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Nodal correlations in the incompressible composite fermion liquid
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To search for possible correlations in the system of interpenetrating liquids of zeroes and electrons in the
fractional quantum Hall effect, this paper studies several ground state correlation functions involving particles
and zeroes in the incompressible states of composite fermions at filling fact@, 3/7, and 4/9. It is found
that the zeroes form a liquid of their own in which they repel one another at short distances, and also repel
particles(with the obvious exception of the Pauli zeroes that are tied to the payti€lescertain states, it is
found that three body configurations containing two nearby electrons and a zero in the middle are highly
probable, indicating that the zeroes tend to insert themselves between nearby particles in an effort to keep them
apart.
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[. INTRODUCTION function as the function of a single coordinate, gay treat-
ing all other coordinates as fixed constants. For a given fill-
Sometimes the vortex structure of a wave function revealéng factor v, there areN/v single particle states occupied,
important information about the underlying physics. An ex-implying that the largest power & in the polynomial part
ample is the ground state wave function of bosons in twaof the wave function idN/v, which, according to the funda-
dimensions, which is everywhere positive, that is, it containgnental theorem of algebra, is also the number of zeroes of
no vortices.(A vortex is defined as a point a path aroundthe wave function[Here, we have neglected(D correc-
which has a phase change of associated with it. For hard tions. For a finite system, the number of zeroes can of course
core bosons, the wave function will vanish for the configu-be determined exactly for given boundary conditionde
rations in which two bosons coincide, but still does not be-also note that a zero in the lowest Landau level is also a
come negative.For most states however, for example a su-vortex, in that it produces a phase ef27 when z; goes
perconductor or a Landau Fermi liquid, no significance hasaround it in a closed counterclockwise loop. However, for
been attached to the nodal structuie note that we have reasons explained in the next section, we will reserve the
in mind here the microscopic wave function. For a superconname “vortex” for a zero bound to a particle, and use the
ductor the nodes in therder parameterdo have a physical “zeroes” or “nodes” for the zeroesiot bound to particles.
significance). The role of vortices was apparent in Laughlin’s wave
Vortices have played an important role in the theory of thefunction for the FQHE ground state at filling factar

fractional quantum Hall effectFQHE)* because of certain =1/m, m being an odd integérgiven by
special properties of the wave functions in the lowest Landau
level (LLL). In the lowest Landau level, an exact statement " 5
can be made about the number of zeroes at a given filling ‘I'l/m:jﬂk (zj—z)"exg — 4 2| |2
factor. In the disk geometry, the single particle wave func-
tions have the fomfzne*|2\2/4, wherez=x—iy denotes the This wave function has a remarkably simple nodal structure.
coordinates of an electron as a complex number and the unit you fix all particles except one, the only times the wave
of |ength has been chosen to be the magnetic |e|1%th, function vanishes is when the mobile particle hits another
= JhicleB. This state is a Gaussian localized within a circleParticle. Each particle sees a z€io fact anmth order zerp
of radius\2nl,. For a disk of a finite radiuR®= 2Nl o, at every other parqcle and nowhere else. Laughlin’s wave
all states with=n,, are available for electrons. The filling function thus contains no free zerces.

factor v is defined as the ratio of the number of electrons to 1€ Pauli principle guarantees that each electron has at
the number of available single particle orbitals. least one vortex bound to it. However, in general, electrons

For N electrons at filling factow, the general wave func- €@n bind any odd number of vortices. At=1/m, there arem

tion has the form zeroes per electron which are taken to be all bound to elec-
trons in Laughlin’s wave function. That is not possible at
other fractions. Consider for example=2/5, for which

' (1) there are 2.5 zeroes per particle. There is exactly one zero
bound to each electron, with the other 1.5 zeroes away from

whereF 5[ {z;}] is an antisymmetric polynomial of the coor- electrons. The observation of FQHE at numerous filling fac-

dinates. The important feature of the lowest Landau levetors not of the formy=1/m demonstrates that the “no-free-

physics is that the polynomi&l is analyticin thez's; i.e., it ~ zeroes property” av=1/m, which leads to a simple wave

does not depend on the complex conjugatés. This allows  function atv=1/m, is not essential for the FQHEEven at

one to make an exact statement about the number of zeroes=1/m, there is, strictly speaking, only one zero on each

of the wave function. For this purpose, we view the waveelectron in thetrue ground state. But the othen—1 zeroes

