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Relaxation time for magnetoresistance obtained from the band structure of a perfect cubic metal
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A well-known fact about the electrical resistance of a perfect crystal lattice is that this resistance is zero. The
paper demonstrates that a different situation does apply for magnetoresistance: only a perfectly free-electron
gas provides us with an infinite relaxation time and zero-magnetoresistance effect, but the presence of the
crystal lattice makes the relaxation time equal to a finite quantity. The size of the product of the relaxation time
for magnetoresistance and the electron gyration frequency is found to be a constant dependent on both the
structure of electron states in a perfect lattice and the band filling. This property of constancy implies that the
relaxation time is a quantity which becomes inversely proportional to the strength of the magnetic field applied
to a crystal sample. Explicit calculations on the product of the relaxation time and the frequency of electron
gyration are performed for the bands of the tightly bosmdectrons in simple-cubic, body-centered-cubic, and
face-centered-cubic lattices taken as examples.
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I. INTRODUCTION EBZ
QgﬁZW; (1.3)

A well-known property of a perfect crystal lattice is that
its electrical resistance is zetoBut beyond the transport here,m®"is the effective electron mass. The conductivity
behavior of electrons in a purely electric field acting on aentering Eq.(1.2) is that obtained in the absence of a mag-
crystal, we have also the property of magnetoresistancéietic field:
which is an equally well-known and extensively studied ef-

fect in metals~’ Recently, the effects of magnetoresistance - ne27-_ (1.4
have attracted much study for the case of layered materials o met

such as quasi-two-dimensional organic metals, magneti
multilayers, and manganese perovskite€. On the other

hand, in considering magnetotransport in the metallic phas\gv
of the cuprate superconductdrs?®it has been pointed out hi
that in fact the scattering times associated with the magne;

tore5|st_ance and the zero-field resistance are different a agonal components of the resistivity tensor which lead to
have different temperature dependente. the Hall effect

An explanation of magnetoresistance is usually based on Evidently, 7 plays a dominant role in any component of

t_he Lorentz equation. Wh_en a metal is submitted to t_he aChe conductivity tensor and the diagonal components of the
tion of a constant magnetic fiell, alone, the electrons in a

. . : resistivity tensor. Usuallyr is attributed to scattering events
metal sample begin to circulate in the plarigsy) perpen- y ¢ g

dicular toB... For th | th ¢ of the charge carriers on impurities, or defects, which lead to
dicular tob, . For these pianes he wave-vector paramlezter a finite 7. Our aim is now to obtain insight into new proper-
is a constant. If—in the next step—an electric fiéld par-

o ) - ties of 7.
allel to direction ofx is applied and only a steady state of the B
electron velocitiew, andv, is taken into account, so

fiere,n is the number of electron carriers.

An experimentally interesting tensor is that of resistivity,
hich is the inverted conductivity tenset. This tensor ex-
bits no effect of magnetoresistance in its diagonal
mponentg.A contribution of B, enters solely into the off-

Il. RELAXATION TIME FOR MAGNETORESISTANCE
DEDUCED FROM A FREE-ELECTRON BAND

dv, dv
=Yy, (1.2 Let us apply the Lorentz equation for the electron motion

dt dt in the presence of a combined electric and magnetic field; for
o _simplicity, we consider the electron massinstead of the
the conductivityo of the electron system becomes an anti-effective electron mass®". In the relaxation-time approxi-

symmetric tensof: mation the carrier velocity satisfies the equatién
ff dv v L. e -
(Uxx T Oyxy (o 1 QS T m a-l—;):eE-i—EﬁXB. (2.1
0': =
Oxy  Oxx 1+(Q5"?7? —Qgﬁr 1

(12 ForB=(0,0B,) we havei=(v,,v,). In this case Eq(2.1)
splits into two components
The components ofr are strongly dependent on the relax-
ation time = and the effective free-electron cyclotron fre- m(dvx Ux

e
quency a9t + - =eE+ EUVBZ' (2.2
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dvy

dt ) eEy——v B,.

(2.29
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dvy_ fic Y Q 07
W_e_Bzao 0cog Qo). (2.79

In order to obtain insight intor we assume a situation A substitution of these parameters into E(52) and(2.23

opposite to that presented in E4.1), viz.,

(with Ex=E,=0) gives

duy duy he| Qo }
- - mag——-| Qg Sin(Qgt) — — cogQpt
70 G 70 2.3 %, | Fosin{at) — —~cogol)
but simultaneously the electric field is assumed to be small, e hc
namely C Bzaoﬂo Sln(Qot) (28)
< & fic QO
|Ex|< P BZ (24) mag—- QSCOS{QOt)-F _OSIn(QOt)}
eB, T
v e hc
|Eyl<| =By, (2.4a = & o, 200 COS Q) B;. (2.89

