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Band structure for a one-dimensional photonic crystal containing left-handed materials
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The explicit dispersion equation for a one-dimensional periodic structure with alternative layers of left-
handed material~LHM ! and right-handed material~RHM! is given and analyzed. Some unusual phenomena
such as spurious modes with complex frequencies, discrete modes and photon tunneling modes are observed in
the band structure. The existence of spurious modes with complex frequencies is a common problem in the
calculation of the band structure for such a photonic crystal. Discrete modes may exist regardless whether the
optical length of the LHM layer cancels the optical length of the RHM layer or not. Physical explanation and
significance are given for the discrete modes~with real values of wave number! and photon tunneling propa-
gation modes~with imaginary wave numbers in a limited region!.
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I. INTRODUCTION

Left-handed materials~LHM ! with negative permittivity
and negative permeability, which were first suggested in R
1, have attracted much attention recently2–4 thanks to the
experimental realization of such materials5 and the debate on
the use of a LHM slab as a perfect lens to focus both pro
gating waves and evanescent waves.8,6,7

Multilayered structures containing LHM have been inve
tigated through calculating the transmittance or reflectanc
the structure.9,10 Effects of photon tunneling and Bragg di
fraction have been observed in these works. LHM has a
been used to widen the stop band of a one-dimensional~1D!
photonic crystal in the case of normal propagation.11 In the
present paper, we consider the unusual band structure
photonic crystal formed by alternative layers of LHM an
RHM. The band structure is investigated by analyzing
explicit dispersion equation. Some unusual phenomena s
as spurious modes with complex frequencies, discrete mo
~with real values of wave number! and photon tunnelling
modes~with purely imaginary values of wave number! are
found and explained in the present paper. The photon tun
ling modes exist only in the case of oblique propagation.

II. ANALYTICAL DISPERSION RELATION AND
SPURIOUS MODES

Consider a 1D periodic structure with alternating laye
(e1 ,m1) and (e2 ,m2) as shown in Fig. 1.d1 andd2 are the
widths of the two inclusion layers respectively, anda5d1
1d2 is the period. Note that the conservation of energy
quires thate im i.0, i 51,2. The corresponding refractive in
dex is given byni56Ae im i ~negative sign for LHM!. We
consider an oblique propagation of monochromatic elec
magnetic field~with time dependencee2 ivt) in a periodic
structure with oblique wave vectorb along thex axis. For
the E-polarization case, one has

E1y5eibx~eik1z1Ae2 ik1z!,
0163-1829/2003/67~23!/235103~6!/$20.00 67 2351
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H1x5
2k1

vm1
eibx~eik1z2Ae2 ik1z!, ~1!

H1z5
b

vm1
eibx~eik1z1Ae2 ik1z!

in region 1

and

E2y5eibx~Beik2z1Ce2 ik2z!,

H2x5
2k2

vm2
eibx~Beik2z2Ce2 ik2z!, ~2!

H2z5
b

vm2
eibx~Beik2z1Ce2 ik1z!

in region 2,

FIG. 1. A 1D periodic structure consisting of alternate layers
RHM and LHM inclusions.
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whereki is the component of the wave vector along thez
axis in regioni ( i 51,2), i.e.,ki

25v2e im i /c22b2. Herec is
the speed of light in vacuum.

The tangential electric and magnetic fields should be c
tinuous atz50, i.e.,

E1y~z502!5E2y~z501!,

H1x~z502!5H2x~z501!. ~3!

To obtain the dispersion relation for this 1D photonic cryst
we need to use the following periodic conditions accord
to the Bloch theorem:

E2y~z5d2!5E1y~z52d1!eiqa,

H2x~z5d2!5H1x~z52d1!eiqa, ~4!

whereq is in the first Brillouin zone2p/a<q<p/a . Sub-
stituting systems~1! and ~2! into systems~3! and ~4!, we
obtain the following dispersion relation for th
E-polarization case:

cos~k1d1!cos~ ñk1d2!2
ñ21m2

2ñm
sin~k1d1!sin~ ñk1d2!

5cos~qa!, ~5!

whereñ5k2 /k156An2(k1
21b2)2b2/k1 ~negative sign for

n,0), m5m2 /m1, and n5n2 /n1 is the index ratio of the
two media.

Similarly, we can derive the following dispersion relatio
for the H-polarization case:

cos~k1d1!cos~ ñk1d2!2
ñ21e2

2ñe
sin~k1d1!sin~ ñk1d2!

