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Metal-insulator transition, spin gap generation, and charge ordering in geometrically
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We investigate asemijmetal to insulator transitioMIT) realized in geometrically frustrated electron
systems on the basis of the Hubbard model on a three-dimensional pyrochlore lattice and a two-dimensional
checkerboard lattice. Using the renormalization-group method and mean-field analysis, we show that in the
half-filling case, MIT occurs as a result of the interplay between geometrical frustration and electron correla-
tion. In the insulating phase, which has a spin gap, the spin rotational symmetry is not broken, while charge
ordering exists. The charge ordered state is stabilized so as to relax the geometrical frustration in the spin
degrees of freedom. We also discuss the distortion of the lattice structure caused by the charge ordering. The
results are successfully applied to the description of the MIT observed in the pyrochlore sysfagOFfl
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[. INTRODUCTION s band, whose important features are described by the 3D
pyrochlore Hubbard modéf. We believe that this model
Geometrical frustration in both localized and itinerant may provide a useful understanding of the MIT undergone in
electron systems is an important ingredient giving rise to richthis material.
variety of condensed phast®. In localized spin systems, The noninteracting energy bands of these two Hubbard
magnetic frustration suppresses a tendency toward a convemodels have a common interesting feature: They consist of a
tional long-range order, and may stabilize some exotic statélat band(or two degenerate flat bandsn the upper band
such as a spin liquid or a valence bond crystal, as has beauge and a dispersive band that is tangent to the flat and
extensively explored both  experimentdlif and flat band$ at thel' point“° Itinerant ferromagnetism in the
theoretically’=?® Also, for itinerant systems, it has been ar- case that the flat bands are partially occupied has been ex-
gued that geometrical frustration may cause some novel pheensively studied by several authors so*f4f! This particu-
nomena such as heavy fermion st&te’? anomalous Hall lar band structure is due to the geometrical propertyiref
effect induced by the chiral ord&t>* and so forth. Among graphin which the above 2D and 3D pyrochlore lattices are
them, metal-to-insulator transitiotMIT) in geometrically  classified. According to a theorem of the graph thédrg,
frustrated systems is an intriguing unsettled issue. It has bedfght-binding model on a line graph generated from a bipar-
found experimentally that the pyrochlore oxides;Ri,O, tite graph withV vertices andE edges has flat bands with the
and Cd0s,0;, and the spinel compounds, Ci8; and degeneracyD¢=lim  _(E—-V+1)/N lying on the band

MgTi,O,, exhibit MIT without magnetic long-range order at edge of dispersive bands. Heljs the total number of unit
finite critical temperature¥"*® Since such systems possesscells on the lattice. It should be noted that the existence of
the fully frustrated lattice structure, referred to as a networkhe flat bands is analogous to the macroscopically large de-
of corner-sharing tetrahedfthat is, a pyrochlore lattigethe  generacy of the ground state of classical spin systems on line
magnetic properties of the insulating phase are not yet ungraphs’ Since line graphs consist of a network of complete
derstood. Moreover, the mechanism of the MIT’s observed irgraphs which have a frustrated structure, the presence of the
these systems is still an open problem. In contrast to thélat bands is a result of geometrical frustration inherent in the
localized spin systems, the presence of charge degrees laftice structure. We would like to stress that, to study effects
freedom provides a route for the relaxation of magnetic frus-of geometrical frustration in correlated electron systems, we
tration. However, when electron correlation is sufficiently should distinguish two classes of geometrically frustrated
strong, the magnetic frustration may still affect the low- systems: one is the class of line graph and the other is not,
energy properties significantly. Thus, it is expected that geoand does not possess flat bands. For example, a triangular
metrical frustration plays an important role in the MIT's. lattice is classified in the latter class. In this paper, we are
From this point of view, in the present paper, we study theconcerned with the former class, and show that, in the half-
interplay between electron correlation and geometrical frusfilling case, the geometrical frustration in the above models
tration in the Hubbard model on a three-dimensiotgi) drives the system into an insulating state with a spin gap as
pyrochlore lattice and on a two-dimensior@D) checker- well as a charge gap. Also, in the insulating state, the spin
board lattice, the so-called 2D pyrochldiféig. 1). Although  rotational symmetry is not broken, while charge ordering ex-
real pyrochlore oxides and spinel compounds have electronists. The results of this paper have been partially reported in
structure composed 0§, orbitals, the present study on these Ref. 43 before.

simpler single-band models may provide important insight The paper is organized as follows. In Sec. Il, we introduce
into the role of geometrical frustration in MIT. Furthermore, the model and present briefly some basic results derived by
TI,Ru,0; has, apart from the,; band, a nearly half-filled Tl  perturbative expansion in terms of electron-electron interac-
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> Eys=—2+21+t,, 7)
2 : : Epa=—2-2V1+1,, (8)
> {2 | t,=Cog 2k,) cog 2k,) + cog 2k, ) cog 2k,)
AN,/ + cog 2k,)cog 2k,). (9)
3
1 2 3 Using the abbreviations(x+y)=sink,=ky), etc., we write
2D Checkerboard Pyrochlore 3D Pyrochlore Lattice downs,,,s,,(k) in the 3D case
FIG. 1. 2D and 3D pyrochlore lattices. (511(k),851(k),S31(k),541(K))
tion. In Sec. l1l, the renormalization-group method applied to =(s(x+2),8(y—2),~s(x+y),0/n., (10

the pyrochlore Hubbard models is developed. The results fofyheren.. = \/s(x+z)?+s(y* z)°+ s(x+y)? and
the 2D and 3D cases are given in Secs. IV and V, respec-

tively. In particular, we discuss thsemijmetal-to-insulator ~ (S12(k),S22(k),S32(K),S42(k))

transition caused by geometrical frustration, and the proper-
ties of the insulating state in which both spin and charge
excitations have a gap. We confirm our results with the use +8(x+Y)2],8(x+2)s(y+2)s(y—2z) — S(X—2)
of the mean-field analysis. The effect of the coupling with

