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We study the conductivity of a nondegenerate two-dimensional electron liquid in a quantizing magnetic field
for frequencies well below the cyclotron frequency. The conductivity is formed by electron transitions in which
the energy of a photon goes to the interaction energy of the many-electron system, whereas the involved
momentum is transferred to the quenched disorder. The conductivity peak is non-Lorentzian. Its shape depends
on the relation between the correlation lengthof the disorder potential and the typical amplituéieof
vibrations of the electrons about their quasiequilibrium positions in the liquid. The width of the peak is
determined by the reciprocal time it takes to move an electron qv@r the magnetic lengthfor r.<l). In
turn, this time is determined by vibrational or diffusive motion, depending on thenati® . We analyze the
tail of the conductivity peak for a short-range disorder. It is formed by multiple collisions with the disorder
potential. We also analyze scattering by rare negatively charged traps, and show that the conductivity spectrum
in this case depends on both short- and long-time electron dynamics.
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[. INTRODUCTION nondegenerate electron liquid has features in common with
an ordinary liquid. It does not have a long-range translational
In recent years, much progress has been made toward tlweder and displays self-diffusion, as seen in various numeri-
understanding of transport phenomena in strongly interactingal simulationd.1°
electron systems. The well-known examples are the frac- |n contrast to ordinary liquids driven by forces applied to
tional quantum Hall effect(QHE) and metal-insulator tran-  their surface, a 2DES is driven by a “volume” field, that is,
sition phenomena in low-density two-dimensional electrony field experienced by each electron. It comes from the ex-
systems2DESS in semiconductor$ 2DESs are particularly  ternal disorder, such as defects and phonons in semiconduc-
convenignt for investigating thg electron—elec'tron'interactioqors, or helium vapor atoms and surface capillary waves on
(EEI), since the electron density can be varied in broad pejiym, Because the total momentum of a 2D electron liquid
limits. One of the most Important effects of th_e EEl is the g changed through volume rather than “surface” scattering,
onset of electron correlations. The extent to which the SySte'EIectron transport is different from transport in an ordinary

:iﬁq%rfr:aetfd d;’pe”?,i ;)ntthhe r?ﬂc:)f thi_ch?racterlstlc Cou- liquid. It is different also from the transport in a weakly
gye*(n) ™ to the electron kinetic enerdy, nonideal electron gas. Even though the conductivity is of a
T =e2(mn) YE,, 1) metallic type rather than the activated type for a weak disor-
n der potential, its dependence on the parameters of the sys-
(Eyin is equal to the largest of the Fermi energyandkgT). tem, including electron density, temperature, frequency, and
For ' exceeding a critical valud'y,, a 2DES becomes @ magnetic field, should be totally different from that for an
a Wigner crystal. The parameték, is numerically large. ideal gas.

For low temperatures Hy;,= eg>kgT, in which casel’ The change of transport coefficients stems from the elec-
=rg), I'y=372 whereas for a nondegenerate 2DE& ( tron scattering by disorder being strongly affected by the
<kgT) I'yw~1304 electron-electron interaction in a 2D liquid. During scatter-

ForI'yw>I'>1, a 2DES is still strongly correlated, but it ing, an electron is coupled to other electrons, and this cou-
forms an electron liquid. Based on the success of the Fermpling determines the scattering probability. This is the case
liquid theory in describing®He, it is often assumed that in even for a short-range disorder potential, where different
the quantum regior>kgT, the electron liquid can be de- electrons are scattered off uncorrelated fluctuations. In this
scribed by a Fermi liquid, too. However, for very largg respect, a nondegenerate electron liquid is similar to a liquid
the system may be more compl&x. of vortices in a superconductor.

For large kgT/eg and for I'y>I'>1, a 2DES is a In the present paper, we investigate the frequency depen-
strongly correlated non-Fermi liquid. It should display a non-dence of the magnetoconductivity,,(w) of a 2D electron
standard behavior. Experimentally, such a 2DES has bediguid. Such a dependence is particularly interesting, since it
investigated in semiconductor heterostructdrgésand in  should provide a direct insight into the way in which a cor-
much detail for electrons on the surface of liquid heliti.  related electron system exchanges momentum with the dis-
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order. Indeed, in the Drude model the low-frequency magneelectron interaction. Of special interest is the tail of this peak.

toconductivity, transverse to a strong magnetic fig)ds For large photon frequencidbut still n<w.), a large elec-
tron displacemendr is required in order to accommodate the
oplw)=nérpM(w)/mw?, w.=eB/mc, (2)  energy. Consequently, a large momentum has to be trans-

ferred to the disorder potential. It may come from multiple

wherew, is the cyclotron frequency anﬁgrl is the momen- scattering off this potential. The mechanism has some simi-
tum relaxation rate. Here and below, we keeprin(w) the larity with that of anomalous diffusion transverse to a mag-
lowest-order term inv_ *. The frequency dispersion ef,,  netic field!® It significantly slows down the decay of
comes from the dispersion of, (). In the case of single- ox«(w), with o compared to the decay calculated for a
electron elastic scattering, it becomes strong for frequenciesingle-collision absorption.
of the order of the duration of a collision with a scatterer. The frequency dependence @f,(w) is totally different

The single-electron Drude picture does not apply to &or a long-range disorder potential. Of particular interest is
2DES if the magnetic field transverse to the electron layer the potential with a correlation length, smaller than the
is quantizing. Here, all single-electron states except for onéterelectron distance. In this case, the electron scattering
or maybe few are localizett;*2and the single-electron con- cannot be described in the hydrodynamic approximation. As
ductivity is equal to zero at zero frequericy:* Metalliclike ~ We show, here the conductivity displays a characteristic cusp
conductivity of a nondegenerate electron liquid is a result ot =0.
the electron-electron interaction. Earlier, we found a way to In Sec. Il, we relate the magnetoconductivity of a strongly
take this interaction into account nonperturbatively, and calcorrelated electron liquid to the electron structure factor. We
culated the static conductivity and the cyclotron resonancétroduce the single-site approximation, which determines
for a weak short-range disorder potenfalThese results the short-wavelength behavior of the structure factor. In Sec.
were qualitatively and quantitatively confirmed by the lll, we analyze the frequency dependence of the magneto-
experiment®-1’ conductivity for a short-range disorder potential. We show

The question of observing the actual dynamics or electrofthat, for nonzero frequencies bwt< w, the conductivity in
scattering in the electron liquid has not been addressed pr@uantizing fields becomes a nonmonotonic functioBofn
viously. From analogy with single-electron scattering oneSec. IV, we develop an appropriate diagrammatic technique
may expect that an insight into this dynamics can be gaine@nd study the far frequency tail of the magnetoconductivity
from the frequency dependencemf,(w). Here, we develop due to multiple electron scattering. In Sec. V, we discuss two
an appropriate theory and suggest relevant experiments. Wgpes of an intermediate-range disorder: the smooth disorder
also study the magnetoconductivity for two important typespotential and the potential of short-range electron traps; in
of a disorder potential, which have not been discussed for Both cases the conductivity is shown to be related to diffu-
nondegenerate electron liquid: a smooth random potentigdion in the electron liquid. Section VI contains concluding
and a potential of rare charged defects. The physics of manyemarks.
electron transport in these cases is significantly different
from that for short-range disorder. Il. MANY-ELECTRON MAGNETOCONDUCTIVITY:

A simple argument shows that the frequency dispersion of GENERAL ARGUMENTS
the long-wavelength magnetoconductivity ferk w,. is in-
deed directly related to many-electron effects. Because the
electron kinetic energy is quantized, the energy of an ab- g2
sorbed photoniw, may go to either the electron potential Hee=§ E [ra=rml~t (3
energy in the disorder potential or the Coulomb energy of the nsm
electron system, or both. For a weak disorder, electrons arig the largest in the electron system. Therefore, even where
not localized, and the disorder potential is largely averageelectrons do not form a crystdl,<I'yy,, electron positions,,
out by electron motion. Then, the photon energy may only bere still correlated. The EEI does not change the total mo-
transferred to the electron system. However, to provide momentum of the 2DES, and thus does not directly affect the
mentum conservation, this transfer must be mediated by digeng-wavelength conductivityr,,(w) (the Kohn theorem
order. However, momentum transfer from electrons to defects de-

