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Nodal correlations in the incompressible composite fermion liquid

Kenneth L. Graham, Sudhansu S. Mandal,* and Jainendra K. Jain
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~Received 17 December 2002; published 5 June 2003!

To search for possible correlations in the system of interpenetrating liquids of zeroes and electrons in the
fractional quantum Hall effect, this paper studies several ground state correlation functions involving particles
and zeroes in the incompressible states of composite fermions at filling factorsn52/5, 3/7, and 4/9. It is found
that the zeroes form a liquid of their own in which they repel one another at short distances, and also repel
particles~with the obvious exception of the Pauli zeroes that are tied to the particles!. For certain states, it is
found that three body configurations containing two nearby electrons and a zero in the middle are highly
probable, indicating that the zeroes tend to insert themselves between nearby particles in an effort to keep them
apart.
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I. INTRODUCTION

Sometimes the vortex structure of a wave function reve
important information about the underlying physics. An e
ample is the ground state wave function of bosons in t
dimensions, which is everywhere positive, that is, it conta
no vortices.~A vortex is defined as a point a path arou
which has a phase change of 2p associated with it. For hard
core bosons, the wave function will vanish for the config
rations in which two bosons coincide, but still does not b
come negative.! For most states however, for example a s
perconductor or a Landau Fermi liquid, no significance h
been attached to the nodal structure.~We note that we have
in mind here the microscopic wave function. For a superc
ductor the nodes in theorder parameterdo have a physica
significance.!

Vortices have played an important role in the theory of
fractional quantum Hall effect~FQHE!1 because of certain
special properties of the wave functions in the lowest Lan
level ~LLL !. In the lowest Landau level, an exact statem
can be made about the number of zeroes at a given fil
factor. In the disk geometry, the single particle wave fun
tions have the formzne2uzu2/4, wherez5x2 iy denotes the
coordinates of an electron as a complex number and the
of length has been chosen to be the magnetic lengthl 0

5A\c/eB. This state is a Gaussian localized within a circ
of radiusA2nl0. For a disk of a finite radiusR5A2nmaxl 0,
all states withn<nmax are available for electrons. The fillin
factor n is defined as the ratio of the number of electrons
the number of available single particle orbitals.

For N electrons at filling factorn, the general wave func
tion has the form

C5FA@$zj%#expF2
1

4 (
l

uzl u2G , ~1!

whereFA@$zj%# is an antisymmetric polynomial of the coo
dinates. The important feature of the lowest Landau le
physics is that the polynomialF is analytic in the z’s; i.e., it
does not depend on the complex conjugatesz* ’s. This allows
one to make an exact statement about the number of ze
of the wave function. For this purpose, we view the wa
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function as the function of a single coordinate, sayzj , treat-
ing all other coordinates as fixed constants. For a given
ing factor n, there areN/n single particle states occupied
implying that the largest power ofzj in the polynomial part
of the wave function isN/n, which, according to the funda
mental theorem of algebra, is also the number of zeroe
the wave function.@Here, we have neglected O~1! correc-
tions. For a finite system, the number of zeroes can of cou
be determined exactly for given boundary conditions.# We
also note that a zero in the lowest Landau level is als
vortex, in that it produces a phase of22p when zj goes
around it in a closed counterclockwise loop. However,
reasons explained in the next section, we will reserve
name ‘‘vortex’’ for a zero bound to a particle, and use t
‘‘zeroes’’ or ‘‘nodes’’ for the zeroesnot bound to particles.

The role of vortices was apparent in Laughlin’s wa
function for the FQHE ground state at filling factorn
51/m, m being an odd integer,2 given by

C1/m5)
j ,k

~zj2zk!
m expF2

1

4 (
l

uzl u2G . ~2!

This wave function has a remarkably simple nodal structu
If you fix all particles except one, the only times the wa
function vanishes is when the mobile particle hits anot
particle. Each particle sees a zero~in fact anmth order zero!
at every other particle and nowhere else. Laughlin’s wa
function thus contains no free zeroes.3

The Pauli principle guarantees that each electron ha
least one vortex bound to it. However, in general, electro
can bind any odd number of vortices. Atn51/m, there arem
zeroes per electron which are taken to be all bound to e
trons in Laughlin’s wave function. That is not possible
other fractions. Consider for examplen52/5, for which
there are 2.5 zeroes per particle. There is exactly one
bound to each electron, with the other 1.5 zeroes away f
electrons. The observation of FQHE at numerous filling fa
tors not of the formn51/m demonstrates that the ‘‘no-free
zeroes property’’ atn51/m, which leads to a simple wave
function atn51/m, is not essential for the FQHE.~Even at
n51/m, there is, strictly speaking, only one zero on ea
electron in thetrue ground state. But the otherm21 zeroes
©2003 The American Physical Society02-1
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are very close to the particle positions, andC1/m makes the
approximation of putting them all on particles.! We will see
that Laughlin’s wave function is an untypical case; it h
little bearing on the configuration of zeroes of general
compressible states.

