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Vector vortices in p-wave superconductors with arbitrary k parameter

B. Rosenstein, I. Shapiro, B. Ya. Shapiro, and G. Bel
Institute of Superconductivity, Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
~Received 30 July 2002; revised manuscript received 21 November 2002; published 13 June 2003!

We have considered vortices inp-wave superconductors with a nonvanishing order parameter in the vortex
core for the arbitrary ratiok5l/j ~herel andj are the magnetic length and the coherence length, correspon-
dently!. Vector vortices are characterized by an orientation in the order-parameter space, however, spatial
profile of both the order parameter and magnetic field of the vortex demonstrate an essential difference of the
vortex structure for differentk parameters and from those calculated for the vortex in liquid3He. We calculate
lower critical fieldHc1 and find that criticalk5kc51/A2 is independent of the detailed form of interactions.
Strong asymmetry of some of the components of the order parameter disappears whenk approacheskc . The
vortex lattice in the multicomponent superconductor resembles a spin system in which the orientation in the
order-parameter space plays the role of ‘‘spin.’’ Interactions between vortices lead to long-range order. An
effective theory for this system is proposed.

DOI: 10.1103/PhysRevB.67.224507 PACS number~s!: 74.20.De, 74.20.Rp, 74.25.Op
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I. INTRODUCTION

Order parameter describing Cooper pairs in nonconv
tional and multiband superconductors generally has sev
components.1,2 Examples include the description of high-Tc
superconductors as a mixture ofd-wave and s-wave
components3 or p-wave superconductors like heavy fermio
UPt3

4 newly discovered Sr2RuO4,5 two-gap superconductiv
ity in transition metals Nb,Ta,V,6 and in superconductor
with suprisingly high critical temperature MgB2.7 In particu-
lar, the symmetry of the order parameter in nonconventio
superconductors is related to the crystallographic symm
group of the material and to the effective attraction mec
nism of Cooper pairing, and in multiband systems with s
eral coexisting condensates of Cooper pairs. Although
number of charged fields and their transformation proper
under rotations are different, the common feature of theo
describing these diverse systems remains the U~1! local
gauge invariance. In systems of this kind in the presenc
external magnetic field a major role is played by vario
topological defects which thereby become the most imp
tant degrees of freedom in both statics and dynamics.
well known that, while in the simplest one-component ca
the Abrikosov vortices~AV’s ! are the only kind of topologi-
cal defect, in the multicomponent case other types of def
exist.

There exist at least three distinctive phases (A, B, andC)
in the magnetic-field (H) –temperature diagram~T! in the
UPt3 superconductor. In order to describe this phase diag
two scenarios@two-dimensional 2D vs 1D~Ref. 4!# have
been proposed. An essential difference between the 1D
2D scenarios lies in the fact that the degeneracy comes e
from the orbital part of the pairing function in the 2D, o
from the spin part of the pairing function in the 1D scenar
Machida argued that the 1D scenario which explained
isotropy of theH-T phase diagram was more robust. In t
1D scenario based on the assumption of weak spin-orbit c
pling, the triplet pairing function in a matrix form is de
scribed in terms of three-dimensional vector@SO~3! symme-
try#. In this paper we concentrate on a theory of comp
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vector field model~describing, in particular, certain supe
conductors withp-wave pairing! that possesses an approx
mate global SO~3! symmetry. In this case the number of th
components of the order parametern53 provided more so-
phisticated structure of the topological defects. In this mo
two topologically distinct ‘‘non-Abrikosov’’~in this model
AV’s are simply one-component topological solitons with a
ditional components vanishing! types have been found: core
less magnetic skyrmions,8 field-carrying topological texture,9

knot solitons,2 and the ‘‘vector vortices’’~VV’s ! pointed out
by some of us recently10 which have a complex core mor
typical for superfluid3He rather than superconductors. Th
vector vortices are also not related to unconventional vo
ces in two-component order-parameter models~see Ref. 11
and references therein!.