For a short-range disorder, one can think of photon abpends on electron motion, and 8Q,(w) is ultimately deter-
sorption as resulting from an electron bouncing off a pointmined by the EEI.
defect. In a quantizing magnetic fieRl momentum transfer A standard approach to calculating, is based on finding
to defect op leads to an electron displacementr  elementary excitations in the many-electron system and then
=(c/eB?) spxB. In the presence of radiation, this displace- studying their scattering by a disorder potential. This ap-
ment can change the energy of the electron-electron interaproach is not of much help in the case of a nondegenerate
tion by 2 w. Therefore, by investigating the frequency depen-electron liquid, because elementary excitations are not
dence of the absorption cross section, one can find how aknown?!® However, for the types of disorder that we are in-
electron moves during a collision. terested in, the frequency-dependent conductivity is deter-

As we show, for a weak short-range disorder the conducmined by electron motion on either short or long times. This
tivity o (w) has a peak atw=0 with a specific non- motion can be described even when elementary excitations
Lorentzian shape, which is fully determined by the electron-are not known, as explained in the Appendix.

In the rangel’>1, the energy of the EEI,
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We will consider magnetoconductivity in a quantizing into the Kubo formula for the conductivity, giving,,(w) in
magnetic field B applied normal to the electron layer, terms of the correlator of the density operatpgsweighted
expfiw./kgT)>1. Then, the electron wave function is a wave with the disorder potential,
packet. Its typical size is the magnetic length -
= (h/mw¢)Y?. Further analysis is based on the observafion el [1-exp(—Bw)] (= . ,

¢ - dte“'> (q-q')
- a.q

that, in addition to a magnetic field, an electron is driven by Zxx(®)= 4430S
an electric fieldg; from other electrons. This field is due to
electron-density fluctuations, see the Appendix. It leads to a X(VgVq pg(t)pg(0)). (6)

semiclassical drift of the electron wave packet with a group . .
velocity cE; /B. Here,(- - -} implies thermal averaging followed by averag-

The semiclassical approximation applies at sufficientlying over realizations of the random potentiglis the area of

high temperatures, the system, an@=7%/kgT.
g P In the case of a weak disorder potential, the density-

ke T>HQ, szSIwCEZWe2n3’2/mwc. (4) densit_y correlator_ in_Eq(6) can be evaluated to the zeroth
order inV,, (the criteria are discussed belpWhen, the con-

Here, Q is the typical frequency of vibrations of the elec- ductivity can be expressed in terms of the dynamical struc-
trons about their quasiequilibrium positions in the electronture factor of the electron liquid,
liquid (wp, is the plasma frequency f@=0, Q<w.). The
picture of moving wave packets, with continuous energy S(q w):f
spectrum, is qualitatively different from the single-electron '
picture where the electron energy spectrum is a set of dis-
crete degenerate Landau levels. < _N-1

Electron motion leads to the averaging of the disorder SAH=N"Hpq(Dp-o(0)o, @
potential. Together with interelectron energy exchange itvhereN=nSis the total number of electrons, and the sub-
eliminates single-electron localization by an arbitrarily weakscript 0 means that the correlator is evaluated in the absence
random potential studied in the QHE thedty? A typical  of disorder.
electron energy in the liquid isgT. Therefore, a sufficiently For a nondegenerate liquid, it is convenient to write con-

strong disorder is needed in order to localize an appreciablgyctivity (6) in the form of an Einstein-type relation
portion of electrons, potentially leading to a glass transition.

In this paper, we assume that the disorder potential is weak ne’Dy

and the electron liquid displays self-diffusion and associated Oxd @)= 7=, Ds=1%7"Xw)/4. (8)

self-averaging. Specific conditions depend on the correlation B

length of the disorder potential and will be discussed later. Here, D can be thought of as a coefficient of electron dif-
fusion in the disorder potential; it should not be confused

A. Magnetoconductivity for a weak disorder potential with the coefficient of self-diffusion in the electron liquid

discussed in the Appendix. The characteristic diffusion

length in the disorder potential is given by the size of the

electron wave packdt and the collision rate is

dtel“tS(q,t),

The Hamiltonian of the electron liquid in the presence of
disorder has the form

H:H0+Hee+Hi, ) 1_e,Bw - —
N w)= =g AR @V AS@e), )
H = Vapy, = explig-ry). 5 . . ——
' zq: Pa Pa En: pia-ro) ® where the overline denotes averaging over realizations of
disorder.

Here, Hy is the sum of the single-particle Hamiltonians  The rater— (9) is quadratic in the disorder potential, as
pa/2m [with p,=—iAV,+(elc)A(ry)]; Hee is the EEl  in the standard Drude approximation. The expression for the
Hamiltonian and is given by Ed3), andV, are the Fourier conductivity, Eqs(8) and(9), goes over into the Drude for-
components of the disorder potential. mula (2), if one setsr *=47p Bw.. However, in contrast
The long-wavelength magnetoconductivity is given by thetg the single-electron Drude approximation, the dynamic
correlator of the total electron momentups==p,. The lat-  structure factor in-~* is determined by the electron-electron

ter satisfies the equation of motion interaction. In particular,S(q,w) depends on the electron
densityn.
dp, The factor] 1—exp(—Bw)]/Bw in Eq. (9) is equal to 1 in

the most interesting frequency range <1, which includes

the central part of the peak of the low-frequency conductiv-
(€., is the antisymmetric permutation tengoifhe low- ity. The frequency dependence of the effective scattering rate
frequency conductivityw<w,, is determined by slow time and the conductivity in this range is determined&fy, ).
variation ofP. Therefore, the time derivative in this equation On the other hand, in the analysis of the conductivity tail we
can be ignored. The expression fdican be then substituted will be interested primarily in the exponent, whereas

dat = wcep.vpv_ [ Eq: c4,u.quq
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[1—exp(— Bw)]/Bw leads to a smooth frequency dependencdageous in the sense that it can be generalized to the case of
of the prefactor ¢ w ~* for Bw>1). Therefore, we omit this Multiple scattering by a disorder potential, as shown in Sec.
IV.

factor in what follows.
Thermal averaging of a single-electron operator over the

B. The single-site approximation states of the.many-electron system in Ef) can be d_one in
. o o ) two steps. First, we average over the states of a givath)(
Expression(9) is significantly simplified in the important  g|ectron for a given many-electron configuration. Configura-
and most common situation where the correlation length ofion averaging is done next. It is reduced to integration over
the random potential is small compared to the interelec- e relative positions of the guiding centd®s, of all other
tron distancen~ V2. Here, at most one electron is scattered bYelectrons (' #m) with respect toR,,,. The integration has
a given fluctuation of the potential, for example, by an im-y5 pe performed with the Boltzmann weighting factor exp
purity in the case of electrons in semiconductors ora short(_Hee/kBT) [see Eq.(A11)]. This is because the electron
wavelength ripplon in the case of electrons on helium. Sincginetic energies are eliminated by the Landau quantization,
the 2DES is strongly correlated, all other electrons are fagq the only relevant energy of the system is the potential
away. - _ energy of the electron-electron interaction.
~ The conditionrc<n"~* allows us to single out the most T first averaging means taking a trace of a correspond-
important terms in the structure facts(q,»). The major jng single-electron operator on the single-electron wave
contribution to the sum oveq in Eq. (9) comes fromq  fynctions of an (th) electrony(r) (r=r,,). The functions
~min(~%r;1)>nY2 On the other handS(q,t) as given by  y, belong to the lowest Landau levélLL) and should be
Eq. (7) is a double sum of eXm-r,(t)Jexd—iqg-ry (0)] found assuming that the electron is in a uniform electric field
over the electron numbers,m’. The terms wittm#m’ are  E; created by other electrons. No extra weighting factor
rapidly oscillating forg>n~"2. Therefore, when calculating particular, no Boltzmann factphas to be incorporated when
7~ 1, one should keep only diagonal terms with=m’. We  calculating the trace. The energy is determined only by the