Vortices also play a fundamental role in the wave fun
tions for the general FQHE states, written by one of us:4

Cn/(2np11)5)
j ,k

~zj2zk!
2pFn , ~3!

whereFn is the wave function forn fully occupied Landau
levels. This wave function has the following interpretatio
Due to the presence of the Jastrow factor) j ,k(zj2zk)

2p

there are an even number (2p) of vortices bound to each
electron. The bound state is interpreted as a particle, ca
the composite fermion. The crucial consequence of the
mation of composite fermions is that they experience a
duced effective magnetic fieldB* 5B22prf0, wherer is
the two-dimensional density of electrons andf05hc/e is
the flux quantum. The origin of the effective magnetic field
a direct consequence of the formation of composite fermi
through binding of electrons and vortices, which can be s
as follows. Imagine taking one particle in a loop enclosing
areaA and asking what is the associated phase. In additio
the usual Aharonov-Bohm phase 2pBA/f0, there is also a
contribution from the vortices bound to composite fermio
There are on averagerA particles inside the loop, each ca
rying 2p vortices, and each vortex produces a phase
22p, giving a contribution of22p2prA. When added to
the Aharonov-Bohm phase, the total phase can be interpr
as the Aharonov-Bohm phase coming from an effective m
netic fieldB* . In short, the phases due to the bound vortic
partly cancel the Aharonov-Bohm phase to make it seem
though the particles were moving in a reduced effective m
netic field.

The wave functionCn/(2n11) has more zeroes than thos
counted above (N/n), because it does not reside strictly
the lowest Landau level.Fn involves higher Landau level
and is not analytic. The Jastrow factor provides two vortic
per particle, whileFn , which is not analytic, contains bot
nodes and antinodes, the number of which is not fixed
depends on the configuration of particles. It provides o
additional zero, either a node or an antinode, on each par
to restore antisymmetry.

In the limit of very large magnetic fields, when the La
dau level spacing is large compared to the interaction ene
the wave functions in Eq.~3! must be projected onto th
lowest electronic Landau level to produce physically use
wave functions. Upon projection, one of the two bound
roes must move off of the particles, and the antinodes inFn
are annihilated by combining with nodes. No longer are t
vortices explicitly bound to electrons, and the efforts to s
composite fermions directly in a lowest Landau level theo
have proved largely unsuccessful for this reason; in fact,
composite fermion physics will appear rather mysterious
someone who refuses to use higher Landau levels at an
termediate step. If someone were to give us the the low
Landau level wave function~obtained, say, in exact diago
23530
-

-

.

ed
r-
-

s
n

n
to

.

f

ed
-

s
as
-

s

ut
e
le

y,

l
-

o
e
y
e
o
in-
st

nalization studies!, it would be impossible to deduce from
that it can be obtained by the lowest Landau level project
of the product wave function given in Eq.~3!. ~The compos-
ite fermion physics was originally motivated by the empi
cal similarity between the fractional and the integral qua
tum Hall effects.!

It is worth stressing that this is not an objection agai
composite fermions. In physics problems, there is a rang
parameters for which the Hamiltonian describes the qua
tive physics of interest. It is obviously unrealistic to dema
a solution for every possible choice of variables. The us
approach is to identify~at least! one point in this paramete
space of the Hamiltonian where the physics is transpar
which also correctly describes the physics of the adiab
cally connected ‘‘physical’’ point, and then proceed to obta
quantitative information perturbatively. The wave functio
in the lowest Landau level are rather complicated and do
directly lend themselves to a simple interpretation. The n
trivial accomplishment of the composite fermion~CF! theory
is to show that they are adiabatically connected, throu
lowest Landau level projection, to the remarkably simp
wave functions given in Eq.~3!, from which the essentia
physics can be read off. Both the qualitative composite
mion physics, encoded in the effective magnetic field, a
the quantitative validity of the wave functions have be
confirmed in numerous experimental and theoretical stud
in the lowest Landau level.5

Nonetheless the issue of the nodal structure of the FQ
states restricted to the lowest Landau level remains of in
est. Can we make any sharp statements regarding the n
of general FQHE states? Does one node remain close to
particle? Can some kind of bound state of electrons and
roes be identified in the lowest Landau level wave functio

The zeroes have been studied in the past for a single e
tron in a disorder potential.6 They have also been determine
for many electron systems with fairly smallN for a few
random configurations of particles.7 However, random con-
figurations are often highly improbable, and also just a f
snapshots may not give us much useful information. In t
paper, we calculate the ground state averages of certain
relation functions involving particles and zeroes in a syste
atic study at several fillings of the lowest Landau leveln
52/5, 3/7, and 4/9!. The correlation functions are calculate
by Monte Carlo, with probable configurations generated
cording to the Metropolis algorithm.