In the recent communication10 we have considered bot
structure and dynamical generation of coreless vortices w
the ratiok5l/j is rather large,k510 ~wherel and j are
the magnetic penetration depth and the coherence length
spectively!. We were guided by thek2.` limit and anal-
ogy with superfluid3He. In real type-IIp-wave supercon-
ductors it varies in a wide range ofk above critical value to
be determined below. The largek case is simpler to investi
gate both analytically and numerically and it enables a qu
tative comparison with a very extensively studied case of
tensorial order parameter in superfluid3He and a great dea
of qualitative features of VV’s have been studied. It turn
out that the SO~3! symmetry of the order parameter is n
respected by the vortex solution. The vortex can be view
as a nonsymmetric top in the SO~3! space. This fact is very
important in enhancing the entropy of the vortex system.
interesting question is how this feature changes when thk
parameter is reduced to experimentally accessible values
additional question is what is the vortex structure in the o
posite limit of criticalk.

In this paper we tackle the more demanding case of
intermediate and smallk. We calculated the structure of th
order parameter, field, and of the magnetic field as a func
of the distance from the vortex axis and demonstrate
essential difference of the vortex structure for different v
©2003 The American Physical Society07-1
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ues of thek parameter. We predict that, while at largek one
component of the order parameter is nonzero in the vo
core, this component vanishes as a poweruk2kcua,a51/2
for k→kc51/A2. The phase diagram in theH2k space
demonstrates the tricritical point atk5kc where the vector
vortex becomes completely symmetric: the vortex symme
is that of the symmetric top~and entropy is therefore re
duced!.

II. BASIC EQUATIONS AND SYMMETRIES

The Ginzburg-Landau~GL! Hamiltonian describing a
three-component complex vector order parameter~see Ref.
4! c(r )5(c1,c2,c3) coupled to magnetic field has a form

H5E d2r FK

2 US ¹2 i
2e

c
ADcaU2

2aucau2

1
b1

2
~cac* a!21

b2

2
ucacau21

B2

8pG . ~1!

Here A is vector potential,B5¹3A is the magnetic field,
and a51,2,3. The theory possesses a ‘‘flavor’’ SO~3! sym-
metry of rotationsca2.Rabcb between different order
parameter components. The two different coupling consta
b1 andb2 determine the nature of the homogeneous gro
state. Stability requiresb1.0, while the gauge symmetry i
broken at a.0. We concentrate on the superconducti
phaseB ~which is somewhat reminiscent of theB phase in
liquid 3He) for b5b2 /b1.0 in which order parameter i
~up to remaining degeneracy!8

c15
f 0

A2
; c25

i f 0

A2
; f 05A a

b1
. ~2!

Since the configuration is assumed to be homogeneou
the direction of the magnetic field, all the fields are cons
ered in two dimensions,r5(x,y). It is convenient to define
the dimensionless variables as follows:

r→ r

j
, j5A K

2a
, ~3!

c→ c

c0
, A→ 2pA

jF0
. ~4!

Herej, the coherence length, is the unit of length,l is the
penetration depth of the magnetic field,F0 is the flux quan-
tum. The corresponding dimensionless GL Hamiltonian

H5E d2r F1

2
u~¹1 iA!cau22ucau21

1

2
~cac* a!2

1
b

2
ucacau21

k2

2
¹3A2G ~5!

leads to the equations

2ca1~cbc* b!ca1b~cbcb!c* a1~ i¹1A!2ca50,
~6!
22450
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¹3¹3A5Js . ~7!