-1/2

call this the single-site approximation, many-electron configuration, and thermal averaging is done
_ _ over such configurations.
S(g,1)=S{q.,t), g>n'? The wave functions/,(r) depend on the many-electron
configurations only in terms of the fluctuational fiel].
Sdq,t)=(ela e i)y (100  Therefore, the configuration averaging is reduced to averag-

ing over the distribution of the fiel&; (A3), which we de-
note by (- - -)Ef. Overall, the average value of a single-

electron operato®(r) can be written as

wherer=r, stands for the coordinate of thmath electron.
The result is independent af, and therefore we disregarded
the electron number in Eq(10). Similarly, S(q,)
~Ss{q,w), where §,{q,w) is the Fourier transform of

Ssdq,t). 2712
The transition from the Kubo formul) to Egs.(8)—(10) (O(M)=—3g Ek (p(moM|(r)y) (12
corresponds to the approximation of independent scattering Ey

events for each individual electron. It is similar to the stan-

dard ladder approximation of the single-electron theory andypere the prefactor is just the reciprocal number of states of
is applicable, provided that the duration of a collisigh is  he |owest Landau level.

small compared to the reciprocal rate of electron scattering . ~
: : - : : In order to find the structure factdi;{q,t) [Eq. (10)] to
by the disorder potential. In turfy is the typical time range the zeroth order in the random potential, we will use the

that contributes t , ). - .
B{0, ) explicit form of the LLL wave functionsy{)(r) of an elec-

IIl. FREQUENCY DISPERSION OF THE CONDUCTIVITY: tron in the fieldE;:

A SHORT-RANGE POTENTIAL

We will first consider the case of a short-range potential (0)/ v\ _ 1 . 1 212
with correlation length ko (N)= (Ly|)1/27T1/4 exp iky— W(X_kl )7 (13
re< 8= (kg T/maw?)"2 (11)

) ) i Here, we chose th& axis in the direction ofg;, i.e., E;
Here, &; is the typical thermal displacement of an electron

from its quasiequilibrium position in the electron liquid. As =E X, Lyis _the size of the system in tl}ajzwectlon, and the
explained in the Appendix, electron motion, on distancescoordInatex is counted off from—eE/maw;. The ma}gnetm
smaller thans; and for times much smaller thai %, is a  field is chosen along the negatizelirection, B= —Bz.
transverse drift in a nearly uniform fluctuational electric field  The corresponding electron energlf’ (counted off from
E; (Ref. 20 [the electron vibration frequend is given by  fw/2—€’EX2me?) is
Eq. (4)].

We will calculate the structure fact§t0) using a formu- ) 5
lation that differs from the one used in Ref. 15. It is advan- e =eEkI®. (14)
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The structure facto(10) is determined by the trace of a range scatterer(q.6)?Q " is much larger than) .
product of the single-electron operators éxjpq-r(t)) taken  Therefore, an electron loses coherence between successive
at different times in the Heisenberg representation. Frongollisions. This shows that interference effects leading to a
Egs.(13) and(14), we have weak localization in the single-electron approximation are
_ , 22 not important for weak scattering.
<¢E<O)|elq-r(t)e—|q~r(0)|w(k0)>%e—q I /2e|tq»vD' (15)
wherevp=cE;x B/B? is the semiclassical drift velocity; for A. The conductivity for a é-correlated random potential

chosen axes, the, vectep points in they direction. In Eq. The expression for the conductivity can be obtained in an
(15), we disregarded fast-oscillating termsexp(+inwct),  explicit form in the important case of &correlated random
with n=1. Such terms make an extremely small contributionpotential V(r)V(r')=v?s(r—r’) or

to the conductivity foro<w. _

Following procedure(12), in order to findS.{q,t) we \Vol?=mh?y21212S,  hy=(2/m) 2l (20
have to average the right-hand side of Ef5) over the
fluctuational fieldE;. For the Gaussidfi field distribution
(A3), this gives

The parameterye«<1/l introduced here is a convenient
characteristic of the random potential in the problem of
electrons in a quantizing magnetic field. It gives the width
of the peak of the density of statggE) in the single-
(16) electron approximatioft in particular, on the tailp(E)
«exp(—4EYh%y7), see Ref. 22. From Ed9), the scattering

. rate for the potential20) is 7~ 1(0)~ y?t,, and the condition
Equation(16) shows that the structure factor decays very fastfor the ranch))m po{agnti)al to b((a v)vea)ll< t;kes a simple form

for wave numberg>1/1. Forql~1, it also rapidly decays

2

Sdq,t)= L 2|2 1+t
s 0,1) =ex —5d T_i

with time for t>T1,. y<tl.
The characteristic time, is simply related to the rms drift ) . .
velocity and the rms fluctuational fiel((Ef2>, C_ol_lectlng Eqs(8), (9), (16), and(20) we obtain a simple
explicit expression for the frequency-dependent magnetocon-
5 \/§| \/Eﬁ ductivity
YD eED (17) ey,
[the choice of the coefficients is convenient for E2fl) be- T @)~ 16 Mo, 7i(),
low]. A closely related time _
oi(w)=(1+wty)e . (21)

te=1(B/c)(Ef N~ (QkgT/h) 17 (18)

was introduced previous!y as the average time of flight of
an electron wave packet over a distahaethe crossed fields
E; andB. In the case of a short-range disorder potential (
<l), t. is the duration of an electron collision with the fluc- However, in contrast to_srly Eq. (2), the value of7 L is

tuation of the potentiafa point defect For a Gaussian dis- g,y getermined by the EEI. Through the factarit depends
tribution of the fluctuational field assumed here, we haye on the fluctuational electric field that drives an electron dur-
=(2/m)",. ing a collision with a scatterer. It scales with the density of
Equations(9) and (16) give the conductivity in a simple the electron liquid a®~%* so that the overall conductivity
form. The typical values of| transferred in an electron col- 4, (0)cn'.
lision areqc=(rZ+1%)~*2 The duration of a collision is the The frequency dependence of the conductivity is deter-
time over which correlatof16) decayst./qcl. For a short- mined by the dimensionless functien(w), which is shown
range potentia(11), we havet./ql<Q~*. This justifies the in Fig. 1. It peaks at zero frequency and monotonically de-
assumption that the fluctuational field remains constant dureays with increasing. In contrast to the Drude conductivity
ing a collision, which is equivalent to the assumption that in the absence of a magnetic field, which has a Lorentzian

In the quasistatic limit of smalbt., Eq.(21) coincides with
our previous resuft® The conductivityo,(0) has a form of

a single-electron conductivity in a magnetic field, with a
scattering rate- 1~ »°t, quadratic in the disorder potential.

<0 L peak o, 1/(1+ w?7?), the peak ofoy is strongly non-

The condition for the disorder potential to be weak, soLorentzian. The characteristic width* of the peak ofr is
that collisions occur successively in time, is independentf the disorder potential. Its dependence on the
£ (1 o/1)2+ 1142 7(0), (19 ]?cicre:qtrgl:i2/§$¥;2t8eﬂgérature, and the magnetic field is of the

where 7 Y(w) is given by Eq.(9) and is quadratic in the The tail of the peak is exponential in. Interestingly, it

potential strength. has the exact form of the Urbach rdfej.e., |In oy|*w.