A useful first step is to study pair-distribution function
for either two zeroes or one particle and one zero. T
formergzz(r ) gives the probability of finding two zeroes at
distancer, and the lattergpz gives the probability of finding
a particle and a zero at a distancer. We find that just as
electrons, the zeroes form a liquid with short distance co
lations. We then proceed to study a correlation function
volving two particles and a zerogppz(d,r ), which gives the
nodal density as a function of the positionr , with two par-
ticles held fixed at (d/2,0) and (2d/2,0). This correlation
function reveals that, forn52/5, zeroes tend to place them
selves with high probability right in the middle of nearb
pairs of particles, but such correlations weaken as more
els of composite fermions are filled~e.g., forn54/9).
2-2
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NODAL CORRELATIONS IN THE INCOMPRESSIBLE . . . PHYSICAL REVIEW B 67, 235302 ~2003!
It ought to be emphasized that the intention of this stu
is look for correlations inside the CF fluid to gain furth
insight into its physics, and not to provide a new interpre
tion for composite fermions. We work with the lowest La
dau level projections of the wave functions of Eq.~3!, which
are known to be accurate representations of the exact lo
Landau level wave functions.

The plan of the paper is as follows. We begin by discu
ing an important distinction between the on-particle and o
particle zeroes of the wave function. Section III contains
calculational details, including the wave functions, the de
nitions of the correlation functions, and the method for fin
ing zeroes. Section IV contains results for the various co
lation functions involving zeroes and particles. The pape
concluded in Sec. V.

II. NODES VERSUS VORTICES

What principle determines the configuration of the z
roes? Undoubtedly, the zeroes distribute themselves, to
extent allowed by general constraints of the Pauli princi
and angular momentum conservation, so as to allow m
mum repulsion between electrons.

It may appear at first sight that electrons and zeroes at
one another, based on the argument that a positive ch
may be associated with a zero, due to the fact that elect
avoid it exposing the positively charged background. Let
first discuss the charge of a zero. Here, following Ref. 8,
find it important to make a distinction between zeroes wh
are on or off the particles. A vortex in the wave function ath
is created by multiplication by the factor) j (zj2h), which
ensures thatall electrons avoidh. It clearly has a charge
deficiency associated with it. The off-particle zeroes o
given particle are not the zeroes of other particles~this can
be explicitly seen in Fig. 1, which shows the positions of t
zeroes of all particles for a given starting configuration!, and
therefore are not avoided by all particles. No charge d
ciency is necessarily associated with the off-particle zer
of a given particle, so they are not vortices in any real sen
The zero bound to a particle behaves differently. It is a z
for all particles~except, of course, the particle to which it
bound!. The on-particle zero creates a correlation h
around the particle, which has a positive charge associ
with it. We will reserve the use of the term vortex for th
on-particle zeroes, such as the ones that arise from the
strow factors in Eqs.~2! and ~3!. The off-particle zeroes
which do not have a direct physical significance, will
called either nodes or simply zeroes.

How about the attraction between zeroes and partic
Consider the zeroes of a test particle. By definition, the
roes are where the test particle is not, which implies a rep
sion between a particle and its zeroes. One may ask if th
may be some attraction between the zeroes of the test pa
andotherparticles. Such an attraction is not analogous to
attraction between two oppositely charged objects, but
possibly be induced by the fact that the zeroes of the
particle repel it, so having them close to the other partic
will ensure that the test particle avoids them as well. T
reality, in general, is much more complex than this simp
23530
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minded single-particle argument might suggest, because
zeroes in the wave function are distributed so as to ens
thatall particles optimally avoid one another, not just the te
particle. In the case ofn51/m, the zeroes of the test particl
sit on other particles because such a binding is allowed
Pauli principle, and also guarantees repulsion betweenall
pairs. Unfortunately, for other filling factors the situation
not so simple. The only sure way to answer this question
by actually calculating various correlation functions invol
ing zeroes and particles.

It may also be noted in this context that the zeroes do
have their own independent dynamics. The positions of
zeroes are completely fixed once the positions of the p
ticles are fixed.@The wave functions in Eq.~3! have no pa-
rameters other than the particle positions.# When calculating
various physical quantities, for example the current, only
particles ought to be considered. We discussed above
the off-particle zeroes do not have a well-defined charge
sociated with them. Consider then, the on-particle zero
which are vortices and produce a positively charged corr
tion hole around each particle. They cannot contribute to
current, despite their associated correlation hole, becaus
positively charged background is static.

