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Correlation effects and the high-frequency spin susceptibility of an electron liquid: Exact limits
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Spin correlations in an interacting electron liquid are studied in the high-frequency limit and in both two and
three dimensions. The third-moment sum rule is evaluated and is used to derive exact limitingafiobwih
long and short wavelengthfor the spin-antisymmetric local-field factor, ljm ..G_(q, ). In two dimensions
lim,_..G_(q,w) is found to diverge as @/ at long wavelengths, and the spin-antisymmetric exchange-
correlation kernel of time-dependent spin density functional theory divergesgasniboth two and three
dimensions. These signal a failure of the local-density approximation, one that can be redressed by alternative

approaches.
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I. INTRODUCTION Wherecg(r andcg, are the fermionic creation and annihila-

tion operators, respectively, and denotes the spin projec-
The detailed incorporation of exchange and correlatiortion. The standard one-particle density operators are then
(xc) into the dynamic response of an interacting electron lig-
uid remains a challenge to theory. The mean-field approach - A - -
of the random-phase approximatiéRPA), which neglects PU(Q):; Pro(Q), P(Q)ZKZU Pro(Q), )
xc effects, becomes increasingly inadequate as both the di-
mensionality and density of electrons is lowered. Sum rulesand, for the spin equivalent,
provide exact constraints on the response of an electron lig-
uid and thus are extremely useful as tests of any scheme that .
purports to include xc effects. Alternatively they can be used s(q)= kE NoPro(A)s  76=
to constrain particular approximations such as those embod- 7
ied in local field factorsG.(q,w). The static behavior of In the thermodynamic limit the Hamiltonian for a
both the spin-symmetric{) and spin-antisymmetric <) d-dimensional system dfl electrons immersed in a uniform
local-field factors has been well studfeand various fitting  neutralizing background of volum@ is given by ¢ =1)
formulas have been proposed that conform to the known
exact constrainté:* Their dynamic forms have attracted a + N 1. .
great deal of recent attention since they exhibit far richer HZET wo(4)CqCart 50y ;0 V(Q)[NP(Q)P(—Q)—l},
behavior than their static counterparts. % a (4)
However, up to now, most dynamical studies have fo-
cussed on the spin-symmetric case; in this paper we repovihere wq(q)=0q%/2m, andV(q) is the Fourier transformed
on a derivation of the exact behavior of the dynamic spin-Coulomb potential, i.e.V(q)=4me?/q?> for d=3, and
antisymmetric response in the highlimit within the linear ~ V(q)=2me?/q for d=2. From linear response theory the
response scheme. In particular, the first- and third-momentetarded charge-densig and spin-density s responses are
sum rules are derivetBec. I) and then used in Sec. Ill to given by
determine the exact asymptotic behavior of Jim.G_(q,)
in the low- and highg limit. The xc kernel in time-dependent . R
density functional theory is closely related to these local- Xc(Qvt):5<[P(q,t),P(—q,0)])6’(t) 5
field factors and in Sec. IV it will be shown that the high-
frequency spin-antisymmetric xc kernel must tltdéwvergein and
the long-wavelength limit. This divergence demonstrates that
the dynamical xc potential in time-dependent spin-density i -
functional theory(TDSDFT), as applied to a homogeneous xs(a,t)= ¢ ([s(a,t),s(—a,0]) (t), (©)
system, must be aonlocalfunctional of the local density.

+1, for o=
-1, for o=].

()

where 6(t) is the Heaviside step function aid denotes
Il. MOMENT SUM RULES averaging over the equilibrium ensemble as specified by the
) _ ) Hamiltonian in Eq.(4). Note that to obtain a physical spin-
To describe the formalism needed to derive the momengyin response fromys(q,t) in Eq. (6) a factor g2u3/4 is
sum rules of an electron liquid, we will first need the electronrequired whereg is the gyromagnetic ratio andg is the

particle-hole operatop,,(q), defined as Bohr magneton.
. : As usual, the spectral representationydfj, w), the Fou-
Pko(@) = CioCh+ g0 5 (1) rier transform ofy(q,t), can be obtained from
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Analyticity of xs(q,) in the upper half of the complex-
plane requires that Inpg(g,w) be an odd function oé and
S0, in the highe limit, xs(g,w) expands as

*© <w(2l - 1)>

lim xs(q,0)=— A )

w— 0 I=1 w

where the momentéo(") are given by

<w(|)>E Jm d7ww'|m Xs(d, o),

Y ITRCAR -
_5<[(IE) S(q!t)ls(_qvo)}>t_0'

The first moment yields the well-knowfasum rule,

9

(oM)y=2nwy(q), (10)
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define the static magnetic and usual structure factors, respec-
tively. For completeness, we express the structure factors in
terms of the spin-resolved pair correlation functions:

