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Low-frequency conductivity of a nondegenerate two-dimensional electron liquid
in strong magnetic fields
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We study the conductivity of a nondegenerate two-dimensional electron liquid in a quantizing magnetic field
for frequencies well below the cyclotron frequency. The conductivity is formed by electron transitions in which
the energy of a photon goes to the interaction energy of the many-electron system, whereas the involved
momentum is transferred to the quenched disorder. The conductivity peak is non-Lorentzian. Its shape depends
on the relation between the correlation lengthr c of the disorder potential and the typical amplituded f of
vibrations of the electrons about their quasiequilibrium positions in the liquid. The width of the peak is
determined by the reciprocal time it takes to move an electron overr c ~or the magnetic lengthl for r c, l ). In
turn, this time is determined by vibrational or diffusive motion, depending on the ratior c /d f . We analyze the
tail of the conductivity peak for a short-range disorder. It is formed by multiple collisions with the disorder
potential. We also analyze scattering by rare negatively charged traps, and show that the conductivity spectrum
in this case depends on both short- and long-time electron dynamics.

DOI: 10.1103/PhysRevB.67.235104 PACS number~s!: 73.23.2b, 73.50.2h
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I. INTRODUCTION

In recent years, much progress has been made towar
understanding of transport phenomena in strongly interac
electron systems. The well-known examples are the fr
tional quantum Hall effect1 ~QHE! and metal-insulator tran
sition phenomena in low-density two-dimensional electr
systems~2DESs! in semiconductors.2 2DESs are particularly
convenient for investigating the electron-electron interact
~EEI!, since the electron densityn can be varied in broad
limits. One of the most important effects of the EEI is t
onset of electron correlations. The extent to which the sys
is correlated depends on the ratioG of the characteristic Cou
lomb energye2(pn)1/2 to the electron kinetic energyEkin ,

G5e2~pn!1/2/Ekin ~1!

(Ekin is equal to the largest of the Fermi energyeF andkBT).
For G exceeding a critical valueGW , a 2DES becomes
a Wigner crystal. The parameterGW is numerically large.
For low temperatures (Ekin5eF@kBT, in which caseG
5r s), GW'37,3 whereas for a nondegenerate 2DES (eF
!kBT) GW'130.4

For GW.G@1, a 2DES is still strongly correlated, but
forms an electron liquid. Based on the success of the Fe
liquid theory in describing3He, it is often assumed that i
the quantum regioneF@kBT, the electron liquid can be de
scribed by a Fermi liquid, too. However, for very larger s ,
the system may be more complex.3,5

For large kBT/eF and for GW.G@1, a 2DES is a
strongly correlated non-Fermi liquid. It should display a no
standard behavior. Experimentally, such a 2DES has b
investigated in semiconductor heterostructures,2,6 and in
much detail for electrons on the surface of liquid helium.4 A
0163-1829/2003/67~23!/235104~14!/$20.00 67 2351
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nondegenerate electron liquid has features in common w
an ordinary liquid. It does not have a long-range translatio
order and displays self-diffusion, as seen in various num
cal simulations.7–10

In contrast to ordinary liquids driven by forces applied
their surface, a 2DES is driven by a ‘‘volume’’ field, that i
a field experienced by each electron. It comes from the
ternal disorder, such as defects and phonons in semicon
tors, or helium vapor atoms and surface capillary waves
helium. Because the total momentum of a 2D electron liq
is changed through volume rather than ‘‘surface’’ scatteri
electron transport is different from transport in an ordina
liquid. It is different also from the transport in a weak
nonideal electron gas. Even though the conductivity is o
metallic type rather than the activated type for a weak dis
der potential, its dependence on the parameters of the
tem, including electron density, temperature, frequency,
a magnetic field, should be totally different from that for a
ideal gas.

The change of transport coefficients stems from the e
tron scattering by disorder being strongly affected by
electron-electron interaction in a 2D liquid. During scatte
ing, an electron is coupled to other electrons, and this c
pling determines the scattering probability. This is the ca
even for a short-range disorder potential, where differ
electrons are scattered off uncorrelated fluctuations. In
respect, a nondegenerate electron liquid is similar to a liq
of vortices in a superconductor.

In the present paper, we investigate the frequency dep
dence of the magnetoconductivitysxx(v) of a 2D electron
liquid. Such a dependence is particularly interesting, sinc
should provide a direct insight into the way in which a co
related electron system exchanges momentum with the
©2003 The American Physical Society04-1
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order. Indeed, in the Drude model the low-frequency mag
toconductivity, transverse to a strong magnetic fieldB, is

sDr~v!5ne2tDr
21~v!/mvc

2 , vc5eB/mc, ~2!

wherevc is the cyclotron frequency andtDr
21 is the momen-

tum relaxation rate. Here and below, we keep insxx(v) the
lowest-order term invc

21 . The frequency dispersion ofsDr

comes from the dispersion oftDr
21(v). In the case of single-

electron elastic scattering, it becomes strong for frequen
of the order of the duration of a collision with a scatterer

The single-electron Drude picture does not apply to
2DES if the magnetic fieldB transverse to the electron laye
is quantizing. Here, all single-electron states except for
or maybe few are localized,11,12 and the single-electron con
ductivity is equal to zero at zero frequency.13,14 Metalliclike
conductivity of a nondegenerate electron liquid is a resul
the electron-electron interaction. Earlier, we found a way
take this interaction into account nonperturbatively, and c
culated the static conductivity and the cyclotron resona
for a weak short-range disorder potential.15 These results
were qualitatively and quantitatively confirmed by th
experiment.16,17

The question of observing the actual dynamics or elect
scattering in the electron liquid has not been addressed
viously. From analogy with single-electron scattering o
may expect that an insight into this dynamics can be gai
from the frequency dependence ofsxx(v). Here, we develop
an appropriate theory and suggest relevant experiments
also study the magnetoconductivity for two important typ
of a disorder potential, which have not been discussed f
nondegenerate electron liquid: a smooth random poten
and a potential of rare charged defects. The physics of ma
electron transport in these cases is significantly differ
from that for short-range disorder.

A simple argument shows that the frequency dispersion
the long-wavelength magnetoconductivity forv!vc is in-
deed directly related to many-electron effects. Because
electron kinetic energy is quantized, the energy of an
sorbed photon,\v, may go to either the electron potenti
energy in the disorder potential or the Coulomb energy of
electron system, or both. For a weak disorder, electrons
not localized, and the disorder potential is largely avera
out by electron motion. Then, the photon energy may only
transferred to the electron system. However, to provide m
mentum conservation, this transfer must be mediated by
order.

For a short-range disorder, one can think of photon
sorption as resulting from an electron bouncing off a po
defect. In a quantizing magnetic fieldB, momentum transfer
to defect dp leads to an electron displacementdr
5(c/eB2) dp3B. In the presence of radiation, this displac
ment can change the energy of the electron-electron inte
tion by \v. Therefore, by investigating the frequency depe
dence of the absorption cross section, one can find how
electron moves during a collision.

As we show, for a weak short-range disorder the cond
tivity sxx(v) has a peak atv50 with a specific non-
Lorentzian shape, which is fully determined by the electro
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electron interaction. Of special interest is the tail of this pe
For large photon frequencies~but still v!vc), a large elec-
tron displacementdr is required in order to accommodate th
energy. Consequently, a large momentum has to be tr
ferred to the disorder potential. It may come from multip
scattering off this potential. The mechanism has some s
larity with that of anomalous diffusion transverse to a ma
netic field.18 It significantly slows down the decay o
sxx(v), with v compared to the decay calculated for
single-collision absorption.

The frequency dependence ofsxx(v) is totally different
for a long-range disorder potential. Of particular interest
the potential with a correlation lengthr c smaller than the
interelectron distance. In this case, the electron scatte
cannot be described in the hydrodynamic approximation.
we show, here the conductivity displays a characteristic c
at v50.

In Sec. II, we relate the magnetoconductivity of a strong
correlated electron liquid to the electron structure factor.
introduce the single-site approximation, which determin
the short-wavelength behavior of the structure factor. In S
III, we analyze the frequency dependence of the magn
conductivity for a short-range disorder potential. We sh
that, for nonzero frequencies butv!vc , the conductivity in
quantizing fields becomes a nonmonotonic function ofB. In
Sec. IV, we develop an appropriate diagrammatic techni
and study the far frequency tail of the magnetoconductiv
due to multiple electron scattering. In Sec. V, we discuss t
types of an intermediate-range disorder: the smooth diso
potential and the potential of short-range electron traps
both cases the conductivity is shown to be related to dif
sion in the electron liquid. Section VI contains concludin
remarks.