The typical frequency) [Eq. (4)] of electron vibrations [However, for very largest,, where multiple scattering be-
about its quasiequilibrium position is also the rate of inter-comes important, this form is modified, see Sec) [Vhe
electron energy exchange. The time interval between succeshape of the tail can be understood by noticing that the con-
sive collisions of a vibrating electron with the same short-ductivity is formed by processes in which teeergys w of
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FIG. 1. The frequency dependence of the many-electron con- FIG. 2. The dependence of the reduced microwave many-
ductivity for a short-range disorder as given by E2{l). electron conductivityr} () = wt.o1(w) on the magnetic field for a

weak &-correlated random potential and fegT>#Aw. Both the

absorbed photons goes to the many-electron system. IN &Raracteristic scaling magnetic fiel), =B/(wi)? and the ratio
individual absorption process, the involved electron moves; (,)/¢!(w) are independent @, see Eqs(17) and (21).
by the distancéR=7 w/e|E;| along the fluctuational electric

field E{|x. The squared matrix element of a dipolar electroning to the overall scattering rate 1~ %t B¥2.1° The in-

transition accompanied by a displaceméi= SR x is de-  crease ofo,,(0) with increasingB has been confirmed

termined by thesquared overlap integral of the wave func- experimentally.®
tions (13): For nonzero frequenciesr,,(w) displays a peak as a

function of B, see Fig. 2. For comparatively smatiut still
|<¢(k0)(r)|¢(k0)(r+ SR))?=exd — (8R)%/21%]. (22 quantizing fields we havewt,<1, and theno,(w)~t,
«B2 as in the static limit. On the other hand, Brsuch

On the other hand, probabilita3) to have a fluctuational thatwt.>1, the conductivity falls down exponentially with

field E;=7% w/(edR) is increasingwt, . The positionB,,,, of the peak of the conduc-
tivity is given by the Golden ratio
2
pxexp — (ﬁL . ~ 1+5 _2
e2( 5R)2<Ef2> (ot max:Tv Bhao (23

By optimizing the product of the two exponentials with We note that the microwave magnetoconductivity dis-

respect ~to oR, we obtain that~the conductivity is plays a peak as a function Bfin the single-electron approxi-
xexp(-wte), with expressior(17) for t. taken into account. mation as well* However, the shape of the peak is totally
This is in agreement with Eq21). . _ different. In particular, the higl decay of the single-

It is important to check the assumption that the figlds  glectron o, () is related to the localization of electron
uniform over relevant distances. In a_strongly correlated syssiates in the random potential and is described by a power
tem, |VE{~e n*. Therefore for optimalsR and E;, the  |aw, Many-electron effects lead to delocalization, and the
relative change of the field on the distang® is decay of the conductivity witlB becomes exponential, cf.
Fig. 2. Of course, for very strong the approximation of
weak random potentiayt.<1 breaks down, and then the
decay ofo,,(w) with B slows down.

We note also that in the single-electron theasy,(0)

It iS interesting that th|S Condition does not impose I|m|ta':0 due to e|ectr0n |Oca|izatioh”_114Therefore'a-xx(w) as a
tions onw. function of frequency has a peak at nonzero frequency which
Another interesting feature of the many-electron micro-gepends orB. This is in contrast with the monotonic decay

wave conductivityo,,(w) is its nonmonotonic dependence of o) in the many-electron theory shown in Fig. 1.

on the magnetic field. Sincgex1/1«BY? [see Eq.(20)] and

texBY2 [Eq. (18)], the static conductivityo,(0)xB? is V. CONDUCTIVITY TAIL: THE EFFECT

increasingwith B for quantizing fields. This happens because ' OF MULTIPLE SCATTERING

as B increases, the electron wave function becomes more

localized, thus increasing the effective strength of coupling It follows from the results of Sec. lllsee Eq.(13)] that

to short-range scatterers. At the same time, the electron drillectron wave functions in crossed electric and magnetic
velocity in the fluctuational field decreases, and as a resufields display a Gaussian decay along the electric field. One
the characteristic collision duratidg increases witlB, lead- may expect that multiple scattering of an electron in a short-

[VE{SR en*?sR e’n¥4(sR)?
Ef - Ef N h w

~Qte<1.
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range random potential will slow down this decay, as it does A. The projected Green function

for localized electrons in the absence of an electric ﬁglﬁ In order to find the |ow-frequency Conductivity' it is con-
turn, a slower spatial decay may lead to a slower decay of thgenient to use the Green functi@®,(r,r’') “projected” on
many-electron conductivityr,,(w) with frequency on the the lowest Landau level. It is constructed from the LLL wave
tail, wherewt,>1. This is because it becomes more prob-functions(r) of an electron in the random potentid(r)
able for an electron to shift by a larger distance along thénd in the electric fieldg;,

fluctuational electric field; and, therefore, to absorb a pho-

ton with higher energy. The effect is similar to the impurity- Gg(r,r’)=2 PP (r' ) (e—i0—g) ", (25
mediated electron tunneling between the Landau levels tilted k
by an external electric fieltf?° where g, is the single-electron energy of the stateThe

The approximation of an electron moving in a static uni-wave functigxns,/;k are linear combinations of the LLL wave
form field E; is well justified in the frequency ranget,  functionsy{” [Eq.(13)] in the absence of disorder. Follow-
>1. Indeed, the many-electron fie} changes over time ing the averaging proceduté2), we obtain from Eq(24),

~Q~1 see the Appendix. It remains constant over the du- ne?|4 |2 w

ration ! of absorption of a photon because <t, axx(w)=m§Rez deJ drdr’

<. The argument in favor of the field uniformity is B XY S

based on the fact that the absorption tail is formed by large X(V(MV(r") d; d,r Gg(r,f’)G§+ﬁw(f,f')>Ef-
fields E;. They are experienced by electrons that are far v

away from their quasiequilibrium positions. The larger is the (26)

field, the larger the distance to the quasiequilibrium positionHere, ( . . . )e, includes averaging over the random poten-
should be. On the other hand, this distance is also the scajgy ) '
on which the field is Spatlally nonuniform. We will see that it We will consider the random potentim r) as a pertur-

will largely exceed the electron displaceméni/eE during  pation. The zeroth-order Green functi@{® can be found
absorption. Both lengths will be assumed much smaller thaising the explicit expressiond3) and (14) for the wave
the interelectron distanae™ 2 functions and the energy in the absence of disorder:

A large electron displacement requires a large momentum
transfer to the random potentia1>n‘1’2. Therefore, it is a G(O)(r rr):ﬂ_—llzl g(r r,)J dk
good approximation to evaluate the correlator in the expres- —° ' '
sion for conductivity(6) using the single-site approximation.
This means that the produgg(t) p4(0) in Eq.(6) should be

><exp(—[2|2k—(x+ X" ) —i(y—y’)]%141?%)

replaced by .exdiqg-rm(t) ]lexdiq’ - rm(0)]. Then e—eEl%k—i0
(27)
nell4 e« . where thex axis is chosen along the fielg, as in Eq.(13).
Ty ®)=— WJ dte“t> (q-q) The function
° - q’q, 1 2102 2
x<quq,eiQ'r(t)eiq/'r(0)>’ (24) g(rlr,): 277' ze_(r_r )4 el(X+X )y=yHi (28)

in Eq. (27) has a simple meaning. It gives tfminug right-
hand side of the Schdinger equation for the projected
Green functionG_(r,r"), that is, it replaces thé function
S(r—r’") in the Schrdinger equation for a standard Green
function. The functiong(r,r’) is localized in a narrow re-

wherer=r, [the result is independent of the electron num-
berm]. For Aw=kgT, we should replacekgT) "t with [1
—exp(—Bw)]/hw; however, as noted above, it will only af-

fect the prefactor in the conductivity. . o . 0)
The averaging in Eq24) can be done following prescrip- gion [r ! =2l and leads to a Gaussian falloff G(s for
large distances.