=(s(x+2)s(x—2)s(y—2) —s(y+2)[s(y—2)?

lattice degrees of freedom in the presence of the charge or- X[s(x+2)?+s(x+y)?],
dering is also discussed. Summary is given in Sec. VI.

II. MODEL HAMILTONIANS AND SOME PERTURBATIVE

RESULTS

—s(X+Yy)[s(x+2z)s(y+z)
+s(x—2)s(y—2)1,s(x+y)n?)/ny, (11

for k,+k,#0, where ny=n,(n%n?—[s(x+2z)s(y+2)

Our system is described by the single-band Hubbardts(x—z)s(y—2)]?)*? and

model defined on the 2D checkerboard lattice or the 3D py-
rochlore lattice shown in Fig. 1. Diagonalizing the kinetic

term, we write the Hamiltonian as

m
U
— T
H= E E Ek,uak,u(rak/ur+ N E
u=1 ko kk'.q aByd

0 . T T
Xraﬁyﬁ(k_qak/ +q,kl,k)ak_anak,+qmak,ylak,ﬂ s

m
P opyolkiKeika Ka) = 2 S,a(kD)S,p(k2)S,(Ka)Su(Ka),

wherem=2 in the 2D case anth=4 in the 3D caseay,,
(aLw) is the annihilation(creatior) operator for electron

with momentumk and sping in the u band.
In the 2D case

Ekl:21

Eyo=4 cosk,cosk,—2,

sinf (ke +k,)/2]

V1—cosk,cosk,

sinf (ky—k,)/2]
V1—cosk,cosk,

S11(K) =s(k) =

Sp(K)=—s5(k)=

In the 3D case

Exi=Ew=2,

)

)
)

(4)

©)

(6)

(S12(k),S22(K),S32(K) ,S42(K))
=(—5s(2x),—5s(2x),2s(x—2),2s(x+z))

X 1\2s(2x)%+4s(x—z)%+4s(x+2)?,
(12

for ky+k,=0. The expressions of,3(k) ands,,(k) are
very complicated. However in the following, we need only
s,3(k) for smallk, which is given by

(S13(K),s23(K),S33(k),S43(k))
=(—ky—ky K, ket kyt+k,,
—kytky— Kk, ky—ky— k,)/2|K|. (13

The annihilation operator of electrons at ttath site in a unit
cell is given bycy,,=27.15,,(K)ay,, -

As mentioned in the Introduction, these systems have the
flat bands), E,; for the 2D case, ané,;, E,, for the 3D
case. In the half-filling cas&=1, on which we concentrate
henceforth, the flat barfig) is empty, while the dispersive
bands) below the flat bang) is fully occupied. In the non-
interacting half-filling case, the system is in a semimetal
state, since the Fermi velocity is vanishing, though there is
no excitation gap. In the following, we study how this state is
affected by electron correlation.

As shown in Ref. 27, at the half filling, the perturbative
calculation inU for Hamiltonian (1) suffers from diver-
gences of the single-particle self-energy, due to the presence
of the flat ban¢s). In the 2D case, the perturbative expansion
of the self-energy gives

Re>2P(g)~constr cU?In(8t/e) + - - -. (14
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In the 3D case, we have the presence of the flat basyl this procedure is not appli-
. ) . a3 cable. To circumvent this problem, we introduce the infrared
ReX (e )~ const c,U2\[e[+caU% e +caU% e energy cutoffA in the following manner:

e 19 Do (Kien) =0, (K.2)O (|~ A)
These singular behaviors imply that some instability may be -
induced by electron correlation. To pursue this possibility, +¢ua(k'8n)®(/\_|8n|)' (16)

we will carry out the resummation of divergent terms usmgHere ,.(k&) is the Grassmann field corresponding to

the renormalization-group method in the following sections., a
no
Using a standard methdd;>? we obtain the RG equa-

1. RENORMALIZATION-GROUP EQUATIONS tions of the single-particle self-energy for electrons in the

To treat the infrared divergences appeared in perturbativBNd Pands= ,,(k), and the four-point vertex functions for
expansion in a controlled manner, we exploit the€lectronsin ther, B, v, andé bands ', gy 5(ky Kz ks, Ks):

renormalization-groudRG) method. In previous application (92A (k

of the RG method to electron systefs!® a momentum 2 S(|e!] = A)GA (K )T@A (1K 1k,k')
cutoff that separates the neighborhood of the Fermi surface  dA " Cap ppyel T T
from the higher momentum part is introduced. However, in (17

T2 (ky Kok, Kg)

a S\ "2, R34 ,

= =2 2 [O(e=A)ale = M) +O(ler] = A)dlen = A)IGL(KIG(K)

A il

1
X| ST (ke ko ik kT (kK kg Ka) S iy ik

=T (ke Kk KT NS k2K Ka) S ke

auyv

r(4)A (kl,k;k4,k )F(4)A (k’, kz;k,k3)5kl+k,k4+k/

apdv KBNy

+§ 8lenl = A)GH, (T, s(ka ko kK kg, Ky). (18)

@ g, ki ki ks

Here, G, (K)=[(ien—Ey)d,,~33,(K]"* and k
—(|sn,k) and so forth. I‘(Gf is the six-point vertex. The " N
2 4

first, second, and third terms on the right-hand side of Eq.

