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Relaxation time for magnetoresistance obtained from the band structure of a perfect cubic meta
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A well-known fact about the electrical resistance of a perfect crystal lattice is that this resistance is zero. The
paper demonstrates that a different situation does apply for magnetoresistance: only a perfectly free-electron
gas provides us with an infinite relaxation time and zero-magnetoresistance effect, but the presence of the
crystal lattice makes the relaxation time equal to a finite quantity. The size of the product of the relaxation time
for magnetoresistance and the electron gyration frequency is found to be a constant dependent on both the
structure of electron states in a perfect lattice and the band filling. This property of constancy implies that the
relaxation time is a quantity which becomes inversely proportional to the strength of the magnetic field applied
to a crystal sample. Explicit calculations on the product of the relaxation time and the frequency of electron
gyration are performed for the bands of the tightly bounds electrons in simple-cubic, body-centered-cubic, and
face-centered-cubic lattices taken as examples.
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I. INTRODUCTION

A well-known property of a perfect crystal lattice is th
its electrical resistance is zero.1 But beyond the transpor
behavior of electrons in a purely electric field acting on
crystal, we have also the property of magnetoresista
which is an equally well-known and extensively studied
fect in metals.2–7 Recently, the effects of magnetoresistan
have attracted much study for the case of layered mate
such as quasi-two-dimensional organic metals, magn
multilayers, and manganese perovskites.8–12 On the other
hand, in considering magnetotransport in the metallic ph
of the cuprate superconductors,13–15 it has been pointed ou
that in fact the scattering times associated with the mag
toresistance and the zero-field resistance are different
have different temperature dependences.16,17

An explanation of magnetoresistance is usually based
the Lorentz equation. When a metal is submitted to the
tion of a constant magnetic fieldBz alone, the electrons in a
metal sample begin to circulate in the planes~x, y! perpen-
dicular toBz . For these planes the wave-vector parametekz
is a constant. If—in the next step—an electric fieldEx par-
allel to direction ofx is applied and only a steady state of t
electron velocitiesvx andvy is taken into account, so

dvx

dt
5

dvy

dt
50, ~1.1!

the conductivitys of the electron system becomes an an
symmetric tensor:7

s5S sxx 2sxy

sxy sxx
D 5

s0

11~V0
eff!2t2 S 1 V0

efft

2V0
efft 1

D .

~1.2!

The components ofs are strongly dependent on the rela
ation time t and the effective free-electron cyclotron fr
quency
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V0
eff5

eBz

cmeff ; ~1.3!

here,meff is the effective electron mass. The conductivitys0
entering Eq.~1.2! is that obtained in the absence of a ma
netic field:

s05
ne2t

meff ; ~1.4!

here,n is the number of electron carriers.
An experimentally interesting tensor is that of resistivi

which is the inverted conductivity tensors. This tensor ex-
hibits no effect of magnetoresistance in its diagon
components.7 A contribution ofBz enters solely into the off-
diagonal components of the resistivity tensor which lead
the Hall effect.

Evidently, t plays a dominant role in any component
the conductivity tensor and the diagonal components of
resistivity tensor. Usually,t is attributed to scattering event
of the charge carriers on impurities, or defects, which lead
a finite t. Our aim is now to obtain insight into new prope
ties of t.

II. RELAXATION TIME FOR MAGNETORESISTANCE
DEDUCED FROM A FREE-ELECTRON BAND

Let us apply the Lorentz equation for the electron moti
in the presence of a combined electric and magnetic field;
simplicity, we consider the electron massm instead of the
effective electron massmeff. In the relaxation-time approxi-
mation the carrier velocityvW satisfies the equation7

mS dvW
dt

1
vW
t D5eEW 1

e

c
vW 3BW . ~2.1!

For BW 5(0,0,Bz) we havevW 5(vx ,vy). In this case Eq.~2.1!
splits into two components

mS dvx

dt
1

vx

t D5eEx1
e

c
vyBz , ~2.2!
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mS dvy

dt
1

vy

t D5eEy2
e

c
vxBz . ~2.2a!