III. CALCULATIONAL METHOD

A. Wave functions

Our calculations were performed in the standard spher
geometry,9,10 whereN electrons lie on the surface of a sphe
under the influence of a radial magnetic field correspond
to total flux 2Qhc/e produced by a magnetic monopole
the sphere’s center. The monopole chargeQ may be an inte-
ger or half-integer, in accordance with Dirac’s quantizati
condition. This allows us to map the problem ofN strongly
interacting electrons at flux 2Q into N weakly interacting
CF’s at flux 2q52Q22p(N21). The wave function for
interacting electrons has the standard form4,11

CQ5PLLLF1
2pFq , ~4!

whereF1 describes the fully filled lowest Landau level an
Fq represents Slater determinant wave functions of nonin
acting electrons atq. The single-particle basis states that co
stituteFq are the monopole harmonics10

Yq,n,m~V j !5Nq,n,m~21!q1n1meiqf juj
q2mv j

q1m(
s50

n

~21!s

3S n

sD S 2q1n

q1n1m2sD ~v j* v j !
n2s~uj* uj !

s, ~5!

where n50,1, . . . , is theLandau level index,m52 l ,2 l
11, . . . ,l 21,l labels the degenerate states in thenth LL,
and l 5q1n. The normalization coefficient is given by

Nq,n,m5S ~2q12n11!~q1n1m!! ~q1n2m!!

4pn! ~2q1n!! D 1/2

.

~6!
2-3
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GRAHAM, MANDAL, AND JAIN PHYSICAL REVIEW B 67, 235302 ~2003!
FIG. 1. Positions of the zeroes of all particle
The four panels correspond, from~a! to ~d!, to ~a!
n52/5, ~b! 3/7, ~c! 4/9, and~d! 5/11 for N520,
21, 16, and 25 particles, respectively. The partic
positions are shown with large, filled circles, an
the zeroes with unfilled symbols. The zeroes a
determined by moving one particle while holdin
the others fixed at the positions shown. Differe
symbols are used for the zeroes of different p
ticles. The sphere is plotted in polar coordinate
The north pole is the origin; with the arc lengt
Ru used as the radius and the azimuthal coor
natef as the polar angle. The equator is given
the dashed line. Distance is measured in units
the magnetic lengthl 0. One must be mindful of
distortions in the distances while depicting th
spherical geometry in a plane, as one goes fart
from the north pole. For that reason, the figu
does not extend much beyond the equator;
particles and zeroes closer to the south pole
not shown.~Of course, all of the zeroes were ca
culated.!
e

i

ly

es

n

or-
or-

r-
V j represents the position of thej th electron on the surfac
of the unit sphere, and

uj[cos~u j /2!exp~2 if j /2!, ~7!

v j[sin~u j /2!exp~ if j /2!. ~8!

The wave functionFq is the constructed as a Slater determ
nant of the monopole harmonics

Det@Yi~V j !#. ~9!

It has previously been shown that the process of multip
ing Fq by F1

2 and then projecting into the LLL gives11

J Det@Ȳi~V j !#, ~10!

in which Ȳq,n,m andJ are defined as

Ȳq,n,m~V j !5F @2q1p~N21!11#!

@2q1p~N21!1n11#! G
3Nq,n,m~21!q1n1muj

q1mv j
q2m

3(
s50

n

~21!sS n

sD S 2q1n

q1n2m2sD
3uj

sv j
n2s@Ū j

s
•V̄j

n2s
•1#, ~11!

where
23530
-

-

Ū j[p(
k

8 vk

ujvk2v juk
1

]

]uj
, ~12!

V̄j[p(
k

8 2uk

ujvk2v juk
1

]

]v j
, ~13!

and

J[ )
j ,kÞ j

~ujvk2v juk!
p expS ip

2
~f j1fk! D . ~14!

B. Correlation functions

We calculate the pair-distribution functions of zero
gzz(r ), particle-zero pairsgpz(r ), particle-off-particle zero
pairs gpz̄(r ), and the three-point correlation functio
gppz(d,r ), by the Monte Carlo method~with Metropolis al-
gorithm! in the spherical geometry,9 all properly normalized
to approach unity at larger.

