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Band structure for a one-dimensional photonic crystal containing left-handed materials
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The explicit dispersion equation for a one-dimensional periodic structure with alternative layers of left-
handed materialLHM) and right-handed materi@RHM) is given and analyzed. Some unusual phenomena
such as spurious modes with complex frequencies, discrete modes and photon tunneling modes are observed in
the band structure. The existence of spurious modes with complex frequencies is a common problem in the
calculation of the band structure for such a photonic crystal. Discrete modes may exist regardless whether the
optical length of the LHM layer cancels the optical length of the RHM layer or not. Physical explanation and
significance are given for the discrete modesth real values of wave numbeand photon tunneling propa-
gation modegwith imaginary wave numbers in a limited regjon
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I. INTRODUCTION —k; . _
H1X=w—e'ﬁx(e'klz—Ae"klz), (1)

Left-handed materialéLHM) with negative permittivity #
and negative permeability, which were first suggested in Ref.
1, have attracted much attention recefitfythanks to the Hy— B eiPx(gkims A k)
experimental realization of such materfadmd the debate on 2 wu
the use of a LHM slab as a perfect lens to focus both propa-
gating waves and evanescent watés. in region 1

Multilayered structures containing LHM have been inves-
tigated through calculating the transmittance or reflectance ozind
the structuré:? Effects of photon tunneling and Bragg dif-
fraction have been observed in these works. LHM has also
been used to widen the stop band of a one-dimensidi)l
photonic crystal in the case of normal propagafibm the
present paper, we consider the unusual band structure of a Ko o iz ik
photonic crystal formed by alternative layers of LHM and Hzxzw_,uze (BeM2*—Ce ™27, 2
RHM. The band structure is investigated by analyzing the
explicit dispersion equation. Some unusual phenomena such
as spurious modes with complex frequencies, discrete modes H :ieiBX(Beikzer Ce k12
(with real values of wave numbeand photon tunnelling 27 oy
modes(with purely imaginary values of wave numbere
found and explained in the present paper. The photon tunnel-
ling modes exist only in the case of oblique propagation.

E2y: ei,BX(Beik2Z+ CefikZZ),

in region 2,

II. ANALYTICAL DISPERSION RELATION AND
SPURIOUS MODES

Consider a 1D periodic structure with alternating layers
(€1,m1) and (e,,u») as shown in Fig. 1d; andd, are the
widths of the two inclusion layers respectively, aae d;
+d, is the period. Note that the conservation of energy re-
quires thate; u; >0, i=1,2. The corresponding refractive in-
dex is given byn,= =+ e u; (negative sign for LHM. We
consider an oblique propagation of monochromatic electro- <

magnetic field(with time dependence™'“!) in a periodic d1 d2
structure with oblique wave vect@ along thex axis. For < >
the E-polarization case, one has a

_ ) ) FIG. 1. A 1D periodic structure consisting of alternate layers of
E, =€ (e*z+ Ae k), RHM and LHM inclusions.
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wherek; is the component of the wave vector along the 4
axis in regioni (i=1,2), i.e. k= w?eu;/c?— B2. Herecis
the speed of light in vacuum.

The tangential electric and magnetic fields should be con-
tinuous atz=0, i.e.,

3.5

Ely(Z= 07)= E2y(Z= 0%),

Hix(z=07)=Hz(z=0"). ()
1.
To obtain the dispersion relation for this 1D photonic crystal, & )

we need to use the following periodic conditions according 1
to the Bloch theorem:

Eay(z=dy)=Ey (z=—d,;)€'e?,

Hou(z=d5) =Hy,(z=—d;)€'%?, (4)

whereq is in the first Brillouin zone— w/a<qg=</a . Sub-
stituting systemg1) and (2) into systems(3) and (4), we
obtain the following dispersion relation for the
E-polarization case:

FIG. 2. The band structure for the normal propagatioe., 8
:0) W|th El::l., /Ll:l, n:_25, ,LL2:_2, d]_:dz:O%. The
circles show the read, while the dashed lines indicate the real
parts of the complex.