In a limiting case we assume that the terei, andeE,

become negligible in comparison with th®,-dependent

terms entering the right-hand side of E¢&2) and(2.23. In

fact, in most experimental conditions—due to the high con-
ductivity of metals—the second term entering the right-hand
side of the Lorentz equatiof2.1) is enormously greater than

the first onée?
Because of the smallness Bf andE,,

satisfies the Lorentz equatith

fic dk,

Ux= eB, dt’
_ he dk
Uy= B, dt-

Here,
k,=agcogQgt),

ky= — a0 SiN(Qt),

because the wave vect&rgyrates in a plane of reciprocal
space perpendicular th, with the free-electron cyclotron

frequency

eB,
Qo= cm’

here,a, is the amplitude ok. We obtain

hc
sz_gzaoﬂocoiﬂot),

hc ]
Uy:e_BZa()QoS”'I(Q()t),
dox Q2 sin( Qo
dt eBZaO osm( ot),

the electron ve-
locitiesv, andv, approach those calculated in the presence

of the field B, alone. Then the electron wave vectlr
= (ky,ky) taken into account in a plane perpendiculaBtp

(2.9

(2.59

(2.9

(2.6a

(2.6b

(2.7

(2.79

(2.7b

Our idea is to calculate the square values of Eg®) and
(2.8 and add them together. This gives

2

fic\? 4 05 5
maoaz Qo+ 72 =(hapgg) (2.9
or, because Eq2.6b),
2 2 1 202
(hag) Qo+? =(fag)“ Q5. (2.9a3

Evidently, Eq.(2.99 provides us with the result

1
=0 (2.10
.

or
— (2.108

Therefore—in view of Eq(1.4—an infinite value is ob-
tained for any component entering the conductivity tersor
see EQ.(1.2). Our aim is to demonstrate that the situation
represented by Eqs2.10 and (2.103 is fundamentally
changed for the case of electrons moving in the field of a
perfect crystal lattice.

IIl. BAND STRUCTURE OF A METAL SUBMITTED TO
THE ACTION OF A MAGNETIC FIELD

A modification of Eq.(2.10 [or Eq. (2.103] due to the
presence of a crystal lattice is dictated by the band structure
of electrons in that lattice obtained for the case when a crys-
tal sample is submitted to the action of a constant magnetic
field. As our example, we choose bands of the tightly bound
slike electrons in three cubic—simple-cubisc), body-
centered-cubi¢bcc), and face-centered-cubifcc)—lattices.

The band structure of such electrons in the absence of a
magnetic field is represented by the well-known formtias

ES°= B°{(cosk,+ cosk,+ cosk,), (3.

Ebec= gCcosk, cosk, cosk,, (3.13
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Efcc= g% cosk, cosk, + cosk, cosky + cosk,, cosk,). sidered as a quasicontinuous variable. If we label the Landau
(3.1  levels by the indices,, the density of the Landau levels

- S . versus energyg't is?t
The positions of the nearest atomic neighbors in the crystal

lattices were defined by the primitive translatiofis0,0, an 2w

X
(0,1,0, and(0,0,)) in the sc lattice, the primitive translations goRt = " (3.5
1,1-1), (1,-1,1), and (—1,1,2 in the bcc lattice, and
primitive translations(1,1,0, (1,0,1, and(0,1,)) in the fcc where
lattice. The termsgB'a refer to the nearest-neighbor atomic Qatt
interaction integrals3 of the tight-binding approact? 0= (3.6
0
p=2p, =8B, [=4p. (310 s the ratio of the electron gyration frequen€)? in the

Some other constant terms entering the tight-binding expresc-ry,(sjtal Ilattice to thel free-electro?] gyration frequer2ysh.
sions for the electron energy, especidi{?) anda(® (being, ~ EVidently, for free electrons we have

respectively, the eigenenergy of an atorsistate and the 0=w.=1 (3.63
atomic interaction integral taken for the same atdhave o™ '
been neglected in Eq63.1)—(3.1D. The solutions of the nonlinear equations calculateckfor

But in the presence of a constant magnetic field, theand k, obtained in the case of the cubic crystal lattfCes
tightly bounds electrons described by Eq8.1)—(3.1b be-  seem to be more conveniently represented with the aid of
have in a different way. If the magnetic field is applied alongand (), than Q2" alone. We have
axisz, being also parallel to one of the crystallographic axes,
the crystal electrons begin to rotate along the planar orbitky,=a; cog wgt) +az cog3wpt) +ascog5wdpt)+- -+,
perpendicular to the field. For not too large electron energies 3.7
the orbits in the reciprocal space are closed anisotropic ) _ _
curves of a constant energy put on the planek,sfconst.  Ky=b1Si(@Qqt) + b3 sin(3wot) +bssin(SwQet) +---.

