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Correlation effects and the high-frequency spin susceptibility of an electron liquid: Exact limits
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Spin correlations in an interacting electron liquid are studied in the high-frequency limit and in both two and
three dimensions. The third-moment sum rule is evaluated and is used to derive exact limiting forms~at both
long and short wavelengths! for the spin-antisymmetric local-field factor, limv→`G2(q,v). In two dimensions
limv→`G2(q,v) is found to diverge as 1/q at long wavelengths, and the spin-antisymmetric exchange-
correlation kernel of time-dependent spin density functional theory diverges as 1/q2 in both two and three
dimensions. These signal a failure of the local-density approximation, one that can be redressed by alternative
approaches.
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I. INTRODUCTION

The detailed incorporation of exchange and correlat
~xc! into the dynamic response of an interacting electron
uid remains a challenge to theory. The mean-field appro
of the random-phase approximation~RPA!, which neglects
xc effects, becomes increasingly inadequate as both the
mensionality and density of electrons is lowered. Sum ru
provide exact constraints on the response of an electron
uid and thus are extremely useful as tests of any scheme
purports to include xc effects. Alternatively they can be us
to constrain particular approximations such as those emb
ied in local field factorsG6(q,v). The static behavior of
both the spin-symmetric (1) and spin-antisymmetric (2)
local-field factors has been well studied1 and various fitting
formulas have been proposed that conform to the kno
exact constraints.2–4 Their dynamic forms have attracted
great deal of recent attention since they exhibit far ric
behavior than their static counterparts.

However, up to now, most dynamical studies have
cussed on the spin-symmetric case; in this paper we re
on a derivation of the exact behavior of the dynamic sp
antisymmetric response in the high-v limit within the linear
response scheme. In particular, the first- and third-mom
sum rules are derived~Sec. II! and then used in Sec. III to
determine the exact asymptotic behavior of limv→`G2(q,v)
in the low- and high-q limit. The xc kernel in time-dependen
density functional theory is closely related to these loc
field factors and in Sec. IV it will be shown that the hig
frequency spin-antisymmetric xc kernel must thendivergein
the long-wavelength limit. This divergence demonstrates
the dynamical xc potential in time-dependent spin-den
functional theory~TDSDFT!, as applied to a homogeneou
system, must be anonlocal functional of the local density.

II. MOMENT SUM RULES

To describe the formalism needed to derive the mom
sum rules of an electron liquid, we will first need the electr
particle-hole operatorr̂ks(q), defined as

r̂ks~q!5cks
† ck1q,s , ~1!
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wherecqs
† and cqs are the fermionic creation and annihila

tion operators, respectively, ands denotes the spin projec
tion. The standard one-particle density operators are the

r̂s~q!5(
k

r̂ks~q!, r̂~q!5(
ks

r̂ks~q!, ~2!

and, for the spin equivalent,

ŝ~q!5(
ks

hsrks~q!, hs5H 11, for s5↑
21, for s5↓.

~3!

In the thermodynamic limit the Hamiltonian for
d-dimensional system ofN electrons immersed in a uniform
neutralizing background of volumeV is given by (\51)

H5(
qs

v0~q!cqs
† cqs1

N

2V (
qÞ0

V~q!F 1

N
r̂~q!r̂~2q!21G ,

~4!

wherev0(q)5q2/2m, andV(q) is the Fourier transformed
Coulomb potential, i.e.,V(q)54pe2/q2 for d53, and
V(q)52pe2/q for d52. From linear response theory th
retarded charge-densityxC and spin-densityxS responses are
given by

xC~q,t !5
i

V
^@r̂~q,t !,r̂~2q,0!#&u~ t ! ~5!

and

xS~q,t !5
i

V
^@ ŝ~q,t !,ŝ~2q,0!#&u~ t !, ~6!

where u(t) is the Heaviside step function and^ & denotes
averaging over the equilibrium ensemble as specified by
Hamiltonian in Eq.~4!. Note that to obtain a physical spin
spin response fromxS(q,t) in Eq. ~6! a factor g2mB

2/4 is
required whereg is the gyromagnetic ratio andmB is the
Bohr magneton.