B e o At Al ees 5 e v e S0 Th fl Green o, s detrine by the Dyson
i equation. Its solution can be written symbolically as

averages over the field. In contrast to the calculation in Sec:
lIl, to allow for multiple scattering one should use wave G,=G9+G®.v.GV+c®.v.G®.v.GO+...,
functions found with the disorder potentisl(r) taken into (29
account. In our approximation, averaging over realizations ofypere the central dot implies integration over internal coor-
V(r) andE; is done independently. It turns out to be MOre ginates, such agdr,GO(r, ;,r)V(r)GO(r, r,.,). We
convenient to average ovsi(r) first. emphasize that, even though the Green funcéqnis pro-

In what follows the random potential is assumed {0 begcted on the LLL, Eq(29) contains theull rather than the
Gaussian and correlated, with correlataf20). We will use  projected disorder potentiad(r).
the Green-function technique. In contrast to what was done A straightforward calculation shows that, to the lowest
in the analysis of the tail of the wave funcUé‘ﬁthls_ tech-  order inV, the conductivity obtained from E¢R6) coincides
nique has to be formulated in the frequency domain. We willwith the result of Sec. IlI; in this approximation, the full
show that this leads to a somewhat unusual set of diagramgreen functiorG, in Eq. (26) has to be replaced wit@(so).
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respond to the top and bottom segments in Fig. 3. Each of
them connects points with equal coordinateg,; andr,
respectively. Their product is

Ggo)(rl-rl)[G.(s(l)ﬁw(rNJrlarNﬂ)]*
x(e—i0—eEXx) YNethw+i0—eExy,q) t
(31

(a) Upon integration ovet in Eq. (26), expression31) goes
over into 2m28(hw—eE((Xy4+1—X1)). This is the equation

FIG. 3. Diagrams for conductivity26) in the coordinate repre- 0f energy conservation in a photon-induced transitign
sentation. Segments of the solid lines connecting the poisats, —TIn+1- Such a transition is exactly the process that dia-
andr’=r/, in the upper and lower half planes are the Green func-grams in Fig. 3 describe.
tions GO(r;,ri,1) and[G®D, (r! ,r/.)]*, respectively. Crosses This picture provides a physical insight into the diagrams.
(x) correspond to the Gaussia@ncorrelated potentiaV/ at pointsr; It shows that the absorption doast occur in a transitiorn
[subsequent integration ovey is implied]. Dashed lines indicate —r’ between the external points of the diagram. Important
averaging ovelV. Wavy lines mark the “external” vertice¥(r)  for the transition is the admixture of the wave functions cen-
andV(r') in Eq.(26) and imply differentiation of the product of the tereq away fronr andr’ (in fact, maximally far away, see
Green functions over, r’ prior to averaging ovev. below).

The solid lines in Fig. 3 other than the top and bottom
segments connect spatially separated paingndr;, ;. The

According to Egs.(27) and (28), the Green function leading exponential terms in the dependence of the Green
GOr,r") is mostly localized in a narrow regiofr—r’|  functions on the distance between the points is given by
=2I. As a function of energy, it peaks at titgcaled mid-  overlap functiongy(r;,r;,,) [see Eq.(30)]. The product of
point in the E; direction, wheree=eE(x+x’)/2 for y  theg functions entering th&th-order diagrams can be writ-
=y’. Near the maximum, ten as

B. Diagrams for high-frequency conductivity

N

o) aN({rj}):g(rlarl)g(rN+lrrN+l)i:].—.[l lg(r; :ri+1)|2

O
° g—i0—eEr©

rO=rOrr)=[(x+x)+i(y-y)l2. (30 ocexp(—E (ri—ri.1)2212|. (32

With this in mind, we now consider expressi@26) for
the conductivity in terms of the product of the Green func-
tions and assume th&, andG? are given by the perturba-
tion series(29). In the product of the series, we need to find ='s’

with {rj}=rq, ... ry+1. We have incorporated into E(82)
the terms from the “external” coordinates=rg and r’
’

terms containindgz@(r.r’) and[G©, (TT")T* with For largefrw/NeEl, the integral over,, .ofNszcCan o
% () [Gevnolrir)] be evaluated by the steepest descent, with the constraint
eE[rOF T )—rOr 1) ]~ho. ho=eE(xys1—X1) [the integral over, cancels the factor

S 1in Eq.(26)]. As in the case of underbarrier tunneling in

Such terms describe absorption of a photon accompanied ey magnetic field® the extreme points are equidistant:
an electron displacement b§R=%w/eE;. The displace-
ment results from scattering by the random potential. xF=x;+(i—Dhw/Nek, yO=y (33

Graphically, the leading-order contribution to conductiv-
ity can be represented by a sum of the “fat fish” diagrams
illustrated in Fig. 3 in the coordinate representation. In this ~ e
figure, the wavy lines mark the pointsandr’ where the In gN({r} )})m_(ﬁw/eEfl)Z/ZN' (34)

derivatives of the product of the Green functions are taken imhijs expression has a simple physical meaning. The fattor
Eq. (26). The lines above and below these points represent, the denominator shows the scattering-induced increase of
series(29) for G,(r,r’) and[G,.,(r,r')]*, respectively. the overlap integral between the electron wave functions cen-
The crossesx) indicate the factors/ in expansion(29) at  tered at points; andry, ;, which are separated liyw/eE; .
pointsr; where the electron is “scattered.” Solid lines be-  Except for the top and bottom Green functiof®d), all
tween the crosses denote the Green funct®ff8(r;,ri11)  other Green’s functions in the diagrams in Fig. 3 are non-
and[G(?), .(r{ ,r/.1)]* that describe electron propagation resonant. Their saddle-point values can be evaluated using
between collisions. the approximate expressiof30). The diagrams in Fig. (&)

An Nth-order diagram has the total number of crossedave rg=r that differs fromrg=r'. These diagrams de-
equal to 2N+ 1) (two crosses come from the external ver- scribe the interference of different tunneling paths and can be
tices in Fig. 3. We start with the Green functions that cor- negative or positive. The total of all diagrams in Fig. 3 is, of

fori=2,... N+1. Then, at the extremum,
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course, positive. The interference of paths affects only the Several comments need to be made about this result. First,
prefactor in the conductivity. The leading exponential depenthe diagrams in Fig. 3 are unusual for a transport problem.
dence on the distandaw/eE; and on the diagram ordéfis  They are neither the standard “ladder diagrams” nor the
not affected. It is the same for all diagrams in Fig. 3. Theresmaximally crossing diagrams. Rather the diagrams in Fig.
fore, here we will give results only for the “diagonal” terms, 3(b) are the maximally wrappe¢embeddej diagrams for
which are described by the diagrams in Fi¢)3 the self-energy. Here they appear, because absorption of a
The Nth -order diagrams in Fig.(B) contain a multiplier ~ photon is accompanied by only one “real” scattering by the
[ 7%29212/2]N"1 from the intensity of the random potential random potential. The role of multiple scattering is to allevi-
(20). Together with the factors from the energy denominatorsate the Gaussian decay of the electron wave function along
[see Eq.(30)] and the factors from the integration over; the fluctuational field. Second, as the frequency increases,
around the extreme point83), these coefficients give an the probability of a realization of an optimal fluctuational
N-dependent factor field E; may become non-Gaussian. In particular, in the re-
gion where Irp(E;) is nearly linear inE;,° we obtain
Ce=[Ny/w]?"[(25=3)!!1(2N=-25+1)!!]17%, (39  [InoyJxe'? ie., even a slower decay than E§7).

which also depends on the positien(r=r'=r) of the
wavy lines in Fig. 3b) (we assume that4s<N+1). For V- MAGNETOCONDUCTIVITY IN A SMOOTH RANDOM

large N>1, the factorC, is maximal fors=N/2, POTENTIAL

In many physically interesting cases, the correlation
& + . . ; .