(18) correspond to BCS and two zero sou@b and Z3) BES K K
processes, respectively, of which the diagrammatic expres- ki ks BT g T
sions are shown in Fig.(d).

In the following, we investigate the RG flow of the four-
point vertex functions up to one-loop order, and drop the ks i K4
six-point vertexI'(®* and the self-energy.*(k) on the zs
right-hand side of18). In our systems, there are six species (b) ©

of four-point vertices, as shown in Fig(l8, apart from the a. & g a £ p a

] g3 a b
spin degrees of freedom and the twofold degeneracy of the >-< >-< >-< <:>
i b b a b a b b
P

flat bands in the 3D case. We assume that the momentum

dependences of the four-point vertex functions are given a % b oa & a b b a

mainly by I'°(k;,k,;ks,k,) in the renormalization pro- >< >< <:>
cesses. This is made explicity by replacing b b a a b b 5
Papap(ki ko ks e) — with — GaGpay(ki kaiks Ka),

Fpppa(ka, Kaiks,Ka) with gal'ypp (ki k25Ks ks), etc. This FIG. 2. BCS, ZS, and ZSprocesses(b) The six species of

approximation is fairly good, because in the vicinity of the  four-point vertices. Here, 4" and “ b” indicate the dispersive band
point, where the most important scattering processes occudind the flat band, respectively) The leading singular bubble dia-
the band structure is almost isotropic. The spin degrees aframs.
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freedom of the running couplingg (i=1~6) is incorpo- dgy; b(Age™)” ) )
rated by decomposing; into the spin singlet part and the ar = 2 (9157 291501+ 5910, (24)
spin triplet part,

dgos a0596s€

Si =- +b(Age™")”
gi(01102;0-310-4)_ IS( 0'10'35020'4 50'10'450'20'3) dl AO ( 0€ )
9i X[91592s 3(91s02t T 9uT2s~ 9Tz ], (29)
+_(60'a' 50’0’ +5o’o’ 50'0')'
2 e e dgy ag9e€ 26
(19) dl Ay 26
It is also convenient in the following to decompaoggeinto O
i dg, 204506 b(Age™)7
the charge part and the spin part, g S_ _ Aso Sel + 5 (9194s+ 394011),
_ 30it—Jis (27)
gi(0-110-210-3!0-4): T 00490503
d a
94t 80atTet o 29

+a: T 1
+g|s it o . (20) dl AO

0' .
4 0104 70203

2 |
11H ngs agzs€
Because, at the half filling, the flat bands are empty and a s A (29
the dispersive band is fully occupied, the particle-particle 0

processes between the flat bands and the particle-hole pro-

% _ agye

cesses between the flat bands and the dispersive band give = , (30)
the leading singular contributiorsee Fig. 2c)]. We take dl Ao
into account these contributions in the derivation of the RG 5

equations. It is straightforward to show that in the vicinity of des _ a0 31

theI" point the following relations hold: dl A € (3D
2

I%S Iﬂgabbrgbabwov Z ry abbrbaaa ! %: — aAistel' (32

where n=(d—2)/2, | =In(Ag/A) with A, the band width,
Zzs:, [ 2abt baaa~0, Z Iabas! 2aat~0, andd is the spatial dimension. In the 2D case
4 2 2

a= S11(K) —s71(K)sT(k)1/2, 33

ZES’ ngabrgaabwo' ZE 1_‘ga.’:\bri))bab%0! Zk [ 11( ) 11( ) 12( )] ( )

b=, Im[iA—E,] 1/2~0.06221, (34)

k

2 aabbrbbb ~0, Es Fgabbrgbba“()’
Z U

and in the 3D case

% rgbbbrgbabmov 2 ngbbrgbab*()- (21 ) ) 5
zs a=; {[824(K) +52,(K)]

Here,2gcs, 275, and=,g mean the momentum summation

in the intermediate state carried out over BCS, ZS, antl ZS —[512(K)S1(K) + 51o(K) S5 K) 12112, (35

processes, respectively. Using these relations, we find that

the B function of g5 is approximately vanishing, )
A 9s 15 app y g b= Im[iA—Eg] Y(4JA)~0.0775(%2  (36)
K

dg3s ngt

O 22

In the derivation of these equations for the 3D case, we have
used the fact that in the vicinity of thE point, the two
and the RG equations for the other running couplings argjegenerate flat bands do not mix with each other in the scat-

written as® tering processes. Thus, in this case, the twofold degeneracy
> 2 just gives an overall factor of 2.
dgis  adsse N b(Aee™)7 46 _3¢2 Since the initial values of the running couplings in the
dl Ay 4 (975+691:91~ 391, triplet channel are zero for our modéls the RG equations,