As usual, the spectral representation ofx(q,v), the Fou-
rier transform ofx(q,t), can be obtained from
©2003 The American Physical Society04-1
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x~q,v!5E
2`

` dv8

p

Imx~q,v8!

v82v2 i01
. ~7!

Analyticity of xS(q,v) in the upper half of the complex-v
plane requires that ImxS(q,v) be an odd function ofv and
so, in the high-v limit, xS(q,v) expands as

lim
v→`

xS~q,v!52(
l 51

`
^v (2l 21)&

v2l
, ~8!

where the momentŝv ( l )& are given by

^v ( l )&[E
2`

` dv

p
v l Im xS~q,v!,

5
1

V K F S i
]

]t D
l

ŝ~q,t !,ŝ~2q,0!G L
t50

.

~9!

The first moment yields the well-knownf-sum rule,

^v (1)&52nv0~q!, ~10!

where n[N/V is the macroscopic homogeneous parti
density. The derivation of thef-sum rule invokes numbe
conservation via the continuity equation,

]rs~q,t !

]t
52 iq• js~q,t ! ~11!

where js(q,t) is the current density fluctuation operator f
particles with spins:

js~q,t !5
1

m (
k

S k1
1

2
qD rks~q,t !. ~12!

Thus, number density isseparatelyconserved for electron
with spin up and spin down since there is no term in
equilibrium Hamiltonian, as given by Eq.~4!, which can flip
spin. That correlation effects play no role in the first mome
may be understood by noting that in the high-v limit elec-
trons that interact via a velocity-independent potential can
be influenced by the effects of others when the time inter
is infinitesimal.

The third-moment sum rule,5 after straightforward but
lengthy calculations, gives6,7

^v (3)&52nv0~q!@v0
2~q!1v0~q!~12/d!^EKE&1I d~q!#,

~13!

where^EKE& is the average kinetic energy per electron in t
interacting system andI d(q) is given by

I d~q!5
1

m (
kÞ0

V~k!~ q̂•k!2@S̃~q2k!2S~k!#, ~14!

where forqÞ0,

S̃~q!5N21^ŝ~q!ŝ~2q!&, ~15!

S~q!5N21^r̂~q!r̂~2q!& ~16!
23310
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define the static magnetic and usual structure factors, res
tively. For completeness, we express the structure factor
terms of the spin-resolved pair correlation functions:

S̃~k!215
n

2E d2r @g↑↑~r !2g↑↓~r !#exp~2 ik•r !, ~17!

and

S~k!215
n

2E d2r @g↑↑~r !1g↑↓~r !22#exp~2 ik•r !.

~18!

whereg↑↑(r ) andg↑↓(r ) are the spin-parallel and antipara
lel contributions, respectively, to the electron pair correlat
function g(r ), i.e.,

g~r !5 1
2 @g↑↑~r !1g↑↓~r !#. ~19!

It has been noted8 that the third-moment sum rule differs fo
the charge- and spin-density response, in contrast to the
moment sum rule, which is obeyed by bothxC andxS . The
physical root of this qualitative difference can be inferr
from the continuity equation for longitudinal spin curren
used in the derivation of Eq.~13!, namely,

i
]

]t
q• js~q,t !5(

k
@v0~q1k!2v0~k!#2rks~q,t !

1
1

V (
kp

V~p!
q•p

m
cks

† ~ t !r~p,t !ck2p1qs~ t !.

~20!

Hence, it can be shown that the presence of the interelec
potential allows a transfer of momentum density acro
spin-up and spin-down electrons. Thus, although the t
momentum density must be conserved, the momentum d
sity of each spin species is not.9 This is why the third-
moment sum rule, essentially an expression of momen
and number density conservation, must differ for charge-
spin-density susceptibilities.

An expression forI d(q) has been known for some tim
for three-dimensional systems,7 and here we just record th
limiting expressions,

I 3~q→0!5
vp

2~q!

3
@12g↑↓~0!# ~21!

and

I 3~q→`!5
vp

2~q!