In order to obtain insight intot we assume a situatio
opposite to that presented in Eq.~1.1!, viz.,

dvx

dt
Þ0,

dvy

dt
Þ0, ~2.3!

but simultaneously the electric field is assumed to be sm
namely

uExu!Uvy

c
BzU, ~2.4!

uEyu!Uvx

c
BzU. ~2.4a!

In a limiting case we assume that the termseEx and eEy
become negligible in comparison with theBz-dependent
terms entering the right-hand side of Eqs.~2.2! and~2.2a!. In
fact, in most experimental conditions—due to the high co
ductivity of metals—the second term entering the right-ha
side of the Lorentz equation~2.1! is enormously greater tha
the first one.3

Because of the smallness ofEx andEy , the electron ve-
locities vx andvy approach those calculated in the presen
of the field Bz alone. Then the electron wave vectorkW
5(kx ,ky) taken into account in a plane perpendicular toBz
satisfies the Lorentz equation18

vx5
\c

eBz

dky

dt
, ~2.5!

vy52
\c

eBz

dkx

dt
. ~2.5a!

Here,

kx5a0 cos~V0t !, ~2.6!

ky52a0 sin~V0t !, ~2.6a!

because the wave vectorkW gyrates in a plane of reciproca
space perpendicular tokz with the free-electron cyclotron
frequency6

V05
eBz

cm
; ~2.6b!

here,a0 is the amplitude ofkW . We obtain

vx52
\c

eBz
a0V0 cos~V0t !, ~2.7!

vy5
\c

eBz
a0V0 sin~V0t !, ~2.7a!

dvx

dt
5

\c

eBz
a0V0

2 sin~V0t !, ~2.7b!
22443
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dvy

dt
5

\c

eBz
a0V0

2 cos~V0t !. ~2.7c!

A substitution of these parameters into Eqs.~2.2! and ~2.2a!
~with Ex5Ey50) gives

ma0

\c

eBz
FV0

2 sin~V0t !2
V0

t
cos~V0t !G

5
e

c

\c

eBz
a0V0 sin~V0t !Bz , ~2.8!

ma0

\c

eBz
FV0

2 cos~V0t !1
V0

t
sin~V0t !G

5
e

c

\c

eBz
a0V0 cos~V0t !Bz . ~2.8a!

Our idea is to calculate the square values of Eqs.~2.8! and
~2.8a! and add them together. This gives

S ma0

\c

eBz
D 2S V0

41
V0

2

t2 D 5~\a0V0!2 ~2.9!

or, because Eq.~2.6b!,

~\a0!2S V0
21

1

t2D5~\a0!2V0
2. ~2.9a!

Evidently, Eq.~2.9a! provides us with the result

1

t2 50 ~2.10!

or

t5`. ~2.10a!

Therefore—in view of Eq.~1.4!—an infinite value is ob-
tained for any component entering the conductivity tensors;
see Eq.~1.2!. Our aim is to demonstrate that the situatio
represented by Eqs.~2.10! and ~2.10a! is fundamentally
changed for the case of electrons moving in the field o
perfect crystal lattice.

III. BAND STRUCTURE OF A METAL SUBMITTED TO
THE ACTION OF A MAGNETIC FIELD

A modification of Eq.~2.10! @or Eq. ~2.10a!# due to the
presence of a crystal lattice is dictated by the band struc
of electrons in that lattice obtained for the case when a c
tal sample is submitted to the action of a constant magn
field. As our example, we choose bands of the tightly bou
s-like electrons in three cubic—simple-cubic~sc!, body-
centered-cubic~bcc!, and face-centered-cubic~fcc!—lattices.
The band structure of such electrons in the absence
magnetic field is represented by the well-known formulas19

Esc5bsc~coskx1cosky1coskz!, ~3.1!

Ebcc5bbcccoskx cosky coskz , ~3.1a!
4-2
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Efcc5b fcc~coskx cosky1coskz coskx1cosky coskz!.
~3.1b!

