of particular electrof® SPin-up and spin-down densities are symmetrically
numbers, the behavior of the curves fr=2,6, and 10 coupled with each other as shown in Fig. 6 for a 12-electron

qualitatively agree, and the biggest difference is the rapidlot with 5=1.14 and 1.8, corresponding to two symmetry-
disappearance of the peak fr=4 at 3=1.44—1.5 in the broken regimes. In both cases there are six maxima and six

experiment. Overall, our hard-wall approximation seems tdninima in the spin polarization, but the shapes of the waves

be a slightly better approximation for rectangular-shapedi® totally different. L . .
quantum dots than the elliptic description in Ref. 17. How- Besides electron densities, it is interesting to consider the

ever, more accurate comparison than presented here wouftfvelopment of the Kohn-Sham energy levels near the de-

certainly require more measurements over a wider range fd#€nerate point. In Fig. 7 we show the evolution for an eight-

B. An ideal experimental setup would also contain a way tof/ectron dot with3=1.2,1.3,1.4, and 1.5. As can be seen in

tune B for a single dot, reducing the variation induced by F19: 5, these values correspond to steées0, SDW,S=1,
using different dots for differeng. and SDW, respectively. In the SDW states, the Fermi gap is

just large enough to prevent the polarization on the highest
occupied level. The phenomenon has an analogy in molecu-
lar systems, known as the spontaneous Jahn-Teller éffect:

Next we consider more carefully the effect of electron-any nonlinear molecular system in a degenerate electronic
electron interactions on the electronic structure. In Fig. 5 westate will be unstable and will undergo distortion to form a
compare the noninteracting single-electron spectrum with theystem of lower symmetry and lower energy. In this particu-
evolution of the total spin for eveN. Due to Hund’s rule, we lar case, however, the commonly used argument that the
can see partial spin polarizatio®€ 1) close to every de- symmetry-broken state would make the electronic structure
generate point in the single-electron energy spectrum. In theore stable by the enlargement of the Fermi gap is not pre-
case of a square, tf&=1 ground state is found correctly for cisely valid, as can be concluded from Fig. 7. It is more or
half-filled shells with N=4,10, and 14. The spin state less a matter of preserving ti&=0 state against the transi-
changes rapidly t&=0 as the dot is squeezed. The range oftion to theS=1 state, representing here a more stable con-
S=1 regimes is obviously directly proportional to the slope figuration.

B. Spin development and the role of interactions
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FIG. 8. Electron-density profilea,0, and the corresponding
FIG. 7. Development of the Kohn-Sham energy levels for asingle-electron Kohn-Sham eigenfunctiofisd) for two quantum
rectangular eight-electron dot as a functiongfDoubly degener-  wires with spin-symmetry preserved and broken ground states. The
ate levels are denoted by 2 and the occupied stat&s .by parameters N,8,rg)=(12,10,0.51) in(a,p and (8,20,0.63) in
(c,0). Doubly degenerate functions are denoted by the number 2.
The SDW state is a mixture of differe®=0 states, and
there has been a lot of debate if this mixed state is physically720 has a broken spin symmetry. In this case the single-
meaningful In our forthcoming studies, which include the €lectron KS eigenfunctions are mirror images of each other,
exact diagonalization results fof=4, we hope to enlighten and therefore the KS energy levels are still doubly degener-
the validity of the above-represented mixed states for rectarte. Due to the dominating Coulomb interaction, the lowest
gular quantum dots. Until now, however, symmetry-brokenKS eigenfunctions correspond to localized states near the
solutions have shown their eligibility in several systems. In€nds, having 0.16 Halower energy than the other occupied
parabolic quantum dots, for example, the SDW state wafVels with a mutual separation 6f0.06 H&. Compared to
found to agree astonishingly well with VMC results in the this, the Fermi gap is particularly large, 0.69"Han this
weak-confinement limit> especially when the latest 2D- sense, the breaking of the spin symmetry resembles two-
LSDA functional was use® In our previous study, we dimensional systems in the low-density lirfit.
showed that in polygonal quantum dots the breaking of the Next we vary both the value g8 as well as the density
spin symmetry precedes the complete Wigner molecule forParameter in order to examine the transition point between
mation at low densitie} Quantum wires, studied in the con- the two phases discussed above. As shown in Fig. Nfor
text of SDW solutions by Reimaret al,*® represent another =4 and 6, the s value needed for the deformation to form a
interesting example that we discuss in the following sectionSDW decreases g8 is increased. The behavior is rather