3
@122g↑↓~0!#, ~22!

where vp(q)5@2nv0(q)V(q)#1/2 is the plasma frequency
Note that in Eqs.~21! and ~22! we have applied8 g↑↑(0)
50, and that the high-q limit is to be taken such that 0
!v(q)!v.

In two dimensions we find
4-2



pi
o
e

io

al
ra

te

a

r at

s,

ing

f the
e
i-
-

nd

gh
-

ds
cil-

BRIEF REPORTS PHYSICAL REVIEW B67, 233104 ~2003!
I 2~q!5
e2

2mE
0

`

dk k$R~q,k!@S̃~k!21#2k@S~k!21#%

~23!

with

R~q,k!5E
0

2pdu

p

q21k2cos2u12kq cosu

~q21k212kq cosu!1/2
. ~24!

The limiting behavior is then

I 2~q→0!5
e2

2mE
0

`

dk k2@S̃~k!2S~k!#, ~25!

I 2~q→`!52 1
2 vp

2~q!g↑↓~0!. ~26!

III. LOCAL-FIELD FACTORS

Another way to express the correlation effects in the s
response is to introduce the notion of a local-field fact
G2(q,v), which modifies the effective field felt by a singl
electron, as expressed by

xS~q,v!52
x̄0~q,v!

11V~q!G2~q,v!x̄0~q,v!
. ~27!

Here x̄0(q,v) is the modifiedLindhard function for the in-
teracting system, i.e., whereexact interacting occupation
numbersn̄(k) are used, namely,

x̄0~q,v!5
1

V (
k

n̄~k!2n̄~k1q!

v1v0~k!2v0~k1q!1 i01
. ~28!

n̄(k), therefore, replaces the usual noninteracting ferm
occupation numbern(k) in the original Lindhard function
x0(q,v). Since the exact occupation numbers are gener
unknown, we follow Ref. 10 and 11 and introduce a sepa
local-field factorGn to write the modified Lindhard function
in terms of the original Lindhard functionx0, i.e.,

x̄0~q,v!5
x0~q,v!

11V~q!Gn~q,v!x0~q,v!
. ~29!

Thus, we have

xS~q,v!52
x0~q,v!

11V~q!Ḡ2~q,v!x0~q,v!
, ~30!

whereḠ2(q,v)5G2(q,v)1Gn(q,v).
The third-moment sum rule can again be utilized to de

mine the high-v limit of the local-field factors, i.e.,
limv→`G(q,v)5G(`)(q). First, we will require the high-v
expansion of the Lindhard function, i.e.,
23310
n
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lim
v→`

x0~q,v!5
2nv0~q!

v2
1

2nv0
2~q!

v4 Fv0~q!1
12

d
^EKE&0G

1OS 1

v6D , ~31!

where^EKE&0 is the average kinetic energy per electron in
noninteracting system. After insertion of Eq.~31! into the
high-v expansion of the spin-density response, Eq.~30!, we
observe that manifestations of the local-field factor appea
O(1/v4), i.e.,

lim
v→`

xS~q,v!52
2nv0~q!

v2
2

2nv0
2~q!

v4 Fv0~q!1
12

d
^EKE&0

2V~q!2nḠ2
(`)~q!G1OS 1

v6D . ~32!

By comparison with the first- and third-moment sum rule
Eq. ~10! and Eq. ~13!, we infer that limiting form of the
local-field factor must be given by

Ḡ2
(`)~q!52

I d~q!

vp
2~q!

1
6

d nV~q!
~^EKE&02^EKE&!. ~33!

The kinetic part of the above expression gives a diverg
contribution in the largeq limit, which, previous authors8

have argued, must be absorbed by a proper treatment o
self-energy of the proper polarizability function, i.e., th
modified Lindhard function. The introduction of the add
tional local-field factorGn allows us to demonstrate this ex
plicitly, and indeed a high-v expansion of Eq.~28! together
with the definition of the local-field factor, Eq.~29!, gives

Gn
(`)~q!5

6

d nV~q!
~^EKE&02^EKE&!, ~34!

leaving the desired result

G2
(`)~q!52

I d~q!

vp
2~q!