The superconducting current is defined by

Js52
i

2k2
~c* a¹ca2ca¹c* a!2

1

k2
ucau2A, ~8!

while the topological charge in this case has the form

P5E
C
A•dl5

1

2p (
a
E

C
ucau2¹Fadl, ~9!

where the phases are defined byca5ucauexp(iFa).12

III. SINGLE VORTEX SOLUTIONS FOR ARBITRARY k

A vortex is generally a solution invariant under spat
rotations in thexy plane SOr(2). As we discussed in the
proceeding paper,10 VV in the flavor ~by which we denote
different components of the order parameter! space are char
acterized by a ‘‘reper.’’ Namely we can define three mutua
perpendicular unit vectorsnW ,mW , lW. We look for a single vor-
tex solution of Eqs.~6!–~8! within the following SOr(2)
symmetric ansatz:

c15C~r !x1D~r !y; c25D~r !x2C~r !y; c35 f ~r !,
~10!

and

Ax5b~r !y; Ay52b~r !x, ~11!

where r5(x,y) is a 2D vector. We have chosen herelW

5(0,0,1),nW 5(1,0,0),mW 5(0,1,0), any other orientation in
the order parameter~flavor! space being just a flavor rotation
It is naturally a requirement that this ansatz constrain w
keep invariance of the Hamiltonian~5! under transformation,

x→y, y→2x, ~12!

c1→c2, c2→2c1,

Ax→Ay , Ay→2Ax .

We choose the ’’third’’ component as a direction in th
flavor space for which the component is rotationally inva
ant. The two perpendicular componentsc1 andc2 constitute
a vector under rotations in thexy plane. Generallyf, C, and
D are complex andb is real related to induction byBz
522b2rb8, where the prime denotesd/dr.

Substituting Eqs.~10! and ~11! into Eq. ~8! we obtain
components of the superconducting current:
7-2



y

nt
th
e

ts

s in

the
mple

eal

.

of

ing

tro-
re-
e
d

to
n-

y
s–

er

VECTOR VORTICES INp-WAVE SUPERCONDUCTORS . . . PHYSICAL REVIEW B 67, 224507 ~2003!
Jx52
i

2k2
@xr~D8D* 2DD* 81C* C82CC* 8!

22~DC* 2D* C!y#2
2~F2by!

k2
~13!

Jy52
i

2k2
@yr~D8D* 2DD* 81C* C82CC* 8!

12~DC* 2D* C!x#1
2~F2bx!

k2
,

whereF25u f u21(uCu21uDu2)r 2.
The requirement of rotation invarianceJr50 leads to the

condition

DD* 82D8D* 2C* C81CC* 850, ~14!

which is satisfied in particular when

C5C* 5c and D52D* 5 id, ~15!

wherec(r ) andd(r ) are real. This solution is confirmed b
the numerical simulation of Eqs.~6!–~8! ~see Fig. 1!. We
found also thatf is real everywhere. Taking into accou
these properties of the ansatz coefficients, the azimu
component of the superconducting current simplifi
considerably:10

Jw5
r

k2
~2cd1F2b!. ~16!

Substituting Eqs.~11! and ~16! into Eq. ~7! and Eq.~10!
into Eq. ~6! we obtain a set of the equations for coefficien
of the ansatz in the form

2
]2~br !

]r 2
2

]b

]r
5Jw , ~17!

FIG. 1. One of the rotation invariant combinations of the ord
parameter components:C(x,y)5r 22(xc12yc2). It demonstrates
that the solution is a vector vortex.
22450
al
s

f 2F2f 2bF1
2f 1

1

r

]

]r S r
] f

]r D2br2f 50, ~18!

where

F1
25 f 21~c22d2!r 2,

c~12F22bF1
2!1c91

3c8

r
2b2r 2c22bd50, ~19!

d~12F21bF1
2!1d91

3d8

r
2b2r 2d22bc50. ~20!

This set of equations describes all of the vortex propertie
the p-wave superconductors.

We solved the equations numerically and checked that
above ansatz indeed solves the GL equations. As an exa
the following combination:

xc12yc2

r 2
~21!

is shown in Fig. 1. According to the ansatz it should be a r
function of the distance from the vortex center onlyc(r ).
This is what is observed. The imaginary part ofc vanishes.
The same is true ford(r ) and f (r ).