~ n .
S(k)—1=§f d’r[gy(r)—gy (r)]exp(—ik-r), (17)
and
n .
S(k)—1=§J d?r[g;(r)+g;,(r)—2]exp(—ik-r).
(18
whereg;(r) andg; (r) are the spin-parallel and antiparal-

lel contributions, respectively, to the electron pair correlation
functiong(r), i.e.,

g(r)=3[g;(r)+g; (N]. (19

It has been notéahat the third-moment sum rule differs for
the charge- and spin-density response, in contrast to the first-
moment sum rule, which is obeyed by bogh andys. The
physical root of this qualitative difference can be inferred

where n=N/{} is the macroscopic homogeneous particleqqm, e continuity equation for longitudinal spin current,

density. The derivation of thé&sum rule invokes number

conservation via the continuity equation,

dps(q,t)
ot

:_iq'ja(qvt) (11)

wherej(q,t) is the current density fluctuation operator for

particles with spino:

1
k+=q

1
j(r(qrt): E ;

used in the derivation of Eq13), namely,
J 2
15701000 =2 [wo(a+K) = 0o(k) ?pis(a,t)

1 g-p
& VP T COp(PCpraolt):

(20

Hence, it can be shown that the presence of the interelectron

Thus, number density iseparatelyconserved for electrons Potential allows a transfer of momentum density across
with spin up and spin down since there is no term in theSPiN-up and spin-down electrons. Thus, although the total
equilibrium Hamiltonian, as given by E¢4), which can flip ~momentum density must be conr%feryed_, the momentum den-
spin. That correlation effects play no role in the first momentSity Of each spin species is nofThis is why the third-

may be understood by noting that in the highlimit elec- moment sum rulg, essentlally. an expression of momentum
trons that interact via a velocity-independent potential canno®d number density conservation, must differ for charge- and

be influenced by the effects of others when the time intervafPin-density susceptibilities. _
is infinitesimal. An expression for 4(q) has been known for some time

The third-moment sum rufe,after straightforward but for three-dimensional systemfisind here we just record the
lengthy calculations, givé< limiting expressions,

3y = 2 2
(@) 2nwo(q)[wo(q)+wo(q)(12/d)<EKE>+Id(q)](,lS) 14(q0) = wp;q) [1-g,,(0)] 21
where(Egg) is the average kinetic energy per electron in the d
interacting system ani(q) is given by an
1 . w3(q)
ld(Q)=5k§0 V(k)(g-K)[S(a—k)—S(k)], (14 l3(g—)= p3 [1-29;,(0)], (22)

where forq#0, where w,(q) =[2nwo(q) V()12 is the plasma frequency.

Note that in Egs.(21) and (22) we have applietig;;(0)

S(a)=N"Ys(a)s(—q)), (15 =0, and that the higlgr limit is to be taken such that 0
o <o(Q)<w.
S(q)=N"Yp(q)p(—q)) (16) In two dimensions we find
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e (= . 2n 2nw? 12
Iz(q)=%f0 dk k{R(q,k)[3(k)— 11— k[ S(k) — 11} lim yo(, @)= “";(q) + “"ij) wo(@)+ 5 (Exe)o
(23) w—® w w
. 1
with +O(—6 : (32)
w
_ [2mdé q?+k?cos’ 6+ 2kq cosd where(Exg)g is the average kinetic energy per electron in a
R(g.k)= 0o m (92+k2+ 2kqcos6) M2 (24 n_oninteracting_system. Aft(_ar inser_tion of E1) into the
high-o expansion of the spin-density response, &), we
The limiting behavior is then observe that manifestations of the local-field factor appear at
O(1/w?), i.e.,
1,(g—0 :—f dk K[ S(k)— S(k)1, (25 , 2nwo(q)  2nwp(Q) 12
T 0 St =S00] lim xs(q,w)=— > 2| @o(@+ 5 (Exelo
W—s 0 w w
I(g—)=—3w3(q)g;,(0). (26) _ 1
—V(a)2nG)(q) [+0| — . (32)
w

lll. LOCAL-FIELD FACTORS . . ' .
By comparison with the first- and third-moment sum rules,

Another way to express the correlation effects in the spirEq. (10) and Eq.(13), we infer that limiting form of the
response is to introduce the notion of a local-field factor,local-field factor must be given by
G_(g,w), which modifies the effective field felt by a single

electron, as expressed by — la(q) 6
G")(q)=— + ———((Exe)o—(Exg)). (33
B (a) wg(q) d nV(q)(< ke)o—{(Eke)). (33
xs(q,w)=— Xo(4.) — . (27) The kinetic part of the above expression gives a diverging
1+V(a)G-(q,0) xo(q, ) contribution in the largeq limit, which, previous authofs

_ have argued, must be absorbed by a proper treatment of the
Here xo(q, ) is the modifiedLindhard function for the in-  self-energy of the proper polarizability function, i.e., the
teracting system, i.e., wherexact interacting occupation modified Lindhard function. The introduction of the addi-
numbersn(k) are used, namely, tional local-field factorG,, allows us to demonstrate this ex-

plicitly, and indeed a highs expansion of Eq(28) together

— o) 1 E F(k)—F(kJrq) with the definition of the local-field factor, E¢29), gives
,W)= — .
Xl I ot wo(K)— wo(k+ ) +i10"