N2+ 42

cos(k,dy) cosFikydy) — = 2 sin(k,dy)sin(fk,d,) —a/a to w/a. The problem of complex will also appear
nu

when B8#0 (i.e., the case of oblique propagatjorObvi-
ously, these comple® have no physical significance since
=coqqa), 5 physically the frequencw must have a real value.
~ y 5 5 , , Traditionally, the pass bands of a conventional 1D peri-
wheren=ka/ky= = yn“(ki+ %) — B°/k; (negative sign for  qic structure can be obtained when the absolute value of the
n<0), u=pua/py, @andn=n,/n, is the index ratio of the |eft-hand side of the dispersion relatifgq. (5) or (6)] is less

two media. _ o . _than one(this means that one can obtain a real wave number
Similarly, we can derive the following dispersion relation g for the normal propagationOn the other hand, when the
for the H-polarization case: left-hand side of Eq(5) or (6) is bigger than 1, the frequency
~ belongs to a stop band. For a photonic crystal consisting of
~ _nttre L~ only usual media, whose permittivity and permeability are
cogkyd;)cosnk;dy) T e sin(k;dy)sin(nkyd,) real and positive, the solution to the dispersion relafigg.

(5) or (6)] for the transverse wave numbley is always real
=co0gqa), (6)  and thus one can enforce the wave number to be real in the
dispersion relation. However, this is no longer true when the
photonic crystal contains both RHM and LHM. Some com-

nplex value ofk; can still make the left-hand side of E&) or

(6) smaller than 1 and these complex solutionskpfmay
have physical significance. For example, a purely imaginary
solution for the transverse wave numlbgrcorresponds to a
Bhoton tunnelling mode for the case of oblique propagation

wheree=e,/¢;.

From analytical Eqs(5) and(6), we can find out hovk;
depends o The corresponding dispersion relation betwee
o and q can then be obtained according to?=c?(k3
+B%) /(e 1) for each fixedB (8=0 is associated to the
normal propagation, i.e., the case when the propagation d

rection is a'of‘g the nc_eraI of the mat_erial interfa)pes . (see the discussion on photon tunnelling modes below
When the index ratim <0, the solution to the dispersion Therefore, we cannot enforce the solution to be real in the

equation and the associated band structure have quite diffe Tesent situation

ent behaviqrs a.s.compared .to those fo.r the usual case when Furthermore, in a general case or some numerical meth-
n>0. For simplicity, we first illustrate this for the case when o s ¢ calculating the band structure of a 2D or 3D photonic
B=0. In this case, 1+ u?)/2nu=(n*+€”)/2ne and the  crystal, we usually ends up with solving a complex equation
dispersion equations for tHe polarization and théd polar-  (due to the introduction of the 't convention for a com-
ization have the same foriias expected plex wave number and thus consequently we can not enforce
Spurious modes with complex When one of the consti- the solution to be real in these cases.
tutive media is of LHM(Ie, n<0), the analytical dispersion The existence of the Comp]ex solutions is a common phe_
equation may have some complex solutions kgr These  nomenon and even a very serious problem for some numeri-
complex values ok; lead to complexw since w?’=c?(ki  cal methods. For example, one would meet a similar problem
+B8%)/(e1p1). Figure 2 gives the band structure whes of complexw in the calculation of the band structure using
—2.5u=—-2,d,;=d,=0.5 for the normal propagation case other methods such as the plane wave expansion method
(i.e., 8=0). The real part ofv varies little asq varies from  (one needs to remove these spurious complér the band
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structure. In the plane wave expansion method, thealues 4 - - - - @
are determined from the eigenvalue equation u)¥ s

X[(1/€) VX H]=(w?/c?)H. The existence of complens in-

dicates that the operator (@yV X[(1/e)V] is not a Hermit :\IE S ©
operator or has no equivalent Hermit operator. One can alscg ,4

expect that these complex (associated with an exponential

increasing factor of timewill make the finite-difference time € ¥ °
domain (FDTD) method (with a periodic boundary condi- 5 14

tion) divergent in the calculation of the band structure of a &

photonic crystal consisting of alternate RHM and LHM in- % ' °

clusions (with constant permittivity and permeabiljty?—** OSF TTTmme— e S ]

We have verified numerically with the plane wave expansions T -7

method and the FDTD method the existence of the spuriouscc or PR

modes with complex. I ~—e
The fields associated with the spurious complegatisfy

Maxwell's equations, the boundary condition and the en-

forced periodic condition. Therefore, an additional require-

ment that the fr_eque_nc«_y_ must_ be rea_l should be applied to FIG. 3. The solutiongwith physical significanceof k; to Eq.
make the solution significant in physics. 8 with e,=1, uy=1, n=—1, up=—2, d,=d,=0.5a. The