(23 (26),(28), (30), and(32), give g =94 =0s5=Ye:=0. In the
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2 I portant in the following argument, we expand the RG equa-
5 — 81— 82s | tion for the off-diagonal self-energil7) up to the first order
ol T g1s /' in 3%
st 84s J A A
o e’ d(Z1p+215)))
e ‘ g~ 2b(3g1— 01 (31 T30y ),
5
-10 ‘ (37)
I d(z?z _2/1\2 )
150 T =2b(Gst 910 (S~ 3 ), (39)
3g1t- 815
100 A
d2y,
G = 2b(G1s+ 91031y - (39
50
Because the strongest divergence of the four-point vertex
0 appears in 8,,—0;s (see Fig. 3 the off-diagonal self-
Lo s energy= 3 1,,, becomes nonzero at some critichk= A ..
1.5 This is easily seen by solving E37), which gives
g11+81s Y seen by solving @7, which 9
1 [
o5 S S~ 313,002 | dl'(Bou-0.0)|. (40
T o 0
0
\//— Although 211\2000 is vanishing in the vicinity of thd” point,
05 : : : because of the momentum dependencs ofk), Z(,EAC

1200
becomes nonzero fok = A at those value §;;— g5 is di-

In(A0/A) vergent. The nonzero off-diagonal self-energy hybridizes the
band 1 and the band 2 at tlhepoint, and drives the system
FIG. 3. The RG flow of the running couplings in the 2D case INtO the insulating state with both spin and charge gaps.
with U/st=0.25. Thus, the singularity of the RG flow signifies tlieemi-
)metal-to-insulator transition.

0 5 10 15 20 25 30

following sections, we study how the RG flows of the other

. . . . = B. Mean-field analysis
running couplings give rise to nontrivial effects.

The above RG analysis implies the existence of a mean-
field solution for which the order parameter is given by

IV. 2D PYROCHLORE HUBBARD MODEL
_ _ t
A. RG analysis Ak—; 2 1200(K) U:Em (A10320) - (41)

~ We first consider the 2D case, whose theoretical treatmengys state is characterized by electron-hole pairing with par-
is simpler. We solved the RG equatio(®3)—(32) numeri-  gjie| spins, which leads to the formation of both spin and
cally for a particular set of parameter values, and obtaine¢nharge gaps preserving the spin rotational symmetyyis

the RG flow shown in Fig. 3. The running couplingss and  determined by the self-consistent mean-field equation, which
Ues. Of which the RG flows are not shown in Fig. 3, are js obtained as follows. According to the numerical analysis
irrelevant in the low-energy limit. We found that for any of the RG equation$23)—(31), g, is mainly renormalized
small value ofU/t, g,; flows into the strong-coupling re- by the first term on the right-hand side of Eg7). Then, the
gime. This indicates some instability in this channel. Al-renormalized couplingy,s is approximately given by RPA-
thoughg, also scales into the strong-coupling regime, it islike expressions. As a result, the self-consistent gap equation
subdominant compared @,;. We also show in Fig. 3 the for A, is expressed diagrammatically as shown in Fig. 4. The
RG flows of the couplings @;—g;s andg;s+9y;, which  first term on the right-hand side of the gap equation gives
are related to the charge and spin susceptibilities, respel’eSS Singular contributions than the second term. Thus, the
tively. We see that some instability appears in the Charg(l_jnearized_gap equation, which determines the transition tem-
degrees of freedom. To elucidate the nature of this instabilitfPerature, is

more precisely, we explore how this singularity affects the

single-particle self-energy. Although the diagonal parts of the A, = 2 I1(k,q—Kk)G11(q—K)Gox(q—K)II(k",q—k)
self-energy> 11, 24, give just a chemical potential shift up q.k’

to the one-loop level, the off-diagonal self-ener / /

changes the eIeF():tronic state drastica?lly, as will be S%ﬁﬁn be- X Gua(k)GAK DAk, 42

low. Neglecting the diagonal self-energy, which are not im-whereG, ,(K) =1/(e,— E,), k=(ie,k) and
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C. Properties of the insulating state
@ 1. Spin-gap state with spin rotational symmetry
= + . . . . .
N\ o We now further investigate the properties of the insulating
a bl @ ab) b a b a(m@ b(a) ab) b phase using the mean-field solution. The single-particle
° ° ° . Green’s functions in this state are given by

—_— b ME a(+) a(_)
MWW = G (K,en)=- + - , (49
- —‘—’b'— t " I8+,u,—E(k+) I8+,u,—E(k7)
b b
+ i b e al™) al
I G, (k,en)= + , (49
°oP 2 ! i8+/,L—E(k+) is+,u—Ef<7)
FIG. 4. Di for the lineari tions.
G iagrams for the linearized gap equations where
WUt (kk') El"=[Ex+Ewo* V(E—Ew)?+4AL2, (50
Mkk)=2> ————, (43)
v=+ 1—c,D(k+k") .
(t)_+—E( '~ En
a —_E(k+)_E(k_). (51)

t (k k) =[s12(k)s1a(k") £ s1a(K)sy5(K') 1772, (44) _ .
In the insulating phase, because the order parameter does not
break the spin rotational symmetry, there is no long-range