N Cma=2NIn(y/ @) +2N (36) length of the random potential. is large (or effectively
The conditions=N/2 indicates that photon-induced transi- large, see belowcompared to the typical size of the electron
tions preferably occur between the states that are maximallywave packet. A well-known example is provided by electron

(and equally separated from the external pointsandr’. systems in semiconductor heterostructures, where much of
This is optimal in terms of maximizing the overlap integral the disorder potential comes from the donors that are spa-
of states with a given energy separation. tially separated from the 2DES. A sufficiently weak, smooth

A more detailed calculatidfishows that, in order to allow random potential does not lead to a glass transition in an
for the compensation from diagrams in Figag it is neces- electron liquid. The liquid should then display a nonzero
sary to incorporate corrections to the leading-order steepestatic conductivityo,,(0).
descent integrals. However, as we already mentioned, these We are interested in the effect on transport of the dynam-
corrections do not affect the leading term indlg. We also ics of individual electrons in the electron liquid. We will
note that, for a giverk;, the in-plane conductivity becomes consider scattering with a momentum transfer that largely
anisotropic. This anisotropy leads to different prefactors forexceeds the reciprocal interelectron distageen Y2, Such
the conductivity in the directions parallel and perpendicularscattering is usually more important for magnetoconductiv-
to E;.%° ity. If, on the other hand, the random potential is smooth on

the scale of the interelectron distangg>n~*2, the magne-
C. Frequency dependence of the logarithm of the conductivity ~ toconductivity can be analyzed in the magnetohydrodynamic
approximation by considering long-wavelength hydrody-
namic modes of a viscous electron liquid in a magnetic field
and a disorder potential.

The logarithm of the conductivity,(w) is given by the
maximal value of the sum of expressiof®} and(36) with
respect to the order of the diagrayn For o= w., the major
factor in Inoy(w) coincides with that in the logarithm of the
inter-Landau-level tunneling rate in an external field in Ref.
24(b). To average over the fluctuational electric field, one has We start with the case of a weak Gaussian random poten-
to add the logarithm of the field distribution and find the tial with correlation length small compared to the interelec-
maximum of the resulting expression ovEf. With the tron distance. Here, to the second orde¥{m), the conduc-

A. Gaussian potential with correlation lengthr <n~2

Gaussian field distributiofA3), we obtain tivity is given by Eqgs.(8) and(9), with the structure factor
S(q,w) evaluated in the single-site approximatid®).
In oy @)~ — (31223 (wt o) In(wly)— 113,  (37) The results become particularly interesting and instructive
- if the correlation length of the potential satisfies the condi-
wheret, is given by Eq.(17). tion
Equation(37) is the central result of this section. It shows S<ro<n 2 (38)

that the logarithm of the conductivity depends on frequency

asw?? for largew. This form of decay is a result of multiple Where & is the thermal electron displacement from a quasi-
scattering in the random potential, which helps an electron t§quilibrium position in the liquid11).

move along the fluctuational field as it absorbs a photon. The For a random potential that satisfies inequal®p), the
crossover to Eq(37) from the single-scattering approxima- structure factoSs{q,t) needs to be calculated for<1/6;.
tion (21) (where|In oy,]><w) occurs when the optimal number In other words, the electron displaceméng(t) —r,(0)| in

of scattering eventdl~ (wt/In(w/7))?® becomes large. The EQq. (10) should exceed;. Such displacements occur over
corresponding value ab depends on both the many-electron timest that largely exceed the reciprocal frequency of vibra-
fluctuational field and the intensity of the random potential. tions about a quasiequilibrium positiéh~*. They are due to
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1 ' ' ' - type tail, og~2/w? for w>1. An unusual feature of the

\ conductivity is thato is linear in |w| for small|w|. It has

L \ _ the formo(0)— const< |w|. This nonanalytic behavior is a

\ consequence of the slow decay of the structure factor

05l \ ) S.{a,t) (39) with time for small wave numberg. We note

’ N that Eq.(41) does not apply for very small|. Indeed, the
\\ single-site approximatio(B9) is valid only forg>n%2 This

r S 7 means that Eq(41) can be used only fofw|>Deh or

_~ >nr2.

0 . ' ' . The typical duration of a collision with the random poten-

3 ® tial is given by the timerngee it takes for an electron to

) diffuse over the length.. The necessary condition for ap-
FIG. 4. Frequency dependence of the reduced microwave manysjicapility of the above theory is that this time should be

Slectron conductivityog(w) [Eq. (41)]. The scaled frequency is small compared to the relaxation tim€0). It sets an upper
w=wr2/2D,. The dashed line shows a Lorentzian curve with thepound on the strength of the disorder potential,

same maximal value and the same asymptotic behavior for large

<hDgll. 42
self-diffusion in the electron liquid, with the diffusion coef- lvel ee 42

ficient D¢ (Al4) introduced in the Appendix. In the diffu-

) . . Inequality (42) can be understood by noticing that,
sion approximation, we have q y (42) Y g

as mentioned above, a smooth disorder potential adds
Z ~ _ 2 >0-1 to the electron drift velocity a termi(c/eB)Z,(zXq)
Sd QO ~exp Dot [tI=>07" 39 Vqexp(g-r). Equation(42) corresponds to the con((]jition that
The physical picture of scattering by a smooth randonthe root-mean-square electron displacement due to this ve-
potentialV(r) is as follows. The guiding center of the elec- locity over the collision duratiorr?/D., should be small
tron cyclotron orbit drifts transverse to the sum of the many-compared to the size of the electron wave pactkétiterest-
electron fluctuational force- eE; and—VV(r). The fieldE; ingly, the correlation length, drops out of Eq(42).
leads primarily to vibrations about a quasiequilibrium elec- The parameter range, where a 2D electron system forms a
tron position. In turn, these vibrations result in partial aver-liquid, is not limited to temperatures where electron motion
aging of the disorder potential. This is somewhat similar tois semiclassicakgT>7%{) (4). The results of this section are
motional narrowing in nuclear magnetic resonance. The awalid even forkgT<<#() as long as the electron system dis-
eraging is incomplete because of self-diffusion of quasiequiplays self-diffusion. The parametéy in inequality(38) is in
librium electron positions. Therefore, the momentum transthis case determined by quantum zero-point fluctuations.
ferred to the disorder potential and, thus, the conductivity are The formalism of this section can be applied also to the
determined by the diffusion rate. case of a smooth potential created by charged donors sepa-
Frequency dispersion of the conductivity depends on aated from the electron layer by a spacer of widih
specific model of the random potential. A model frequently<n~2, The major contribution to the conductivity comes
used in the analysis of scattering of 2DES, including thefrom the scattering with momentum transfer/d. How-
quantum Hall effect, is a random potential with a Gaussiarever, the long-wavelength tail of the Coulomb potential leads

correlator-? to a logarithmic divergence of the relaxation rate!(0)
5 o1 2 - calculated using Eqg9) and (39). The analysis of this di-

[Vg|*=S""vg exp(—g°rc/2), (400 vergence requires a hydrodynamic approach and will be car-

i.e.,W=(vé/2wr§)exq—(r—r’)2/2r§]. ried out in a separate paper.
From Egs.(8), (9), (39), and(40) we obtain for the mag-
netoconductivity, B. Electron traps
5 An important type of disorder, particularly for metal-
ne’vg oxide-semiconductor systems, are electron traps. One can
o) = og(w),

think of them as deep short-range potential w#l|gr) lo-
cated at random positions, . The overall random potential
then is

2 2.2
4k T MwiriDee

O'G(lx)):1+:0

~ ~ aa ~ ~
cog a))( Si(w)— 5) —sin(w)Ci(w)},
(4D V()= Vi(r=p,). (43
wherew=wr?/2D.., and Si¢) and Ci(z) are the sine and
cosine integral functions, respectivélyEquation (41) is  The potentialsV,, are not weak, but the trap densit; is
written for @=0; the functiono,(w) is even inw. assumed small. In particular, we assume that the intertrap