To illustrate the method, easily generalized to other c
relation functions, we begin by discussing the two-point c
relation function

gpp~r1 ,r2!5
N~N21!

r0
2 E •••E d2r 3•••d2r N

3uC~r1 , . . . ,rN!u2, ~15!

which, for a homogeneous system, depends only onur1
2r2u, where ther i are the positions of indistinguishable pa
2-4
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NODAL CORRELATIONS IN THE INCOMPRESSIBLE . . . PHYSICAL REVIEW B 67, 235302 ~2003!
ticles. ~Here we stress the indistinguishability because
normalization factors change if one calculates correlati
between distinguishable entities. More discussion will follo
below.! Since the ground state is homogeneous, one can
fine the pair correlation function as

gpp~r !5
1

AE d2Rg~r ,R!, ~16!

wherer5r12r2 is the distance between the pair of particl
~or zeroes! and R5(r11r2)/2 is the pair’s center of mass
Since the system is isotropic, the pair correlation funct
depends only onr[ur u:

gpp~r !5
1

r0N K (
iÞ j

d~r2r i1r j !L . ~17!

We evaluate the pair-distribution function using the Mon
Carlo method, generating configurations according to
Metropolis algorithm and determining the distances betw
all pairs for each configuration. The brackets^& in Eq. ~17!
denote both angular and ground state averaging. On
sphere, after sectioning the surface of the sphere into bin
sufficiently small area~more on this later!, Eq. ~17! may be
represented in a form useful for the Monte Carlo method

gpp~r !5
1

NMCr0N (
k51

NMC (
iÞ j 51

N

Q~r i j
(k)2r !

ar
, ~18!

whereQ(r i j
(k)2r ) is 1 or 0 depending on whether the di

tance between the pairi j lies inside or outside the bin con
taining r, ar is the area of the bin, andNMC is the total
number of Monte Carlo steps.

The preceding equation can be modified straightforwar
for gzz andgpz :

gzz~r !5
1

NMCrZNZ
(
k51

NMC (
iÞ j 51

NZ

Q~r i j
(k)2r !

ar
, ~19!

gpz~r !5
1

2NMCr0NZ
(
k51

NMC (
i 51

N

(
j 51

NZ

Q~r i j
(k)2r !

ar
, ~20!

whereNZ is the number of zeroes, andrZ is their density.
Equation~20! may also be used to calculategpz̄(r ) if NZ is
replaced by the number of off-particle zeroesNZ̄5NZ2N
11.

Note the factor of 1/2 in Eq.~20!. Such unconventiona
normalization factors will appear when calculating corre
tions between distinguishable entities, for example a part
and a zero. Usually, the normalization factor of ann-point
correlation function of identical ‘‘particles’’ is the number o
n-tuples that can be chosen fromN particles. The counting is
slightly more complicated for distinguishable ‘‘particles
where we must calculate some (m,n)-point correlation func-
tion, choosingm particles of typeA from a possibleM andn
23530
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type B particles from a possibleN ~assumeM>N). The
normalization factor will then be the number of permutatio
of m type A particles andn type B particles.

The three-point correlation function

gppz~d,r !5
1

rZ
r8~r ! ~21!

is evaluated by determiningr8(r ), the density of zeroes atr ,
with the constraint, indicated by the prime, that two comp
ite fermions are held fixed at (6d/2,0). This constraint is
easily incorporated into the Monte Carlo algorithm. In t
spherical geometry, the fixed particles are positioned
(u1 ,f1)5(d/2R,0) and (u2 ,f2)5(d/2R,p). Eq. ~21! can
also be recast in a form convenient for Monte Carlo calcu
tions

gppz~d,r !5
1

NMCrz
(
j 51

NMC (
i 51

NZ

Q~r i
( j )2r !

ar
, ~22!

whereQ(r i
( j )2r ) is 1 or 0 depending on whether thei th zero

lies inside or outside the bin containingr .

C. Binning the sphere

Significant care must be exercised in binning the sphe
We give here some of the relevant details of our method

Since the pair-distribution functions depend only onr, the
surface of the sphere can be divided into infinitesimal sph
cal frusta. We measure distance between pairi j as chord
length r i j 52Ruuiv j2v iuj u; corresponding to the pair lying
in the bin indexed by 11(integer part)(Dr i j /2R), whereD
is the number of bins. Themth bin, at distance 2R(m
21/2)/D, has area

4pR2~m21/2!

D Usin21S m

D D2sin21S m21

D D U
3A12S ~m21/2!