_ -~ magnetic order. However, a spin-gap exists. The spin gap
D(a) TUnZ:,( Cuu(k)Gu(a-=k), (45) behavior is observed in the temperature dependence of the
spin-lattice relaxation rate T{ probed by NMR measure-

with ¢, =2a andc_=3,s%,. Here, we have ignored the ments. It is obtained from the above mean-field solution,

diagonal self-energy. Equatiotd42) implies that the gap 1 [N;(E)]?
function can be written as T~ J dE—E’ (52
1
2T cosﬁﬁ
Ams (K A = Ag(cosk,—cosky) 46
k_sll( )812( ) 0— 2(1—COSkXCOSky) ’ ( ) Ez—Ai
N;(E)= = ES2 (53)
J’_
whereA is a constant. From E42), we have the equation k1 k~0
that determines the transition temperature Here,({- - - )¢ is the angular average nda=0. Because of
the nodes ofA,, we have 1/T;T)~T3. However, as will be
2 discussed in the following section, the coupling with lattice
8t 8t . .
1= — In(—) —by In(—), (47 degrees of freedom changes this power-law behavior to an
16t U Te exponential decay, II(T) ~exp(—A/T).
where by=0.322. Equation(47) implies that forU<U, 2. Charge ordering

~0.725(8), a state with nonzerd, is realized. Note that  another important property of the insulating phase mani-
the gap function(46) has a line node structure similar to fegts in the charge degrees of freedom. The formation of the

dy2-,2 symmetry. However, this line node vanishes, whengan A, brings about a difference between the charge densi-
we take into account the coupling with lattice, as will be tjes at the sites 1 and 2 in a unit cell given by

discussed in Sec. IV D.

Generally, in 2D systems, thermal fluctuations may sup- S11(K)S1o(K) Ay
press the transition temperature down to zero. The abovpl—p2=—42 5 2@(,u—Ef[))~A0/t.
mean-field solution is also affected seriously by thermal fluc- k \/(Ek2_ B+ 44
tuations, becausé&(1) Goldstone mode related with the (54)

phase of(all(,akz(,) does not survive at finite temperatures. Thus, charge orderingCO) with a charge-density displace-

To see this, we have applied the Ginzburg-Landau analysis tment proportional to the gap characterizes this insulating
this mean-field solution and found that, in the 2D case, thestate. The CO pattern is shown in Fig. 5. This noteworthy
transition temperature vanishes in accordance with theesult can be understood as follows. In our system, three
Mermin-Wagner-Coleman theorem. Nevertheless, the abovelectrons occupying nearest-neighbor sites cost energy loss
analysis demonstrates that in the ground state at zero terasaused by magnetic frustration. Conversely, magnetic frus-
perature the gap, is nonzero, and the system is in an insu-tration induces an effective finite-range repulsion between
lating state. electrons at nearest-neighbor sites. If this finite-range repul-
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w4 3N w4 3 4 3
4 X
A '
,1 2\ 1 2\ 1 2
Ay By, Bog
FIG. 6. Three normal modes of the lattice distortion.

whereu;, (i=1,2,3,4 ande=x,y,2) is the displacement of

FIG. 5. The CO pattern in the 2D case. the i site in the « direction. The lattice distortions corre-
sponding to these modes are schematically shown in Fig. 6.

sion is sufficiently strong to overcome the on-site CoulombT he lattice distortions change the kinetic term of the Hamil-

interactionU, the CO state will be stabilized. This is possible ©onian Hyin— Hiin + AHy with

if U is not so large. AdJ increases, a transition to a conven-

tional Mott insulator with no charge ordering should occur. AH,;,= _aAng (clicqj+chicy+clicy+chic QAL

This transition cannot be described within our weak-coupling i

analysis.

The CO pattern shown ir! Fig. 5 is regarded as an assem- —asng (CIiClj_C;iCj)Q(Blg)

bly of one-dimensional chains in tHd,1] and[1,—1] di- i

rections. This observation implies that CO reduces the spatial

dimension effectively to relax geometrical frustration. _aBZQZ (CLCZi+aX—CLCzi+ay+ C;icliJraX

D. Coupling with lattice distortion —ChiCpisa + H.c)Q(Byy). (58
y

The presence of CO found in the preceding section im- it th in index. Th dB des d t
plies that the coupling between the charge fluctuation anij_‘ff{ﬁ’ v(\j/e omitthe Sptl?hg e)'('t v an ; Z%r:ndg es é)n_o
lattice degrees of freedom may give rise to the distortion of''* '€ d€generacy at Ine point. Lbviously, thes,, Mode 1S

the lattice structure. Since the band structure possesses t onrlly Iattl_ceF@st(;rtfg th?r:_|slc3n5|sé¢r1tt V;'.'th the CO %?t'
double degeneracy at thhépoint even forU=0 in the half- ermn shown in F1g. 5. Alter this 1atlice distortion occurs, the

filling case, the Jahn-Tellar distortion may occur to lift the S|_ngle-pa_rt|cle excitation gap completely opens attfeoint
degeneracy. However, in our system, the lift of the doubIeW'thOUt line nodes, leading the exponential decay of the

degeneracy corresponds to the situation that the charge deﬁq'nflatt'ce relaxation rate, as announced in the preceding
sity on the site 1 is different from that on the site 2. It is section.