Let the length of the electron wave vectoin a plane per- (379
pendicular to the field, be equal to There exists a relation between andb; :
ao=(K2+k3)Y2, (3.2) bi=(—1)1"V"2 . 3.8
The electron energy along the curves of a constant energy Let us note thatis an odd integer number. For the tightly
can be expressed with the aid af (Ref. 20: bounds electrons in the sc and bcc lattices the coefficients
andb; and the frequency factor @ can be calculated inde-
Clat=1— cosay. (3.3 pendently of the value df,.?° On the other hand, the , b;

_ _ . _ ~and o for the fcc lattice depend ok,; see Sec. V. The
This dependence is valid for the tightly bouselectrons in  constantsa; , b;, andw—obtained for perfect crystal lattices

all three cubid(sc, bee, and fcclattices. submitted to the action of a constant magnetic field—depend
The C™ given in Eq. (3.3 enter the formulas for the strongly on the structure of these lattices. For example, for
sband electron energids®" in the following way: the less tightly bound electrons than those obtained due to
the nearest-atomic-neighbor interactions in cubic lattices the
ES°= B(2—C*+cosk,), (3.4 coefficientsa; andb;, as well as those entering, would be
modified in comparison to those calculated for the case of
EPCe= gbCeosk,(1— CPC9), (3.4a the tightly bounds electrons in the nearest-neighbor approxi-

mation. In particular, the dependence loncould entera; ,
Efc= BT 1+ 2 cosk,— (1+cosk,)C*¢].  (3.4h  b;, andw for other cubic lattices than solely the fcc one, in

_ distinction from the situation obtained in the nearest-
Here kz IS a constant parameter. neighbor case.

Therefore, the effect of a magnetic field in the reciprocal

space is to choose only speckyl and k, for the electron IV. RELAXATION TIME EOR MAGNETORESISTANCE

trajectory in a plane of a givek,=const in order to make DEDUCED FROM THE ELECTRON BAND

the electron energies of both kinds—that of E@s1)—(3.1b STRUCTURE OF A PERFECT CRYSTAL

and that of Eqs.(3.49—(3.4b, equal. An example of the

equivalence of Eq93.1)—(3.1b and(3.4)—(3.4b is attained The Lorentz equation$2.5 and (2.5 can be applied

for ky=k,=k,=0: in this caseC'¥=0 for all lattices; see equally for the case df, andk, calculated in Eqs(3.7) and

also Egs.(3.2 and(3.3. (3.79. Let us add again the square values of E&?) and
In fact, C'3 is a discontinuous function of parametey  (2.2a for E,=E,=0; we obtain

because differerd define the positions of different Landau 5 )

levels in a crystal lattice. But for a not too strong magnetic doy dvy n 1 21,2 = 0224 02) (4.1)

field, the Landau levels are so numerous thatan be con- dt dt 2 Wity =Qovictoy) (4
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TABLE I. ProductsQ,r andQ 2" calculated as functions af, TABLE IlI. Products Qo7 and Q"7 calculated as function of
[see EQ.(3.2)] for the band structure parameters of the tightly a; [see Eq.(3.2)] for the band structure parameters of the tightly
bounds electrons in the sc lattice; see E¢3.6) and (4.6). bounds electrons in the fcc latticksee Eqs(3.6) and(4.6)]; here,

k,=0.
ao Qo’Tmﬂlan’T ao QoT Qlan’T
a Qor=~Qltr a Qo7 Qlaty

0.001 2<10° 0.3 6.7 6.6 0 0 0 0

0.005 4 107 0.6 3.4 3.3 0.001 1.6¢10° 0.3 1.16 0.58

0.01 2X 107 0.9 2.4 2.1 0.005 3.X 10 0.6 1.08 0.39

0.05 4x 10t 1.2 1.8 1.5 0.01 1.6 107 0.9 1.03 0.24

0.1 2x 10t 1.5 1.5 1.2 0.05 3.3« 10 1.2 1.01 0.12

0.1 1.6<10 1.5 1.00 0.02
because of Eq(2.6b). The cross terms entering E.1),
namely, those represented by 2 2
T=~m=—F7, (4.5
dvy do, Q o
Uat 0 YYdt (4.2 and substituted into Ed4.1) give

remain out of phase because of Eq2.5,(2.59 and
(3.7,(3.79 and can be omitted. In the next step, the same
property of the phase difference can be applied in the calcu-
lation of v andv{ or (dv,/dt)? and (dv,/dt)? themselves.
Owing to Egs.(3.7) and (3.79, we have

w*Qg(aj+3%3+5%3+--+)
w2
+ 7 Of(ai+3%5+5%5+- )

=w?Qj(a?+3%a5+5%z+--1)  (4.1)

2
b2+ 2= ﬁ_c) w2022 co2(wQgt) +b232 cod(3w t)  because of the time averages of*gi@()t) and cod(iw(f)
eB, equal to and relatiorb?=a? obtained in view of Eq(3.8).
n b§52 co2(5wQgt) +++++ ai Sir(wQqt) A transformation of Eq(4.1') gives
+a232 sirP(3wQgt) + 252 SiM(5wQgt) ++ ] w’(ai+3%a3+5%5+ )~ (al+3%5+ 5%z + )
4.3 aj+3%a3+5%az+- -
because the terms being out of phase have been neglected. In _ 1
the same way, 7_2902
dv,|% (duy\2 [AC\? , . 1 c2m?
(W +(W = ﬁz w Qo[bl S|n2(ont) =— 7-2_83 ? (4.6)

Expressiong4.3) and(4.4) averaged over the time period of

+b23* sirf(3wQot)

+b25* sirf(5wQgt) +- -

+a2 cof(wQot) +a23* cof(3wt)

+a25* co(5wQpt) +--+].

electron gyration,

TABLE Il. ProductsQor and Q"
ay [see Eq.(3.2)] for the band structure parameters of the tightly

(@.