. 2
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are very close to the particle positions, a#id,,, makes the nalization studies it would be impossible to deduce from it
approximation of putting them all on particledVe will see  that it can be obtained by the lowest Landau level projection
that Laughlin’s wave function is an untypical case; it hasof the product wave function given in E(B). (The compos-
little bearing on the configuration of zeroes of general in-ite fermion physics was originally motivated by the empiri-

compressible states. cal similarity between the fractional and the integral quan-
Vortices also play a fundamental role in the wave func-tym Hall effects)
tions for the general FQHE states, written by one of us: It is worth stressing that this is not an objection against

composite fermions. In physics problems, there is a range of
3) parameters for which the Hamiltonian describes the qualita-

tive physics of interest. It is obviously unrealistic to demand

a solution for every possible choice of variables. The usual
where®, is the wave function fon fully occupied Landau approach is to identifyat least one point in this parameter
levels. This wave function has the following interpretation. space of the Hamiltonian where the physics is transparent,
Due to the presence of the Jastrow fachkk(zj—zk)zp which also correctly describes the physics of the adiabati-
there are an even number R of vortices bound to each cally connected “physical” point, and then proceed to obtain
electron. The bound state is interpreted as a particle, calleguantitative information perturbatively. The wave functions
the composite fermion. The crucial consequence of the forin the lowest Landau level are rather complicated and do not
mation of composite fermions is that they experience a redirectly lend themselves to a simple interpretation. The non-
duced effective magnetic field* =B—2pp¢,, wherep is  trivial accomplishment of the composite fermi¢@F) theory
the two-dimensional density of electrons agg=hc/e is is to show that they are adiabatically connected, through
the flux quantum. The origin of the effective magnetic field islowest Landau level projection, to the remarkably simple
a direct consequence of the formation of composite fermionsvave functions given in Eq(3), from which the essential
through binding of electrons and vortices, which can be seephysics can be read off. Both the qualitative composite fer-
as follows. Imagine taking one particle in a loop enclosing armion physics, encoded in the effective magnetic field, and
areaA and asking what is the associated phase. In addition tthe quantitative validity of the wave functions have been
the usual Aharonov-Bohm phaserBA/ ¢, there is also a confirmed in numerous experimental and theoretical studies
contribution from the vortices bound to composite fermions.in the lowest Landau level.
There are on averageA particles inside the loop, each car-  Nonetheless the issue of the nodal structure of the FQHE
rying 2p vortices, and each vortex produces a phase of states restricted to the lowest Landau level remains of inter-
— 21, giving a contribution of-272ppA. When added to est. Can we make any sharp statements regarding the nodes
the Aharonov-Bohm phase, the total phase can be interpretaf general FQHE states? Does one node remain close to each
as the Aharonov-Bohm phase coming from an effective magparticle? Can some kind of bound state of electrons and ze-
netic fieldB*. In short, the phases due to the bound vorticegoes be identified in the lowest Landau level wave function?
partly cancel the Aharonov-Bohm phase to make it seem as The zeroes have been studied in the past for a single elec-
though the particles were moving in a reduced effective magtron in a disorder potentidlThey have also been determined
netic field. for many electron systems with fairly smal for a few

The wave function',,,1) has more zeroes than those random configurations of particlésHowever, random con-
counted aboveN/v), because it does not reside strictly in figurations are often highly improbable, and also just a few
the lowest Landau levelDd, involves higher Landau levels snapshots may not give us much useful information. In this
and is not analytic. The Jastrow factor provides two vorticepaper, we calculate the ground state averages of certain cor-
per particle, while®,,, which is not analytic, contains both relation functions involving particles and zeroes in a system-
nodes and antinodes, the number of which is not fixed buatic study at several fillings of the lowest Landau level (
depends on the configuration of particles. It provides one=2/5, 3/7, and 4/2 The correlation functions are calculated
additional zero, either a node or an antinode, on each particley Monte Carlo, with probable configurations generated ac-
to restore antisymmetry. cording to the Metropolis algorithm.

In the limit of very large magnetic fields, when the Lan- A useful first step is to study pair-distribution functions
dau level spacing is large compared to the interaction energ§or either two zeroes or one particle and one zero. The
the wave functions in Eq(3) must be projected onto the formerg,/r) gives the probability of finding two zeroes at a
lowest electronic Landau level to produce physically usefuldistancer, and the latteg,,, gives the probability of finding
wave functions. Upon projection, one of the two bound ze-a particle and a zero at a distanceWe find that just as
roes must move off of the particles, and the antinode® jn electrons, the zeroes form a liquid with short distance corre-
are annihilated by combining with nodes. No longer are twdations. We then proceed to study a correlation function in-
vortices explicitly bound to electrons, and the efforts to seevolving two particles and a zergp,(d,r), which gives the
composite fermions directly in a lowest Landau level theorynodal density as a function of the positionwith two par-
have proved largely unsuccessful for this reason; in fact, thécles held fixed at ¢/2,0) and (-d/2,0). This correlation
composite fermion physics will appear rather mysterious tdunction reveals that, for=2/5, zeroes tend to place them-
someone who refuses to use higher Landau levels at an iselves with high probability right in the middle of nearby
termediate step. If someone were to give us the the lowegtairs of particles, but such correlations weaken as more lev-
Landau level wave functiofiobtained, say, in exact diago- els of composite fermions are filldé.g., forv=4/9).

