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Vector vortices in p-wave superconductors with arbitrary « parameter
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We have considered vortices jawave superconductors with a nonvanishing order parameter in the vortex
core for the arbitrary ratia=\/¢ (herex and¢ are the magnetic length and the coherence length, correspon-
dently). Vector vortices are characterized by an orientation in the order-parameter space, however, spatial
profile of both the order parameter and magnetic field of the vortex demonstrate an essential difference of the
vortex structure for differenk parameters and from those calculated for the vortex in lidtid. We calculate
lower critical fieldH; and find that criticak = k.= 1/\/2 is independent of the detailed form of interactions.
Strong asymmetry of some of the components of the order parameter disappears apy@oaches.. The
vortex lattice in the multicomponent superconductor resembles a spin system in which the orientation in the
order-parameter space plays the role of “spin.” Interactions between vortices lead to long-range order. An
effective theory for this system is proposed.
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[. INTRODUCTION vector field model(describing, in particular, certain super-
conductors withp-wave pairing that possesses an approxi-
Order parameter describing Cooper pairs in nonconvenmate global S@) symmetry. In this case the number of the
tional and multiband superconductors generally has severabmponents of the order parameter 3 provided more so-
components:? Examples include the description of high-  phisticated structure of the topological defects. In this model
superconductors as a mixture af-wave and swave two topologically distinct “non-Abrikosov”(in this model
componentsor p-wave superconductors like heavy fermion AV’s are simply one-component topological solitons with ad-
UPt* newly discovered SRuQ,,® two-gap superconductiv- ditional components vanishingypes have been found: core-
ity in transition metals Nb,Ta,¥ and in superconductors less magnetic skyrmiorisfjeld-carrying topological texturg,
with suprisingly high critical temperature MgE In particu-  knot solitons; and the “vector vortices(VV’s) pointed out
lar, the symmetry of the order parameter in nonconventionady some of us recentty which have a complex core more
superconductors is related to the crystallographic symmetriypical for superfluid®*He rather than superconductors. The
group of the material and to the effective attraction mechavector vortices are also not related to unconventional vorti-
nism of Cooper pairing, and in multiband systems with seves in two-component order-parameter modske Ref. 11
eral coexisting condensates of Cooper pairs. Although thend references thergin
number of charged fields and their transformation properties In the recent communicatichwe have considered both
under rotations are different, the common feature of theoriestructure and dynamical generation of coreless vortices when
describing these diverse systems remains thg) Uocal the ratiox=X\/¢ is rather largex= 10 (where\ and¢ are
gauge invariance. In systems of this kind in the presence dhe magnetic penetration depth and the coherence length, re-
external magnetic field a major role is played by variousspectively. We were guided by th& —>o limit and anal-
topological defects which thereby become the most imporogy with superfluid®He. In real type-lip-wave supercon-
tant degrees of freedom in both statics and dynamics. It isluctors it varies in a wide range afabove critical value to
well known that, while in the simplest one-component casebe determined below. The largecase is simpler to investi-
the Abrikosov vorticegAV's) are the only kind of topologi- gate both analytically and numerically and it enables a quali-
cal defect, in the multicomponent case other types of defectative comparison with a very extensively studied case of the
exist. tensorial order parameter in superfliile and a great deal
There exist at least three distinctive phas&sB, andC) of qualitative features of VV's have been studied. It turned
in the magnetic-field i) —temperature diagrarfl) in the  out that the S@) symmetry of the order parameter is not
UPt; superconductor. In order to describe this phase diagrarrespected by the vortex solution. The vortex can be viewed
two scenariogtwo-dimensional 2D vs 1D0Ref. 4] have as a nonsymmetric top in the &8 space. This fact is very
been proposed. An essential difference between the 1D arithportant in enhancing the entropy of the vortex system. An
2D scenarios lies in the fact that the degeneracy comes eithérteresting question is how this feature changes wherxthe
from the orbital part of the pairing function in the 2D, or parameter is reduced to experimentally accessible values. An
from the spin part of the pairing function in the 1D scenario.additional question is what is the vortex structure in the op-
Machida argued that the 1D scenario which explained theosite limit of critical «.
isotropy of theH-T phase diagram was more robust. In the In this paper we tackle the more demanding case of the
1D scenario based on the assumption of weak spin-orbit countermediate and smak. We calculated the structure of the
pling, the triplet pairing function in a matrix form is de- order parameter, field, and of the magnetic field as a function
scribed in terms of three-dimensional vedt8O(3) symme-  of the distance from the vortex axis and demonstrate the
try]. In this paper we concentrate on a theory of complexessential difference of the vortex structure for different val-
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ues of thex parameter. We predict that, while at largeone
component of the order parameter is nonzero in the vortex
core, this component vanishes as a poywer «.|*, a=1/2
for k—k.=1/J2. The phase diagram in thd —x space
demonstrates the tricritical point at= k. where the vector
vortex becomes completely symmetric: the vortex symmetry
is that of the symmetric togand entropy is therefore re-
duced.