7 calculated as functions of Tables

bounds electrons in the bcc lattice; see E¢3.6) and(4.6).

This relation defines the dimensionless quantit§, in
terms of the band structure parameteys as, as,... andw.
Evidently, for the free-electron case—in view of E§.6a
and the result

az=as=--"=0 4.7

implied by Egs.(2.6) and (2.6—we arrive at Eq(2.10.

The products),7 and Q' calculated from Eqs(4.6)
and (3.6) for the sc, bcc, and fcc lattices are presented in
I-I11I. In the first step, for the fcc lattice solely the
case ofk,=0 is considered. More extended calculations for
the fcc lattice—those based on Sec. V and Tables IV and
V—are given in Table VI.

4

V. RANGES OF PARAMETERS APPLIED IN THE

Qpr
ag ~Q ag Qo7 Qlaty
0.001 1.410° 0.3 4.8 4.7
0.005 2. 107 0.6 2.4 2.2
0.01 1.4 107 0.9 1.7 1.4
0.05 2.8<10 1.2 1.4 0.9
0.1 1.4<10 15 1.2 0.5

CALCULATIONS

The acceptable intervals d&'®" given in Eq.(3.2) are
dictated by the requirement that a planar electron trajectory
along a surface of a constant energy should be a closed
curve, or—more precisely—we assume that the curvature

along the electron trajectory should be a positive number.

224434-4
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TABLE V. Coefficientsa, ,a3,as... entering the time-dependent wave-vector comporigrasidk, [see
Egs.(3.7) and(3.73] calculated for tightly bound electrons gyrating in the fcc lattice. The coefficients are
functions of the amplituda, [see Eq(3.2)] and the wave-vector componeqt. Theb; of k, are referred to
a; of k, by the formula(3.8). The lattice parametea®=1. For k,=0 the results transform into those
calculated before for the fcc lattid®Ref. 20.

—cosk,+2 ., —88cosk,—7cosXk,+129
=gt Gt &
96( cosk,+1) 153634 cosk,+cos X, +3)
—39183 cok,—1200 cos R,—53 cos &,+46384 .
1032192015 cosk,+ 6 C0s &, +Cos 3, +10) 0
—2032637 co&,+88184 cos R,+2209 cos &,+758 cos 4,+2065090 4
74317824056 cosk,+28 cos X, +8 cos ¥,+cos &, +35) %+t
cosk,—2 10 cosk+cos X,—15 1701 cosk,+75 cos K, +11 cos &,—2053
837 96(cosk,+ 1) 2" 15364 cosk,+cos &, 3) 0 ' 36864015 cosk, 6 cos X, + cos &+ 10) 20
2070436 co,—77956 cos R,+8716 cos B,+515 cos 4,—2129927 ¢
59454259256 cosk,+28 cos X, +8 cos ¥,+cos K, +35) ot
—4 cosk,—cos X, +7 —43 cok,—6 cos Xk,—cos ¥, +58

5 7

8= 512Q4 cosk,+cos X, +3) %+ 4915215 cosk,+6 cos X,+cos X, +10) %o
—9831 cok,—188 cos R,—173 cos 8,—16 cos 4,+10900
1179648056 cosk,+28 cos X,+8 cos X,+cos 4«,+35) 3+t
a 13 cosk,+8 cos X,—cos ¥,—24 .
7

T 22937615 cosk, + 6 CoS X+ Cos 3+ 10) 0
142 cok,+52 cos X,—6 cos &,—cos &,—203 9
157286456 cosk,+ 28 Cos X,+ 8 Cos &, cos &+ 35) 01
—40 cok,—44 cos &,+8 cos ¥, +cos 4,+83 9
897 343718456 cosk, 1 28 COs &, 8 cOs K, cos &, 135) 20

For the magnetic fielB, parallel to one of the crystallo- lattices, respectively. The accuracy of calculationswofor
graphic axes the limits €' anda,, dictated by the require- the sc lattice is examined in Ref. 21, for the bcc and fcc

ment of y>0 ar&® lattices in Sec. VI.
For the fcc lattice the energy expressi@lb implies
0<C*<2, O0<ap<m, (5.1 that the upper limit for parameté, within the first Brillouin
zone is
0<CPe<1, O<ag<w/2, (5.1a
0<Cl<2, O<ay<. (5.1b ke=m 52

(aja=1). Correspondingly, the position coordinates of the
corners of the square being at the boundary of the Brillonin
fone atk,=m are?

The last relation, given for the fcc lattice, holds solely for the
plane ofk,=0.