The functionsc(r ),d(r ) for k51 andk510 are given in
Fig. 2~a!. One observes that for smallk, c(r ) approaches
d(r ). We therefore plotted the differencec(r )2d(r ) in Fig.
2~b!. As k approacheskc51/A2 the difference vanishes
Figure 2~c! demonstrates that ask decreasesuc3u[ f (r ) also
vanishes. These two quantities allow the determination
critical magnitude of the parameterk. From numerical simu-
lations we obtain thatkc51/A2 independent ofb. We will
discuss smallk in the next section.

Profiles of the magnetic field and of the superconduct
current are presented in Figs. 3~a! and ~b!. They resemble
those of the Abrikosov vortices. This means that the elec
magnetic part of the intervortex interaction is the usual
pulsion independent of the ‘‘orientation’’ of the vortex in th
flavor ~component! space. The lower critical field calculate
from the vortex line energy is given in theH2k phase dia-
gram, Fig. 4. It is given forb51 ~dependence onb is mi-
nor!.

It is easy to find from Eq.~14! that in the vortex core (r
→0) the nonzero third component does not contribute
current density at all. In order to extract the superfluid de
sity ns in this case one can representJs in the form

Jw5nsVs , ~22!

where Vs is the superfluid velocity, whileVs}r 21 at the
vortex core@see Eq.~7!#. ComparingJw5nsVs with Eq. ~14!
we immediately obtain for superfluid density atr→0

ns}r 2 ~23!

as fors-wave superconductor.
It seems p-wave symmetry of the superconductivit

should not significantly change a well-known de Genne

-
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B. ROSENSTEINet al. PHYSICAL REVIEW B 67, 224507 ~2003!
FIG. 2. ~a! Spatial distribution ofc(r ) ~solid curves! andd(r )
~dashed curves! for k51 ~curves 1!, k510 ~curves 2!. For k
51, c(r ) approachesd(r ). ~b! Difference betweenc(r ) andd(r )
for k50.71,0.74,0.75,0.8,0.9,1,2,5. Ask approacheskc51/A2 it
vanishes. ~c! Spatial distribution of uc3u for k
50.71(1),0.75(2),0.8(3),1(4),2(5),5(6). For smallk,uc3u5 f
vanishes.
22450
Barden–Stephen relation between superfluid density and
order parameter in the vortex core fors-wave superconduct
ors. Really the vortex core of the movings-wave vortex is
usually in a normal state, and from this point of view ve
similar to those inp-wave superconductors.

IV. SYMMETRIZATION OF THE VECTOR VORTEX
AS k APPROACHES ITS CRITICAL VALUE

The most striking features of the VV’s at largek is a
nonvanishing order parameter at the center of the vortex
its asymmetry with respect to rotations in the flavor space
behaves as an asymmetric top with a superconducting c
It is interesting to ask how the structure of the vortex evolv
as the value ofk is reduced and, in particular what is th
critical value ofk at which transition into a homogeneou
superconducting state occurs. A related question is un
what circumstances does the vortex core become essen
normal?

FIG. 3. ~a! The magnetic-field distribution inside the vector vo
tex for k50.71(1),0.8(2),0.9(3),1(4),2(5),5(6).~b! Azimuthal
component of the superconducting current encircling the core
vortex for k50.71(1),0.8(2),0.9(3),1(4),2(5),5(6).
7-4
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VECTOR VORTICES INp-WAVE SUPERCONDUCTORS . . . PHYSICAL REVIEW B 67, 224507 ~2003!
We assume that the set of Eqs.~17!–~20! has a solution at
certain critical valuek5kc which is much simpler than the
general solution. Motivated by our numerical results,
look for the solution with vanishingf (kc ,r ). It easy to see
from Eqs.~17!–~20! that in this case one should also dema
c(kc ,r )5d(kc ,r ). The ansatz~10! is simplified as follows

c15c~x1 iy !; c25 ic~x1 iy !, c350. ~24!