VXVXA=J;. (7)

The superconducting current is defined by

i 1
Jo=— — *ay @A JRAY fF ) — — azA’ 8
= S AWV Ty - ]y ®

while the topological charge in this case has the form
II. BASIC EQUATIONS AND SYMMETRIES polog 9

The Ginzburg-LandauGL) Hamiltonian describing a
three-component complex vector order paraméee Ref.
4) y(r)=(y*, ¥ 4% coupled to magnetic field has a form

H= Jd2H
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[ll. SINGLE VORTEX SOLUTIONS FOR ARBITRARY «

oY)

A vortex is generally a solution invariant under spatial
rotations in thexy plane SQ(2). As we discussed in the
proceeding papéf, VV in the flavor (by which we denote
metry of rotationsy?— >Ry between different order- different components of the order paramg®ace are char-

parameter components. The two different coupling constant@Cte”ZEd by a “reper. Namely we can define three mutually
8, and 8, determine the nature of the homogeneous groun@erpendicular unit vectors,m,I. We look for a single vor-
state. Stability requires;>0, while the gauge symmetry is tex solution of Eqs.(6)-(8) within the following SQ(2)
broken ata>0. We concentrate on the superconductingSymmetric ansatz:

phaseB (which is somewhat reminiscent of tlgphase in

Here A is vector potentialB=V XA is the magnetic field,
anda=1,2,3. The theory possesses a “flavor” &Psym-

liquid 3He) for 8= B,/B,>0 in which order parameter is Pr=C(nx+D(r)y; ¢2=D(r)x—C(r)y; ¢*=f(r),
(up to remaining degeneraly (10)
fo |f0 (64 and
=—; =—; fo=\/5 2
1 2 b2 a2 \V B, 2
A=b(r)y; Ay=-b(r)x, (1)

Since the configuration is assumed to be homogeneous in
the direction of the magnetic field, all the fields are consid-

ered in two dimensions,=(X,y). It is convenient to define
the dimensionless variables as follows:

r _ [K
r_>g! g_ ﬂ;
] 27A
o’ Dy

Hereé, the coherence length, is the unit of lengthis the
penetration depth of the magnetic fieftlg is the flux quan-
tum. The corresponding dimensionless GL Hamiltonian

e [

B a,ral2
+§|¢N//|

)

p— 4)

(V+ Ao+ )2

2

K
+7v><A2 (5)

leads to the equations

— PP (PP P+ B(YPYP) YA+ (IV+A)2yP=0,

(6)

where r=(x,y) is a 2D vector. We have chosen hefre
—(0,0,1)n—(1,0,0)m—(0,1,0), any other orientation in
the order parametéflavor) space being just a flavor rotation.
It is naturally a requirement that this ansatz constrain will
keep invariance of the Hamiltonigb) under transformation,

X—Y, y——X, (12
Proy?, PPyt
AX—>Ay, Ay—>—AX

We choose the "third” component as a direction in the
flavor space for which the component is rotationally invari-
ant. The two perpendicular componegitsand ¢* constitute
a vector under rotations in they plane. Generally, C, and
D are complex ando is real related to induction by,
=—2b-rb’, where the prime denoteldr.