For reasons of the convergence of solutions obtained f
the sc lattice, further calculations for that lattice were limited
to the interval W:( ig,om

a
or (0:5,77). (5.3
0<ag<ml/2. (5.19 .
. ] This makesn/2 equal to a half of the length of the square
The same interval applied for the bce lattiee Eq(5.18]  gjagonal at the zone boundary and, consequently, the shortest

corresponds to the filling of a half of the planar area of thegistance from the square center to the square edge becomes
first Brillonin zone atk,=0 attained in the absence of a gqual to

magnetic field:® Simultaneously, the upper limit of the inter-

val (5.1b) for the fcc lattice valid for the plane &,=0 leads

to the situation for which the frequency ratie— 0.2 This agzi, (5.9
means that the density of the Landau levels, or the planar 2v2

density of the Bloch states versus energy calculated in the

absence of a magnetic field, tends to infinity; cf. here Eq. In Table IV we present the expansion coefficieatsfor
(3.5). The plots ofw as functions ofa, are given in Ref. 20, the wave-vector componeky of the fcc lattice dependent on
Fig. 5. In the calculations done in Tables I-I1l we applied theparametek, ; similar coefficientd; can be calculated for the
intervals (5.19, (5.1a, and (5.1b for the sc, bcc, and fcc  componenk, . The relation betweea; andb; remains iden-
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TABLE V. Frequency parametes for a tightly bounds electron gyrating in the fcc lattidesee Eq(3.6)]
calculated as a function @fy given in Eq.(3.2) and the wave-vector compondqt. Fork,=0 the result for
w transforms into that calculated before for the fcc lat{iBef. 20.

—cosk,—2 , 48cos+5cos X, +13 , 629 cok,—316 cos R,—17 cos ¥,—1052
e 8(cosk,+1) &+ 7684 cosk,+cos X,+3) Bt 9216Q 15 cosk,+6 cos X,+cos X, +10) &
604480 cok,—122908 cos k,+9152 cos B,—55 cos &,—445285 .
8257536056 cosk,+28 cos X,+8 cos ¥,+cos K, +35) 2t

tical to that given in Eq.3.8). In the next step, Table V For, att=0, because of the well-known property of the cos-
presents the dependencewbdbnk, . like functions, we havésee Eq.(3.7)]

Expansions given in Tables IV and V represent exact so-
lutions of the equations of motion. This property can be dem-
onstrated for example by a check of accuracy with which the k(0)=a;+az+ag+a;+--. (5.6)
solution of Table IV satisfies the boundary condition

ke(t)|i=0=20. (5.5  On the basis of Table IV the expansi@6) becomes

—cosk,+2+cosk,—2 , (—88+100-12)cosk,+(—7+10-3)cos X,+129-150+21

5
96(cosk,+ 1) 2oF 153604 cosk, + cos 2, + 3)

Zh)

kX(O) = a0+

(—39183+1701x 28— 43X 210+ 13X 45)cosk, N (—1200+ 75X 28— 6x 210+ 8 X 45)cos Xk,
1032192015 cosk,+6 cos X, +cos X,+10) 1032192015 cosk,+ 6 cos X, + cos XK, + 10)

N (—53+11%x28—210-45)cos Xk, N 46384-2053X 28+ 58X 210— 24X 45 7
1032192015 cosk,+ 6 C0S &, + oS &, + 10) | 1032192015 cosk,+ 6 cos &, + cos &, +10)| 20"~ 2o

(5.7)

Since all terms entering the second step in&d)—beyond  examined in comparison &, defined by the lin&KK' is due
the first one—give exactly zero, we obtain precisely the reto the fact that for theK point in Eq.(5.8) (the plane ofk,
sult required by conditiori5.5). The property is checked to =0) we obtain
hold also for further powers .

It is evident from Table IV that the case of H§.2) leads
to divergenta;,as,... and—because of E¢3.9—also to 312 /(32 18
divergentb,,bs,.... A similar divergence applies te for ap=1/ Z) +(Z 7= \g,)rr, (5.9
the same case; see Table V. This makes the calculations out-
lined in Sec. IV inapplicable t&, near Eq.(5.2). Neverthe-
less, it is possible to examine the behaviohfr and Q7
within the interval ofk, betweenk,=0 and k,<w. We
choose the maximal, considered for ank,= const slightly
smaller thara, for the line defined by the points

which is a number slightly larger than the upper limitagf
=1 derived in Eq.(5.1b. The data fokk,=0 are presented
in Table 1ll. TheQ o7 andQ '3 calculated fora, lying in the
planes ofk,= /6, w/3, w2, 57, and 27 are given in Table
VI. The a, examined for differentk, are limited to a,
K= (§m §7T,0) (5.8 =295 fork,= /6, ap=2.55 fork,=m/3, ao=2.20 fork,
44 =7/2, ag=1.80 fork,= 2=, anday=1.45 fork,= 2. For
smalla, we obtainQ 7~ '3 The dashes near the bottom
of the table replace imaginafy,~ and Q"3"r obtained from
the formulas(3.6) and (4.6). A characteristic point is that

and

K’ — . o (5.89 productsQ)y7 considered as functions af, behave—for not
4’ 4° ' too largeap—in the way much similar td) o7 presented in
Tables I-Ill. But fork,= /2 anda, very close to the zone