Two equations are trivially satisfied and the additional t
are identical to the usual one-component Abrikosov vor
solution for the order parameterc25(c12 ic2)/A2 @the or-
thogonal componentc15(c11 ic2)/A2[0]. Using an ad-
ditional relation

B5k~12uc2u2!,

we obtain the critical value ofk5kc51/A2 independent of
parameter b. This solution will be denoted byc2

5c(r ,kc) and b(k,r )5b(r ,kc). To understand whykc is
independent ofb and coincides with Abrikosov’s one w
substitute the ansatz Eq.~24! into the Hamiltonian~5!. As a
result we obtain

H5E d2r F1

2
u~“1iA!c2u22uc2u21

1

2
uc2u41

k2

2
~“3A!2G

~25!

in which the b term vanishes. At the criticalk the Gibbs
energy of the vortex vanishes and therefore the transla
symmetry is restored~no vortices are stable belowkc). It is
interesting to note that at this point the vortex becomes
variant under SO~2! flavor rotations and becomes a ‘‘sym
metric top.’’

Now we turn to the description of the critical phen
mena associated with the symmetry breaking atkc . As

FIG. 4. Phase diagram for vector vortices in theB2k plane.
TCP denotes the tricritical point. Although the diagram is calcula
for b51, the critical value ofk is independent ofb. TheHc1 line
is calculated from the free energy of single vortex described in F
2 and 3.
22450
x

n

-

usual the dependence of physical quantities onDk[uk
2kcu is powerwise for all fields larger thanHc1. We there-
fore represent the ansatz coefficient functio
c(k,r ),d(k,r ), f (k,r ),b(k,r ) in the vicinity of the criticalk
in the form

c~k,r !5cc~r !2c1~r !Dkg; d~k,r !5cc~r !2d1~r !Dkg,
~26!

b~k,r !5bc~r !1b1~r !Dkd; f 5 f 1~r !Dka.

Substituting this into Eqs.~17!–~20! we obtain in the next-
to-leading order,

DkgS ]2~b1r !

]r 2
1

]b1

]r D
5Dk

4cc
2r

kc
3 ~11r 2bc!1Dkg

2r

kc
2

cc~d11c1!~11r 2bc!

14Dk2a
f 1

2rbc

kc
2

, ~27!

@d112cc
2r 2d112bcc

2~c12d1!r 2

1S d191
3d18

r D 12bcc12bcd1Dkg

1cc~12b! f 1
2Dk2a2b1cc~112bcr

2!Dkd50.
~28!

These equations have a solution ford5g51;a5g/251/2,
which are mean-field critical exponents of the phase tra
tion in whichk plays the role of the parameter. The result
numerical simulations which shows approach to criticality
uc3(r )u2 for r 251, 8, and 50 is shown in Fig. 5. This clear

d

s.

FIG. 5. Critical exponents on theHc1 line. uc3(r )u2 for r 2

51, 8, and 50 is given as function ofk. As k approacheskc data
clearly straight lines indicate thata51/2.
7-5
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demonstrates thata51/2. We have checked numerically th
rest of critical exponents as well.

V. SUMMARY AND DISCUSSION OF VECTOR
VORTEX SYSTEMS

One can conclude that each vortex inp-wave supercon-
ductor is characterized by its ‘‘orientation’’ in flavor~com-
ponent! space. In the case of the superconductingB phase
studied here this orientation is determined by a reper of th
perpendicular unit vectorsnW ,mW , lW in the order-paramete
space. In fact it means that in contrast to usual AV’s, which
completely isotropic in the plane perpendicular to the ex
nal magnetic field the VV’s appears to be arbitrarily direct