II. MANY-ELECTRON MAGNETOCONDUCTIVITY:
GENERAL ARGUMENTS

In the rangeG@1, the energy of the EEI,

Hee5
e2

2 (
nÞm

urn2rmu21 ~3!

is the largest in the electron system. Therefore, even wh
electrons do not form a crystal,G,GW , electron positionsrn
are still correlated. The EEI does not change the total m
mentum of the 2DES, and thus does not directly affect
long-wavelength conductivitysxx(v) ~the Kohn theorem!.
However, momentum transfer from electrons to defects
pends on electron motion, and sosxx(v) is ultimately deter-
mined by the EEI.

A standard approach to calculatingsxx is based on finding
elementary excitations in the many-electron system and t
studying their scattering by a disorder potential. This a
proach is not of much help in the case of a nondegene
electron liquid, because elementary excitations are
known.19 However, for the types of disorder that we are i
terested in, the frequency-dependent conductivity is de
mined by electron motion on either short or long times. T
motion can be described even when elementary excitat
are not known, as explained in the Appendix.
4-2
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We will consider magnetoconductivity in a quantizin
magnetic field B applied normal to the electron laye
exp(\vc /kBT)@1. Then, the electron wave function is a wa
packet. Its typical size is the magnetic lengthl
5(\/mvc)

1/2. Further analysis is based on the observatio15

that, in addition to a magnetic field, an electron is driven
an electric fieldEf from other electrons. This field is due t
electron-density fluctuations, see the Appendix. It leads
semiclassical drift of the electron wave packet with a gro
velocity cEf /B.

The semiclassical approximation applies at sufficien
high temperatures,

kBT@\V, V5vp
2/vc[2pe2n3/2/mvc . ~4!

Here, V is the typical frequency of vibrations of the ele
trons about their quasiequilibrium positions in the electr
liquid (vp is the plasma frequency forB50, V!vc). The
picture of moving wave packets, with continuous ene
spectrum, is qualitatively different from the single-electr
picture where the electron energy spectrum is a set of
crete degenerate Landau levels.

Electron motion leads to the averaging of the disor
potential. Together with interelectron energy exchange
eliminates single-electron localization by an arbitrarily we
random potential studied in the QHE theory.11,12 A typical
electron energy in the liquid iskBT. Therefore, a sufficiently
strong disorder is needed in order to localize an appreci
portion of electrons, potentially leading to a glass transiti
In this paper, we assume that the disorder potential is w
and the electron liquid displays self-diffusion and associa
self-averaging. Specific conditions depend on the correla
length of the disorder potential and will be discussed late

A. Magnetoconductivity for a weak disorder potential

The Hamiltonian of the electron liquid in the presence
disorder has the form

H5H01Hee1Hi ,

Hi5(
q

Vqrq , rq5(
n

exp~ iq•rn!. ~5!

Here, H0 is the sum of the single-particle Hamiltonian
pn

2/2m @with pn52 i\“n1(e/c)A(rn)]; Hee is the EEI
Hamiltonian and is given by Eq.~3!, andVq are the Fourier
components of the disorder potential.

The long-wavelength magnetoconductivity is given by t
correlator of the total electron momentumP5(pn . The lat-
ter satisfies the equation of motion

dPm

dt
5vcemnPn2 i(

q
qmVqrq

(emn is the antisymmetric permutation tensor!. The low-
frequency conductivity,v!vc , is determined by slow time
variation ofP. Therefore, the time derivative in this equatio
can be ignored. The expression forP can be then substitute
23510
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into the Kubo formula for the conductivity, givingsxx(v) in
terms of the correlator of the density operatorsrq weighted
with the disorder potential,

sxx~v!52
e2l 4@12exp~2bv!#

4\3vS E
2`

`

dteivt(
q,q8

~q•q8!

3^VqVq8rq~ t !rq8~0!&. ~6!

Here, ^•••& implies thermal averaging followed by avera
ing over realizations of the random potential,S is the area of
the system, andb5\/kBT.

In the case of a weak disorder potential, the dens
density correlator in Eq.~6! can be evaluated to the zero
order inVq ~the criteria are discussed below!. Then, the con-
ductivity can be expressed in terms of the dynamical str
ture factor of the electron liquid,

S~q,v!5E
2`

`

dteivtS̃~q,t !,

S̃~q,t !5N21^rq~ t !r2q~0!&0 , ~7!

whereN5nS is the total number of electrons, and the su
script 0 means that the correlator is evaluated in the abse
of disorder.

For a nondegenerate liquid, it is convenient to write co
ductivity ~6! in the form of an Einstein-type relation

sxx~v!5
ne2Ds

kBT
, Ds5 l 2t21~v!/4. ~8!

Here,Ds can be thought of as a coefficient of electron d
fusion in the disorder potential; it should not be confus
with the coefficient of self-diffusion in the electron liqui
discussed in the Appendix. The characteristic diffusi
length in the disorder potential is given by the size of t
electron wave packetl, and the collision rate is

t21~v!5
12e2bv

bv
\22l 2(

q
q2uVqu2S~q,v!, ~9!

where the overline denotes averaging over realizations
disorder.

The ratet21 ~9! is quadratic in the disorder potential, a
in the standard Drude approximation. The expression for
conductivity, Eqs.~8! and ~9!, goes over into the Drude for
mula ~2!, if one setst2154tDr

21/bvc . However, in contrast
to the single-electron Drude approximation, the dynam
structure factor int21 is determined by the electron-electro
interaction. In particular,S(q,v) depends on the electro
densityn.

The factor@12exp(2bv)#/bv in Eq. ~9! is equal to 1 in
the most interesting frequency rangebv!1, which includes
the central part of the peak of the low-frequency conduc
ity. The frequency dependence of the effective scattering
and the conductivity in this range is determined byS(q,v).
On the other hand, in the analysis of the conductivity tail
will be interested primarily in the exponent, where
4-3
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@12exp(2bv)#/bv leads to a smooth frequency dependen
of the prefactor (}v21 for bv@1). Therefore, we omit this
factor in what follows.

B. The single-site approximation

Expression~9! is significantly simplified in the importan
and most common situation where the correlation length
the random potentialr c is small compared to the interelec
tron distancen21/2. Here, at most one electron is scattered
a given fluctuation of the potential, for example, by an i
purity in the case of electrons in semiconductors or a sh
wavelength ripplon in the case of electrons on helium. Si
the 2DES is strongly correlated, all other electrons are
away.

The conditionr c!n21/2 allows us to single out the mos
important terms in the structure factorS(q,v). The major
contribution to the sum overq in Eq. ~9! comes fromq

;min(l21,rc
21)@n1/2. On the other hand,S̃(q,t) as given by

Eq. ~7! is a double sum of exp@iq•rm(t)#exp@2iq•rm8(0)#
over the electron numbersm,m8. The terms withmÞm8 are
rapidly oscillating forq@n21/2. Therefore, when calculating
t21, one should keep only diagonal terms withm5m8. We
call this the single-site approximation,

S̃~q,t !'S̃ss~q,t !, q@n1/2,

S̃ss~q,t !5^eiq•r (t)e2 iq•r (0)&0 , ~10!

where r[rm stands for the coordinate of themth electron.
The result is independent ofm, and therefore we disregarde
the electron number in Eq.~10!. Similarly, S(q,v)
'Sss(q,v), where Sss(q,v) is the Fourier transform o
S̃ss(q,t).

The transition from the Kubo formula~6! to Eqs.~8!–~10!
corresponds to the approximation of independent scatte
events for each individual electron. It is similar to the sta
dard ladder approximation of the single-electron theory a
is applicable, provided that the duration of a collisiontcol is
small compared to the reciprocal rate of electron scatte
by the disorder potential. In turn,tcol is the typical time range
that contributes toSss(q,v).

III. FREQUENCY DISPERSION OF THE CONDUCTIVITY:
A SHORT-RANGE POTENTIAL

We will first consider the case of a short-range poten
with correlation length

r c!d f[~kBT/mvp
2!1/2. ~11!