lying on the boundary of the first Brillouin zone of the fcc boundary the products dRor and Q37 become equal to
lattice. A reason for the slight decrease of the maxieal imaginary numbers.
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TABLE VI. Q7 andQ'2>—calculated from the band structure parameters of the tightly bewhettrons in the fcc lattice—compared
for differentk,. The data fok,=0 are presented in Table Ill. For smal we haveQ,r~ Q'3 for a,=0.3 column(i) refers toQ,r and
column (i) refers toQ /a7,

ao k,= 7/6 k,= /3 k,= /2 k,=3%m k=32
0.001 1.6<10° 1.5x10° 1.4x 10° 1.2x10° 6.9% 107
0.005 3.X10° 3.1X 107 2.8xX 107 2.3x10° 1.4x 107
0.01 1.6< 107 1.5x 107 1.4x 10 1.2x 107 6.9x 10"
0.05 3.2 10 3.1x 10 2.8x 10" 2.3x10 1.4x< 10
0.1 1.6< 10" 1.5x 10" 1.4x 10 1.2x 10 6.9

k,= /6 k,= /3 k,= /2 k=37 k=32

ag 0] (i) (i) (ii) (i) (i) 0] (i) (i) (i)
0.3 5.4 5.3 5.2 5.1 4.8 4.7 3.9 3.8 2.5 2.2
0.6 2.8 2.6 2.7 2.5 2.4 2.2 21 1.8 1.2 0.4
0.9 1.9 1.6 1.8 15 1.7 1.4 15 1.0 — —
1.2 15 1.1 15 1.0 1.4 0.9 1.1 0.3 — —
15 1.3 0.8 1.2 0.7 1.2 0.5 — —
1.8 1.15 0.6 1.13 0.5 1.03 0.1 — —
2.1 1.07 0.4 1.05 0.2 — —
2.4 1.03 0.2 1.00 0.02
2.7 1.00 0.07

VI. ACCURACY OF CALCULATIONS OF Qg7

The calculations presented in Tables I-Ill and Table VI
are based on the formu(d.6). The factor ofw? entering Eq.
(4.6) can be obtained from the expansmn@t;lven in R?f' TABLE VII. Density of electron states distributed on the Lan-
20. But thesew can be checked by comparing them with 4, jevels,n, /5CP compared with the planar density of the
approached on the basis of the Bloch density of stat&his Bloch statesz;°* in the bcc lattice for selected values of electron
check could be done because, on the one hand, we have thgergiesc® cf. Egs.(3.5 and(6.1).
relation (3.5 referring o to the density of semiclassical

guantum states of the electron gyration performed in a con- 1o, =
stant magnetic field. This density of states is obtained from Cbee 7 0P = 5“’_1 bec
the action functionJ™ calculated for a given cubic 7
lattice 2?1 But, on the other hand, we have tHat 0.00 1.571 1.571
0.05 1.611 1.611
MNx 0.10 1.655 1.655
gcrRt = T ©.D 0.15 1.701 1.701
where 5is a planar density of the Bloch quantum states in 0.20 1751 1.751
a perfect cubic latticd! The formula(6.1), combined with 0.25 1.805 1.804
Eq. (3.5, provides us with a check ab calculated from the 0.30 1.863 1.863
direct solutions of Ref. 20 and gives insight into their con- 0.35 1.926 1.926
vergence. 0.40 1.995 1.994
The equivalence presented in H§.1) has been demon- 045 2.071 2.069
strated explicitly for the case of the sc lattideBecause of 0.50 2.156 2.152
the importance ofv in the present calculations, we show in ~ 0.55 2.250 2.243
Tables VII and VIII that Eq(6.1) holds also for the bcc and 0.60 2.355 2.344
fcc lattices. A poorer agreement of E@3.5) and(6.1) in the 0.65 2.463 2.456
bcc case is dictated by a slower convergence of the expan- 0.70 2.588 2.581
sion (3.5) obtained in this case. 0.75 2.732 2.720
The accuracy of)7 is influenced also by the power ex- 0.80 2.888 2.875
pansions entering Eq4.6) and can be examined in a nu-  0.85 3.072 3.050
merical way. This is done by calculatity,~ from the power 0.90 3.278 3.245
expansions in Eq(4.6) combined successively of two-, 0.95 3.523 3.465
three-, and four-component terms. For snaglthe plots of 1.00 3.823 3.713

Q7 obtained in this way remain indistinguishable. For
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TABLE VIII. Density of states on the Landau levels), /9C',
compared with the planar density of the Bloch statf, in the fcc
lattice for selected values of electron enerd®¥; here,k,=0. 1.56
1o =
Cfee 2 ocfee =E w nfcc
0.00 1.571 1571 154
0.05 1.601 1.601 -
0.10 1.632 1.632 @
0.15 1.665 1.665
0.20 1.700 1.700 152
0.25 1.736 1.736
0.30 1.774 1.774
0.35 1.814 1.814
0.40 1.856 1.856 1.80
0.45 1.900 1.900
0.50 1.947 1.947
0.55 1.996 1.996 1.46 1.48 1.50 1.52 154 1.56
0.60 2.048 2.048 89
0.65 2.104 2.104

FIG. 1. ProductQq7 calculated for larges, in the sc lattice.