D D 2

,

wherem51, . . . ,D. We have usedD5200.
For gppz, which depends onu andf, binning is slightly

more complicated. Since we are primarily interested in
behavior ofgppz near the fixed particles, smaller bins a
chosen here to capture finer details. Thef bins are generated
according tofm52pm/D, with m51, . . . ,D. The u arc
from 0 top, however, is binned into three regions. The fir
region coversue(0,p/A1# and is given byun5pn/A1D1,
where n51, . . . ,D1 and A15(integer part)(p/2u1)11.
This choice ofA1 allows the fixed particles to lie in the
middle of region one. The second region cove
ue(p/A1 ,p/A2# and is given byun5pn/A3D21p/A1,
where A252, A35(A12A2)/(A1A2), and n51, . . . ,D2.
While we have selectedA252, it is essentially a free
parameter, provided A1.A2. Region three covers
ue(p/A2 ,p/A4# and is given byun5pn/A5D31p/A2,
where A451, A55(A22A4)/(A2A4), and n51, . . . ,D3.
We have selectedA451, though it’s only constrained to b
2-5
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less thanA2. In particular we have chosenD5200, D1
5D2580, andD3540 ~note thatD11D21D35D); a large
D1 allows high resolution near the fixed particles. The b
area ar is given by 2pR2 sin(un)dun /D, where dun5un
2un21 andun lies in the appropriate region.

D. Finding zeroes

We find the zeroes by minimizing the modulus of t
wave function in a two-dimensional subspace. There are
eral minimization methods to choose from, some fast, oth
robust. Since the wave function has many zeroes we m
use a method that easily finds local minima, and since
wave function is a Slater determinant, calculates the w
function as few times as possible. Slater determinant ca
lation is costly because each single-CF basis state dep
on the coordinates of allN electrons. As a result we canno
use standardO(N) updating techniques for fermions12 to cal-
culate the determinant andO(N3) operations are needed in
stead at each Monte Carlo iteration. Projecting onto the lo
est Landau level is also increasingly costly as we cons
more CF-LL’s since, for the FQH state atn5n/u2pn61u,
the cost of projection goes asn3.3,11 Thus the computation
time scales as

T}N3n3NMCSNWF, ~23!

whereNWF is the average number of wave function calcu
tions needed to find a single zero andS is the number of
zeroes. These considerations rule out methods such as
jugate gradient. Instead, we use a two-dimensional New
Raphson method.

The Newton-Raphson method is a three-step process
first of which is testing whether or not the initial guess is
zero. If the initial point is a zero then you stop and move
to the next guess; if the point is not a zero then take step
the direction of steepest descent until a zero is found. S
are computed by first assuming that the guess is close to
zero, which allows one to Taylor expand the modulus of
wave function about the zero. All particles except theNth are
fixed, so we expand in the coordinates (u,f) of the trial
point ~the Nth particle!

f ~u1du,f1df!5 f ~u,f!1
] f

]u U
(u,f)

du1
] f

]fU
(u,f)

df[0,

where f (u,f)5uC(u,f)u and (u1du,f1df) is the posi-
tion of the new point. Since the step must be in the direct
of steepest descent, (2“uCu) must be parallel to the New
ton step. Thus the Newton step is given by

du5

2 f ~u,f!
] f

]u U
(u,f)

~ u“ f u(u,f)!
2

~24!

and
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df5

2 f ~u,f!
] f

]f U
(u,f)

sin2~u!~ u“ f u(u,f)!
2

. ~25!

Typically, a sequence of Newton steps will quickly co
verge to a zero, provided the guess lies reasonably clos
the Monte Carlo step size is sufficiently small, the zero
will move only slightly from their previous positions, allow
ing the zeroes of the previous configuration to be guesses
the current configuration. Since a very small step size is
optimal for Metropolis algorithm, we slightly moveall par-
ticles relative to the average interparticle separation~rather
than a single particle by a large step! with an acceptance
ratio >75%. It is important, however, to realize that th
comparative ease~and speed! of finding zeroes depends pr
marily on the configuration of particles and how much
configuration changes between Monte Carlo steps. Thu
somewhat uniformly distributed collection of particles mo
easily lends itself to such methods. Typically, we have p
formed calculations on systems containing up to 20 partic
For example, a calculation ofgppz of then52/5 state for 20
particles with 50 000 Monte Carlo steps takes;50 CPU h on
our workstation ~Digital Model 600au, Alpha CPU, 500
MHz!. A similar calculation of 21 particles in then53/7
state takes;67 CPU h on the same machine.