The functionog(w) is shown in Fig. 4. It decays mono- distanceN;l’2 largely exceeds the correlation length of the
tonically with the increasingw and has a Lorentzian- electron liquid. Then, even though the traps will capture
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some electrons, other electrons will be free to move and\ppendiX. The diagonal matrix element of the force should

there still will be self-diffusion in the electron liquid. be equal to zero. This gives for correlaidb),
To the lowest order i\, the magnetoconductivity is 5
given by Eq.(6). Forw<kgT, we write it in the form (V. V1 (0] V., Vi[r,(0)])=eXE(1)E(0)). (46)
e2|4 ” . For a trapped electron, the behavior (& ,(t)E.(0)) is
oy(w)= mz E J dt et determined by the motion of neighboring electrons. As in the
B nn’ k' 7%

absence of trapping, this motion comprises vibrations about
AV NI (D) = 1- VT (0= 0T} quaS|eqU|I.|l:_Jr|um positions superimposed on _dn‘fusmn of
(VaVil [0 =Pl - Vo Vil T(0) = i) these positions. Because the trapped electron itself does not
(44) move, the vibrations and the diffusion are somewhat differ-
ent from those in the free-electron liquid. However, we do
Because electrons are strongly correlated, only one elegot expect this difference to be too large. Indeed, a neighbor
tron may experience the potential of a given trap at a timegf 5 trapped electron has at most one of its(six average
We assume that this electron gets localized on the trap. Kearest neighbors localized. Therefore, the correlator
then creates a repulsive Coulomb potential for other eleC(EK(t)EK(O)) should still decay on times of the order of the

trons, and they stay away from the trap. reciprocal vibration frequencf %, in the central part.
The picture of one Iocallzed'electron_per trap allows usto |t is seen from Eqs(44) and (46) that o,(0) is deter-
rewrite the sum of the correlation functions in E¢4) as mined by the integral of the field correlator over time, with
no extra time-dependent weight. In the semiclassical ap-
> Yo DV LVr ()] V Vil (0)]). proximation, this integral is simply related to the self-
nn' i’ K diffusion coefficientD,, of the electron liquid(A12) and

(45  (A13). For a trapped electron, it should be the same, to the
order of magnitude, and may only differ by a facted that

Here, r,. is the coordinate of an electron on «&h trap depends o, Therefore

counted off from the trap positiop,.. We also disregarded
terms withk' # k, because different traps are far from each 0 (0)~Ny €2Doo/kgT. (47)
other and electrons on different traps are not correlated.

We will assume that a localized electron occupies only the |n contrast to the cases discussed before, the conductivity
ground bound statég) in the potentialVy(r) and that the ¢, (w) does not peak ab=0 for low frequencies. The field
energy spacing between the ground state and the nearest gower spectrum, which is given by the Fourier transform of
cited state ishwg o>kgT. Then electrons very rarely es- correlator(46), increases withw. A simple calculation shows
cape from the traps or are thermally excited to higher stateshat, for a Wigner crystal, this increase is linear o).

It should be noted that, in fact, the true binding potential isTherefore, for an electron liquid it should be linear in the
stronger than the “bare” potential,, because surrounding ranges?/D.<w<Q. The conductivity peaks ai~ (. The
electrons contribute to electron localization by providing agyerall width of the peak of the low-frequency conductivity
“caging” potential. The localization length of the stdtg) in is ~Q.

a quantizing magnetic field is of the order of the magnetic Equation(47) shows that, for short-range traps, magneto-
lengthl < 6;. conductivity is proportional to the defect density, rather than

Forfiwg_.>kgT, thermal averaging of a single-electron the electron densityr. For w=0, it depends om only in
operatorO=0(r,) in Eq. (45) is done in two steps. First, terms of the self-diffusion coefficie®... The shape of the

one has to find the diagonal matrix elem¢gtO|g) on the ~ Peak also depends anTherefore, measurements of the con-
wave functions of the ground state of the trapped electronductivity spectrum should provide an insight into both long-
Then the matrix element has to be averaged over the states &Rd short-time electron dynamics in the liquid, i.e., self-
the many-electron system. In addition, if we are interested ifliffusion and vibrations about quasiequilibrium positions.

the conductivity at frequencies<wg ., we have We note the similarity between this problem and the problem
of dissipative conductivity of a 2D superconducting film
(9|V Vol r ()]-V Vi1 (0)]]9) with vortices in the presence of pinning centers.
—(9I V. Vil 1 (D]1]9)9|V Vil 1 (0)]]9). VI. CONCLUSIONS

In order to calculate the matrix elements In this paper, we have found the frequency dependence of
(9|V Vu(r,)]g), we note that, besides the potential of thethe conductivity of a nondegenerate electron liquid in a
defect, a trapped electron experiences a potential from otheuantizing magnetic field fon<w.. We have shown that
electrons. The fluctuating part of this potential varies on timethis dependence is extremely sensitive to both short- and
~Q1 In the range of interest3Q)<1 (4) and Bwg_e  long-time electron dynamics in the liquid and the character-
>1, we have()<w,_... Therefore, a localized electron fol- istics of the random potential.
lows the many-electron field adiabatically. The overall force For a short-range potential, the conductivity is determined
on axth localized electron is- VV,(r,) —€eE,, whereE, is by a largeg electron scattering. It occurs as an electron drifts
the many-electron fluctuational field on this elect{eae the transverse to the magnetic field and the figld which is
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created by density fluctuations in the liquid. The results be-(a) . o (k) (b)
come particularly simple if the correlation length of the po- ° hd

tentialr is less than the magnetic lengthHere, the shape . ® /’——_

of the peak ofo,,(w) depends on one dimensionless param- ¢ Sf s ¢

eterwt, and is given by an explicit expressi¢al). The time c\\ ____________
te is the time of flight over the lengthin the fieldE;. It is * B kel/ B

smaller than the inverse rate of interelectron momentum ex- ® Qt

changeQ ~! and depends on the electron density, tempera- o °

ture, and magnetic field agecn™3“T~Y?BY2 Therefore, by K

studying the shape of the magnetoconductivity peak for a ) ,
short-range disorder one can investigate the short-time elec- F!G: 5. (8 A snapshot of a correlated electron flugthemati-

tron dynamics as a function of the parameters of the electroﬁa”y)' The open circle shows an equilibrium position of one of the
liquid electrons in the field of other electrons. Because the electron is

The tail of the conductivity in the rangt§1<w<wc is displaced, it experiences a restoring force, which is determined by

ial and ob h bach rul he oh the fluctuational electric field&;. (b) Phonon spectrum of a 2D
eXpo_nent'a and obeys the Urbach rule. The photon e_nerg‘Wigner crystal in a quantizing magnetic figlschematically.
hw is transferred to the many-electron system via a

radiation-induced electron displacement along the figld
The momentum n for the displacemen mes fr . . .
e momentu eeded for the displacement comes fro oulomb potential at the mean interelectron distancé&?

scattering by a fluctuation of the disorder potential. A& N
increases, it becomes more probable for an electron to exp@l—nd IS 9"2%” b){/zthe short-wavelength plasma frequengy
rience multiple scattering. This leads to the change of the: (2me"n"/m) ™% which is the characteristic Debye fre-
asymptotic behavior fronjin o) to |In oy lcw?® Such ~ AUENTY of a 2D Wigner crystal. o
behavior is described by unusual fat fish diagrams, whicq An 'mpo”ar!‘ characteristic .Of electron dynamics is th_e
correspond to maximally embedded diagrams in the self: p|(_:§\l _fluctuatlp_nal e_'eCtFO” displacement from th? quasi-
energy(see Fig. 3 eqwhpnum positiond; in F|g..5(a). If the e!ectron mot|on is
The conductivity has a different form for a long-range clas§|cal, "e".th.")P<kBT’ It can be estlmated " tgg E‘ar'
disorder potential. Of particular interest is the case where th80NIC approximation by setting the potential eneedy%5;
correlation lengthr, exceeds the root-mean-square electrorfdual ©okgT:
displacement from a quasiequilibrium position in the liquid
6¢. Here,o,,(w) is determined by electron diffusion in the <5f)=kBT/e2n3’2. (A1)
liquid. It has a simple form given by E¢41). The shape of
the spectral peak of,,(w) depends on one dimensionless

2 H —
parametetar ¢/De.. It displays a rounded cusp at=0 and squared interelectron distanne?® is equivalent ta’'>1.

-2 2
decays aso” “ for large wr¢/Dee. The restoring force on the vibrating electron is given by