Here, d f is the typical thermal displacement of an electr
from its quasiequilibrium position in the electron liquid. A
explained in the Appendix, electron motion, on distanc
smaller thand f and for times much smaller thanV21, is a
transverse drift in a nearly uniform fluctuational electric fie
Ef ~Ref. 20! @the electron vibration frequencyV is given by
Eq. ~4!#.

We will calculate the structure factor~10! using a formu-
lation that differs from the one used in Ref. 15. It is adva
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tageous in the sense that it can be generalized to the ca
multiple scattering by a disorder potential, as shown in S
IV.

Thermal averaging of a single-electron operator over
states of the many-electron system in Eq.~10! can be done in
two steps. First, we average over the states of a given (mth!
electron for a given many-electron configuration. Configu
tion averaging is done next. It is reduced to integration o
the relative positions of the guiding centersRm8 of all other
electrons (m8Þm) with respect toRm . The integration has
to be performed with the Boltzmann weighting factor e
(2Hee/kBT) @see Eq.~A11!#. This is because the electro
kinetic energies are eliminated by the Landau quantizat
and the only relevant energy of the system is the poten
energy of the electron-electron interaction.

The first averaging means taking a trace of a correspo
ing single-electron operator on the single-electron wa
functions of an (mth! electronck(r ) (r[rm). The functions
ck belong to the lowest Landau level~LLL ! and should be
found assuming that the electron is in a uniform electric fi
Ef created by other electrons. No extra weighting factor~in
particular, no Boltzmann factor! has to be incorporated whe
calculating the trace. The energy is determined only by
many-electron configuration, and thermal averaging is d
over such configurations.

The wave functionsck(r ) depend on the many-electro
configurations only in terms of the fluctuational fieldEf .
Therefore, the configuration averaging is reduced to ave
ing over the distribution of the fieldEf ~A3!, which we de-
note by ^•••&Ef

. Overall, the average value of a singl

electron operatorO(r ) can be written as

^O~r !&5
2p l 2

S K (
k

^ck~r !uO~r !uck~r !&L
Ef

, ~12!

where the prefactor is just the reciprocal number of state
the lowest Landau level.

In order to find the structure factorS̃ss(q,t) @Eq. ~10!# to
the zeroth order in the random potential, we will use t
explicit form of the LLL wave functionsck

(0)(r ) of an elec-
tron in the fieldEf :

ck
(0)~r !5

1

~Lyl !
1/2p1/4

expS iky2
1

2l 2 ~x2kl2!2D . ~13!

Here, we chose thex axis in the direction ofEf , i.e., Ef

5Ef x̂; Ly is the size of the system in they direction, and the
coordinatex is counted off from2eEf /mvc

2 . The magnetic

field is chosen along the negativez direction,B52Bẑ.
The corresponding electron energy«k

(0) ~counted off from
\vc/22e2Ef

2/2mvc
2) is

«k
(0)5eEfkl2. ~14!
4-4
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The structure factor~10! is determined by the trace of
product of the single-electron operators exp„6 iq•r (t)… taken
at different times in the Heisenberg representation. Fr
Eqs.~13! and ~14!, we have

^ck
(0)ueiq•r (t)e2 iq•r (0)uck

(0)&'e2q2l 2/2eitq•vD, ~15!

wherevD[cEf3B/B2 is the semiclassical drift velocity; fo
chosen axes, the, vectorvD points in they direction. In Eq.
~15!, we disregarded fast-oscillating terms}exp(6invct),
with n>1. Such terms make an extremely small contribut
to the conductivity forv!vc .

Following procedure~12!, in order to find S̃ss(q,t) we
have to average the right-hand side of Eq.~15! over the
fluctuational fieldEf . For the Gaussian10 field distribution
~A3!, this gives

S̃ss~q,t !5expF2
1

2
q2l 2S 11

t2

t̃ e
2D G . ~16!

Equation~16! shows that the structure factor decays very f
for wave numbersq@1/l . For ql;1, it also rapidly decays
with time for t@ t̃ e .

The characteristic timet̃ e is simply related to the rms drif
velocity and the rms fluctuational field̂Ef

2&,

t̃ e5
A2l

^vD
2 &1/2

5
A2\

el^Ef
2&1/2

~17!

@the choice of the coefficients is convenient for Eq.~21! be-
low#. A closely related time

te5 l ~B/c!^Ef
21&;~VkBT/\!21/2 ~18!

was introduced previously15 as the average time of flight o
an electron wave packet over a distancel in the crossed fields
Ef andB. In the case of a short-range disorder potentialr c
! l ), te is the duration of an electron collision with the flu
tuation of the potential~a point defect!. For a Gaussian dis
tribution of the fluctuational field assumed here, we havet̃ e
5(2/p)1/2te .

Equations~9! and ~16! give the conductivity in a simple
form. The typical values ofq transferred in an electron co
lision areqc5(r c

21 l 2)21/2. The duration of a collision is the
time over which correlator~16! decays,te /qcl . For a short-
range potential~11!, we havete /qcl !V21. This justifies the
assumption that the fluctuational field remains constant d
ing a collision, which is equivalent to the assumption that
!V21.

The condition for the disorder potential to be weak,
that collisions occur successively in time, is

te@~r c / l !211#1/2!t~0!, ~19!

where t21(v) is given by Eq.~9! and is quadratic in the
potential strength.

The typical frequencyV @Eq. ~4!# of electron vibrations
about its quasiequilibrium position is also the rate of int
electron energy exchange. The time interval between suc
sive collisions of a vibrating electron with the same sho
23510
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range scatterer;(qcd f)
2V21 is much larger thanV21.

Therefore, an electron loses coherence between succe
collisions. This shows that interference effects leading t
weak localization in the single-electron approximation a
not important for weak scattering.

A. The conductivity for a d-correlated random potential

The expression for the conductivity can be obtained in
explicit form in the important case of ad-correlated random
potentialV(r )V(r 8)5v2d(r2r 8) or

uVqu25p\2g2l 2/2S, \g5~2/p!1/2v/ l . ~20!

The parameterg}1/l introduced here is a convenien
characteristic of the random potential in the problem
electrons in a quantizing magnetic field. It gives the wid
of the peak of the density of statesr(E) in the single-
electron approximation;21 in particular, on the tailr(E)
}exp(24E2/\2g2), see Ref. 22. From Eq.~9!, the scattering
rate for the potential~20! is t21(0);g2te , and the condition
for the random potential to be weak takes a simple form

g!te
21 .

Collecting Eqs.~8!, ~9!, ~16!, and~20! we obtain a simple
explicit expression for the frequency-dependent magnetoc
ductivity

sxx~v!'
p

16

ne2bg2 t̃ e

mvc
s1~v!,

s1~v!5~11v t̃ e!e
2v t̃ e. ~21!

In the quasistatic limit of smallvte , Eq. ~21! coincides with
our previous result.15 The conductivitysxx(0) has a form of
a single-electron conductivity in a magnetic field, with
scattering ratet21;g2te quadratic in the disorder potentia
However, in contrast totDr

21 , Eq. ~2!, the value oft21 is
fully determined by the EEI. Through the factorte it depends
on the fluctuational electric field that drives an electron d
ing a collision with a scatterer. It scales with the density
the electron liquid asn23/4, so that the overall conductivity
sxx(0)}n1/4.

The frequency dependence of the conductivity is de
mined by the dimensionless functions1(v), which is shown
in Fig. 1. It peaks at zero frequency and monotonically d
cays with increasingv. In contrast to the Drude conductivit
in the absence of a magnetic field, which has a Lorentz
peak sxx}1/(11v2t2), the peak ofs1 is strongly non-
Lorentzian. The characteristic widthte

21 of the peak ofs1 is
independentof the disorder potential. Its dependence on t
electron density, temperature, and the magnetic field is of
form te

21}n3/4T1/2B21/2.
The tail of the peak is exponential inv. Interestingly, it

has the exact form of the Urbach rule,23 i.e., u ln s1u}v.
@However, for very largevte , where multiple scattering be
comes important, this form is modified, see Sec. IV.# The
shape of the tail can be understood by noticing that the c
ductivity is formed by processes in which theenergy\v of
4-5
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absorbed photons goes to the many-electron system. I
individual absorption process, the involved electron mo
by the distancedR5\v/euEfu along the fluctuational electric
field Efi x̂. The squared matrix element of a dipolar electr
transition accompanied by a displacementdR[dR x̂ is de-
termined by the~squared! overlap integral of the wave func
tions ~13!:

u^ck
(0)~r !uck

(0)~r1dR!&u25exp@2~dR!2/2l 2#. ~22!