_ln the rest of the paper, we Cons'd.er only situations Whe%ircles indicate the real solutions, which exist discretelygatO.
w is real. Whens=0, a complex solution dt; always leads  The gashed lines show the imaginary solutions. The imaginary so-

to a spurious complex. However, wheng#0 some com-  ytions are continuously distributed in a region from0.563
plex solutions ok; may correspond to rea and thus have  x2s/a to 0.563 x 2x/a.

physical significance. Sinae?=c?(k?+ 82)/(€ u;), a com-
plex solution ofk;=k;g+ jk;; (with k;;#0) should satisfies 1+ y2

+
the following conditions in order to make real: cogk,d;)cogk,d,)— 2: sin(k,d;)sin(k,;d,)=cogqa).

kir=0, ki<p?. (7)

In other words, an imaginary solution kf can have physi-
cal significance whermB+#0 (i.e., the oblique propagation

and LHM layers, the special property that the evanescerf

®

One natices that the above equation Kgris independent of
B. This indicates that differen may have the same solu-
tions of k;. The solutions of the dispersion equations only

case. Imaginary solutions ok, correspond to evanescent 91V€ the corresponding wave numbley. The frequencies
waves. In a periodic structure consisting of alternate RHM2Nd the band structure of the photonic crystal should be

iven for a fixedB. Furthermore, one should pay special

waves(in both directions decrease in the RHM layer and attention that onlyB#0 can permit the existence of some

increase in the LHM layé&ror vice versa permits the evanes- Photon tunneling modegsee discussed belgw
We discuss situations when# — 1 (so that the RHM and

LHM layers have different values of impedancéd is par-

the energy density does not decay over a period; we will cafficularly interesting when the two inclusion layers have the

it a photon tunnelling mode and will discuss it in more de-Same width(i.e., d,=d,=0.5a) since in this case only dis-
crete modes and photon tunneling modes gxistiventional

propagating band disappears in the band strugture

cent waves to propagate in the periodic structlre., a
propagation mode with imaginatky;, and realq, for which

tails below. In the present work all possible solutiofis-
cluding complex solutionsto the analytical equatio(b) are
obtained by using the Matlab program “solve” for solving a
nonlinear equation.

IIl. DISCRETE MODES AND PHOTON TUNNELLING
MODES

As discussed before, imaginary solutionskgfmay have

some discrete moddsvith real values of wave numbeare
also found in the band structure.

n=—1 for theE polarization. Them= —1 (independent of
B) and Eq.(5) is simplified to

Since
Xsink;d,)=1 (whenk; is rea), real solutions ok, to Eq.
(8) exist only whenq=0 (notice that—w/a<q</a),
which corresponds to discrete solutioks=2N7/a, N=0,
+1,=£2,... . As anexample, the discrete real solutions of
physical significance wheg# 0. This will be illustrated by  k, to Eq. (8) are shown by the circles in Fig. @vith u=
the unusual phOton tunne”ing modes in the band StrUCture_z)_ This unusual phenomen(ﬁexisting for anyﬁ) can be
for a photonic crystal consisting of alternate RHM and LHM tilized to make a very narrow filter with no side lokibe
layers. Another unusu#and interestingphenomenon is that  ripples outside the main lobe of the transmission spedtrum
which is quite different from any conventional type of filters.
From these discrete solutions, one can obtain the correspond-
To simplify the analysis, we consider a special case whelng eigen field distributions by deriving the coefficiedtsB,
and C. For example, wherk;=2x/a one hasB=3—A/2
and C=—3+3A/2 [here A is an arbitrary constant repre-

235103-3

A. Discrete modes

coskydy)coskqdy) +[(1+4)/2| u| Isinkady)



LIANG WU, SAILING HE, AND LINFANG SHEN PHYSICAL REVIEW B 67, 235103 (2003

senting the amplitude of the left-going wave excited in re-is amplified in a LHM layer(or a RHM layej and does not
gion 1; note that the right-going wave excited in region 1 haglecrease in amplitude after propagating through a period
been normalized according to E)]. The arbitrariness oA [sinceq has a real value; see E@)].
indicates that any linear combination of the left- and right-  From Eq.(8) one sees that only compldg can be the
going waves can exist in region(since in such a case each spjutions if the realy is not equal to 0. Then according to
layer is transparent to the neighboring medium as discusseghndition(7) the solutionsc; with physical significance must
below. . , _be imaginary. The expression on the left-hand side of(8.
Th_e_se discrete solutions satisfy the Fabry-Perot resonatmgways decreases whép, increases or decreases away from
condition of k;d; =N and kpd,=—Nm (note thatk, 4 (5" symmetric function ofk,, with a maximum atky,
=nk;=—k, for the special case=—1 considered hefe  —0). Therefore, only two conjugate imaginary solutions ex-
When this Fabry-Perot condition is fulfilled, each layer isist The dashed lines in Fig. 3 show the imaginary solutions
transparent to the neighboring medium at these discrete wayg k, to Eq.(8) for an example. When(+0) varies in the