‘I’n/(znp+1):j1;[k (zj—2)*PD,,
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It ought to be emphasized that the intention of this studyminded single-particle argument might suggest, because the
is look for correlations inside the CF fluid to gain further zeroes in the wave function are distributed so as to ensure
insight into its physics, and not to provide a new interpreta-thatall particles optimally avoid one another, not just the test
tion for composite fermions. We work with the lowest Lan- particle. In the case af=1/m, the zeroes of the test particle
dau level projections of the wave functions of E8), which  sit on other particles because such a binding is allowed by
are known to be accurate representations of the exact loweBtuli principle, and also guarantees repulsion betwaen
Landau level wave functions. pairs. Unfortunately, for other filling factors the situation is

The plan of the paper is as follows. We begin by discussnot so simple. The only sure way to answer this question is
ing an important distinction between the on-particle and off-by actually calculating various correlation functions involv-
particle zeroes of the wave function. Section Il contains thang zeroes and patrticles.
calculational details, including the wave functions, the defi- It may also be noted in this context that the zeroes do not
nitions of the correlation functions, and the method for find-have their own independent dynamics. The positions of the
ing zeroes. Section IV contains results for the various correzeroes are completely fixed once the positions of the par-
lation functions involving zeroes and particles. The paper igicles are fixed[ The wave functions in Eq.3) have no pa-
concluded in Sec. V. rameters other than the particle positign&hen calculating

various physical quantities, for example the current, only the
particles ought to be considered. We discussed above how
Il. NODES VERSUS VORTICES the off-particle zeroes do not have a well-defined charge as-
What principle determines the configuration of the ze-Sociated with them. Consider then, the on-particle zeroes,

roes? Undoubtedly, the zeroes distribute themselves, to tHhich are vortices and produce a positively charged correla-

extent allowed by general constraints of the Pauli principleion hole around each particle. They cannot contribute to the
and angular momentum conservation, so as to allow maxicurrent, despite their associated correlation hole, because the

mum repulsion between electrons. positively charged background is static.
It may appear at first sight that electrons and zeroes attract
one another, based on the argument that a positive charge IIl. CALCULATIONAL METHOD

may be associated with a zero, due to the fact that electrons

avoid it exposing the positively charged background. Let us

first discuss the charge of a zero. Here, following Ref. 8, we Our calculations were performed in the standard spherical

find it important to make a distinction between zeroes whichgeometry’'!° whereN electrons lie on the surface of a sphere

are on or off the particles. A vortex in the wave functiorvat under the influence of a radial magnetic field corresponding

is created by multiplication by the factél;(z;— »), which  to total flux 2Qhc/e produced by a magnetic monopole at

ensures thatll electrons avoidy. It clearly has a charge the sphere’s center. The monopole cha@may be an inte-

deficiency associated with it. The off-particle zeroes of ager or half-integer, in accordance with Dirac’s quantization

given particle are not the zeroes of other partidkaés can  condition. This allows us to map the problem fstrongly

be explicitly seen in Fig. 1, which shows the positions of theinteracting electrons at flux@ into N weakly interacting

zeroes of all particles for a given starting configuratiand  CF’s at flux 21=2Q—2p(N—1). The wave function for

therefore are not avoided by all particles. No charge defiinteracting electrons has the standard foth

ciency is necessarily associated with the off-particle zeroes

of a given particle, so they are not vortices in any real sense. ‘PQ:’PLLL(Dipq)q- (4)

The zero bound to a particle behaves differently. It is a zero

for all particles(except, of course, the particle to which it is where®; describes the fully filled lowest Landau level and

bound. The on-particle zero creates a correlation holed, represents Slater determinant wave functions of noninter-

around the particle, which has a positive charge associateditting electrons ai. The single-particle basis states that con-

with it. We will reserve the use of the term vortex for the stitute ®, are the monopole harmoni@s

on-particle zeroes, such as the ones that arise from the Ja-

strow factors in Egs(2) and (3). The off-particle zeroes, n

which do not have a direct physical significance, will be Yq,n'm(Qj)quyn'm(—1)q+“*me‘q¢iuf"mvﬁ+m2 (—1)8

called either nodes or simply zeroes. s=0
How about the attraction between zeroes and particles?