On the other hand, probability~A3! to have a fluctuationa
field Ef5\v/(edR) is

p}expS 2
~\v!2

e2~dR!2^Ef
2&
D .

By optimizing the product of the two exponentials wi
respect to dR, we obtain that the conductivity is
}exp(2v t̃e), with expression~17! for t̃ e taken into account.
This is in agreement with Eq.~21!.

It is important to check the assumption that the fieldEf is
uniform over relevant distances. In a strongly correlated s
tem, u“Efu;e n3/2. Therefore for optimaldR and Ef , the
relative change of the field on the distancedR is

u“EfudR

Ef
;

e n3/2dR

Ef
5

e2n3/2~dR!2

\v
;Vte!1.

It is interesting that this condition does not impose limi
tions onv.

Another interesting feature of the many-electron mic
wave conductivitysxx(v) is its nonmonotonic dependenc
on the magnetic field. Sinceg}1/l}B1/2 @see Eq.~20!# and
te}B1/2 @Eq. ~18!#, the static conductivitysxx(0)}B1/2 is
increasingwith B for quantizing fields. This happens becau
as B increases, the electron wave function becomes m
localized, thus increasing the effective strength of coupl
to short-range scatterers. At the same time, the electron
velocity in the fluctuational field decreases, and as a re
the characteristic collision durationte increases withB, lead-

FIG. 1. The frequency dependence of the many-electron c
ductivity for a short-range disorder as given by Eq.~21!.
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ing to the overall scattering ratet21;g2te}B3/2.15 The in-
crease ofsxx(0) with increasingB has been confirmed
experimentally.16

For nonzero frequencies,sxx(v) displays a peak as a
function of B, see Fig. 2. For comparatively small~but still
quantizing! fields we havevte!1, and thensxx(v)}te
}B1/2, as in the static limit. On the other hand, forB such
that vte@1, the conductivity falls down exponentially with
increasingvte . The positionBmax of the peak of the conduc
tivity is given by the Golden ratio

~v t̃ e!max5
11A5

2
, Bmax}v22. ~23!

We note that the microwave magnetoconductivity d
plays a peak as a function ofB in the single-electron approxi
mation as well.14 However, the shape of the peak is total
different. In particular, the high-B decay of the single-
electron sxx(v) is related to the localization of electro
states in the random potential and is described by a po
law. Many-electron effects lead to delocalization, and
decay of the conductivity withB becomes exponential, cf
Fig. 2. Of course, for very strongB the approximation of
weak random potentialgte!1 breaks down, and then th
decay ofsxx(v) with B slows down.

We note also that in the single-electron theory,sxx(0)
50 due to electron localization.13,14 Therefore,sxx(v) as a
function of frequency has a peak at nonzero frequency wh
depends onB. This is in contrast with the monotonic deca
of sxx(v) in the many-electron theory shown in Fig. 1.

IV. CONDUCTIVITY TAIL: THE EFFECT
OF MULTIPLE SCATTERING

It follows from the results of Sec. III@see Eq.~13!# that
electron wave functions in crossed electric and magn
fields display a Gaussian decay along the electric field. O
may expect that multiple scattering of an electron in a sh

n- FIG. 2. The dependence of the reduced microwave ma

electron conductivitys18(v)5v t̃ es1(v) on the magnetic field for a
weak d-correlated random potential and forkBT@\v. Both the

characteristic scaling magnetic fieldBv5B/(v t̃ e)
2 and the ratio

sxx(v)/s18(v) are independent ofB, see Eqs.~17! and ~21!.
4-6
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range random potential will slow down this decay, as it do
for localized electrons in the absence of an electric field.18 In
turn, a slower spatial decay may lead to a slower decay of
many-electron conductivitysxx(v) with frequency on the
tail, wherevte@1. This is because it becomes more pro
able for an electron to shift by a larger distance along
fluctuational electric fieldEf and, therefore, to absorb a ph
ton with higher energy. The effect is similar to the impurit
mediated electron tunneling between the Landau levels ti
by an external electric field.24,25

The approximation of an electron moving in a static u
form field Ef is well justified in the frequency rangevte

@1. Indeed, the many-electron fieldEf changes over time
;V21, see the Appendix. It remains constant over the
ration v21 of absorption of a photon becausev21!te

!V21. The argument in favor of the field uniformity i
based on the fact that the absorption tail is formed by la
fields Ef . They are experienced by electrons that are
away from their quasiequilibrium positions. The larger is t
field, the larger the distance to the quasiequilibrium posit
should be. On the other hand, this distance is also the s
on which the field is spatially nonuniform. We will see that
will largely exceed the electron displacement\v/eEf during
absorption. Both lengths will be assumed much smaller t
the interelectron distancen21/2.

A large electron displacement requires a large momen
transfer to the random potential,q@n21/2. Therefore, it is a
good approximation to evaluate the correlator in the exp
sion for conductivity~6! using the single-site approximation
This means that the productrq(t)rq8(0) in Eq.~6! should be
replaced by(mexp@iq•rm(t)#exp@iq8•rm(0)#. Then

sxx~v!52
ne2l 4

4kBT \2E
2`

`

dt eivt(
q,q8

~q•q8!

3^VqVq8e
iq•r (t)eiq8•r (0)&, ~24!

wherer[rm @the result is independent of the electron nu
ber m]. For \v*kBT, we should replace (kBT)21 with @1
2exp(2bv)#/\v; however, as noted above, it will only a
fect the prefactor in the conductivity.

The averaging in Eq.~24! can be done following prescrip
tion ~12!, i.e., one first calculates a trace over the sing
electron wave functionsck in a fluctuational field and then
averages over the field. In contrast to the calculation in S
III, to allow for multiple scattering one should use wav
functions found with the disorder potentialV(r ) taken into
account. In our approximation, averaging over realizations
V(r ) and Ef is done independently. It turns out to be mo
convenient to average overV(r ) first.

In what follows the random potential is assumed to
Gaussian andd correlated, with correlator~20!. We will use
the Green-function technique. In contrast to what was d
in the analysis of the tail of the wave function,18 this tech-
nique has to be formulated in the frequency domain. We w
show that this leads to a somewhat unusual set of diagra
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A. The projected Green function

In order to find the low-frequency conductivity, it is con
venient to use the Green functionG«(r ,r 8) ‘‘projected’’ on
the lowest Landau level. It is constructed from the LLL wa
functionsck(r ) of an electron in the random potentialV(r )
and in the electric fieldEf ,

G«~r ,r 8!5(
k

ck~r !ck* ~r 8!~«2 i02«k!
21, ~25!

where «k is the single-electron energy of the statek. The
wave functionsck are linear combinations of the LLL wav
functionsck

(0) @Eq. ~13!# in the absence of disorder. Follow
ing the averaging procedure~12!, we obtain from Eq.~24!,

sxx~v!5
ne2l 4

4kBT\

l 2

S
Re (

n5x,y
E

2`

`

d«E dr dr 8

3^V~r !V~r 8! ] r n
] r

n8
G«~r ,r 8!G«1\v* ~r ,r 8!&Ef

.

~26!

~Here, ^ . . . &Ef
includes averaging over the random pote

tial.!
We will consider the random potentialV(r ) as a pertur-

bation. The zeroth-order Green functionG«
(0) can be found

using the explicit expressions~13! and ~14! for the wave
functions and the energy in the absence of disorder:

G«
(0)~r ,r 8!5p21/2l g~r ,r 8!E dk

3
exp„2@2l 2k2~x1x8!2 i ~y2y8!#2/4l 2

…

«2eEfl
2k2 i0

,

~27!

where thex axis is chosen along the fieldEf as in Eq.~13!.
The function

g~r ,r 8!5
1

2p l 2e2(r2r8)2/4l 2 ei (x1x8)(y2y8)/2l 2 ~28!

in Eq. ~27! has a simple meaning. It gives the~minus! right-
hand side of the Schro¨dinger equation for the projecte
Green functionG«(r ,r 8), that is, it replaces thed function
d(r2r 8) in the Schro¨dinger equation for a standard Gree
function. The functiong(r ,r 8) is localized in a narrow re-
gion ur2r 8u&2l and leads to a Gaussian falloff ofG«

(0) for
large distances.