Substituting Egs(10) and (11) into Eq. (8) we obtain
components of the superconducting current:
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T T T T T T T a0 . 2 2 19 of 2
_ — 30 -F _BFl +F0"_r r(?—r —br —0, (18)
i 7% where
~ - 10
- 4oy Fi=f2+(c?—d?)r?,
~ -1 -10 ,

2 2 3c 2,2

~ -1 -20 c(1-F —,8F1)+C”+T—b recc—2bd=0, (19
~ -1 -30

| | | | | | | 40 , ) 3d’ -
-40 -30 20 -10 0 10 20 30 40 d(1-F°+BF7)+d"+ T—b red—2bc=0. (20

X This set of equations describes all of the vortex properties in

FIG. 1. One of the rotation invariant combinations of the order-the p-wave superconductors.
parameter component&(x,y)=r " 2(xy*—y¢?). It demonstrates We solved the equations numerically and checked that the
that the solution is a vector vortex. above ansatz indeed solves the GL equations. As an example
the following combination:

i
Jx=—F[xr(D’D*—DD*’+C*C’—CC*’) xyt—yy?
B Y

; 2y

r
2(F?by)

. (13)  isshownin Fig. 1. According to the ansatz it should be a real
K

function of the distance from the vortex center omwlfr).
This is what is observed. The imaginary partcofanishes.
i The same is true fod(r) andf(r).
Jy=———[yr(D'D*~DD*'+C*C'-CC*") The functionsc(r),d(r) for k=1 and«=10 are given in
2k Fig. 2(@. One observes that for smatl, c(r) approaches
2(F2bx) d(r). We therefore plotted the differencér) —d(r) in Fig.
+2(DC* —D*C)x]+ ———, 2(b). As « approaches«<,=1/y/2 the difference vanishes.
2 Figure 2c) demonstrates that asdecreasef)®|=f(r) also
vanishes. These two quantities allow the determination of

—2(DC*-D*C)y]—

whereF?=|f[?+(|C|*+|D[?)r?. critical magnitude of the parameter From numerical simu-
Thg requirement of rotation invariandg=0 leads to the |ations we obtain thak.= 1/y2 independent of3. We will
condition discuss smalk in the next section.
Profiles of the magnetic field and of the superconducting
DD*'—D'D*—~C*C'+CC*’'=0, (14 current are presented in FigsiaBand (b). They resemble

those of the Abrikosov vortices. This means that the electro-
magnetic part of the intervortex interaction is the usual re-
pulsion independent of the “orientation” of the vortex in the
flavor (componentspace. The lower critical field calculated
from the vortex line energy is given in thé— x phase dia-
gram, Fig. 4. It is given fo3=1 (dependence o is mi-

which is satisfied in particular when
C=C*=c and D=-D*=id, (15

wherec(r) andd(r) are real. This solution is confirmed by
the numerical simulation of Eq$6)—(8) (see Fig. 1 We non)
found also thatf is real everywhere. Taking into account C ) .

these properties of the ansatz coefficients, the azimuthal It is easy to find frpm Eq(14) that in the vortex co_rer(
component of the superconducting current simplifiesﬂo) the nonzero third component does not contnk_)ute to
considerably? current density at all. In order to extract the superfluid den-

sity ng in this case one can represeigtin the form

r =
3,=— (2cd+Fb). (16 Jo=NsVs, 22
K

where Vq is the superfluid velocity, while/,=r 1 at the

o ) vortex corglsee Eq(7)]. Comparing] ,=n¢Vs with Eq. (14)
Substituting Eqs(11) and (16) into Eq. (7) and Eq.(10)  \ve immediately obtain for superfluid densityrat>0

into Eq. (6) we obtain a set of the equations for coefficients

of the ansatz in the form neocr? (23
2(b b as fors-wave superconductor.
_ ( r)__:J , (17) It seems p-wave symmetry of the superconductivity
ar? ar ¢ should not significantly change a well-known de Gennes—
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FIG. 2. (a) Spatial distribution ofc(r) (solid curveg andd(r)
(dashed curvesfor k=1 (curves 3}, k=10 (curves 2. For
=1, c(r) approachesl(r). (b) Difference betweer(r) andd(r)
for k=0.71,0.74,0.75,0.8,0.9,1,2,5. Asapproachesc,=1/y/2 it

vanishes. (c) Spatial distribution of |¢% for «
=0.71(1),0.7%2),0.8(3),1(4),2(5),5(6). For smalk,|y3|=f
vanishes.
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FIG. 3. (a) The magnetic-field distribution inside the vector vor-
tex for k=0.71(1),0.8(2)0.9(3),1(4),2(5),5(6).(b) Azimuthal
component of the superconducting current encircling the coreless
vortex for k=0.71(1),0.8(2)0.9(3),1(4),2(5),5(6).