highly nontrivial whether the inhomogeneous charge distri-

bution is realized even in the presence of the on-site repul- V. 3D PYROCHLORE HUBBARD MODEL

sion U, which, in general, should suppress the charge fluc- A. RG analysis

tuation. The results obtained in the previous sections _ ) )
remarkably show that the interplay between the one-site re- 1€ above analysis can be straightforwardly generalized
pulsion and geometrical frustration stabilizes the charge orl© the case of a 3D pyrochlore lattice. We obtain the RG flow
dering in the ground state, to which the Jahn-Tellar latticd?Umerically from Eqs(23)—(32) for d=3. Here, in contrast
distortion may adjust. In this section, we discuss the distorl® the 2D case, for sufficiently small all couplings are
tion of the lattice structure compatible with the CO state. irrelevant, and thus the semimetal state is stable. However,

Since the band degeneracy appears only attpeint, it for values ofU larger than a certain critical value but still
is sufficient to consider the point group of the tetragonaiSMaller than the band width, RG flow similar to that in the
crystal systenD,,,. The doubly degenerate levels at the 2D €ase is obtained, as shown in Fig. 7. The coupligg: 3
point belong toE, representation. There are three normal ~91s: Which is related to the charge degrees of freedom,
modes that are relevant to the Jahn-Tellar distort[cEﬁ] scales into the strong-coupling regime. This RG flow implies

~Au+ Byt Byy. The nomal coordinates of these modesy 28, 118 £ S8 8 RS e below & crica
are, respectively, given by P

temperature, leading spontaneous gap formation both in the
L B B charge and spin degrees of freedom. Note that the spin-gap

Q(A1g)= — U= Uy F Uz = Uy F UgF Ugy — Ut u4y(,55) formation does not signify the breaking of the spin rotational
symmetry, since the vertex in the spin degrees of freedom

015+ 91 is still finite at the critical value of In{y/A).
Q(Blg):ulx+u1y+u2x_u2y_u3x_u3y_u4x+u4ya 5 s !
5
(56) B. Mean-field analysis
Q(B3g) = —UgytUgy+ Upy+ Upy+ Ugy— Ugy— Ugy— Ugy, Although the value ol used above is relatively large, we
(570  expect that the one-loop RG calculation still gives qualita-
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Here, we used the orthogonal relatioﬁézlsylsvgzo,
E‘V‘:lsvzsvgzo, ands,;=0. Using the symmetry properties
of s,,,(k) in momentum space, we can impose some restric-
tions on the structure of the gap functions without solving
the gap equations. Under the transformatinr;y, y—X,

z— —z, the coefficients oA {(!¥ are transformed as

S11813— — S21823, (63
$21S23— ~ S11813; (64)
S31S33— — S31S33- (65)

Because of the symmetry of a tetrahediign the gap func-
tion should be unchanged up to the sign by this transforma-
tion. Then, we have

A(lls):A(zl?,) (66)
or
AP+ ATI=2A3), (67)

In a similar manner, using the transformatiof>X, y— z,
z—Yy, we obtain

A= AL) (68)
or
AP+ AJD=2A03), (69)

Combining Egs.(67) and (69), we end up with A{®
=A§¥=A§? and thus,

tively correct results, as long a$ is smaller than the band

width. To examine the validity of the one-loop calculation,

Ad=0. (70)

we explore the self-consistent mean-field solution. The order ] o (29) ] (23)_ » (23)
parameters for the particle-hole pairing state suggested frofiPPlying a similar argument ta;*, we find A;*= A3
the above RG flows is,

A(|<13): E <all(rak3(r> )
g

A(k23): E <al20'ak3a'>'

o

=A% and

59 APY=54(K)sgg(K) (AFD—A ), (72)
The quantityA?®—A{*® is determined from the gap equa-
tion. According to the RG analysis, the transition occurs only
(60) for sufficiently largeU. Therefore, to determine the transition
temperature and the gap function correctly, we need to take
into account the self-energy corrections, i.e., pair breaking

The self-consistent gap equations for the 3D case are als§ect. This calculation is rather involved, and we have not

given by the diagram shown in Fig. 4, from which we find yet carried it out. However, we see from the RG flow that at
that the gap functions are given by

4

A= 21 $,1(K)s,3(k) A

2
= 2 5(K)s,5(k) (AP AL,

4

API=2 5,5(K)s,5(K) AP

3
= 2 5.2(K)8,5(K) (A AL,

the critical temperaturd .~ Aye 'c=(8t)0.0042, a transi-
tion from a semimetal to an insulator occurs. In the resulting
insulating state, the threefold degeneracy afithmint in the
semi-metal state is lifted completely, and a spin gap as well
as a charge gap exists. The gap funcm(ﬁs) has both line
and point nodes determined Isy,(k)s,3(k)=0. However,
these nodes are eliminated by the coupling with lattice de-
grees of freedom, as will be shown in Sec. VD.

The particle-hole pairing state characterized by the order
parameters(59) and (60) is analogous to the excitonic
insulator** However, this analogy is not complete. In con-
trast to the excitonic insulator that is realized in particle-hole
(62) symmetric bands, the pairing state found above is stabilized

by strong interaction between flat bands and dispersive bands

(61)
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in the absence of particle-hole symmetry. Thus, we believe
that this is a mechanism for the particle-hole pairing specific
to pyrochlore systems.