The full Green functionG« is determined by the Dyson
equation. Its solution can be written symbolically as

G«5G«
(0)1G«

(0)
•V•G«

(0)1G«
(0)
•V•G«

(0)
•V•G«

(0)1•••,
~29!

where the central dot implies integration over internal co
dinates, such as*dr iG«

(0)(r i 21 ,r i)V(r i)G«
(0)(r i ,r i 11). We

emphasize that, even though the Green functionG« is pro-
jected on the LLL, Eq.~29! contains thefull rather than the
projected disorder potentialV(r ).

A straightforward calculation shows that, to the lowe
order inV, the conductivity obtained from Eq.~26! coincides
with the result of Sec. III; in this approximation, the fu
Green functionG« in Eq. ~26! has to be replaced withG«

(0) .
4-7
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B. Diagrams for high-frequency conductivity

According to Eqs.~27! and ~28!, the Green function
G«

(0)(r ,r 8) is mostly localized in a narrow regionur2r 8u
&2l . As a function of energy, it peaks at the~scaled! mid-
point in the Ef direction, where«5eEf(x1x8)/2 for y
5y8. Near the maximum,

G«
(0)~r ,r 8!'

g~r ,r 8!

«2 i02eEfr
(c)

,

r (c)[r (c)~r ,r 8!5@~x1x8!1 i ~y2y8!#/2. ~30!

With this in mind, we now consider expression~26! for
the conductivity in terms of the product of the Green fun
tions and assume thatG« andG«* are given by the perturba
tion series~29!. In the product of the series, we need to fi
terms containingG«

(0)(r ,r 8) and @G«1\v
(0) ( r̃ , r̃ 8)#* with

eEf@r (c)~ r̃ , r̃ 8!2r (c)~r ,r 8!#'\v.

Such terms describe absorption of a photon accompanie
an electron displacement bydR5\v/eEf . The displace-
ment results from scattering by the random potential.

Graphically, the leading-order contribution to conduct
ity can be represented by a sum of the ‘‘fat fish’’ diagram
illustrated in Fig. 3 in the coordinate representation. In t
figure, the wavy lines mark the pointsr and r 8 where the
derivatives of the product of the Green functions are take
Eq. ~26!. The lines above and below these points repres
series~29! for G«(r ,r 8) and @G«1\v(r ,r 8)#* , respectively.
The crosses~x! indicate the factorsV in expansion~29! at
points r i where the electron is ‘‘scattered.’’ Solid lines b
tween the crosses denote the Green functionsG«

(0)(r i ,r i 11)
and @G«1\v

(0) (r i8 ,r i 118 )#* that describe electron propagatio
between collisions.

An Nth-order diagram has the total number of cros
equal to 2(N11) ~two crosses come from the external ve
tices in Fig. 3!. We start with the Green functions that co

FIG. 3. Diagrams for conductivity~26! in the coordinate repre
sentation. Segments of the solid lines connecting the pointsr[r s

and r 8[r s8
8 in the upper and lower half planes are the Green fu

tions G«
(0)(r i ,r i 11) and @G«1\v

(0) (r i8 ,r i 118 )#* , respectively. Crosse
~x! correspond to the Gaussiand-correlated potentialV at pointsr i

@subsequent integration overr i is implied#. Dashed lines indicate
averaging overV. Wavy lines mark the ‘‘external’’ verticesV(r )
andV(r 8) in Eq. ~26! and imply differentiation of the product of th
Green functions overr , r 8 prior to averaging overV.
23510
-

by

s

in
nt

s

respond to the top and bottom segments in Fig. 3. Each
them connects points with equal coordinates,rN11 and r1,
respectively. Their product is

G«
(0)~r1 ,r1!@G«1\v

(0) ~rN11 ,rN11!#*

}~«2 i02eEf x1!21~«1\v1 i02eEf xN11!21.

~31!

Upon integration over« in Eq. ~26!, expression~31! goes
over into 2p2d„\v2eEf(xN112x1)…. This is the equation
of energy conservation in a photon-induced transitionr1
→rN11. Such a transition is exactly the process that d
grams in Fig. 3 describe.

This picture provides a physical insight into the diagram
It shows that the absorption doesnot occur in a transitionr
→r 8 between the external points of the diagram. Import
for the transition is the admixture of the wave functions ce
tered away fromr and r 8 ~in fact, maximally far away, see
below!.

The solid lines in Fig. 3 other than the top and botto
segments connect spatially separated pointsr i andr i 11. The
leading exponential terms in the dependence of the Gr
functions on the distance between the points is given
overlap functionsg(r i ,r i 11) @see Eq.~30!#. The product of
theg functions entering theNth-order diagrams can be writ
ten as

g̃N~$r j%!5g~r1 ,r1!g~rN11 ,rN11!)
i 51

N

ug~r i ,r i 11!u2

}expS 2(
i

~r i2r i 11!2/2l 2D . ~32!

with $r j%[r1 , . . . ,rN11. We have incorporated into Eq.~32!
the terms from the ‘‘external’’ coordinatesr[r s and r 8
[r s8

8 .
For large\v/NeEfl , the integral overr2 , . . . ,rN11 can

be evaluated by the steepest descent, with the const
\v5eEf(xN112x1) @the integral overr1 cancels the factor
S21 in Eq. ~26!#. As in the case of underbarrier tunneling
a magnetic field,18 the extreme points are equidistant:

xi
(e)5x11~ i 21!\v/NeEf , yi

(e)5y1
(e) ~33!

for i 52, . . . ,N11. Then, at the extremum,

ln g̃N~$r j
(e)%!'2~\v/eEf l !2/2N. ~34!

This expression has a simple physical meaning. The factoN
in the denominator shows the scattering-induced increas
the overlap integral between the electron wave functions c
tered at pointsr1 andrN11, which are separated by\v/eEf .

Except for the top and bottom Green functions~31!, all
other Green’s functions in the diagrams in Fig. 3 are no
resonant. Their saddle-point values can be evaluated u
the approximate expressions~30!. The diagrams in Fig. 3~a!
have r s[r that differs from r s8[r 8. These diagrams de
scribe the interference of different tunneling paths and can
negative or positive. The total of all diagrams in Fig. 3 is,

-

4-8
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course, positive. The interference of paths affects only
prefactor in the conductivity. The leading exponential dep
dence on the distance\v/eEf and on the diagram orderN is
not affected. It is the same for all diagrams in Fig. 3. The
fore, here we will give results only for the ‘‘diagonal’’ terms
which are described by the diagrams in Fig. 3~b!.

The Nth -order diagrams in Fig. 3~b! contain a multiplier
@p\2g2l 2/2#N11 from the intensity of the random potentia
~20!. Together with the factors from the energy denominat
@see Eq.~30!# and the factors from the integration overdr i
around the extreme points~33!, these coefficients give a
N-dependent factor

Cs5@Ng/v#2N@~2s23!!! ~2N22s11!!! #22, ~35!

which also depends on the positions (r5r 8[r s) of the
wavy lines in Fig. 3~b! ~we assume that 1,s,N11). For
largeN@1, the factorCs is maximal fors5N/2,

ln Cmax'2N ln~g/v!12N. ~36!

The conditions5N/2 indicates that photon-induced trans
tions preferably occur between the states that are maxim
~and equally! separated from the external pointsr and r 8.
This is optimal in terms of maximizing the overlap integr
of states with a given energy separation.

A more detailed calculation26 shows that, in order to allow
for the compensation from diagrams in Fig. 3~a!, it is neces-
sary to incorporate corrections to the leading-order stee
descent integrals. However, as we already mentioned, t
corrections do not affect the leading term in lnsxx. We also
note that, for a givenEf , the in-plane conductivity become
anisotropic. This anisotropy leads to different prefactors
the conductivity in the directions parallel and perpendicu
to Ef .