0.70 2.163 2.163 Dashed line: two-term power expansions applied in EG6).
0.75 2.227 2.227 Solid line: three-term and four-term power expansions applied in
0.80 2.294 2.294 Eq. (4.6).

0.85 2.366 2.366

0.90 2.444 2.444 value of Qy7=1 atay~ = for the fcc lattice(see Fig. 3is
0.95 2.527 2.527 due to the limiting behavior obh—0 atag— .

1.00 2.617 2.616

1.05 2.714 2.713 VII. DISCUSSION

1.10 2.819 2.818

1.15 2933 2931 Historically, the problem of magnetoresistance has at-
1.20 3.056 3.054 tracted much interest of experimentalists. KapitZ4
1.95 3.190 3188 pointed out that a change of resistance in a magnetic field is
1.30 3.337 3.333 122

1.35 3.496 3.492

1.40 3.670 3.665

1.45 3.861 3.854

1.50 4.070 4.061

1.55 4.299 4,288

1.60 4.550 4,537

1.65 4.826 4.809

1.70 5.128 5.108

1.75 5.460 5.436

1.80 5.826 5.797

1.85 6.228 6.192

1.90 6.669 6.627

1.95 7.154 7.104

2.00 o 0

larger ay, Figs. 1-3 show also a rapid convergence of
Qy7:  the two-term expansions represented by the dashe«

lines givey7 very close to that calculated from the four- @

term expansions represented by the solid lines. The dotted i, 2. product,r calculated for largea, in the bee lattice.
line of the three-term expansiortsee Fig. 2 merges with  pashed line: two-term power expansions. Dotted line: three-
Qg7 of the four-term expansions in Figs. 1 and 3. The merg+term power expansions. Solid line: four-term power expansions
ing of Qg7 calculated from any kind of expansion to the applied in Eq.(4.6).

1.46 1.48 1.50 1.52 1.54 1.56
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1.0005 in magnetic resistancB(B,) due to the change d@, when
the electrons occupy one band dhhas been formulated.

This fact—which presented a difficulty in a former
theory—is confirmed by our calculations. For, in our case,
the well-known expressidrf-3!

1.0004

R(B;) —R(0)
R(0)

1.0003

=(0""7)2=(wQg7)? (7.9)

TQO

remains a term independent Bf,. This property is due to
Qg7 calculated in Eq(4.6), which is a number dependent
solely on the band structure parameters. But the band should
have a certain anisotropy in order to provide us with a finite
QOg7. For a small anisotropysmall ap) the productQ,r
remains still very large, decreasing gradually with an in-
crease 0fy. A property of the independence of the fiddd
applies to all parameters entering the left-hand side of Eg.
(4.6) including w.2°

The result of the constancy of EGt.6) or (7.1) projects

a0 on the behavior of the relaxation timefor magnetoresis-

FIG. 3. Product),r calculated for largea, in the fcc lattice. tance. In numerous textbooks it is assumed that the change of

Dashed line:  two-term power expansions. Solid line: ~three-termPz: O o, Woullctjt imply a similar change of)or—and
and four-term power expansions applied in E6). At ag— 7 the CO”SES%QEZVS Qé 7—because 7 is independent of
Q, obtained from all expansions merge to the valueggfr=1  B,.7"> "7 *This seems to be not true: the product of
because ofv—0; see Sec. VI. Qy7 should be a constant term as far as the band structure
remains uninfluenced by the strength of the applied magnetic
relatively very small for numerous metals: proportionally field. The property of the constancy of E4.6), or Eq.(7.1),
to results of the performed measurements, but with the probmakes any change of the magnetic field accompanied by a
lem of magnetic breakdown neglected, a change of the magorresponding reciprocal change of the value-.dfhe point,
netic field by 16 G is found to make a change of the resis- shown to be sound for the transversal magnetoresistance
tance of a metal by about some 10%. Simultaneously, someieasured in a plane being parallel to a crystallographic
exceptions in the behavior of metals have been discoveregilane, may be, however, different for a magnetic field tilted
for example, for a given change of the magnetic field theto the crystallographic axes; see remarks below (E®).
change of resistance of metallic Bi was found to be more The assumption of the closed orbits is fully taken into
than 1.5< 10* times larger than a similar change of resistanceaccount in our considerations on the electron motion in a
of metallic Li. magnetic field and the derivation of E@t.6). An immediate
Gradually, a saturation of magnetoresistance for a largisight into the behavior of2 47 for a single-band model can
field B, became a well-established experimental fact obbe obtained from some special valueswpfsee Eq(4.6). If
served in many metals, especially those which possess closefl-0—as it is obtained for the-band states on a concave
Fermi surfacegIn, Al, Na, Li).® Also, some alloys having Fermi surface in the fcc lattice which is going to touch the
more than two components—for example, Cu-Ni alloys withboundary of the Brillouin zongsee Eqs(3.5), (5.1b), and
the addition of Sn or Zr(Ref. 25—exhibit this saturation (6.1) and Table VIl[—the productQ,r should necessarily
property. On the other hand, for a single crystal of Sn thaend to unity.
saturation is observed with the current directed alongcthe  The formula(7.1) can be applied to identify the measure-
axis and a special orientation of tH field in the basal ments done on the magnetoresistance of nfetis>—for
plane®? As a consequence, a typical problem concerningexample, that of Na—with the results of our calculations.
magnetoresistance became its rapid change with direction dihe experimental saturation of the magnetoresistance of Na
the magnetic field when this field is tilted to the crystallo- begins roughly af2'®z~1. In our theory developed for the
graphic axeé® In high fields the observed magnetoresis-bcc lattice, for parametex, taken rather close to the bound-
tance tends to saturate except in those directions in whichry of the Brillouin zone, the produd®'®r attains a value
open orbits exist’~3° This effect of open orbits is usually not far from unity; see Table Il. In reality, theelectrons in
quite pronounced, providing us with an indication concern-the bcc lattice of an alkali metal are far from being strongly
ing the shape of the Fermi surfaces. A limit of this behaviortightly bound and an exact comparison between experiment
is the strength of the magnetic field for which the breakdowrand theory requires much more developed calculations of the
effects for the circulating electrons may occur. Briefly, theband structure than those outlined ab8Ve® Moreover, the
experiments indicated an important factor of the shape of thtemperature effects neglected in the calculations of the
Fermi surface for magnetoresistance or, more precisely, theresent paper may become sound.
importance of the shape of the orbits along which the elec- A more general approach to magnetoresistance than that
trons circulate. A statement that for metals there is no changeepresented by Eq7.1) is given by the formuld