Consider the zeroes of a test particle. By definition, the ze- X

roes are where the test particle is not, which implies a repul-

sion between a particle and its zeroes. One may ask if there . .

may be some attFr)action between the zeroes of th}é test particfdnere n=0.1,..., is theLandau level indexm=—1,—|

andotherparticles. Such an attraction is not analogous to the" 1, ... 1 =1l labels the. de_generatg gtates n Wb LL,

attraction between two oppositely charged objects, but ca"d! =d+n. The normalization coefficient is given by

possibly be induced by the fact that the zeroes of the test "

particle repel it, so having them close to the other particles _ (2q+2n+1)(q+n+m)!(q+n—m)!)

will ensure that the test particle avoids them as well. The a.nm 47n!(2g+n)! '

reality, in general, is much more complex than this simple- (6)

A. Wave functions

n 2q+n

)(U}kvj)ns(u}k up)®, (5

s/\g+n+m-s
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); represents the position of théh electron on the surface

of the unit sphere,

and

UjECOQ QJ/Z)GXF( —i ¢]/2),

v, =sin(6,/2)exp(i ¢;/2).

()
8

The wave functionb, is the constructed as a Slater determi-and
nant of the monopole harmonics

DefY;(Q))].

9

It has previously been shown that the process of multiply-

ing &, by CDf and then projecting into the LLL givés

JDefY;(Q))],

in which Vq,n,m and J are defined as

Vq,n,m(Qj)=

where

[2g+p(N=21)+1]!
[2g+p(N=1)+n+1]!

X N p,m(—1) 3y mya=m
n
n
x 2 <—1>S( .

<] 0

2q+n

g+n—m-s

|

(10
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FIG. 1. Positions of the zeroes of all particles.
The four panels correspond, fro@ to (d), to (a)
v=2/5, (b) 3/7, (c) 4/9, and(d) 5/11 for N=20,

21, 16, and 25 particles, respectively. The particle
positions are shown with large, filled circles, and
the zeroes with unfilled symbols. The zeroes are
determined by moving one particle while holding
the others fixed at the positions shown. Different
symbols are used for the zeroes of different par-
ticles. The sphere is plotted in polar coordinates.
The north pole is the origin; with the arc length
R6 used as the radius and the azimuthal coordi-
nate¢ as the polar angle. The equator is given by
the dashed line. Distance is measured in units of
the magnetic length,. One must be mindful of
distortions in the distances while depicting the
spherical geometry in a plane, as one goes farther
from the north pole. For that reason, the figure
does not extend much beyond the equator; the
particles and zeroes closer to the south pole are
not shown (Of course, all of the zeroes were cal-
culated)

U= ok ’ 12
J_p K ujUk_vjuk (9Uj, ( )
= : — Uy d
VJ:pEk Ujvk_l)juk (91}]" (13)
ip
J= 11 (ujpk—vjupPex S (9t . (14

J k#]

B. Correlation functions

We calculate the pair-distribution functions of zeroes
9:Ar), particle-zero pairgy,(r), particle-off-particle zero
pairs g,r), and the three-point correlation function

JppAd,r), by the Monte Carlo metho@vith Metropolis al-
gorithm) in the spherical geometfyall properly normalized
to approach unity at large

To illustrate the method, easily generalized to other cor-
relation functions, we begin by discussing the two-point cor-
relation function

N(N—1)
gpp(rlyrz)z—j "'szrs"'der

(11)

2
Po

X|W(ry, ....rol% (19

which, for a homogeneous system, depends only|mgn
—r1,|, where ther; are the positions of indistinguishable par-
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ticles. (Here we stress the indistinguishability because theype B particles from a possibl®& (assumeM=N). The
normalization factors change if one calculates correlationsmormalization factor will then be the number of permutations
between distinguishable entities. More discussion will followof m type A particles anch type B particles.
below) Since the ground state is homogeneous, one can de- The three-point correlation function
fine the pair correlation function as 1
1 gppz(dar):_P’(r) (21
00s(1) = 3 | PROTR) 16) bz

is evaluated by determining' (r), the density of zeroes af
wherer=r,—r, is the distance between the pair of particleswith the constraint, indicated by the prime, that two compos-
(or zeroey and R=(r,+r,)/2 is the pair’s center of mass. ite fermions are held fixed at+(d/2,0). This constraint is
Since the system is isotropic, the pair correlation functioneasily incorporated into the Monte Carlo algorithm. In the

depends only om=|r|: spherical geometry, the fixed particles are positioned at
(61,¢1)=(d/2R,0) and @,,d,)=(d/2R,7). Eg. (21) can
1 also be recast in a form convenient for Monte Carlo calcula-
gpp(r>=—N<Z 5(r—ri+rj)>. 17 tions
Po 1#]