26

C. Frequency dependence of the logarithm of the conductivity

The logarithm of the conductivitysxx(v) is given by the
maximal value of the sum of expressions~34! and~36! with
respect to the order of the diagramN. For v5vc, the major
factor in lnsxx(v) coincides with that in the logarithm of th
inter-Landau-level tunneling rate in an external field in R
24~b!. To average over the fluctuational electric field, one h
to add the logarithm of the field distribution and find th
maximum of the resulting expression overEf . With the
Gaussian field distribution~A3!, we obtain

ln sxx~v!'2~3/21/3! ~v t̃ e!
2/3@ ln~v/g!21#1/3, ~37!

where t̃ e is given by Eq.~17!.
Equation~37! is the central result of this section. It show

that the logarithm of the conductivity depends on frequen
asv2/3 for largev. This form of decay is a result of multiple
scattering in the random potential, which helps an electro
move along the fluctuational field as it absorbs a photon.
crossover to Eq.~37! from the single-scattering approxima
tion ~21! ~whereu ln sxxu}v) occurs when the optimal numbe
of scattering eventsN;(vte / ln(v/g))2/3 becomes large. The
corresponding value ofv depends on both the many-electro
fluctuational field and the intensity of the random potenti
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Several comments need to be made about this result. F
the diagrams in Fig. 3 are unusual for a transport proble
They are neither the standard ‘‘ladder diagrams’’ nor t
maximally crossing diagrams. Rather the diagrams in F
3~b! are the maximally wrapped~embedded! diagrams for
the self-energy. Here they appear, because absorption
photon is accompanied by only one ‘‘real’’ scattering by t
random potential. The role of multiple scattering is to alle
ate the Gaussian decay of the electron wave function al
the fluctuational field. Second, as the frequency increa
the probability of a realization of an optimal fluctuation
field Ef may become non-Gaussian. In particular, in the
gion where lnp(Ef) is nearly linear in Ef ,

10 we obtain
u ln sxxu}v1/2, i.e., even a slower decay than Eq.~37!.

V. MAGNETOCONDUCTIVITY IN A SMOOTH RANDOM
POTENTIAL

In many physically interesting cases, the correlati
length of the random potentialr c is large ~or effectively
large, see below! compared to the typical size of the electro
wave packet. A well-known example is provided by electr
systems in semiconductor heterostructures, where muc
the disorder potential comes from the donors that are s
tially separated from the 2DES. A sufficiently weak, smoo
random potential does not lead to a glass transition in
electron liquid. The liquid should then display a nonze
static conductivitysxx(0).

We are interested in the effect on transport of the dyna
ics of individual electrons in the electron liquid. We wi
consider scattering with a momentum transfer that larg
exceeds the reciprocal interelectron distanceq@n21/2. Such
scattering is usually more important for magnetoconduc
ity. If, on the other hand, the random potential is smooth
the scale of the interelectron distancer c@n21/2, the magne-
toconductivity can be analyzed in the magnetohydrodyna
approximation by considering long-wavelength hydrod
namic modes of a viscous electron liquid in a magnetic fi
and a disorder potential.

A. Gaussian potential with correlation length r c™nÀ1Õ2

We start with the case of a weak Gaussian random po
tial with correlation length small compared to the interele
tron distance. Here, to the second order inV(r ), the conduc-
tivity is given by Eqs.~8! and ~9!, with the structure factor
S(q,v) evaluated in the single-site approximation~10!.

The results become particularly interesting and instruct
if the correlation length of the potential satisfies the con
tion

d f!r c!n21/2, ~38!

whered f is the thermal electron displacement from a qua
equilibrium position in the liquid~11!.

For a random potential that satisfies inequality~38!, the
structure factorS̃ss(q,t) needs to be calculated forq!1/d f .
In other words, the electron displacementurm(t)2rm(0)u in
Eq. ~10! should exceedd f . Such displacements occur ove
timest that largely exceed the reciprocal frequency of vib
tions about a quasiequilibrium positionV21. They are due to
4-9
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self-diffusion in the electron liquid, with the diffusion coe
ficient Dee ~A14! introduced in the Appendix. In the diffu
sion approximation, we have

S̃ss~q,t !'exp~2Deeq
2utu!, utu@V21. ~39!

The physical picture of scattering by a smooth rand
potentialV(r ) is as follows. The guiding center of the ele
tron cyclotron orbit drifts transverse to the sum of the ma
electron fluctuational force2eEf and2“V(r ). The fieldEf
leads primarily to vibrations about a quasiequilibrium ele
tron position. In turn, these vibrations result in partial av
aging of the disorder potential. This is somewhat similar
motional narrowing in nuclear magnetic resonance. The
eraging is incomplete because of self-diffusion of quasieq
librium electron positions. Therefore, the momentum tra
ferred to the disorder potential and, thus, the conductivity
determined by the diffusion rate.

Frequency dispersion of the conductivity depends o
specific model of the random potential. A model frequen
used in the analysis of scattering of 2DES, including
quantum Hall effect, is a random potential with a Gauss
correlator,12

uVqu25S21vG
2 exp~2q2r c

2/2!, ~40!

i.e., V(r )V(r 8)5(vG
2 /2pr c

2)exp@2(r2r 8)2/2r c
2#.

From Eqs.~8!, ~9!, ~39!, and~40! we obtain for the mag-
netoconductivity,

sxx~v!5
ne2vG

2

4pkBT m2vc
2r c

2Dee

sG~v!,

sG~v!511ṽFcos~ṽ !S Si~ṽ !2
p

2 D2sin~ṽ !Ci~ṽ !G ,
~41!

whereṽ5vr c
2/2Dee, and Si(z) and Ci(z) are the sine and

cosine integral functions, respectively.27 Equation ~41! is
written for v>0; the functionsxx(v) is even inv.

The functionsG(v) is shown in Fig. 4. It decays mono
tonically with the increasingv and has a Lorentzian

FIG. 4. Frequency dependence of the reduced microwave m
electron conductivitysG(v) @Eq. ~41!#. The scaled frequency is

ṽ5vr c
2/2Dee. The dashed line shows a Lorentzian curve with t

same maximal value and the same asymptotic behavior for largv.
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type tail, sG'2/ṽ2 for ṽ@1. An unusual feature of the
conductivity is thatsG is linear in uvu for small uvu. It has
the formsG(0)2const3uvu. This nonanalytic behavior is a
consequence of the slow decay of the structure fac
S̃ss(q,t) ~39! with time for small wave numbersq. We note
that Eq.~41! does not apply for very smalluvu. Indeed, the
single-site approximation~39! is valid only forq@n1/2. This
means that Eq.~41! can be used only foruvu@Deen or ṽ
@nrc

2 .
The typical duration of a collision with the random pote

tial is given by the timer c
2/Dee it takes for an electron to

diffuse over the lengthr c . The necessary condition for ap
plicability of the above theory is that this time should b
small compared to the relaxation timet(0). It sets an upper
bound on the strength of the disorder potential,

uvGu!\Dee/ l . ~42!

Inequality ~42! can be understood by noticing tha
as mentioned above, a smooth disorder potential a
to the electron drift velocity a termi (c/eB)(q( ẑ3q)
Vqexp(iq•r ). Equation~42! corresponds to the condition tha
the root-mean-square electron displacement due to this
locity over the collision durationr c

2/Dee should be small
compared to the size of the electron wave packetl. Interest-
ingly, the correlation lengthr c drops out of Eq.~42!.

The parameter range, where a 2D electron system form
liquid, is not limited to temperatures where electron moti
is semiclassical,kBT@\V ~4!. The results of this section ar
valid even forkBT,\V as long as the electron system di
plays self-diffusion. The parameterd f in inequality~38! is in
this case determined by quantum zero-point fluctuations.

The formalism of this section can be applied also to
case of a smooth potential created by charged donors s
rated from the electron layer by a spacer of widthd
!n21/2. The major contribution to the conductivity come
from the scattering with momentum transfer;\/d. How-
ever, the long-wavelength tail of the Coulomb potential lea
to a logarithmic divergence of the relaxation ratet21(0)
calculated using Eqs.~9! and ~39!. The analysis of this di-
vergence requires a hydrodynamic approach and will be
ried out in a separate paper.

B. Electron traps

An important type of disorder, particularly for meta
oxide-semiconductor systems, are electron traps. One
think of them as deep short-range potential wellsVtr(r ) lo-
cated at random positionsrk . The overall random potentia
then is

V~r !5(
k

Vtr~r2rk!. ~43!