. ~35!

This result can also be derived from the work of Zhu a
Overhauser12 based on the equation-of-motion approach.13 In
three dimensions the limiting forms are

G2
(`)~q→0!5 1

3 @2g~0!21#, ~36!

G2
(`)~q→`!5 1

3 @4g~0!21#, ~37!

Note that if the negative sign of the local-field factor at hi
v, by Eq. ~36!, persists at finitev then we have the possi
bility that a pole inxS(q,v) exists14 for real v and suffi-
ciently larger s . Physically, this collective mode correspon
to long-wavelength spin-wave modes, undamped and os
lating at frequencies given by the solution to

11V~q!G2~q,v!x̄0~q,v!50 ~38!
4-3
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In two dimensions the limiting forms of the high-frequen
local-field factors are

G2
(`)~q→0!5

1

4pnqE0

`

dk k2@S̃~k!2S~k!#, ~39!

G2
(`)~q→`!5g~0!. ~40!

IV. DISCUSSION

The physical concept behind the introduction of the loc
field factor is identical in spirit to the methodology of DFT
which xc effects are incorporated in an effective local fie
experienced by each electron. In fact, within the frequen
dependent linear response formalism,15 the unpolarized spin-
antisymmetric local-field factor is simply related to the
energy functionalExc@n# via

G2~q,v!5
Kxc

↑↓~q,v!2Kxc
↑↑~q,v!

2V~q!
[2

Kxc
2~q,v!

2V~q!
~41!

whereKxc
ss8(q,v) is the Fourier transform of the xc kernel o

TDSDFT,

Kxc
ss8~r2r 8,t2t8![

d2Exc@n#

dns~r ,t !dns8~r ,t8!
. ~42!

From Eqs. ~36! and ~39! we now note that
limq→0limv→`Kxc

2(q,v) diverges asq22 in both two and
three dimensions in notable contradistinction toKxc

1(q,v),
which is well behaved in the same limit. This striking beha
ior of the spin-antisymmetric exchange-correlation ker
does not by itself lead to any concern since the correspo
ing macroscopic quantities@i.e., xS as given by Eq.~30!#
remain well defined in the low-q and high-v limit and it
follows that the observable~i.e., induced magnetization! also
remains well defined. Physically, the divergence in mom
tum space implies thatKxc

2(r ,v), and hence the xc hole, is o
B

B

ev

23310
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-
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infinite extent, i.e., it decays very slowly, especially so in tw
dimensions. The divergence is then a signature of a trans
from a bounded xc kernel to an unbounded one. Thus, a s
local-density approximation~LDA ! ~Ref. 15! for the xc po-
tential becomes untenable in time-dependent systems
least in the high-frequency regime. In other words, the
namical local field cannot be specified by thelocal density
alone and other approaches to TDSDFT are required. T
divergence is particularly potent given that it occurs even
a homogeneous system, as emphasized by Vignale16 who
very recently reported similar conclusions about the dyna
spin response at finitev.

One possible remedy is via the weighted dens
approximation,17 which retains nonlocality and has bee
demonstrated to give more accurate results than functio
approximations involving local-density contributions. Inde
it has been argued18,19 that such an approach should be ab
to recover at least part of the full Van der Waals interactio
the origin of which is clearly due to dynamical correlatio
between electrons, and where it is well known that the c
ventional LDA fails. Another approach that overcomes t
limitations of the LDA but nonetheless still permits a loc
description is current density functional theory20,21where the
local current density is required in addition to the local de
sity to describe time-dependent inhomogeneous systems

Finally, we note that many-body calculations based
Hedin’s so-calledGW approximation22 take correlations into
account directly without invoking the local mean-field a
proximations of DFT, and have recently23 been demonstrated
to yield accurate ground-state energies of inhomogene
systems where LDA fails drastically. However, such man
body approaches are numerically intensive and it remain
be seen whether they can be successfully applied to exc
states within feasible computational effort.
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