Yet, another behavior arises in the case where scatterefge glectric fieldg;, see Fig. 5a. This field is due to electron-
are short-range electron traps. If the density of the trappegensity fluctuations. In the classical regime, these are prima-

electrons is small, the 2DES remains a liquid. The conducgjjy short-wavelength fluctuatiorS. For largeT, the field
tivity is expressed in terms of the power spectrum of theghoyig pe close to its value estimated in the harmonic ap-

fluctuational fieldE; that the liquid exerts on a trapped elec- ,roximation in electron displacements from quasiequilibrium
tron. The spectral peak of the conductivity is located at Fositions

frequency~ Q. The low-frequency part of the peak is deter-

mined by electron diffusion, whereas the shape of the peak ) 0

near its maximum depends on vibrations of electrons about (Ef)=F(I)n"%gT. (A2)
their quasiequilibrium positions in the liquid.

uch vibrations is determined by the second derivative of the

The necessary condition tha¥# be much less than the

The function F(I') was obtained by Monte Carlo
ACKNOWLEDGMENTS simulations® In the whole range 1@T'<TI,=130 it re-

We are grateful to Frank Kuehnel, who participated in thisr’_nains essentially constant, varying from 10.5 to 9.1. The

research at an early stage. Work at MSU was supported iie!d distributionp(Ey) is Gaussian in the central part:
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P(Eq)=[=(E)]"ex —EF/(E])], (A3)
APPENDIX: DYNAMICS OF A NONDEGENERATE 2D

ELECTRON LIQUID which is an indication that, in this range bf, the electron

A snapshot of a correlated 2D electron liquid is shownmotion is mostly weakly anharmonic vibrations. On the far
schematically in Fig. @). In such a liquid, for most of the tail, the decay ofp(E;) is slowed down compared to Eq.
time, the electrons perform small-amplitude vibrations aboufA3).1° The fluctuational field is the only characteristic of the
their quasiequilibrium positions in the potential formed by electron liquid, which is needed in order to describe the mag-
other electrons and the neutralizing background. In the abAetoconductivityo,,(w) in the case of a weak short-range
sence of a magnetic field, the characteristic frequency oflisorder.
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1. A nondegenerate electron liquid in a strong magnetic field p(Ry, ... Ry, ...)=consxexp —Hgc/kgT),

In a strong magnetic fieldy.> w,, the electron motion is (A1)
separated into cyclotron motion with frequencieso, and  with H,, given by Eq.(A6). Therefore, the results for a
comparatively slow vibrations of the guiding centers aboufclassical electron liquid in the absence of a magnetic field
their slowly diffusing quasiequilibrium positions. The coor- can now be carried over to the case of quantizing magnetic

dinates of the guiding centers are field. In particular, the instantaneous distribution of the fluc-
I tuational fieldE; is the same as in the classical 2DES Bor
Ry=(Xn,Yn), Rp=r,+A " 1%pXz, (A4)  =0. Condition (A10) is much less restrictive thariw,

A : . <kgT becausd)<w,.
where,z=—_B/B is the _un|t vector normal to the electron For ['<130, Eqs.(A7), (A8), and(A11) provide a semi-
layer, andp is the canonical momentum. From H&\), the ¢ jassical description of a nondegenerate electron liquid in a
componentsX,, Y, obey the commutation relation strong magnetic field. In the long-wavelength limit, this lig-
a2 2_ uid can be alternatively described in the hydrodynamic ap-
(X Yol= =115 1F=Rl(mog). (A5) proximation. The transTaort coefficients.g., ziscos%ty can P
The magnetic length gives the typical size of the electron be found from the correlation functions of the liquid.g.,
wave packet. current-current correlatprin two dimensions, because of a
The dynamics of the guiding centers is described by thdarge contribution from long-wavelength modes, the trans-
Hamiltonian of the electron-electron interactibip, (3) pro-  port coefficients diverge. A self-consistent analysis in the
jected on the lowest Landau level, case of a classical 2D liquid for small frequenciesand
wave numbersy was done by Andree¥’ He showed that
oo e? 5 . transport coefficients diverge as'fw in the limit of small
ee” o & Rn—Ru| % (AB) 4. For a 2D electron liquid in a short-wavelength random
potential, this divergence is terminated at the cutoff fre-
The Heisenberg equations of motion Ry can be written  quency given by the rate of electron scattering in this poten-
in a closed form in the important case where the electric fieldial 7~'. This rate determines the long-wavelength static

on electrons is smooth on the scéle conductivity and thus the decay rate of long-wavelength
modes of the electron liquid. A corresponding self-consistent

R,=cB™2E,XB. (A7) analysis in the presence of a magnetic field will be given

elsewhere. A logarithmic correction to the viscosity of a 2D

Here, Fermi liquid due to electron-impurity scattering was found in

Ref. 29.
E =e J E IRy~ Ry 2 (A8) An important feature of the liquid state, which ultimately
IRy m(m=n) gives rise to a nonzero static conductivity, is self-diffusion.

The coefficient of self-diffusio® . can be related to the rms

is the field on thenth electron created by other electrons anddisplacement of a particle over a long tirte 01,

calculated by ignoring noncommutativigp5) of the guiding
centers’ components. D. = AR2(1)/4t. ARZ(1)=([R.(t)—R.(0)13).

By linearizing E,, in displacements of the electrons from ee (D74, (D= ([Ra(D) = Ra(0)T%) (A12)
their quasiequilibrium positions, one can see that the motion

of the guiding centers comprises mostly vibrations with alf we assume that the semiclassical approximatiai) ap-
typical frequency plies for long timeg> "1, then the electron displacement

is related to the correlator of the fluctuational electric field by
szﬁ/wc=2we2n3’2/mwc. (A9)

t t
2 — 2 ’ " ’ "
This frequency also gives the typical rate of interelectron ARy()=(c/B) Jodt J'Odt (En(t)En(t"). (A13)
momentum exchange. In the case where electrons form a S
Wigner crystal,Q is the zone-boundary frequency of the The natural scale of the electric field is given by the rms

lower phonon branch, see Fig(lb. value (A2). Field correlations decay over the time() 1.
Motion of the guiding center®, becomes semiclassical Then, the diffusion coefficient becomes
for
D kBTB r,Q Al4
ke T>HQ). (A10) ™ May ed [, Q). (A14)

It is determined by thermal fluctuations. From E410), a  Here, we took into account that(E?)/B?Q~kgT/maw,.
typical electron displacement from a quasiequilibrium posi- We note that, in the absence of a magnetic field, the power
tion & given by Eq.(Al) is &>1. Therefore, the fluctua- spectrum of the field; goes to zero fow—0. In this case,
tional electric fieldE;, which varies on the distanc&, is  the double integral over time in EqA13) gives just the

uniform on the magnetic length as assumed in E@A7). average increment of the momentum of an electron, which
The probability distribution of the guiding centers saturates for large. The electron dynamics in a magnetic
p(R¢, ... ,R,, ...) isgiven by the Boltzmann equation field is different, and we expect that here the integrel3)
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linearly increases witht. This conjecture is based on the saturate and become a constant forr. For a correlated
argument that, because of self-diffusion in the electron lig{iquid, we expect that the factd, is not large,Dge=<1.
uid, AR2(t) should linearly increase in time. This increase  In the absence of a magnetic field, straightforward scaling
must be caused by the fluctuational field, since quantum comrguments give an expression of the typd4) for the self-
rections to an electron displacement are sritall. diffusion coefficient, withw. replaced by the characteristic
An analysis based on magnetohydrodynamics with aibration frequencyw,. The numerical factor that stands for
frequency-independent viscosity coefficient leads to an extry__ in this expression is known from the data of
factor Intin the time dependence afR}(t). A similar factor  simulations/ it is ~0.1 close to the melting transition and

should arise in the functioD . for t< 7. However, it should  increases with temperature.
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