Barden—Stephen relation between superfluid density and the
order parameter in the vortex core wave superconduct-
ors. Really the vortex core of the movirggwave vortex is
usually in a normal state, and from this point of view very
similar to those inp-wave superconductors.

IV. SYMMETRIZATION OF THE VECTOR VORTEX
AS k APPROACHES ITS CRITICAL VALUE

The most striking features of the VV’'s at largeis a
nonvanishing order parameter at the center of the vortex and
its asymmetry with respect to rotations in the flavor space. It
behaves as an asymmetric top with a superconducting core.
It is interesting to ask how the structure of the vortex evolves
as the value of« is reduced and, in particular what is the
critical value of k at which transition into a homogeneous
superconducting state occurs. A related question is under
what circumstances does the vortex core become essentially
normal?
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FIG. 5. Critical exponents on thel., line. |¢3(r)|? for r?
FIG. 4. Phase diagram for vector vortices in tBe « plane. =1, 8, and 50 is given as function af As x approaches, data
TCP denotes the tricritical point. Although the diagram is calculatecclearly straight lines indicate that=1/2.
for B=1, the critical value of is independent o. TheH, line
is calculated from the free energy of single vortex described in Figsysyal the dependence of physical quantities Hor=|«
2and 3. — k¢| is powerwise for all fields larger thad ;. We there-
. fore represent the ansatz coefficient functions
We assume that the set of Eq$7)—(20) has a solution at ¢, ) d(u,r),f(x,r),b(x,r) in the vicinity of the criticali
certain critical valuex= k. which is much simpler than the i the form
general solution. Motivated by our numerical results, we
look for the solution with vanishing(«.,r). It easy to see  ¢(x,r)=c.(r)—cy(r)Ax?; d(k,r)=c.(r)—d,(r)Ax?,
from Eqgs.(17)—(20) that in this case one should also demand (26)
c(k¢,r)=d(x¢,r). The ansat£10) is simplified as follows b(k,r)=bo(r)+by(r)Ax® f=fy(r)Axe.

yt=c(x+iy); ¢P=ic(x+iy), ¢*=0. (24 substituting this into Eqs(17)—(20) we obtain in the next-
Two equations are trivially satisfied and the additional twoto-leading order,
are identical to the usual one-component Abrikosov vortex
solution for the order parameter_= (' —iy?)/\2 [the or- Ax? d*(byr) N dby
thogonal componeny, = (' +iy?)//2=0]. Using an ad- K ar? ar
ditional relation

2

— _ 2 4cer 2r
B=r(1=[y-[%, = Ak (1412b) + Ak co(dy + ) (141 2bg)
we obtain the critical value o= x.=1/\/2 independent of Ke Ke
parameter 8. This solution will be denoted byy 2rb
=c(r,k.) andb(k,r)=b(r,«;). To understand why, is +4Ak2“£, (27)
independent of8 and coincides with Abrikosov’'s one we K§
substitute the ansatz E(R4) into the Hamiltonian5). As a
result we obtain [ di+2cir?dy+2Bci(cy—dy)r?
= [ G ST 4R i 4 Sl 4 (VA ;
2 - B 2 - 2 + dal_'f'_ +2bccl_bcdlAK7
(25) '

in which the 8 term vanishes. At the criticak the Gibbs +e(l—B)F2A K2 —bc(1+2br2)Ak®=0
energy of the vortex vanishes and therefore the translation (1=A)TAK 1Cel ol ) AKT=0. 29)

symmetry is restore¢ho vortices are stable belowy). It is

interesting to note that at this point the vortex becomes inThese equations have a solution ® y=1;a= vy/2=1/2,

variant under SQ) flavor rotations and becomes a “sym- which are mean-field critical exponents of the phase transi-

metric top.” tion in which « plays the role of the parameter. The result of
Now we turn to the description of the critical pheno- numerical simulations which shows approach to criticality of