We evaluate the pair-distribution function using the Monte Nz 0
Carlo method, generating configurations according to the Nmc Z O(ri’—r)
Metropolis algorithm and determining the distances between UppAd,1)= , (22)
all pairs for each configuration. The brackeéjsin Eq. (17) Npcpz =1 a,

denote both angular and ground state averaging. On “\ﬁhere@(r-‘j)—r) is 1 or 0 depending on whether tht zero
sphere, after sectioning the surface of the sphere into bins '

(ﬁfes inside or outside the bin containim
sufficiently small aregmore on this later Eq. (17) may be 9

represented in a form useful for the Monte Carlo method: .
C. Binning the sphere

N ) Significant care must be exercised in binning the sphere.
Nyic ig‘;l O(ri’—r) We give here some o_f th(_a relevar_lt details of our method.
Upp(F) = , (18) Since the pair-distribution functions depend onlyrothe
NuvcpoN k=1 a surface of the sphere can be divided into infinitesimal spheri-

where@)(ri(-k)—r) is 1 or 0 depending on whether the dis- cal frusta. We measure distance bet_ween paias _chord
tance between the paiif lies inside or outside the bin con- :ﬁnt%? I)iijn:iﬁggiigé_b;il;t”(;inciggt(:rsgg?t?grg ;gRt;] evfr?érr;%ng
taining 1,  is the area of the bin, antlyc is the total is the number of bins. Thenth bin, at distance R(m

number of Monte Carlo steps. —1/2)/D. h
The preceding equation can be modified straightforwardly )/D, has area
m m—1
=1 | i1 _
sin (D) s ( D )‘

for g,, andgp;: 47R?(m—1/2)
Ny D

e, 22, O =1) (m—1/2)|2
= XAJ1—|———
9z41) NmcpzNz k=1 ar ' 19 ( D ) '
NNy wherem=1, ... D. We have used =200.
E 2 M _r) For g,,,, Which depends o and ¢, binning is slightly
Nme <~ =1 g more complicated. Since we are primarily interested in the
Opr)= 2NyropoNg = a, (20 behavior ofg,,, near the fixed particles, smaller bins are

chosen here to capture finer details. Thbéins are generated
whereN; is the number of zeroes, ang is their density. according to¢,,=27m/D, with m=1,... D. The 6 arc
Equation(20) may also be used to calculagg,(r) if Ny is  from O to, however, is binned into three regions. The first
replaced by the number of off-particle zerods=N,—N  region coversfe(0,7/A;] and is given by§,=mn/A;D,,
+1. where n=1,... D; and A;=(integer part)/26,)+1.
Note the factor of 1/2 in Eq(20). Such unconventional This choice ofA; allows the fixed particles to lie in the
normalization factors will appear when calculating correla-middle of region one. The second region covers
tions between distinguishable entities, for example a particl@e(w/A,,m/A,] and is given by 6,=mn/AzD,+ /A4,
and a zero. Usually, the normalization factor of mpoint ~ where A,=2, Az3=(A;—A,)/(A1A;), and n=1,... D,.
correlation function of identical “particles” is the number of While we have selectedh\,=2, it is essentially a free
n-tuples that can be chosen frdxparticles. The counting is parameter, provided A;>A,. Region three covers
slightly more complicated for distinguishable “particles,” fe(w/A,,m/A4] and is given by#,=mn/AsDs+ 7/A,,
where we must calculate somen(n)-point correlation func-  where A;=1, As=(A>—A4)/(AA,), and n=1,... Ds.
tion, choosingn particles of typeA from a possibleM andn ~ We have selected,= 1, though it's only constrained to be
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less thanA,. In particular we have choseb =200, D;
=D,=80, andD;=40 (note thatD, + D,+D3;=D); alarge

PHYSICAL REVIEW B 67, 235302 (2003

— (20,2/5)
—. eL3n| -
- — (16,4/9)

D, allows high resolution near the fixed particles. The bin I
areaa, is given by 2rR?sin(4,)86,/D, where 66,= 6, A
—6,_, and 6, lies in the appropriate region. 0 :

D. Finding zeroes

We find the zeroes by minimizing the modulus of the
wave function in a two-dimensional subspace. There are sev- ©
eral minimization methods to choose from, some fast, others R
robust. Since the wave function has many zeroes we must | /- S, = N
use a method that easily finds local minima, and since the e i ) ; . ;
wave function is a Slater determinant, calculates the wave "0 2 4 6
function as few times as possible. Slater determinant calcu- F
lation is COSt,ly because each single-CF basis state depends FIG. 2. Pair-distribution functions for three FQHE statesvat
on the coordinates of a_N eIeCtro_nS. As a resu!t we cannot =n/(2n+1), corresponding ta filled Landau levels of composite
use standar@(N) updating techniques for fermiotfdo cal-  fermions.N=20, 21, and 16 particles have been usedrfor2, 3,
culate the determinant ar@(N®) operations are needed in- and 4, respectivelya), (b), and(c) show the probability of having
stead at each Monte Carlo iteration. Projecting onto the lowtwo zeroes, a particle and a zero, and a particle and an off-particle
est Landau level is also increasingly costly as we considefero, respectively, at a distanceFollowing Ref. 14, we choose the
more CF-LLs since, for the FQH state at=n/|2pn+1]|, unit of length for this plot akg *=(4mp) Y2
the cost of projection goes as.>! Thus the computation
time scales as of

e I¢ (0.4)