numbers(corresponding to some discrete frequencies for g pyijiouin zone, the two conjugate imaginary solutions

fixed B), and thus an incident field at one of these frequen-vary continuously in a region from-0.563 X 27/a to

cies will surely pass through the periodic structure and be- 567X 27r/a. Note that this figure is independent gffor

comes a propagating mode. To excite such a discrete modg: . . . 2
by an external field and to detect by an external probe, onlﬁ's special case. For oblique propagation wi-kj , the

has to truncate this infinitely extended periodic structure witfMaginary solutions correspond to special propagation modes
a finite number of periods. When truncating this periodic ~ Photon tunneling modegs discussed beforeFor this ex-
structure with finite periods and terminating it with any one@mple, evanescent waves witky, outside the region
of the two inclusion media at both sides, the structure of —0.561] X27/a,0.56] X2=/a] can not propagate inside
finite periods will also be transparent at these frequen(@es the periodic structure. From Fig. 3 one can also seekhat
this finite slab cas@& =0 at these frequencies since there isapproaches 0 wheq approaches 0. Thus, ang#0 can
only a right-going incident wave in the left half-space, which permit the existence of some photon tunnelling modes since
contains the same medium as in region 1; if one wishes t&,;, can be arbitrarily small to satisfy§|<ﬁz, From the
excite modes withA#0, an incident wave from the right ahove discussion, one sees that for #hy 0 there always
half-space should also be uge®n the other hand, fields exist some evanescent waves which can propagate inside the
with any other wave numbsii.e., any other frequency for periodic structure while some other evanescent waves can
the fixed ) satisfies the Bragg reflective conditidqdy ot (one notices that in the case of a perfect feals the
+k,d,=0 (independent of the frequency sinke=nk;=  evanescent waves can go through the)lefisis limitation of
—k, for the special case considered heamd will be re-  the photon tunnelling modes is due to the enforced periodic
flected from this finite periOdiC structure. Therefore, therecondition_ Thus, the pr0b|em of square nonintegrab|e €f|e|d
will be a very steep transmission peak around the discretg not occur in the present situatigihis is also true for the
frequency in the transmission spectrum. next example when,; #d.).

For kyd;+kod#0 (with n<<0), we can still have the It is known that the photon tunnelling effect exists in the

u.r:jusua}l_ ?(ijsc_:relte m%d%qnder Sf[Te cc_)nd(jitions. When .af? Mallowing two cases: long-range surface plasma waves sup-
cident field is launched into a periodic structure wit aport by thin metallic films (with negative dielectric

ke mer of et o e Tom i s ot s s g wvlr g er-
' fattices of, e.g., GaAs-AIAY ~2°At the interface of two ma-

to the total reflected wave. If the periodic structure contains[ ials with terial havi tive dielectri tant
both LHM and RHM, there are some unusual narrow trans-chais With one material having a negative diefectric constan

mission bands in the transmission spectrum around som%nd the other a positive dielectric constant, a surface plasma

special points. At these special points both the Fabry-Perd¥@ve that decreases on either side of the surface can be ex-
condition (i.e., k;d, =N andk,d,=— L ) and the Bragg cited. The first case of photon tunnelling effect is due to the

condition (i.e., k;d;+nk,d,=M) are satisfied. Since  coupling between the surface plasma waves at the two inter-
faces through the evanescent wave in the metallic film. The

condition dominate§.e., reflected waves at different periods second case of photon wnnelling effect is due to the plasma-

sum up to an increased reflected field at the first imeﬁacep_honon(t_ransverse and Iongltud_mal (_)ptlcal motlescilla-
when the wave number deviates from these discrete pointg.ons excited by an external optical field. In both cases, the

In some later part of the present paper we will give the Sc)_optical field pass through the structure indirectly, i.e., by the

lutions for the casal;#d, (as an example ok,d;+ k,d, coupling of surface plasma modes or by the excitation of

#0) and show the discrete modes in the band structure. ph°”°.”5- However, in the present case, thg photon tunnel!mg
effect is based on a very different mechanism—the amplifi-

cation of the evanescent wave in the LHM which both the

permittivity and the permeability are negativAs discussed
The present photon tunneling refers the tunneling througtearlier, evanescent waves that decrease in RIdMLHM)

a part of a periodicomplexk,, but realq), but not the are amplified in LHM(or RHM) and become propagation

tunneling through the entire hetrostructiicemplexq). Op-  modes in the periodic structure. In the present situation, the

tical field which decreases in a RHM lay@r a LHM layep  fields (photong pass through the periodic structure directly.