The positions of the nearest atomic neighbors in the cry
lattices were defined by the primitive translations~1,0,0!,
~0,1,0!, and~0,0,1! in the sc lattice, the primitive translation
~1,1,21!, ~1,21,1!, and ~21,1,1! in the bcc lattice, and
primitive translations~1,1,0!, ~1,0,1!, and ~0,1,1! in the fcc
lattice. The termsb latt refer to the nearest-neighbor atom
interaction integralsb of the tight-binding approach:19

bsc52b, bbcc58b, b fcc54b. ~3.1c!

Some other constant terms entering the tight-binding exp
sions for the electron energy, especiallyE(0) anda (0) ~being,
respectively, the eigenenergy of an atomics state and the
atomic interaction integral taken for the same atom19!, have
been neglected in Eqs.~3.1!–~3.1b!.

But in the presence of a constant magnetic field,
tightly bounds electrons described by Eqs.~3.1!–~3.1b! be-
have in a different way. If the magnetic field is applied alo
axisz, being also parallel to one of the crystallographic ax
the crystal electrons begin to rotate along the planar or
perpendicular to the field. For not too large electron energ
the orbits in the reciprocal space are closed anisotro
curves of a constant energy put on the planes ofkz5const.
Let the length of the electron wave vectorkW in a plane per-
pendicular to the fieldBz be equal to

a05~kx
21ky

2!1/2. ~3.2!

The electron energy along the curves of a constant en
can be expressed with the aid ofa0 ~Ref. 20!:

Clatt512cosa0 . ~3.3!

This dependence is valid for the tightly bounds electrons in
all three cubic~sc, bcc, and fcc! lattices.

The Clatt given in Eq. ~3.3! enter the formulas for the
s-band electron energiesElatt in the following way:

Esc5bsc~22Csc1coskz!, ~3.4!

Ebcc5bbcccoskz~12Cbcc!, ~3.4a!

Efcc5b fcc@112 coskz2~11coskz!C
fcc#. ~3.4b!

Herekz is a constant parameter.
Therefore, the effect of a magnetic field in the recipro

space is to choose only specialkx and ky for the electron
trajectory in a plane of a givenkz5const in order to make
the electron energies of both kinds—that of Eqs.~3.1!–~3.1b!
and that of Eqs.~3.4!–~3.4b!, equal. An example of the
equivalence of Eqs.~3.1!–~3.1b! and~3.4!–~3.4b! is attained
for kx5ky5kz50: in this caseClatt50 for all lattices; see
also Eqs.~3.2! and ~3.3!.

In fact, Clatt is a discontinuous function of parametera0
because differenta0 define the positions of different Landa
levels in a crystal lattice. But for a not too strong magne
field, the Landau levels are so numerous thata0 can be con-
22443
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sidered as a quasicontinuous variable. If we label the Lan
levels by the indicesnx , the density of the Landau level
versus energyClatt is21

]nx

]Clatt5
2p

v
, ~3.5!

where

v5
V latt

V0
~3.6!

is the ratio of the electron gyration frequencyV latt in the
crystal lattice to the free-electron gyration frequency~2.6b!.
Evidently, for free electrons we have

v5v051. ~3.6a!

The solutions of the nonlinear equations calculated forkx
and ky obtained in the case of the cubic crystal lattice20

seem to be more conveniently represented with the aid ov
andV0 thanV latt alone. We have

kx5a1 cos~vV0t !1a3 cos~3vV0t !1a5 cos~5vV0t !1¯ ,
~3.7!

ky5b1 sin~vV0t !1b3 sin~3vV0t !1b5 sin~5vV0t !1¯ .
~3.7a!

There exists a relation betweenai andbi :

bi5~21!~ i 11!/2ai . ~3.8!