- sin2(0)(|Vf|(0’¢))2'

ToeN3n3NycSNye, (23 (25)

whereNy is the average number of wave function calcula- . . .
tions needed to find a single zero aBds the number of Typically, a sequence of Newton steps will quickly con-
zeroes. These considerations rule out methods such as cofr9e t & zero, provided the guess lies reasonably close. If

jugate gradient. Instead, we use a two-dimensional Newtor ' Monte Carlq step size is gufﬁcigntly Sm'?"." the zeroes
Raphson method ' will move only slightly from their previous positions, allow-

The Newton-Raphson method is a three-step process t. g the zeroes of the previous configuration to be guesses for

first of which is testing whether or not the initial guess is a et_curlrint fﬂor;flgur?tlor;. Sl_r:rz]:e a veryl_sLntflll ste\pf;”slze Is not
zero. If the initial point is a zero then you stop and move onoPUmal for Vietropolis algorithm, we sightly mo par-

to the next guess; if the point is not a zero then take steps ifg:les relative to the average interparticle separaither

the direction of steepest descent until a zero is found. Step ?n i%ﬁ?'elf’?”‘?'e b3; atlarr]ge slemt:] an ?Cce‘t)ﬁa?iﬁ
are computed by first assuming that the guess is close to t 10 = i 0. LIS |r(111p0r an ’f f_ov(;/_ever, 0 rez 1z€ da €
zero, which allows one to Taylor expand the modulus of thecomparative eas@and speetof finding zeroes depends pri-

wave function about the zero. All particles except Htb are man]y on.the configuration of particles and how much a
fixed, so we expand in the coordinates,$) of the trial configuration changes between Monte Carlo steps. Thus a

; . somewhat uniformly distributed collection of particles more
point (the Nth particle easily lends itself to such methods. Typically, we have per-
formed calculations on systems containing up to 20 particles.
For example, a calculation gf,,, of the »=2/5 state for 20
(0.0) particles with 50 000 Monte Carlo steps takeS0 CPU h on

‘ our workstation (Digital Model 600au, Alpha CPU, 500
MHz). A similar calculation of 21 particles in the=3/7
tate takes-67 CPU h on the same machine.

The only problem we have encountered with Newton-
Raphson lies in the complexity of the basins of attraction. In
Newton’s method, for any polynomial with three or more
distinct roots, the basins of attraction have disjoinfredtal
regions'® and nearby points can converge to far away zeroes.
This has generally resulted in a given zero being found more
than once, although a guess would sometimes fall into a
periodic cycle, never converging to a root within the maxi-
mum number of Newton stepsip to five hundred When
and this happens we obtain guesses by blanketing the sphere’s

do+ of
(6.4) I

f
f(0+d0,¢+d¢)=f(0,¢)+j—0

wheref(0,¢)=|¥(6,¢)| and (#+d6,s+d¢) is the posi-
tion of the new point. Since the step must be in the directio
of steepest descent~(V|¥|) must be parallel to the New-
ton step. Thus the Newton step is given by

of
~1(0.6) 55

(6,4)
dg= (24)
(1Vf](6,6))
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L (a)

Resin(¢)

i 1]

FIG. 4. Cross section @, for 20 particles av=2/5, along
the arc passing through the fixed particle positions. In this and
subsequent figures, the origin is the north pole and the fixed particle
positions are represented by arrow®-—(c) correspond tod
=1.0rpp, 0.5, and 0.35,,, respectively. The numbers appear-
ing next to the central peaks ifty) and(c) give the height of the
peak.

surface with small plaguettes and examining the way the
wave function changes sign as one moves around the edge of
the plaquette. If both the real and imaginary parts of the
wave function change sign twice as we move around the
plaquette, then the plaquette’s center is taken as a guess.
Since these trial zeroes go into the Newton-Raphson method,
in some rare occasions all zeroes are still not found; we
completely ignore such a Monte Carlo iteration and return to
the previous configuration, using its zeroes as input for the
sums in the correlation functions. This is akin to the way
a rejected Monte Carlo step is handled in the Metropolis
algorithm.