The potentialsVtr are not weak, but the trap densityNtr is
assumed small. In particular, we assume that the inter
distanceNtr

21/2 largely exceeds the correlation length of th
electron liquid. Then, even though the traps will captu

y-
4-10
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some electrons, other electrons will be free to move a
there still will be self-diffusion in the electron liquid.

To the lowest order inNtr , the magnetoconductivity is
given by Eq.~6!. For \v!kBT, we write it in the form

sxx~v!5
e2l 4

4kBT\2S(
n,n8

(
k,k8

E
2`

`

dt eivt

3^“nVtr@rn~ t !2rk#•“n8Vtr@rn8~0!2rk8#&.

~44!

Because electrons are strongly correlated, only one e
tron may experience the potential of a given trap at a tim
We assume that this electron gets localized on the trap
then creates a repulsive Coulomb potential for other e
trons, and they stay away from the trap.

The picture of one localized electron per trap allows us
rewrite the sum of the correlation functions in Eq.~44! as

(
n,n8

(
k,k8

^•••&→(
k

^“kVtr@rk~ t !#•“kVtr@rk~0!#&.

~45!

Here, rk is the coordinate of an electron on akth trap
counted off from the trap positionrk . We also disregarded
terms withk8Þk, because different traps are far from ea
other and electrons on different traps are not correlated.

We will assume that a localized electron occupies only
ground bound stateug& in the potentialVtr(r ) and that the
energy spacing between the ground state and the neares
cited state is\vg→e@kBT. Then electrons very rarely es
cape from the traps or are thermally excited to higher sta
It should be noted that, in fact, the true binding potentia
stronger than the ‘‘bare’’ potentialVtr , because surroundin
electrons contribute to electron localization by providing
‘‘caging’’ potential. The localization length of the stateug& in
a quantizing magnetic field is of the order of the magne
length l !d f .

For \vg→e@kBT, thermal averaging of a single-electro
operatorÔ[O(rk) in Eq. ~45! is done in two steps. First
one has to find the diagonal matrix element^guÔug& on the
wave functions of the ground state of the trapped electr
Then the matrix element has to be averaged over the stat
the many-electron system. In addition, if we are intereste
the conductivity at frequenciesv!vg→e , we have

^gu“kVtr@rk~ t !#•“kVtr@rk~0!#ug&

→^gu“kVtr@rk~ t !#ug&^gu“kVtr@rk~0!#ug&.

In order to calculate the matrix elemen
^gu“kVtr(rk)ug&, we note that, besides the potential of t
defect, a trapped electron experiences a potential from o
electrons. The fluctuating part of this potential varies on ti
;V21. In the range of interest,bV!1 ~4! and bvg→e
@1, we haveV!vg→e . Therefore, a localized electron fo
lows the many-electron field adiabatically. The overall for
on akth localized electron is2“Vtr(rk)2eEk , whereEk is
the many-electron fluctuational field on this electron~see the
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Appendix!. The diagonal matrix element of the force shou
be equal to zero. This gives for correlator~45!,

^“kVtr@rk~ t !#•“kVtr@rk~0!#&5e2^Ek~ t !Ek~0!&. ~46!

For a trapped electron, the behavior of^Ek(t)Ek(0)& is
determined by the motion of neighboring electrons. As in
absence of trapping, this motion comprises vibrations ab
quasiequilibrium positions superimposed on diffusion
these positions. Because the trapped electron itself does
move, the vibrations and the diffusion are somewhat diff
ent from those in the free-electron liquid. However, we
not expect this difference to be too large. Indeed, a neigh
of a trapped electron has at most one of its six~on average!
nearest neighbors localized. Therefore, the correla
^Ek(t)Ek(0)& should still decay on times of the order of th
reciprocal vibration frequencyV21, in the central part.

It is seen from Eqs.~44! and ~46! that sxx(0) is deter-
mined by the integral of the field correlator over time, wi
no extra time-dependent weight. In the semiclassical
proximation, this integral is simply related to the se
diffusion coefficientDee of the electron liquid~A12! and
~A13!. For a trapped electron, it should be the same, to
order of magnitude, and may only differ by a factor;1 that
depends onG. Therefore,

sxx~0!;Ntr e2Dee/kBT. ~47!

In contrast to the cases discussed before, the conduct
sxx(v) does not peak atv50 for low frequencies. The field
power spectrum, which is given by the Fourier transform
correlator~46!, increases withv. A simple calculation shows
that, for a Wigner crystal, this increase is linear forv!V.
Therefore, for an electron liquid it should be linear in th
ranged f

2/Dee!v!V. The conductivity peaks atv;V. The
overall width of the peak of the low-frequency conductivi
is ;V.

Equation~47! shows that, for short-range traps, magne
conductivity is proportional to the defect density, rather th
the electron densityn. For v50, it depends onn only in
terms of the self-diffusion coefficientDee. The shape of the
peak also depends onn. Therefore, measurements of the co
ductivity spectrum should provide an insight into both lon
and short-time electron dynamics in the liquid, i.e., se
diffusion and vibrations about quasiequilibrium position
We note the similarity between this problem and the probl
of dissipative conductivity of a 2D superconducting fil
with vortices in the presence of pinning centers.

VI. CONCLUSIONS

In this paper, we have found the frequency dependenc
the conductivity of a nondegenerate electron liquid in
quantizing magnetic field forv!vc . We have shown tha
this dependence is extremely sensitive to both short-
long-time electron dynamics in the liquid and the charact
istics of the random potential.

For a short-range potential, the conductivity is determin
by a large-q electron scattering. It occurs as an electron dr
transverse to the magnetic field and the fieldEf , which is
4-11



be
o-

m

e
ra

r
le

tro

r

ro

xp
th

ic
el

e
th

ro
id
e

ss

re
pe
uc
th
c-
t
r-
ea
o

hi
d

wn

ou
by
a

the

-

he
si-

r-

by
n-
ma-

ap-
m

he

ar
.
e

ag-
e

he
n is

by

M. I. DYKMAN AND LEONID P. PRYADKO PHYSICAL REVIEW B 67, 235104 ~2003!
created by density fluctuations in the liquid. The results
come particularly simple if the correlation length of the p
tential r c is less than the magnetic lengthl. Here, the shape
of the peak ofsxx(v) depends on one dimensionless para
etervte and is given by an explicit expression~21!. The time
te is the time of flight over the lengthl in the fieldEf . It is
smaller than the inverse rate of interelectron momentum
changeV21 and depends on the electron density, tempe
ture, and magnetic field aste}n23/4T21/2B1/2. Therefore, by
studying the shape of the magnetoconductivity peak fo
short-range disorder one can investigate the short-time e
tron dynamics as a function of the parameters of the elec
liquid.

The tail of the conductivity in the rangete
21!v!vc is

exponential and obeys the Urbach rule. The photon ene
\v is transferred to the many-electron system via
radiation-induced electron displacement along the fieldEf .
The momentum needed for the displacement comes f
scattering by a fluctuation of the disorder potential. Asvte
increases, it becomes more probable for an electron to e
rience multiple scattering. This leads to the change of
asymptotic behavior fromu ln sxxu}v to u ln sxxu}v2/3. Such
behavior is described by unusual fat fish diagrams, wh
correspond to maximally embedded diagrams in the s
energy~see Fig. 3!.

The conductivity has a different form for a long-rang
disorder potential. Of particular interest is the case where
correlation lengthr c exceeds the root-mean-square elect
displacement from a quasiequilibrium position in the liqu
d f . Here,sxx(v) is determined by electron diffusion in th
liquid. It has a simple form given by Eq.~41!. The shape of
the spectral peak ofsxx(v) depends on one dimensionle
parametervr c

2/Dee. It displays a rounded cusp atv50 and
decays asv22 for largevr c

2/Dee.
Yet, another behavior arises in the case where scatte

are short-range electron traps. If the density of the trap
electrons is small, the 2DES remains a liquid. The cond
tivity is expressed in terms of the power spectrum of
fluctuational fieldEf that the liquid exerts on a trapped ele
tron. The spectral peak of the conductivity is located a
frequency;V. The low-frequency part of the peak is dete
mined by electron diffusion, whereas the shape of the p
near its maximum depends on vibrations of electrons ab
their quasiequilibrium positions in the liquid.
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APPENDIX: DYNAMICS OF A NONDEGENERATE 2D
ELECTRON LIQUID

A snapshot of a correlated 2D electron liquid is sho
schematically in Fig. 1~a!. In such a liquid, for most of the
time, the electrons perform small-amplitude vibrations ab
their quasiequilibrium positions in the potential formed
other electrons and the neutralizing background. In the
sence of a magnetic field, the characteristic frequency
23510
-

-

x-
-

a
c-
n

gy
a

m

e-
e

h
f-

e
n

rs
d
-

e

a

k
ut

s
in

t

b-
of

such vibrations is determined by the second derivative of
Coulomb potential at the mean interelectron distancen21/2

and is given by the short-wavelength plasma frequencyvp
5(2pe2n3/2/m)1/2, which is the characteristic Debye fre
quency of a 2D Wigner crystal.