Let us note thati is an odd integer number. For the tight
bounds electrons in the sc and bcc lattices the coefficientsai
andbi and the frequency factor ofv can be calculated inde
pendently of the value ofkz .20 On the other hand, theai , bi ,
and v for the fcc lattice depend onkz ; see Sec. V. The
constantsai , bi , andv—obtained for perfect crystal lattice
submitted to the action of a constant magnetic field—dep
strongly on the structure of these lattices. For example,
the less tightly bounds electrons than those obtained due
the nearest-atomic-neighbor interactions in cubic lattices
coefficientsai andbi , as well as those enteringv, would be
modified in comparison to those calculated for the case
the tightly bounds electrons in the nearest-neighbor appro
mation. In particular, the dependence onkz could enterai ,
bi , andv for other cubic lattices than solely the fcc one,
distinction from the situation obtained in the neare
neighbor case.

IV. RELAXATION TIME FOR MAGNETORESISTANCE
DEDUCED FROM THE ELECTRON BAND
STRUCTURE OF A PERFECT CRYSTAL

The Lorentz equations~2.5! and ~2.5a! can be applied
equally for the case ofkx andky calculated in Eqs.~3.7! and
~3.7a!. Let us add again the square values of Eqs.~2.2! and
~2.2a! for Ex5Ey50; we obtain

S dvx

dt D 2

1S dvy

dt D 2

1
1

t2 ~vx
21vy

2!5V0
2~vx

21vy
2! ~4.1!
4-3
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because of Eq.~2.6b!. The cross terms entering Eq.~4.1!,
namely, those represented by

vx

dvx

dt
, vy

dvy

dt
, ~4.2!

remain out of phase because of Eqs.~2.5!,~2.5a! and
~3.7!,~3.7a! and can be omitted. In the next step, the sa
property of the phase difference can be applied in the ca
lation of vx

2 andvy
2 or (dvx /dt)2 and (dvy /dt)2 themselves.

Owing to Eqs.~3.7! and ~3.7a!, we have

vx
21vy

25S \c

eBz
D 2

v2V0
2@b1

2 cos2~vV0t !1b3
232 cos2~3vV0t !

1b5
252 cos2~5vV0t !1¯1a1

2 sin2~vV0t !

1a3
232 sin2~3vV0t !1a5

252 sin2~5vV0t !1¯#

~4.3!

because the terms being out of phase have been neglect
the same way,

S dvx

dt D 2

1S dvy

dt D 2

5S \c

eBz
D 2

v4V0
4@b1

2 sin2~vV0t !

1b3
234 sin2~3vV0t !

1b5
254 sin2~5vV0t !1¯

1a1
2 cos2~vV0t !1a3

234 cos2~3vV0t !

1a5
254 cos2~5vV0t !1¯#. ~4.4!

Expressions~4.3! and~4.4! averaged over the time period o
electron gyration,

TABLE I. ProductsV0t andV0
lattt calculated as functions ofa0

@see Eq.~3.2!# for the band structure parameters of the tigh
bounds electrons in the sc lattice; see Eqs.~3.6! and ~4.6!.

a0 V0t'V lattt a0 V0t V lattt

0.001 23103 0.3 6.7 6.6
0.005 43102 0.6 3.4 3.3
0.01 23102 0.9 2.4 2.1
0.05 43101 1.2 1.8 1.5
0.1 23101 1.5 1.5 1.2

TABLE II. ProductsV0t and V0
lattt calculated as functions o

a0 @see Eq.~3.2!# for the band structure parameters of the tigh
bounds electrons in the bcc lattice; see Eqs.~3.6! and ~4.6!.

a0

V0t
'V lattt a0 V0t V lattt

0.001 1.43103 0.3 4.8 4.7
0.005 2.83102 0.6 2.4 2.2
0.01 1.43102 0.9 1.7 1.4
0.05 2.83101 1.2 1.4 0.9
0.1 1.43101 1.5 1.2 0.5
22443
e
u-

. In

T5
2p

V latt5
2p

vV0
, ~4.5!

and substituted into Eq.~4.1! give

v4V0
4~a1

2134a3
2154a5

21¯ !