A primary concern of any minimization method is the
termination condition. For our purposes it is sufficient to
require the modulus of the wave function to be below some
maximal tolerance. Since there are trivial zeroes bound to
each particle it is advantageous to use the modulus of the
wave function near them to define the tolerance. We calcu-
late the modulus of the wave function at sodaway from
each of the firsN—1 patrticles, using the lowest value as the

Resin(¢)

Rosin(¢)

2 0 2
RoOcos(¢)

FIG. 3. gpp, for 20 particles at=2/5, withd=1.0r,,, 0.5,
and 0.3%,,, wherer,,=4l,, |, being the magnetic length. The
sphere is plotted in polar coordinates. The north pole is the origin;
with the arc lengtrR¢ used as the radius and the azimuthal coor- .
dinate ¢ as the polar angle. The white arrows represent the posi- )
tions of the two fixed particles. The contours are shaded as follows.
Black represents zero probability per unit area, the shade of grey FIG. 5. Cross section o, for 20 particles atv=2/5, along
toward the edges is a probability per unit area of one, with lighterthe arc passing through the origin in a direction perpendicular to the
shades representing probability per unit area greater than one, whiggc joining the fixed particle positionga)—(c) correspond tod
being highest. Distance is measured in unit$of =1.0rpp, 0.5, and 0.35,,, respectively.
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L (a)

3k

L (¢)

i 1]

p, (™

FIG. 7. Cross section @, for 21 particles av=3/7, along
the arc passing through the fixed particle positidias—(c) corre-
spond tod=1.0r,,, 0.5, and 0.28,,, respectively.

IV. CORRELATION FUNCTIONS

We have calculated several pair-distribution functions in-
volving zeroes at filling factore=2/5, 3/7, and 4/9. We now
show the results and discuss what they signify. The particle-
particle pair correlation function at these filling factors has
been presented earli¥.

A. Zero zero

Figure 2a) shows the zero-zero distribution function
g,Ar) which gives the probability of finding two zeroes at a
distancer. It approaches unity at long distances, indicating
that the zeroes themselves form a liquid. At short distances,
the zeroes avoid one another.

B. Particle zero

Figure 2b) showsg,,(r), the probability of finding a
zero at a distancefrom a particle. The delta function at the
origin, due to the single zero at the particle, is not shown
explicitly. While forming their own liquid, the off-particle
zeroes avoid particles. In fact, a repulsion between zeroes
also guarantees a repulsion between the zeroes and particles,
for the particles carry zeroes with them.

L (a)
3_ -

-2 0 2
Recos(0)

FIG. 6. gpp, for 21 particles ab=3/7, withd=1.0r,,, 0.5,
and 0.25,.

tolerance. As the particles move during Monte Carlo, what is
or is not a good tolerance may change. To account for this,
we recalculate the tolerance during each accepted Monte
Carlo step. The shift indirectly determines the precison of
the zeroes found from the Newton-Raphson method and

-1

needs be no smaller than the smallest bin size used to calcu- FIG. 8. Cross section p,. for 21 particles av=3/7, along
late the correlation functions. We uge- 10 3l and are able  the arc passing through the origin in a direction transverse to the arc
to consistently resolve the position of the zero to at least foujoining the fixed particle positions(a)—(c) correspond tod
decimal places. =1.0rpp, 0.5,,, and 0.28,,, respectively.
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Rosin(¢)

Resin(o)

Resin(o)

-2

-6 -4 -2 0 2
ROcos(0)

FIG. 9. gpp, for 20 particles ab=4/9, withd=1.0r,,, 0.5,
and 0.25,.

We also plotg,,(r), the probability of finding an off-
particle zero at a distanaefrom an on-particle zero, in Fig.

(2(c). (This is the same as the correlation function for a par-
ticle and an off-particle zerpNote that the curves are nor-

PHYSICAL REVIEW B 67, 235302 (2003

P, ®)

o /\'MM¢I ¢W
0 -5 0 5 1

o ]

0

FIG. 10. Cross section @, for 20 particles av=4/9, along
the arc passing through the fixed particle positidias-(c) corre-
spond tod=1.0rp,, 0.5, and 0.28,,, respectively.

C. Particle-particle-zero (PP2)

In Fig. 1, especially in the first two panels, the zeroes tend
to locate themselves preferentiabgtweerpairs of particles,
especially if the particles are closer than the typical interpar-
ticle separation. There is a bunching of the zeroes of various
particles right in between pairs. This has motivated us to
look at the correlations between a pair of particles and the
zeroes. For this purpose, we hold two particles at a fixed
distanced and calculate the probability of finding a zero in
the neighborhood. Sufficiently far away, as expected, the
probability of a zero is independent of the distance between
the two fixed particles. We measudtén units of 4, roughly
equal to the interparticle separation, which we c¢g}.