An important characteristic of electron dynamics is t
typical fluctuational electron displacement from the qua
equilibrium positiond f in Fig. 5~a!. If the electron motion is
classical, i.e., for\vp!kBT, it can be estimated in the ha
monic approximation by setting the potential energye2n3/2d f

2

equal tokBT:

^d f
2&5kBT/e2n3/2. ~A1!

The necessary condition thatd f
2 be much less than the

squared interelectron distancen21 is equivalent toG@1.
The restoring force on the vibrating electron is given

the electric fieldEf , see Fig. 5a. This field is due to electro
density fluctuations. In the classical regime, these are pri
rily short-wavelength fluctuations.15 For largeG, the field
should be close to its value estimated in the harmonic
proximation in electron displacements from quasiequilibriu
positions,

^Ef
2&5F~G!n3/2kBT. ~A2!

The function F(G) was obtained by Monte Carlo
simulations.10 In the whole range 10,G,GW5130 it re-
mains essentially constant, varying from 10.5 to 9.1. T
field distributionp(Ef) is Gaussian in the central part:

p~Ef!5@p^Ef
2&#21exp@2Ef

2/^Ef
2&#, ~A3!

which is an indication that, in this range ofG, the electron
motion is mostly weakly anharmonic vibrations. On the f
tail, the decay ofp(Ef) is slowed down compared to Eq
~A3!.10 The fluctuational field is the only characteristic of th
electron liquid, which is needed in order to describe the m
netoconductivitysxx(v) in the case of a weak short-rang
disorder.

FIG. 5. ~a! A snapshot of a correlated electron fluid~schemati-
cally!. The open circle shows an equilibrium position of one of t
electrons in the field of other electrons. Because the electro
displaced, it experiences a restoring force, which is determined
the fluctuational electric fieldEf . ~b! Phonon spectrum of a 2D
Wigner crystal in a quantizing magnetic field~schematically!.
4-12
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1. A nondegenerate electron liquid in a strong magnetic field

In a strong magnetic field,vc@vp , the electron motion is
separated into cyclotron motion with frequencies;vc and
comparatively slow vibrations of the guiding centers ab
their slowly diffusing quasiequilibrium positions. The coo
dinates of the guiding centers are

Rn5~Xn ,Yn!, Rn5rn1\21l 2p3 ẑ, ~A4!

where, ẑ52B/B is the unit vector normal to the electro
layer, andp is the canonical momentum. From Eq.~A4!, the
componentsXn ,Yn obey the commutation relation

@Xn ,Yn#52 i l 2, l 25\/~mvc!. ~A5!

The magnetic lengthl gives the typical size of the electro
wave packet.

The dynamics of the guiding centers is described by
Hamiltonian of the electron-electron interactionHee ~3! pro-
jected on the lowest Landau level,

Hee'
e2

2 (
nÞm

uRn2Rmu21. ~A6!

The Heisenberg equations of motion forRn can be written
in a closed form in the important case where the electric fi
on electrons is smooth on the scalel:

Ṙn5cB22En3B. ~A7!

Here,

En5e
]

]Rn
(

m~mÞn!
uRn2Rmu21 ~A8!

is the field on thenth electron created by other electrons a
calculated by ignoring noncommutativity~A5! of the guiding
centers’ components.

By linearizingEn in displacements of the electrons fro
their quasiequilibrium positions, one can see that the mo
of the guiding centers comprises mostly vibrations with
typical frequency

V5vp
2/vc52pe2n3/2/mvc . ~A9!

This frequency also gives the typical rate of interelectr
momentum exchange. In the case where electrons for
Wigner crystal,V is the zone-boundary frequency of th
lower phonon branch, see Fig. 5~b!.

Motion of the guiding centersRn becomes semiclassica
for

kBT@\V. ~A10!

It is determined by thermal fluctuations. From Eq.~A10!, a
typical electron displacement from a quasiequilibrium po
tion d f given by Eq.~A1! is d f@ l . Therefore, the fluctua
tional electric fieldEf , which varies on the distanced f , is
uniform on the magnetic lengthl, as assumed in Eq.~A7!.

The probability distribution of the guiding cente
r(R1 , . . . ,Rn , . . . ) is given by the Boltzmann equation
23510
t

e

d

n

n
a

-

r~R1 , . . . ,Rn , . . . !5const3exp~2Hee/kBT!,
~A11!

with Hee given by Eq. ~A6!. Therefore, the results for a
classical electron liquid in the absence of a magnetic fi
can now be carried over to the case of quantizing magn
field. In particular, the instantaneous distribution of the flu
tuational fieldEf is the same as in the classical 2DES forB
50. Condition ~A10! is much less restrictive than\vp
!kBT becauseV!vp .

For G,130, Eqs.~A7!, ~A8!, and~A11! provide a semi-
classical description of a nondegenerate electron liquid i
strong magnetic field. In the long-wavelength limit, this li
uid can be alternatively described in the hydrodynamic
proximation. The transport coefficients~e.g., viscosity! can
be found from the correlation functions of the liquid~e.g.,
current-current correlator!. In two dimensions, because of
large contribution from long-wavelength modes, the tra
port coefficients diverge. A self-consistent analysis in t
case of a classical 2D liquid for small frequenciesv and
wave numbersq was done by Andreev.28 He showed that
transport coefficients diverge as ln1/2v in the limit of small
v. For a 2D electron liquid in a short-wavelength rando
potential, this divergence is terminated at the cutoff f
quency given by the rate of electron scattering in this pot
tial t21. This rate determines the long-wavelength sta
conductivity and thus the decay rate of long-wavelen
modes of the electron liquid. A corresponding self-consist
analysis in the presence of a magnetic field will be giv
elsewhere. A logarithmic correction to the viscosity of a 2
Fermi liquid due to electron-impurity scattering was found
Ref. 29.

An important feature of the liquid state, which ultimate
gives rise to a nonzero static conductivity, is self-diffusio
The coefficient of self-diffusionDee can be related to the rm
displacement of a particle over a long timet@V21,

Dee5DRn
2~ t !/4t, DRn

2~ t ![^@Rn~ t !2Rn~0!#2&.
~A12!

If we assume that the semiclassical approximation~A7! ap-
plies for long timest@V21, then the electron displacemen
is related to the correlator of the fluctuational electric field

DRn
2~ t !5~c/B!2E

0

t

dt8E
0

t

dt9^En~ t8!En~ t9!&. ~A13!

The natural scale of the electric field is given by the rm
value ~A2!. Field correlations decay over the time;V21.
Then, the diffusion coefficient becomes

Dee5
kBT

mvc
D̃ee~G,Vt !. ~A14!

Here, we took into account thatc2^Ef
2&/B2V;kBT/mvc .

We note that, in the absence of a magnetic field, the po
spectrum of the fieldEf goes to zero forv→0. In this case,
the double integral over time in Eq.~A13! gives just the
average increment of the momentum of an electron, wh
saturates for larget. The electron dynamics in a magnet
field is different, and we expect that here the integral~A13!
4-13
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linearly increases witht. This conjecture is based on th
argument that, because of self-diffusion in the electron
uid, DRn

2(t) should linearly increase in time. This increa
must be caused by the fluctuational field, since quantum
rections to an electron displacement are small.15

An analysis based on magnetohydrodynamics with
frequency-independent viscosity coefficient leads to an e
factor lnt in the time dependence ofDRn

2(t). A similar factor

should arise in the functionD̃ee for t!t. However, it should
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