1
v2

t2 V0
2~a1

2132a3
2152a5

21¯ !

5v2V0
4~a1

2132a3
2152a5

21¯ ! ~4.18!

because of the time averages of sin2(ivV0t) and cos2(ivV0t)
equal to1

2 and relationbi
25ai

2 obtained in view of Eq.~3.8!.
A transformation of Eq.~4.18! gives

v2~a1
2134a3

2154a5
21¯ !2~a1

2132a3
2152a5

21¯ !

a1
2132a3

2152a5
21¯

52
1

t2V0
2

52
1

t2Bz
2

c2m2

e2 . ~4.6!

This relation defines the dimensionless quantitytV0 in
terms of the band structure parametersa1 , a3 , a5 ,... andv.
Evidently, for the free-electron case—in view of Eq.~3.6a!
and the result

a35a55¯50 ~4.7!

implied by Eqs.~2.6! and ~2.6a!—we arrive at Eq.~2.10!.
The productsV0t and V lattt calculated from Eqs.~4.6!

and ~3.6! for the sc, bcc, and fcc lattices are presented
Tables I–III. In the first step, for the fcc lattice solely th
case ofkz50 is considered. More extended calculations
the fcc lattice—those based on Sec. V and Tables IV a
V—are given in Table VI.

V. RANGES OF PARAMETERS APPLIED IN THE
CALCULATIONS

The acceptable intervals ofClatt given in Eq. ~3.2! are
dictated by the requirement that a planar electron trajec
along a surface of a constant energy should be a clo
curve, or—more precisely—we assume that the curvaturx
along the electron trajectory should be a positive numb

TABLE III. ProductsV0t and V lattt calculated as function of
a0 @see Eq.~3.2!# for the band structure parameters of the tigh
bounds electrons in the fcc lattice@see Eqs.~3.6! and ~4.6!#; here,
kz50.

a0 V0t'V lattt a0 V0t V lattt

0.001 1.63103 0.3 1.16 0.58
0.005 3.33102 0.6 1.08 0.39
0.01 1.63102 0.9 1.03 0.24
0.05 3.33101 1.2 1.01 0.12
0.1 1.63101 1.5 1.00 0.02
4-4
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TABLE IV. Coefficientsa1 ,a3 ,a5 ... entering the time-dependent wave-vector componentskx andky @see
Eqs.~3.7! and~3.7a!# calculated for tightly bounds electrons gyrating in the fcc lattice. The coefficients a
functions of the amplitudea0 @see Eq.~3.2!# and the wave-vector componentkz . Thebi of ky are referred to
ai of kx by the formula~3.8!. The lattice parameteralatt51. For kz50 the results transform into thos
calculated before for the fcc lattice~Ref. 20!.