5cos~qa!, ~6!

wheree5e2 /e1.
From analytical Eqs.~5! and~6!, we can find out howk1

depends onq. The corresponding dispersion relation betwe
v and q can then be obtained according tov25c2(k1

2

1b2)/(e1m1) for each fixedb (b50 is associated to the
normal propagation, i.e., the case when the propagation
rection is along the normal of the material interfaces!.

When the index ration,0, the solution to the dispersio
equation and the associated band structure have quite d
ent behaviors as compared to those for the usual case w
n.0. For simplicity, we first illustrate this for the case whe
b50. In this case, (ñ21m2)/2ñm5(ñ21e2)/2ñe and the
dispersion equations for theE polarization and theH polar-
ization have the same form~as expected!.

Spurious modes with complexv. When one of the consti
tutive media is of LHM~i.e.,n,0), the analytical dispersion
equation may have some complex solutions fork1. These
complex values ofk1 lead to complexv since v25c2(k1

2

1b2)/(e1m1). Figure 2 gives the band structure whenn5
22.5,m522,d15d250.5a for the normal propagation cas
~i.e., b50). The real part ofv varies little asq varies from
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2p/a to p/a. The problem of complexv will also appear
when bÞ0 ~i.e., the case of oblique propagation!. Obvi-
ously, these complexv have no physical significance sinc
physically the frequencyv must have a real value.

Traditionally, the pass bands of a conventional 1D pe
odic structure can be obtained when the absolute value o
left-hand side of the dispersion relation@Eq. ~5! or ~6!# is less
than one~this means that one can obtain a real wave num
q for the normal propagation!. On the other hand, when th
left-hand side of Eq.~5! or ~6! is bigger than 1, the frequenc
belongs to a stop band. For a photonic crystal consisting
only usual media, whose permittivity and permeability a
real and positive, the solution to the dispersion relation@Eq.
~5! or ~6!# for the transverse wave numberk1 is always real
and thus one can enforce the wave number to be real in
dispersion relation. However, this is no longer true when
photonic crystal contains both RHM and LHM. Some com
plex value ofk1 can still make the left-hand side of Eq.~5! or
~6! smaller than 1 and these complex solutions ofk1 may
have physical significance. For example, a purely imagin
solution for the transverse wave numberk1 corresponds to a
photon tunnelling mode for the case of oblique propagat
~see the discussion on photon tunnelling modes belo!.
Therefore, we cannot enforce the solution to be real in
present situation.

Furthermore, in a general case or some numerical m
ods for calculating the band structure of a 2D or 3D photo
crystal, we usually ends up with solving a complex equat
~due to the introduction of thee2 ivt convention! for a com-
plex wave number and thus consequently we can not enf
the solution to be real in these cases.

The existence of the complex solutions is a common p
nomenon and even a very serious problem for some num
cal methods. For example, one would meet a similar prob
of complexv in the calculation of the band structure usin
other methods such as the plane wave expansion me
~one needs to remove these spurious complexv in the band

FIG. 2. The band structure for the normal propagation~i.e., b
50) with e151, m151, n522.5, m2522, d15d250.5a. The
circles show the realv, while the dashed lines indicate the re
parts of the complexv.
3-2
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structure!. In the plane wave expansion method, thev values
are determined from the eigenvalue equation (1/m)¹
3@(1/e)¹3H#5(v2/c2)H. The existence of complexv in-
dicates that the operator (1/m)¹3@(1/e)¹# is not a Hermit
operator or has no equivalent Hermit operator. One can
expect that these complexv ~associated with an exponenti
increasing factor of time! will make the finite-difference time
domain ~FDTD! method ~with a periodic boundary condi
tion! divergent in the calculation of the band structure o
photonic crystal consisting of alternate RHM and LHM i
clusions ~with constant permittivity and permeability!.12–14

We have verified numerically with the plane wave expans
method and the FDTD method the existence of the spur
modes with complexv.

The fields associated with the spurious complexv satisfy
Maxwell’s equations, the boundary condition and the e
forced periodic condition. Therefore, an additional requi
ment that the frequencyv must be real should be applied
make the solution significant in physics.