The only problem we have encountered with Newto
Raphson lies in the complexity of the basins of attraction.
Newton’s method, for any polynomial with three or mo
distinct roots, the basins of attraction have disjointedfractal
regions,13 and nearby points can converge to far away zero
This has generally resulted in a given zero being found m
than once, although a guess would sometimes fall int
periodic cycle, never converging to a root within the ma
mum number of Newton steps~up to five hundred!. When
this happens we obtain guesses by blanketing the sph

FIG. 2. Pair-distribution functions for three FQHE states atn
5n/(2n11), corresponding ton filled Landau levels of composite
fermions.N520, 21, and 16 particles have been used forn52, 3,
and 4, respectively.~a!, ~b!, and~c! show the probability of having
two zeroes, a particle and a zero, and a particle and an off-par
zero, respectively, at a distancer. Following Ref. 14, we choose the
unit of length for this plot askF

215(4pr)21/2.
2-6
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FIG. 3. gppz for 20 particles atn52/5, with d51.0r pp , 0.5r pp ,
and 0.35r pp , where r pp54l 0 , l 0 being the magnetic length. Th
sphere is plotted in polar coordinates. The north pole is the ori
with the arc lengthRu used as the radius and the azimuthal co
dinatef as the polar angle. The white arrows represent the p
tions of the two fixed particles. The contours are shaded as follo
Black represents zero probability per unit area, the shade of
toward the edges is a probability per unit area of one, with ligh
shades representing probability per unit area greater than one,
being highest. Distance is measured in units ofl 0.
23530
surface with small plaquettes and examining the way
wave function changes sign as one moves around the edg
the plaquette. If both the real and imaginary parts of
wave function change sign twice as we move around
plaquette, then the plaquette’s center is taken as a gu
Since these trial zeroes go into the Newton-Raphson met
in some rare occasions all zeroes are still not found;
completely ignore such a Monte Carlo iteration and return
the previous configuration, using its zeroes as input for
sums in the correlation functions. This is akin to the w
a rejected Monte Carlo step is handled in the Metropo
algorithm.

A primary concern of any minimization method is th
termination condition. For our purposes it is sufficient
require the modulus of the wave function to be below so
maximal tolerance. Since there are trivial zeroes bound
each particle it is advantageous to use the modulus of
wave function near them to define the tolerance. We ca
late the modulus of the wave function at somed away from
each of the firstN21 particles, using the lowest value as th

;
-
i-
s.
ey
r
ite

FIG. 4. Cross section ofgppz, for 20 particles atn52/5, along
the arc passing through the fixed particle positions. In this a
subsequent figures, the origin is the north pole and the fixed par
positions are represented by arrows.~a!–~c! correspond tod
51.0r pp , 0.5r pp , and 0.35r pp , respectively. The numbers appea
ing next to the central peaks in~b! and ~c! give the height of the
peak.

FIG. 5. Cross section ofgppz for 20 particles atn52/5, along
the arc passing through the origin in a direction perpendicular to
arc joining the fixed particle positions.~a!–~c! correspond tod
51.0r pp , 0.5r pp , and 0.35r pp , respectively.
2-7
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tolerance. As the particles move during Monte Carlo, wha
or is not a good tolerance may change. To account for t
we recalculate the tolerance during each accepted M
Carlo step. The shiftd indirectly determines the precison o
the zeroes found from the Newton-Raphson method
needs be no smaller than the smallest bin size used to c
late the correlation functions. We used51023l 0 and are able
to consistently resolve the position of the zero to at least f
decimal places.

FIG. 6. gppz for 21 particles atn53/7, with d51.0r pp , 0.5r pp ,
and 0.25r pp .
23530
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IV. CORRELATION FUNCTIONS

We have calculated several pair-distribution functions
volving zeroes at filling factorsn52/5, 3/7, and 4/9. We now
show the results and discuss what they signify. The parti
particle pair correlation function at these filling factors h
been presented earlier.14

A. Zero zero

Figure 2~a! shows the zero-zero distribution functio
gzz(r ) which gives the probability of finding two zeroes at
distancer. It approaches unity at long distances, indicati
that the zeroes themselves form a liquid. At short distanc
the zeroes avoid one another.

B. Particle zero

Figure 2~b! shows gpz(r ), the probability of finding a
zero at a distancer from a particle. The delta function at th
origin, due to the single zero at the particle, is not sho
explicitly. While forming their own liquid, the off-particle
zeroes avoid particles. In fact, a repulsion between zer
also guarantees a repulsion between the zeroes and part
for the particles carry zeroes with them.

FIG. 7. Cross section ofgppz, for 21 particles atn53/7, along
the arc passing through the fixed particle positions.~a!–~c! corre-
spond tod51.0r pp , 0.5r pp , and 0.25r pp , respectively.