C. Properties of the insulating state
1. Spin-gap state with spin rotational symmetry

It is straightforward to compute magnetic properties of the
gapped state using the mean-field solution obtained in the
preceding section. In the insulating phase with the single-
particle excitation gapﬁff"", the spin-lattice relaxation rate
1/T, is also given by Eq(53). Since the gap function has

nodes, 1/{;T) decreases in a power law as temperature is FIG. 8. Fig. 8. The CO pattern in the 3D case.
lowered: 1/, T)~T3. However, as will be discussed in Sec.
VD, in the presence of the coupling with lattice degrees of D. Coupling with lattice distortion

freedom, the nodes of the gap function disappear. In this Aqin the 2D case, CO found in the preceding section may
case, the spin-lattice relaxation rate shows an exponentigding ahout lattice distortion. Here, we discuss this possibil-

behavior, 1/T,T)~exp(-A/T). _ o __ity. Since, at the half filling, all important processes occur in
The spin-gap behavior appears in the spin-spin correlatiogye yicinity of the T’ point, it is sufficient to consider the

function Imys(q, ») for all g. The momentum dependence of hqint group of the tetrahedrdfyy. The representation of

Imx(q,®) is quite small, indicating that geometrical frus- js requced toA,+ T,. The triply degenerate levels at tiie
tration suppresses any tendency toward a conventional MaGint £, = E,,= E,s (k=0) belong toT,. Thus, the normal

netic order. Such smat-dependence (2); Imy(q,w) was also  mades that may lift the degeneracy are obtained from the
found in the semimetal state above. symmetric product representatiofi5]=A;+E+T,. The

. normal coordinates corresponding to these three modes are
2. Charge ordering

Here, we examine the possibility of a CO state in the 3D Q(A1) = (Ugx— Uzx+ Uzy— Ugy+Ugy—Upy— Ugy+Ugy+ Uy,

system. There are four sites in a unit cell. The appearance of o
a gap causes a charge-density displacement on each site Uz~ U, u42)/‘/§’ (76)
iven b
g y Q(l)(E):(ulx_u2x+u3x_u4x+uly_u2y_u3y+u4y
8p, =22 5,2(K)s,5(KAZY, (72 = 2U1,~ 2z, 25+ 24) /B, 77
k
for v=1,2,3, and Q(z)(E) = (le_ Upyt+ Ugy— Ugx— U1y+ Upyt Ugy— U4X)/E/7§8’)
S i S 73 Q(l)(Tz):ulx+u2x_u3x_u4xa (79)
Pa= = Py - ( )
) ) ) Q(z)(Tz):uly_u2y+u3y_u4yr (80)
Using the symmetry properties sf,,(k), we obtain
Q(3)(T2)=U12—U22—U32+ Ugz - (81)
Op1= 6p2=0p37#0, (74)
Sps=—36p;. (79

It is thus found that CO with the pattern displayed in Fig. 8
occurs in the insulating phase. Interestingly, a similar CO
pattern is observed in the spinel system D4 which pos-
sesses & site corner-sharing tetrahedron netwdtiVithin

the above analysis, the sign ép,, which depends on the
phase of the order parametef>— A{?® | is not determined.
Thus, the states afp,>0 and 5p,<0 are degenerated. As
will be discussed in the following section, this degeneracy is
lifted by the coupling with lattice degrees of freedom.

Note that the CO pattern shown in Fig. 8 is regarded as an
alternate stack of 2D kagome lattices and triangular lattices
in the[ —1,1,—1] direction. As in the 2D case, CO brings
about the effective reduction of spatial dimension to relax
geometrical frustration. FIG. 9. The normal modes afy. (8 A;, (b) E, (c) T,.
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bilize the gapped state, is energetically favorable. Under the
trigonal distortion withQ*)(T,)>0 shown in Fig. 10, the
charge density on the site 4 in the tetrahedron is larger than
those on the other three sites. This is easily seen by calculat-
ing straightforwardly the charge density on each site in a
single tetrahedron with the trigonal distortion. Then, the sign
of dp,, which is not determined in the absence of the lattice
coupling as mentioned in the previous sections, is chosen as
6p4>0 by the lattice distortion.
3 The lattice distortion discussed here and the CO state
shown in Fig. 8 are similar to the experimental observation
FIG. 10. The lattice distortion consistent with the CO patternfor AlV ,0O,, apart from the doubling of the unit cell in the
shown in Fig. 8. [1,1,1] direction found in AN,O,.%° Since, in AIV,0O,, the
. o _ t,4 orbital of V sites plays a central role, our simple model is
They are schematically shown in Figgag-9. The breezing  not directly applicable to this system. However, according to
modeA, does not lift the degeneracy at tiiepoint. TheE  the recent local-density approximation calculation, the band
and T, modes split the triply degenerate levels into threegiycture near the Fermi surface possessfies character
different levels or one separated level and doubly degenerajg,;ayse the orbital of Al site partially hybridizes with the
levels. The modification of the kinetic energy due to thesealg orbital split from thet,, orbital by a trigonal crystal
modes are field.%® Thus, CO observed in AlMO, may be microscopi-
) cally explained by the mechanism described here. It should
_ QY(E) _ 4 to it be emphasized that in our scenario, the interplay between
AHyn=bg >, |——=—(2c]ic;s+2ccia—clicjs - - I
0 2\/§ electron correlation and geometrical frustration is the most
important ingredient for the realization of the CO state and