1.0002

1.0001

1.0000
3.00
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R(B,)—R(0) ) Let us note that the property of constancy obtained for
W:AWZBZ, (7.2 product
whereA; is usually a complicated expression dependent on E=Qltr (7.8

the band structurgIn the case when Eq7.1) is put equal to

Eq. (7.2 h . . . .
a.(7.2 we have which holds independently of the scattering processes in the

bulk of a metal, can be suggested also by an elementary
reasoning. The ratio between componantg ando,, of the

— 2
A= zmz @ 7.3 conductivity tensor in a constant magnetic field becdmes

c'm

In fact, the band structure—calculated for the tightly bosnd

electrons in the bcc lattice and a magnetic field normal to the Ixy :QgﬁT_ (7.9
crystallographic plane—makes several times smaller than Oxx

Eq. (7.3.% It should be noted, however, that in the quoted

references 3 and 40 the coefficigytwas not separated from On the other hand, in a high-field limit of two carriers model
72, but formed a joint term equal to we havé?®

Bi=A7. (7.4) ec

ny:(nl_nZ)B_ (7.10
z

Simultaneously, the property of the constancy of the product

7B, entering the right-hand side of E{..2) remained unno-

ticed. Nevertheless, the calculations Af (or w) separated . .
from those onr may become important for a magnetic field <;n1, TO & fcahn b? prqchcally negle(r:;cedd.For_the I;|al| field
tilted to the crystallographic axes. Experimentally, the prob-t € value o the e .eC”'C currgrm( in the |'rect|on otx re-
lems of magnetotransport phenomena in a tilted magnetiEnalns u_nc_hanged in comparison to that in the absence of a
field have been raised recently in organic metaié? magnetic field; therefore,

An immediate application of our theory is the cyclotron
resonance effect where the frequency of the external micro- ner
wave field becomes equal to that of the electron orbital fre- Oxx="—ef - (711
quency Q2= (), attained in a constant magnetic fiéld. m
The impedance in a metal skin layer in the presence of a

magnetic fieldB, is modified in comparison t@ for B,=0 By dividing Eqg. (7.10 for n,~0 by o, entering Eq(7.11)

because of the relationr,,= —o,. Let us assume that,

by the formul& and by puttingn;~n we have
2 2wQ\ 8 nec me™  cmef 1
Z(B,)=Z(0)| 1—ex ——,——i—,—) , (7.5 Ixy 1S5 _ _
z oRt. gt oo B, N Ber QS“T' (7.12

where(} is the frequency of the applied external field. The
constant)'?7 is that calculated in the present pag€ables
-1l and VI). On each electron revolution the current is

A comparison of Eqs(7.9) and(7.12 gives the result

multiplied by the phase factor (QSﬁT)zzll (7.13
w 20 27wQ) o .
e "=exp — gmr, | o (7.9 Rather surprisingly, the produc@,r calculated in the

present theory foa,, which are not far from the boundary of
L the first Brillouin zone, become equal to a number not much
so the factor of the total current arising from all cycles be-jitferent from 1: see Tables |-l and VI. This property and
comes still smaller numbers obtained f&'®"r provide us with the
problem of broadening of the Landau levels present at the

1 mentioneda, .’
— (7.7

1+e W+e W=
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