mena associated with the symmetry breakingxat As  |43(r)|? for r2=1, 8, and 50 is shown in Fig. 5. This clearly
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\ / FIG. 7. Schematic picture of the VV lattice. Each vortex has
B ~ 7 - -10 “internal degree of freedom” described by a rep‘enﬁ,r or matrix
| [ [ [ [ s R Int_eracti_ons between vortices ind,EJce long-range order of these
15 10 5 0 5 015 rotational in order-parameter space” degrees of freedom.
(a) X in the usual coordinate space. On the other hand, in special,
: | | | | 3 experimentally important cases, \_/vhen _the V_V appears paral-
lel to the external magnetic field it is still arbitrarily directed
- 49 in the planeXY perpendicular to the magnetic field. This
anisotropy presented in Fig. 6 completely disappears for the
L =1 p-wave superconductors with smad— .. We have found
that the critical value ok = k.= 1/y/2 is universal, indepen-
- —Ho0 vy dent of the coupling magnitudg while the VV at thisx
becomes completely isotropic and very similar to usual AV'’s.
- -1 In particular, while at large the ¢* component of the order
parameter is nonzero in the vortex core, this component van-
= 2 ishes ad k— k¢|*,a=1/2 for k— k.. Strong asymmetry of
Y, of the components of the order parameter disappears
' ! ! ! ! 3 in this limit (Fig. 6).
3 2 -1 0 1 2 3 We estimated the line energy of the VV and theréhy.
(b) X Spatial profile of both the order parameter and magnetic field

of the vortex demonstrate the essential difference of the vor-
FIG. 6. Strongly anisotropic distribution of?| (solid line) and  tex structure for differenk parameters and from those cal-
|2 components of the order parameter kor 5 (a) becomes com-  culated for the vortex in liquidHe. We expect that even for
pletely isotropic at«=0.73 (b). not very largex basic features of vector vortices are apparent
unlessk approaches.=1/1/2.
demonstrates that=1/2. We have checked numerically the  Now we qualitatively discuss systems of vector vortices
rest of critical exponents as well. since its physics is quite interesting and differs considerably
from that of the conventional one-component superconduct-
ors. A magnetic field just abovd.; generates a sparse hex-
agonal array of VV's. Since at large distances interactions
are mainly electromagnetic, the orientation of each VV vor-
One can conclude that each vortexgfwave supercon- tex is random(degeneracy is lifted by tiny interactions
ductor is characterized by its “orientation” in flavacom-  When the magnetic field grows and the intervortex distance
ponenj space. In the case of the superconducthghase is decreased, the order-parameter orientation dependent part
studied here this orientation is determined by a reper of threef the interaction between VV's becomes non-negligible and
perpendicular unit vectorsi,m,i in the order-parameter (riés to order orientations of VV's “ferromagnetically”
space. In fact it means that in contrast to usual AV’s, which igshort-range order The orientation of VV's at sité is de-
completely isotropic in the plane perpendicular to the externoted by a matrixR;, where the matrix elements are the
nal magnetic field the VV’s appears to be arbitrarily directedangles between unit reper vectargn,| in the flavor space

V. SUMMARY AND DISCUSSION OF VECTOR
VORTEX SYSTEMS

TABLE |. Properties of various topological defects in a multicomponent superconductor. Abbreviations:
H, hexagonal lattice; N, no SRO; F, ferromagnetic SRO; LRO, long-range order; SRO, short-range order.

Vortex Screening current Magnetic field Order parameter LRO SRO
AV Isotropic Isotropic Isotropicy=0 H N
WV with k—1/\2 Isotropic Isotropic Isotropicy=0 H N
VV with large k Isotropic Isotropic Anisotropicy#0 H F
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and vectorr=(x,y,z) in the real space. The "ordering” might be a very promising new system for comparison of a
meansR; = R for all sitesi of the lattice(Fig. 7). The system Well developed theory with experiment.

becomes similar to that of classical spins in a 2D hexagonal The main differences between AV's and the VV's are pre-
lattice with two important differences. The direction of the sented in Table (external magnetic field is directed parallel
magnetic field does not disappear. If thermal fluctuations aréo the ¢°* component of the order parameter

taken into account orientation of spins at differemight be

different although stiffness is very large. We ignore it for a
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