3

C. Quasi-one-dimensional limit

As the deformation is made larger, electrons in the dot g
become gradually restricted in the lowest-energy state in the \ / N=6
y direction, i.e., only statesn(,1) are filled. This corre- \
sponds to the quasi-one-dimensional limit and a quantum-" o

KN

—_—

wire-like electronic structurd’ Beyond this limit, we find S
two phases directly observable in the electronic density. ~ 15| * .
First, there is a charge-density wat@DW) with N/2 peaks ‘o 1

and preserved spin symmetry. As the deformation or the do oo Nn.#n
size is increased further, a spin-density wave appears, cor I h SN T
sisting of interlocked spin-up and spin-down contributions I~ Feelgl

and resulting in a Wigner-molecule-like electron density with 0.5¢ e N TN 3
N peaks. In Fig. 8 we show examples of both cases with =N,
electron-density profiles and the corresponding Kohn-Shan
(KS) eigenfunctions. In both wires, the area is stiff, cor- 3 4 5 6 7 8 ¢ 10 Mmooz
responding to ;=0.51 (N=12) and 0.63=8). As can be
seen in the figure, the 12-electron wire with=10 retains FIG. 9. Phase separation curves between the spin-symmetry-
the spin symmetry and the KS eigenfunctions are doublyreserved and broken solutions for rectangular quantum dots in the
degenerate. On the contrary, the eight electron wire \8ith quasi-one-dimensional limit.
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insensitive toN; larger electron numbers also qualitatively center, whereas in the hard-wall wire the Coulomb interac-
follow the presented curves with the same tendency of mowvtion pushes the dominant distribution to the ends. Increasing
ing slightly up inr¢ with increasing electron number, which B or rg emphasizes this tendency of localization. It is notice-
may arise from our definition forg. We point out that be- able that the SDW formation is the origin of both the par-
yond the phase separation, i.e., at particularly Ig#ge val- ticularly large Fermi gap and the strong localization of the
ues, there is also a transition to a fully spin-polarized statdowest eigenfunctions.
not shown in the figure. For example, for a four-electron wire
with 8= 10, this occurs at;~1. In three-dimensional metal
nanowires, SDFT calculations have similarly been shown to
lead to spontaneous polarization in zero magnetic field at a We have investigated the electronic properties of hard-
critical radius of the wiré® Recent conductance measure-wall rectangular quantum dots. Most calculations have been
ments, performed for ultralow-disorder quantum wires, supperformed with a symmetry-unrestricted SDFT scheme in
port this phenomenoiY.Another remark concerning Fig. 9 is real space. For the addition energy spectra, we have done
the fact that the ability to reach the quasi-1D limit requiresalso VMC calculations and found excellent agreement be-
naturally a smaller electron number than the number of théween the two methods. Direct comparison with experiments
available lowestf,,1) states to be occupied. This condition for rectangular mesas of vertical quantum dots is trouble-
can be easily estimated from the noninteracting singlesome, but we find tentative common features in the addition
electron spectruniFig. 1). energy spectra. Close to the degenerate points where Hund'’s
Comparison between our rectangular hard-wall quantuniule applies, the states with partial polarization are bracketed
wires and elliptical wires with harmonic confinement studiedby unstable SDW-like solutions. The effective deformation is
by Reimannet al®® reveals some noticeable differences.generally lower than that of a bare potential, but the general
First, our LDA (spin-compensatedsolution always has a picture follows the noninteracting single-electron spectrum.
CDW with N/2 pronounced maxima, contrary to the elliptic Beyond the quasi-1D limit we find very stable SDW states
case with a smooth electron density. Second, in rectangulsnd extremely strong localization near the ends of the wire,
wires the total density distribution is remarkably concen-arising from the shape of the hard-wall confinement.
trated at the ends due to the dominating lowest KS eigen-
states shown in Fig. 8. The opposite distribution in these two
geometries is a direct consequence of the difference in the
confining potential: in the elliptic wire, the bowl-like restric-  This research was supported by the Academy of Finland
tion along the wire accumulates a pronounced density at thtarough its Centers of Excellence progrd2©00-2005.
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