(28) 6
Gi(@= v (Bxelo(Exe)) (34

n(k), therefore, replaces the usual noninteracting fermio
occupation numben(k) in the original Lindhard function
xo(Q,w). Since the exact occupation numbers are generally

unknown, we follow Ref. 10 and 11 and introduce a separate G(‘”)(q)z _ la(Q) _ (35)
local-field factorG,, to write the modified Lindhard function - wg(q)

in terms of the original Lindhard functiog,, i.e.,

r]eaving the desired result

This result can also be derived from the work of Zhu and

Overhauséf based on the equation-of-motion approatn
Xo(d, ®)

Yo(Q,w)= ) 29 three dimensions the limiting forms are
(@)= VGG oo 2
G"(q—0)=3[2g(0)—1], (36)
Thus, we have
G™)(g—oe)=3[4g(0)—1], (37
xs(Q,w)=— KO(q'w) , (30 Note that if the negative sign of the local-field factor at high
1+V(9)G_(q,0) xo(q,®) w, by Eq.(36), persists at finitav then we have the possi-
o bility that a pole inys(q,w) exists* for real » and suffi-
whereG_(q,w)=G_(q,w)+Gp(q,w). ciently largers. Physically, this collective mode corresponds

The third-moment sum rule can again be utilized to deterto long-wavelength spin-wave modes, undamped and oscil-
mine the highe limit of the local-field factors, i.e., lating at frequencies given by the solution to
lim,, ...G(q,0)=G™)(q). First, we will require the higho o
expansion of the Lindhard function, i.e., 1+V(q)G_(g,w)xo(q,w)=0 (39
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In two dimensions the limiting forms of the high-frequency infinite extent, i.e., it decays very slowly, especially so in two
local-field factors are dimensions. The divergence is then a signature of a transition
L from a bounded xc kernel to an unbounded one. Thus, a strict
- % ~ local-density approximatiofLDA) (Ref. 15 for the xc po-
G° )(qH0)= 477an0 dk KTS(k) = S(K)1, (39 tential becgm(fsp untenable in time-dependent systrt)ams, at
least in the high-frequency regime. In other words, the dy-
G(f(’)(q—m):g(O). (40) namical local field cannot be specified by tloeal de_nsity _
alone and other approaches to TDSDFT are required. This
divergence is particularly potent given that it occurs even in
IV. DISCUSSION a homogeneous system, as emphasized by Vighatko
|.very recently reported similar conclusions about the dynamic
spin response at finite.

The physical concept behind the introduction of the local
field factor is identical in spirit to the methodology of DFT in . ) ) ) )
One possible remedy is via the weighted density

which xc effects are incorporated in an effective local field imationt” whi . .
experienced by each electron. In fact, within the frequency@PProximatior,” which retains nonlocality and has been

dependent linear response formali€hthe unpolarized spin- demonstrated to give more accurate results than functional

antisymmetric local-field factor is simply related to the xc approximations involving local-density contributions. Indeed

energy functionak,Jn] via it has been argué@'®that such an approach should be able
XCl

to recover at least part of the full Van der Waals interaction,
chl(q,w)—Klg(q,w) K(Q, ) the origin of which is clearly due to dynamical correlation
G_(q,w)= 2V(Q) =" v (41)  between electrons, and where it is well known that the con-
ventional LDA fails. Another approach that overcomes the
WhereK;’é’/(q,w) is the Fourier transform of the xc kernel of limitations of the LDA but nonetheless still permits a local
TDSDFT, description is current density functional the®§ where the
local current density is required in addition to the local den-
S°Exdn] sity to describe time-dependent inhomogeneous systems.
o~ (42 Finally, we note that many-body calculations based on
ANG(r,t) 8Ny (1,17) Hedin’s so-calledsW approximatiof” take correlations into
From Egs. (36) and (399 we now note that account directly without invoking the local mean-field ap-
limg_olim,_...K\o(q,0) diverges asq~2 in both two and proximations of DFT, and have receﬁﬁpeen demonstrated
three dimensions in notable contradistinctionKg,(q, o), to yield accurate grou.nd—state. energies of inhomogeneous
which is well behaved in the same limit. This striking behav-SyStems where LDA fails drastically. However, such many-
ior of the spin-antisymmetric exchange-correlation kernef?@dy @pproaches are numerically intensive and it remains to
does not by itself lead to any concern since the correspond?® S€en whether they can be successfully applied to excited
ing macroscopic quantitiei.e., ys as given by Eq.(30)] states within feasible computational effort.
remain well defined in the lowt and highe limit and it
follows that the observablg.e., induced magnetizatiprlso
remains well defined. Physically, the divergence in momen- This work was supported by the NSF under Grant No.
tum space implies tha€,(r,w), and hence the xc hole, is of DMR-9988576.
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