In the rest of the paper, we consider only situations wh
v is real. Whenb50, a complex solution ofk1 always leads
to a spurious complexv. However, whenbÞ0 some com-
plex solutions ofk1 may correspond to realv and thus have
physical significance. Sincev25c2(ki

21b2)/(e im i), a com-
plex solution ofki[kiR1 jk iI ~with kiI Þ0) should satisfies
the following conditions in order to makev real:

kiR50, kiI
2 ,b2. ~7!

In other words, an imaginary solution ofk1 can have physi-
cal significance whenbÞ0 ~i.e., the oblique propagation
case!. Imaginary solutions ofk1 correspond to evanesce
waves. In a periodic structure consisting of alternate RH
and LHM layers, the special property that the evanesc
waves~in both directions! decrease in the RHM layer an
increase in the LHM layer8 or vice versa permits the evane
cent waves to propagate in the periodic structure~i.e., a
propagation mode with imaginaryk1 and realq, for which
the energy density does not decay over a period; we will
it a photon tunnelling mode and will discuss it in more d
tails below!. In the present work all possible solutions~in-
cluding complex solutions! to the analytical equation~5! are
obtained by using the Matlab program ‘‘solve’’ for solving
nonlinear equation.

III. DISCRETE MODES AND PHOTON TUNNELLING
MODES

As discussed before, imaginary solutions ofk1 may have
physical significance whenbÞ0. This will be illustrated by
the unusual photon tunnelling modes in the band struc
for a photonic crystal consisting of alternate RHM and LH
layers. Another unusual~and interesting! phenomenon is tha
some discrete modes~with real values of wave number! are
also found in the band structure.

To simplify the analysis, we consider a special case w
n521 for theE polarization. Thenñ521 ~independent of
b) and Eq.~5! is simplified to
23510
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cos~k1d1!cos~k1d2!2
11m2

2m
sin~k1d1!sin~k1d2!5cos~qa!.

~8!

One notices that the above equation fork1 is independent of
b. This indicates that differentb may have the same solu
tions of k1. The solutions of the dispersion equations on
give the corresponding wave numberk1. The frequencies
and the band structure of the photonic crystal should
given for a fixedb. Furthermore, one should pay spec
attention that onlybÞ0 can permit the existence of som
photon tunneling modes~see discussed below!.

We discuss situations whenmÞ21 ~so that the RHM and
LHM layers have different values of impedance!. It is par-
ticularly interesting when the two inclusion layers have t
same width~i.e., d15d250.5a) since in this case only dis
crete modes and photon tunneling modes exist~conventional
propagating band disappears in the band structure!.

A. Discrete modes

Since cos(k1d1)cos(k1d2)1@(11m2)/2umu#sin(k1d1)
3sin(k1d2)>1 ~when k1 is real!, real solutions ofk1 to Eq.
~8! exist only whenq50 ~notice that 2p/a<q<p/a),
which corresponds to discrete solutionsk152Np/a, N50,
61,62, . . . . As anexample, the discrete real solutions
k1 to Eq. ~8! are shown by the circles in Fig. 3~with m5
22). This unusual phenomenon~existing for anyb) can be
utilized to make a very narrow filter with no side lobe~the
ripples outside the main lobe of the transmission spectru!,
which is quite different from any conventional type of filter
From these discrete solutions, one can obtain the corresp
ing eigen field distributions by deriving the coefficientsA, B,
and C. For example, whenk152p/a one hasB5 3

2 2A/2
and C52 1

2 13A/2 @here A is an arbitrary constant repre

FIG. 3. The solutions~with physical significance! of k1 to Eq.
~8! with e151, m151, n521, m2522, d15d250.5a. The
circles indicate the real solutions, which exist discretely atq50.
The dashed lines show the imaginary solutions. The imaginary
lutions are continuously distributed in a region from20.561j
32p/a to 0.561j 32p/a.
3-3
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senting the amplitude of the left-going wave excited in
gion 1; note that the right-going wave excited in region 1 h
been normalized according to Eq.~1!#. The arbitrariness ofA
indicates that any linear combination of the left- and rig
going waves can exist in region 1~since in such a case eac
layer is transparent to the neighboring medium as discus
below!.