_CiTZCj3_ CiTZCi4_CiTle4+ H.c) the lattice distortion is merely a secondary effect.
Q¥(E)
* 2 (CiTlCM—'— CFZC]-3—CLC]3—CFZCJ-4+ H.c) E. Application to MIT in Tl ,Ru,04
QU(T,) . We now apply the resglts obtained above .to thel descrip-
+bT22 —(CiT:LCj4_CiT2Cj3+ H.c) tion of thg MIT obse_rved in ERUZO7. As meptloned in the .
h V2 Introduction, according to Ishii and Oguchi, the electronic
@1 structure of this system consists of therbital of Tl sites, as
+ QX 2)(C_T Cipm ChCiat H.C) well as thet,, orbitals of Ru sites? The band structure
J2 iz misma formed by the former is well approximated by our model.
@) The band calculation gives the band width of this system
L Q (TZ)(C_T CamchoatHe) 82 B2 eV.3® Experimental data on the size &f does not
—\/5 i1Cj3 7 CiaCjam H.C) . exists. However, typically, the value bffor transition-metal

oxides is~2 eV. This gives us reason to believe that the
Since the stretch of bonds may reduce the hopping integral, &nalysis presented in this paper, which suggests that the MIT
is plausible to assumie=>0 andbr,>0. The lattice distor-  occurs for largedJ ~8t, can be applied to the description of
tion that is consistent with the CO pattern shown in Fig. 8 isthe TLRW,O; system. The transition temperature estimated
obtained by puttingQ(T,)=-Q@(T,)=-Q®)(T,)#0  from the RG analysis i§.~98 K, which is almost compa-
and QW(E)=Q?(E)=0. This mode is shown in Fig. 10. rable with the experimental values 10020 K.° A recent
Here, we have dropped the rotational degrees of freedorNMR measurement of Tl nuclei has revealed the presence of
around (- 1,1,—1) axis. ForQ®)(T,)>0, the triply degen- a spin gap in the insulating state, which is consistent with our
erate levels at thd point split into one lower level and results’’ The possible existence of a CO state and large en-
upper doubly degenerate levels. Thus, at the half filling, thisvancement of charge fluctuations abdvepredicted in our
lattice distortion generates a full gap without a node in thetheory have not yet been investigated experimentally. The
single-particle excitation. Note that the full gap opens notexperimental determination of whether a CO state exists for
only at thel” point but also over the entire Brillouin zone, as TI,Ru,O; is a crucial test of this theory. When there exists
easily verified by diagonalizing the kinetic term with this coupling to a lattice, CO should accompany lattice distortion.
lattice distortion. On the other hand, f@*)(T,)<0, the  As discussed in Sec. V C, the CO pattern found in this study
lower levels are doubly degenerated, and the system is still iBuggests that the cubic lattice symmetry is broken down to
the semimetallic state unless we do not take into account thigigonal symmetry. Actually, it has been found experimen-
correlation-driven CO transition obtained in the previoustally that, in ThbRu,O-, the lattice structure changes discon-
sections. Thus, it is expected that the cas®df(T,)>0, in  tinuously at the MIT point. This observation seems to sug-
which both the lattice distortion and electron correlation sta-gest the presence of large charge fluctuations in this system.
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VI. SUMMARY The insulating state found in our systems is characterized

We have studied the MIT caused by the interplay betweelpy particle-hole pairing. In this sense, it is analogous to the
excitonic insulator. However, there are some important dif-

geometrical frustration and electron correlation. We have Lo
rences between them. In contrast to the excitonic insulator,

found, using the RG method and mean-field analysis that th ) . .
2D and 3D pyrochlore Hubbard models at the half-filling (& SPin-gapped insulator in the pyrochlore Hubbard models
show the transition from semi-metal to spin-gapped insulalS Stabilized by the presence of flat bands originated from

tor. The transition occurs at a finite critical temperattiggn ~ 9eometrical frustration. Interestingly, Singhal. pointed out
the 3D case, and &=0 in the 2D case. In the insulating & p055|b|!|ty of the eXC|ton|.c ms_ulator reah_zed in the pyro-
state, CO occurs concomitantly so as to relax geometricihiore oxides Cg0s,07.% Since its electronic structure near
frustration. The results obtained here are successfully applie® Fermi energy consists of thg, manifolds, our model is
to the description of the MIT observed in the pyrochlore Not simply applicable to this system. It is an intriguing issue
oxide TLRW,O;, though it is a future issue to examine ex- © exten_d our analysis to more realistic models with this
perimentally the presence of the CO state in this system, a&l€ctronic structure.

predicted from our theory. The CO pattern found in this pa-
per is also very similar to that observed in Al®,. The
mechanism for CO in this system may be explained by the
scenario described in this paper, because the electronic struc-
ture of AIV,0, possesses partially flat bartfswhich is a The author is grateful to K. Yamada and H. Harima for
crucial ingredient for CO induced by geometrical frustration.invaluable discussions. This work was supported by a Grant-
It is a future issue to explore this possibility taking into ac- in-Aid from the Ministry of Education, Science, and Culture,
count thet,g orbitals ofV sites. Japan.
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