<0 andn<0, one can havéM|<|N| and thus the Bragg

B. Photon tunnelling modes
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7 ‘ u are the relative permittivity and permeability of the two
o inclusion media In a nonideal situation with material loss or
6f 1 dispersion the unusual phenomena such as spurious modes
st o ] with complex w, discrete modes and photon tunnelling
modes can also be expected to occur for the following rea-

sons.

If the inclusion media are dispersive, and p will be
frequency dependent. Since the solutions can be obtained
from Eg. (5) in a point-by-point manner, they are correct
locally (i.e., in a small frequency range where the frequency
dependence of and i can be neglectedThus, the unusual
phenomena can still exist in certain small frequency region.
Furthermore, the frequency in the band structure is scalable
and thus we can scale it to a frequency at which the material
parameters have desired values in order to observe these un-
y usual phenomena.

qa/2n qa/2n If the LHM inclusion is lossy the relative or u has a
very small positive imaginary pafé.g., 10 °j; as claimed in

FIG. 4. An oblique propagation case with#d,. The two in-  some papers that LHM must have some %asEhe unusual
clusion layers haves; =1, =1, n=-1, u,=-2, d;=0.4a,  phenomena can still occur since the dispersion equéqgn
andd,=0.6a. (a) The solutions ofk, with physical significance. (5)] will not give any rapid change when a very small imagi-
The circles show the real solutions. The real solutions have discretﬁary part is added te or x. Note that for the photon tun-
values(at =0 andq= * w/a) as well as continuous bands. The neling modesq should be complexcorresponding to a
dashed lines indicate the imaginary parts of the imaginary S°|Uti°nspseudoperiodic field with a damping factor along the propa-
(b) The band structure whef=0.583x2=/a. The dashed lines ation directioh when e or x is complex. Since the imagi-

show the frequencies of the photon tunnelling modes. The circle% . :
indicate the discrete frequencies of the discrete modes. The soli ary parts of these parameters are very small(&is stil

lines show the continuous bands. valid when_ all th_e parametersncluding €, x and q) are
replaced with their real parts.

Both discrete modes and photon tunnelling modes exisgué?] ;gnsdﬂfilgl;]s, vai drgv\?vitfﬁ%r;?ns?emii:;i?ﬂﬂ;:‘;?fna
when B#0. However, whenB=0 (as in the above ex- P ptax

ample, which corresponds to normally incident wavgs., photon ‘.“T‘”e.“”g modes n the band structure b_y analyzing
: . .. the explicit dispersion equation for a 1D periodic structure
the normal propagation cas@nly discrete modes can exist

(this means that only fields at discrete frequencies can exi%’i"th alternating LHM and RHM Iaygrs. One will meet the
in the structurk problem of complexw in the calculation of the band struc-

Figure 4a) shows the solutions dk; for an example of ture using other methods such as the plane wave expansion

d, #d, (so thatk,d; +k,d,#0). The discrete solutions are tmhztr:j?gc?(:tg t;%g;-rgn?etﬂg%g?&?}gﬁ'Carlns(‘)'ggg'%?scigén
at ky=(2.5+5N)x2x/a for q=*m/a and atk,=5N P g

w2ala for q=0, N=0+1,+2,... . They are located in explained. The discrete modes can be utilized to make a very

. : . narrow filter with no side lobe. For an oblique wave propa-
the forbidden band gadsee Fig. 4o) for _the corresponding gation there exist some evanescent waves which can become
band structure for a giveg]. From this figure one sees that

nondiscrete reak lutions corr nding o N propagating modesphoton tunneling modeswhile some
1ondiscrete reak; solutions|corresponding 1o SOme €on- o oyanescent waves cannot propagate inside the periodic
tinuous bands shown in Fig(l8)] exist in addition to some

. . structure.
discrete modes and photon tunneling modes.

Re(k1)a/(2n) or Im(k1)a/(27c)
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