These discrete solutions satisfy the Fabry-Perot resona
condition of k1d15Np and k2d252Np ~note that k2

5ñk152k1 for the special casen521 considered here!.
When this Fabry-Perot condition is fulfilled, each layer
transparent to the neighboring medium at these discrete w
numbers~corresponding to some discrete frequencies fo
fixed b), and thus an incident field at one of these frequ
cies will surely pass through the periodic structure and
comes a propagating mode. To excite such a discrete m
by an external field and to detect by an external probe,
has to truncate this infinitely extended periodic structure w
a finite number of periods. When truncating this period
structure with finite periods and terminating it with any o
of the two inclusion media at both sides, the structure
finite periods will also be transparent at these frequencies~in
this finite slab caseA50 at these frequencies since there
only a right-going incident wave in the left half-space, whi
contains the same medium as in region 1; if one wishe
excite modes withAÞ0, an incident wave from the righ
half-space should also be used!. On the other hand, field
with any other wave number~i.e., any other frequency fo
the fixed b) satisfies the Bragg reflective conditionk1d1

1k2d250 ~independent of the frequency sincek25ñk15
2k1 for the special case considered here! and will be re-
flected from this finite periodic structure. Therefore, the
will be a very steep transmission peak around the disc
frequency in the transmission spectrum.

For k1d11k2d2Þ0 ~with n,0), we can still have the
unusual discrete mode under some conditions. When an
cident field is launched into a 1D periodic structure with
finite number of layers, it will be reflected from two kinds o
interface. The reflected waves at different interfaces sum
to the total reflected wave. If the periodic structure conta
both LHM and RHM, there are some unusual narrow tra
mission bands in the transmission spectrum around s
special points. At these special points both the Fabry-P
condition ~i.e., k1d15Np and k2d252Lp) and the Bragg
condition ~i.e., k1d11nk1d25Mp) are satisfied. Sincen
,0 and ñ,0, one can haveuM u,uNu and thus the Bragg
condition dominates~i.e., reflected waves at different period
sum up to an increased reflected field at the first interfa!
when the wave number deviates from these discrete po
In some later part of the present paper we will give the
lutions for the cased1Þd2 ~as an example ofk1d11k2d2
Þ0) and show the discrete modes in the band structure

B. Photon tunnelling modes

The present photon tunneling refers the tunneling thro
a part of a period~complex k1, but real q), but not the
tunneling through the entire hetrostructure~complexq). Op-
tical field which decreases in a RHM layer~or a LHM layer!
23510
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is amplified in a LHM layer~or a RHM layer! and does not
decrease in amplitude after propagating through a pe
@sinceq has a real value; see Eq.~4!#.

From Eq.~8! one sees that only complexk1 can be the
solutions if the realq is not equal to 0. Then according t
condition~7! the solutionsk1 with physical significance mus
be imaginary. The expression on the left-hand side of Eq.~8!
always decreases whenk1I increases or decreases away fro
0 ~a symmetric function ofk1I with a maximum atk1I

50). Therefore, only two conjugate imaginary solutions e
ist. The dashed lines in Fig. 3 show the imaginary solutio
of k1 to Eq. ~8! for an example. Whenq(Þ0) varies in the
first Brillouin zone, the two conjugate imaginary solution
vary continuously in a region from20.561j 32p/a to
0.561j 32p/a. Note that this figure is independent ofb for
this special case. For oblique propagation withb2.kiI

2 , the
imaginary solutions correspond to special propagation mo
2photon tunneling modes~as discussed before!. For this ex-
ample, evanescent waves withk1I outside the region
@20.561j 32p/a,0.561j 32p/a# can not propagate insid
the periodic structure. From Fig. 3 one can also see thatk1I

approaches 0 whenq approaches 0. Thus, anybÞ0 can
permit the existence of some photon tunnelling modes si
k1I can be arbitrarily small to satisfyk1I

2 ,b2. From the
above discussion, one sees that for anybÞ0 there always
exist some evanescent waves which can propagate insid
periodic structure while some other evanescent waves
not ~one notices that in the case of a perfect lens8 all the
evanescent waves can go through the lens!. This limitation of
the photon tunnelling modes is due to the enforced perio
condition. Thus, the problem of square nonintegrable fie6

will not occur in the present situation~this is also true for the
next example whend1Þd2).