Figure 3 shows how the probability of finding a zero near
the fixed particles evolves ad is varied from 1.0,, to
0.35 p, for 20 particles av=2/5. When the two fixed par-
ticles are at the typical interparticle separation, the particle-
particle-zero correlation function is essentially the sum of
two independent particle-zero correlation functions. When
d=1.0rp,, in top panel of Fig. 3, we see that finding a zero
half-way between the fixed particles is roughly as likely as
finding a zero far away. Asl is decreased tg, /2 and
0.35,,, respectively, the probability of finding a zero half-
way between the fixed particles increases by more than an
order of magnitude. As the fixed particles are pushed to-

% 5 0 5 10
-1

FIG. 11. Cross section @, for 20 particles av=4/9, along

malized differently. The close similarity between the three-the arc perpendicular to the arc joining the fixed particle positions.
plots demonstrates that the on-particle zeroes and the offa)—(c) correspond tod=1.0r,,, 0.5,,, and 0.25,,, respec-
particle zeroes behave equivalently in the liquid of zeroes. tively.
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gether, the peak between them increases and narrows. Tlilge central peak completely vanishes, a ring around the fixed
trend is most apparent in Figs. 4 and 5, which show theparticles emerges.
probability of finding a zero along an arc parallel and an arc

transverse to the fixed particlépassing through the mid-

point), respectively. We also see the emergence of prominent .
satellite peaks on either side of the two fixed particles, along?n The_ zeroes_of the FQHE states dIStI’IbUt_e themselves to
the line joining the particles. The difference in the height of aximize the mterel_ectrqn separatlon. As_dlscussed before,
the central peak coming from the two orthogonal direction he zeroes of a particle in an incompressible quantum Hall

is strictl tifact of th id of bins i ted |quid do not haye a well defined physical meaning, espe-
Lies SShBe/rZr.] artifact ot the way a grid ot bins IS generate OnC|aIIy the off-particle zeroes. They do not have a well defined

To ascertain how this behavior evolves with filling factor, charge or any other'sharp quantgm number assqciated with
we next considew=3/7 and 4/9. Figure 6 shows tiede- them. With t_hgt warning, we hf_;lve_lnvesngated thel_r structure
pendence of the probability of finding a zero near the fixeomr several f|II|ng_fac_tor_s. Our flnc_ilngs aré as fOHOWS'The.
particles, for 21 particles at=3/7. Whend=1.0r we Zeroes form a liquid(ii) There is a short-range repulsion

i) . - pp! . . .
find behavior similar to that in the top panel of Fig. 3. This is between the Zeroes. This also induces a repulsmn betwee_n
to be expected, because in both cases the distance betweer] °¢° and partlcles,' for the latter are f[he carriers of t'he Pauli
the two fixed particles is a typical interparticle separation an(;eroes(For the special case of Laughlin's wave function, all

the density of zeroes is essentially a sum of two uncorrelatec'es St On particlesot be_cause the zeroes are a'Ftracted to
densities. However, in the middle panel of Fig. 6, we see néne another or to the particles, but because this is the most

significant increase in the probability of finding a zero half- gfﬁuent way forparticles to S“’?‘y away_from one an_oth)ar.

way between the fixed particles dds reduced from 1.Q,, ggér:;;uss?mg rstteaterf),baet?iﬁ?mg%nm_ 2; s’zetrr(])e:ie hltsina?he

to ry/2, although the satellite peaks again appear. The dif- iddle of y 1arg fnp b Y | 9 9

ference in behavior, when compared ite- 2/5, is further middle of a pair omearbyparticles.

made apparent asdecreases to,,/4 in the bottom panel of

Fig. 6 and in Figs. 7 and 8. The peak between the fixed

particles vanishes; as do the satellite peaks. Instead of satel- This work was supported in part by the National Science

lite peaks, a ring forms around the pair of fixed particles. AFoundation under Grants No. DGE-998758&ERT) and

ring is to be expected in the limi=0 at all filling factors, DMR-0240458. We are grateful to the High Performance

because then we have a single charge-@e at the origin.  Computing(HPO) Group led by V. Agarwala, J. Holmes, and

However, the central peak is much weakewat3/7 than at  J. Nucciarone, at the Penn State University ASETademic

v=2/5 for any value ofl. Services and Emerging Technologie®r assistance and
The zeroes of the 20 particle stateiat 4/9 behave in a computing time with the LION-XE cluster. The authors

manner similar to that at 3/7. Figure 9 and its cross-sectiongould also like to thank A.H. MacDonald, G. Murthy, M.

in Figs. 10 and 11 show the zero between the fixed particlePeterson, D. Pfannkuche, V. W. Scarola, and R. Shankar for

being squeezed out dglecreases. In the bottom panel, whenvaluable discussions.

V. CONCLUSION
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