FIG. 6. Strongly anisotropic distribution ofuc1u ~solid line! and
uc2u components of the order parameter fork55 ~a! becomes com-
pletely isotropic atk50.73 ~b!.
22450
e

s
r-

in the usual coordinate space. On the other hand, in spe
experimentally important cases, when the VV appears pa
lel to the external magnetic field it is still arbitrarily directe
in the planeXY perpendicular to the magnetic field. Th
anisotropy presented in Fig. 6 completely disappears for
p-wave superconductors with smallk→kc . We have found
that the critical value ofk5kc51/A2 is universal, indepen-
dent of the coupling magnitudeb while the VV at thisk
becomes completely isotropic and very similar to usual AV
In particular, while at largek thec3 component of the orde
parameter is nonzero in the vortex core, this component v
ishes asuk2kcua,a51/2 for k→kc . Strong asymmetry of
c1,c2 of the components of the order parameter disappe
in this limit ~Fig. 6!.

We estimated the line energy of the VV and therebyHc1.
Spatial profile of both the order parameter and magnetic fi
of the vortex demonstrate the essential difference of the v
tex structure for differentk parameters and from those ca
culated for the vortex in liquid3He. We expect that even fo
not very largek basic features of vector vortices are appar
unlessk approacheskc51/A2.

Now we qualitatively discuss systems of vector vortic
since its physics is quite interesting and differs considera
from that of the conventional one-component supercond
ors. A magnetic field just aboveHc1 generates a sparse he
agonal array of VV’s. Since at large distances interactio
are mainly electromagnetic, the orientation of each VV v
tex is random~degeneracy is lifted by tiny interactions!.
When the magnetic field grows and the intervortex dista
is decreased, the order-parameter orientation dependent
of the interaction between VV’s becomes non-negligible a
tries to order orientations of VV’s ‘‘ferromagnetically’
~short-range order!. The orientation of VV’s at sitei is de-
noted by a matrixRi , where the matrix elements are th
angles between unit reper vectorsnW ,mW , lW in the flavor space

FIG. 7. Schematic picture of the VV lattice. Each vortex h

‘‘internal degree of freedom’’ described by a repernW ,mW , lW or matrix
R. Interactions between vortices induce long-range order of th
‘‘rotational in order-parameter space’’ degrees of freedom.
tions:
rder.

O

TABLE I. Properties of various topological defects in a multicomponent superconductor. Abbrevia
H, hexagonal lattice; N, no SRO; F, ferromagnetic SRO; LRO, long-range order; SRO, short-range o

Vortex Screening current Magnetic field Order parameter LRO SR

AV Isotropic Isotropic Isotropic,c50 H N
VV with k→1/A2 Isotropic Isotropic Isotropic,c50 H N
VV with large k Isotropic Isotropic Anisotropic,c5” 0 H F
7-6



’’

n
e
a

a
r-
i

re
tio
lt-

f a

re-
el

da-
ol-
a
lso

ort
id-
ful
he
or

VECTOR VORTICES INp-WAVE SUPERCONDUCTORS . . . PHYSICAL REVIEW B 67, 224507 ~2003!
and vectorr5(x,y,z) in the real space. The ’’ordering
meansRi5R for all sitesi of the lattice~Fig. 7!. The system
becomes similar to that of classical spins in a 2D hexago
lattice with two important differences. The direction of th
magnetic field does not disappear. If thermal fluctuations
taken into account orientation of spins at differentz might be
different although stiffness is very large. We ignore it for
moment. Another difference is that the ‘‘spin’’ is characte
ized by a matrix rather than by a vector. The interaction
short range and therefore one can consider only nea
neighbors on the hexagonal lattice as a good approxima
Utilizing symmetries of the system an effective 2D Hami
inian can be written as

H5
1

2 (̂
i j &

Tr~RiRj
21!.

The models of this sort have been extensively studied
statistical physics and even exact results are known.13 It
.

z,

D.
-
ia,

22450
al

re

s
st
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in

might be a very promising new system for comparison o
well developed theory with experiment.

The main differences between AV’s and the VV’s are p
sented in Table I~external magnetic field is directed parall
to thec3 component of the order parameter!.
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