FIG. 8. Cross section ofgppz, for 21 particles atn53/7, along
the arc passing through the origin in a direction transverse to the
joining the fixed particle positions.~a!–~c! correspond tod
51.0r pp , 0.5r pp , and 0.25r pp , respectively.
2-8
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We also plotgpz̄(r ), the probability of finding an off-
particle zero at a distancer from an on-particle zero, in Fig
~2~c!. ~This is the same as the correlation function for a p
ticle and an off-particle zero.! Note that the curves are no
malized differently. The close similarity between the thre
plots demonstrates that the on-particle zeroes and the
particle zeroes behave equivalently in the liquid of zeroe

FIG. 9. gppz for 20 particles atn54/9, with d51.0r pp , 0.5r pp ,
and 0.25r pp .
23530
-

-
ff-

C. Particle-particle-zero „PPZ…

In Fig. 1, especially in the first two panels, the zeroes te
to locate themselves preferentiallybetweenpairs of particles,
especially if the particles are closer than the typical interp
ticle separation. There is a bunching of the zeroes of vari
particles right in between pairs. This has motivated us
look at the correlations between a pair of particles and
zeroes. For this purpose, we hold two particles at a fix
distanced and calculate the probability of finding a zero
the neighborhood. Sufficiently far away, as expected,
probability of a zero is independent of the distance betw
the two fixed particles. We measured in units of 4l 0, roughly
equal to the interparticle separation, which we callr pp .

Figure 3 shows how the probability of finding a zero ne
the fixed particles evolves asd is varied from 1.0r pp to
0.35r pp , for 20 particles atn52/5. When the two fixed par-
ticles are at the typical interparticle separation, the partic
particle-zero correlation function is essentially the sum
two independent particle-zero correlation functions. Wh
d51.0r pp , in top panel of Fig. 3, we see that finding a ze
half-way between the fixed particles is roughly as likely
finding a zero far away. Asd is decreased tor pp/2 and
0.35r pp , respectively, the probability of finding a zero hal
way between the fixed particles increases by more than
order of magnitude. As the fixed particles are pushed

FIG. 10. Cross section ofgppz, for 20 particles atn54/9, along
the arc passing through the fixed particle positions.~a!–~c! corre-
spond tod51.0r pp , 0.5r pp , and 0.25r pp , respectively.

FIG. 11. Cross section ofgppz, for 20 particles atn54/9, along
the arc perpendicular to the arc joining the fixed particle positio
~a!–~c! correspond tod51.0r pp , 0.5r pp , and 0.25r pp , respec-
tively.
2-9
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gether, the peak between them increases and narrows.
trend is most apparent in Figs. 4 and 5, which show
probability of finding a zero along an arc parallel and an
transverse to the fixed particles~passing through the mid
point!, respectively. We also see the emergence of promin
satellite peaks on either side of the two fixed particles, alo
the line joining the particles. The difference in the height
the central peak coming from the two orthogonal directio
is strictly an artifact of the way a grid of bins is generated
the sphere.

To ascertain how this behavior evolves with filling facto
we next considern53/7 and 4/9. Figure 6 shows thed de-
pendence of the probability of finding a zero near the fix
particles, for 21 particles atn53/7. Whend51.0r pp , we
find behavior similar to that in the top panel of Fig. 3. This
to be expected, because in both cases the distance bet
the two fixed particles is a typical interparticle separation a
the density of zeroes is essentially a sum of two uncorrela
densities. However, in the middle panel of Fig. 6, we see
significant increase in the probability of finding a zero ha
way between the fixed particles asd is reduced from 1.0r pp
to r pp/2, although the satellite peaks again appear. The
ference in behavior, when compared ton52/5, is further
made apparent asd decreases tor pp/4 in the bottom panel of
Fig. 6 and in Figs. 7 and 8. The peak between the fix
particles vanishes; as do the satellite peaks. Instead of s
lite peaks, a ring forms around the pair of fixed particles
ring is to be expected in the limitd50 at all filling factors,
because then we have a single charge of22e at the origin.
However, the central peak is much weaker atn53/7 than at
n52/5 for any value ofd.

The zeroes of the 20 particle state atn54/9 behave in a
manner similar to that at 3/7. Figure 9 and its cross-secti
in Figs. 10 and 11 show the zero between the fixed parti
being squeezed out asd decreases. In the bottom panel, wh
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the central peak completely vanishes, a ring around the fi
particles emerges.

V. CONCLUSION

The zeroes of the FQHE states distribute themselve
maximize the interelectron separation. As discussed bef
the zeroes of a particle in an incompressible quantum H
liquid do not have a well defined physical meaning, es
cially the off-particle zeroes. They do not have a well defin
charge or any other sharp quantum number associated
them. With that warning, we have investigated their struct
for several filling factors. Our findings are as follows.~i! The
zeroes form a liquid.~ii ! There is a short-range repulsio
between the zeroes. This also induces a repulsion betw
zeroes and particles, for the latter are the carriers of the P
zeroes.~For the special case of Laughlin’s wave function,
zeroes sit on particlesnot because the zeroes are attracted
one another or to the particles, but because this is the m
efficient way forparticles to stay away from one another!
~iii ! For some states, especially forn52/5, there is an
anomalously large probability of finding a zero right in th
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