It is known that the photon tunnelling effect exists in th
following two cases: long-range surface plasma waves s
port by thin metallic films ~with negative dielectric
constant!15,16and optical modes of long wavelength in supe
lattices of, e.g., GaAs-AlAs.17–19At the interface of two ma-
terials with one material having a negative dielectric const
and the other a positive dielectric constant, a surface pla
wave that decreases on either side of the surface can be
cited. The first case of photon tunnelling effect is due to
coupling between the surface plasma waves at the two in
faces through the evanescent wave in the metallic film. T
second case of photon tunnelling effect is due to the plas
phonon~transverse and longitudinal optical modes! oscilla-
tions excited by an external optical field. In both cases,
optical field pass through the structure indirectly, i.e., by
coupling of surface plasma modes or by the excitation
phonons. However, in the present case, the photon tunne
effect is based on a very different mechanism—the amp
cation of the evanescent wave in the LHM~in which both the
permittivity and the permeability are negative!. As discussed
earlier, evanescent waves that decrease in RHM~or LHM!
are amplified in LHM~or RHM! and become propagatio
modes in the periodic structure. In the present situation,
fields ~photons! pass through the periodic structure directl
3-4
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Both discrete modes and photon tunnelling modes e
when bÞ0. However, whenb50 ~as in the above ex
ample!, which corresponds to normally incident waves~i.e.,
the normal propagation case!, only discrete modes can exis
~this means that only fields at discrete frequencies can e
in the structure!.

Figure 4~a! shows the solutions ofk1 for an example of
d1Þd2 ~so thatk1d11k2d2Þ0). The discrete solutions ar
at k15(2.515N)32p/a for q56p/a and at k155N
32p/a for q50, N50,61,62, . . . . They are located in
the forbidden band gaps@see Fig. 4~b! for the corresponding
band structure for a givenb]. From this figure one sees tha
nondiscrete realk1 solutions @corresponding to some con
tinuous bands shown in Fig. 4~b!# exist in addition to some
discrete modes and photon tunneling modes.

IV. DISCUSSION AND CONCLUSION

In the above we have discussed only the ideal situati
when the periodic structure consists of ideal materials w
lossless and nondispersive negativee and negativem (e and

FIG. 4. An oblique propagation case withd1Þd2. The two in-
clusion layers havee151, m151, n521, m2522, d150.4a,
and d250.6a. ~a! The solutions ofk1 with physical significance.
The circles show the real solutions. The real solutions have disc
values~at q50 andq56p/a) as well as continuous bands. Th
dashed lines indicate the imaginary parts of the imaginary soluti
~b! The band structure whenb50.58332p/a. The dashed lines
show the frequencies of the photon tunnelling modes. The cir
indicate the discrete frequencies of the discrete modes. The
lines show the continuous bands.
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m are the relative permittivity and permeability of the tw
inclusion media!. In a nonideal situation with material loss o
dispersion the unusual phenomena such as spurious m
with complex v, discrete modes and photon tunnellin
modes can also be expected to occur for the following r
sons.

If the inclusion media are dispersive,e and m will be
frequency dependent. Since the solutions can be obta
from Eq. ~5! in a point-by-point manner, they are corre
locally ~i.e., in a small frequency range where the frequen
dependence ofe andm can be neglected!. Thus, the unusua
phenomena can still exist in certain small frequency regi
Furthermore, the frequency in the band structure is scala
and thus we can scale it to a frequency at which the mate
parameters have desired values in order to observe thes
usual phenomena.

If the LHM inclusion is lossy the relativee or m has a
very small positive imaginary part~e.g., 1025 j ; as claimed in
some papers that LHM must have some loss6!. The unusual
phenomena can still occur since the dispersion equation@Eq.
~5!# will not give any rapid change when a very small imag
nary part is added toe or m. Note that for the photon tun
neling modesq should be complex~corresponding to a
pseudoperiodic field with a damping factor along the pro
gation direction! whene or m is complex. Since the imagi
nary parts of these parameters are very small, Eq.~5! is still
valid when all the parameters~including e, m and q) are
replaced with their real parts.

In conclusion, we have found some unusual phenom
such as spurious modes with complexv, discrete modes and
photon tunneling modes in the band structure by analyz
the explicit dispersion equation for a 1D periodic structu
with alternating LHM and RHM layers. One will meet th
problem of complexv in the calculation of the band struc
ture using other methods such as the plane wave expan
method and the FDTD method. The physical significance
the discrete modes and photon tunneling modes has b
explained. The discrete modes can be utilized to make a v
narrow filter with no side lobe. For an oblique wave prop
gation there exist some evanescent waves which can bec
propagating modes~photon tunneling modes! while some
other evanescent waves cannot propagate inside the per
structure.
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