a15a01
2coskz12

96~coskz11!
a0

31
288 coskz27 cos 2kz1129

15360~4 coskz1cos 2kz13!
a0

5

1
239183 coskz21200 cos 2kz253 cos 3kz146384

10321920~15 coskz16 cos 2kz1cos 3kz110!
a0

7

1
22032637 coskz188184 cos 2kz12209 cos 3kz1758 cos 4kz12065090

743178240~56 coskz128 cos 2kz18 cos 3kz1cos 4kz135!
a0

91¯

a35
coskz22

96~coskz11!
a0

31
10 coskz1cos 2kz215

1536~4 coskz1cos 2kz13!
a0

5 1
1701 coskz175 cos 2kz111 cos 3kz22053

368640~15 coskz16 cos 2kz1cos 3kz110!
a0

7

1
2070436 coskz277956 cos 2kz18716 cos 3kz1515 cos 4kz22129927

594542592~56 coskz128 cos 2kz18 cos 3kz1cos 4kz135!
a0

91¯

a55
24 coskz2cos 2kz17

5120~4 coskz1cos 2kz13!
a0

5 1
243 coskz26 cos 2kz2cos 3kz158

49152~15 coskz16 cos 2kz1cos 3kz110!
a0

7

1
29831 coskz2188 cos 2kz2173 cos 3kz216 cos 4kz110900

11796480~56 coskz128 cos 2kz18 cos 3kz1cos 4kz135!
a0

91¯

a75
13 coskz18 cos 2kz2cos 3kz224

229376~15 coskz16 cos 2kz1cos 3kz110!
a0

7

1
142 coskz152 cos 2kz26 cos 3kz2cos 4kz2203

1572864~56 coskz128 cos 2kz18 cos 3kz1cos 4kz135!
a0

91¯

a95
240 coskz244 cos 2kz18 cos 3kz1cos 4kz183

9437184~56 coskz128 cos 2kz18 cos 3kz1cos 4kz135!
a0

91¯
-
-
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For the magnetic fieldBz parallel to one of the crystallo
graphic axes the limits ofClatt anda0 dictated by the require
ment ofx.0 are20

0,Csc,2, 0,a0,p, ~5.1!

0,Cbcc,1, 0,a0,p/2, ~5.1a!

0,Cfcc,2, 0,a0,p. ~5.1b!

The last relation, given for the fcc lattice, holds solely for t
plane ofkz50.

For reasons of the convergence of solutions obtained
the sc lattice, further calculations for that lattice were limit
to the interval

0,a0,p/2. ~5.1c!

The same interval applied for the bcc lattice@see Eq.~5.1a!#
corresponds to the filling of a half of the planar area of
first Brillonin zone atkz50 attained in the absence of
magnetic field.19 Simultaneously, the upper limit of the inte
val ~5.1b! for the fcc lattice valid for the plane ofkz50 leads
to the situation for which the frequency ratiov→0.21 This
means that the density of the Landau levels, or the pla
density of the Bloch states versus energy calculated in
absence of a magnetic field, tends to infinity; cf. here E
~3.5!. The plots ofv as functions ofa0 are given in Ref. 20,
Fig. 5. In the calculations done in Tables I–III we applied t
intervals ~5.1c!, ~5.1a!, and ~5.1b! for the sc, bcc, and fcc
22443
or

e

ar
e
.

lattices, respectively. The accuracy of calculations ofv for
the sc lattice is examined in Ref. 21, for the bcc and
lattices in Sec. VI.

For the fcc lattice the energy expression~3.1b! implies
that the upper limit for parameterkz within the first Brillouin
zone is

kz5p ~5.2!

(alatt51). Correspondingly, the position coordinates of t
corners of the square being at the boundary of the Brillo
zone atkz5p are22

W5S 6
p

2
,0,p D or S 0,6

p

2
,p D . ~5.3!

This makesp/2 equal to a half of the length of the squa
diagonal at the zone boundary and, consequently, the sho
distance from the square center to the square edge bec
equal to

a0
s5

p

2&
. ~5.4!

In Table IV we present the expansion coefficientsai for
the wave-vector componentkx of the fcc lattice dependent o
parameterkz ; similar coefficientsbi can be calculated for the
componentky . The relation betweenai andbi remains iden-
4-5
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TABLE V. Frequency parameterv for a tightly bounds electron gyrating in the fcc lattice@see Eq.~3.6!#
calculated as a function ofa0 given in Eq.~3.2! and the wave-vector componentkz . For kz50 the result for
v transforms into that calculated before for the fcc lattice~Ref. 20!.

v511
2coskz22

8~coskz11!
a0

21
48 coskz15 cos 2kz113

768~4 coskz1cos 2kz13!
a0

4 1
629 coskz2316 cos 2kz217 cos 3kz21052

92160~15 coskz16 cos 2kz1cos 3kz110!
a0

6

1
604480 coskz2122908 cos 2kz19152 cos 3kz255 cos 4kz2445285

82575360~56 coskz128 cos 2kz18 cos 3kz1cos 4kz135!
a0

81¯
so
m
th

s-
tical to that given in Eq.~3.8!. In the next step, Table V
presents the dependence ofv on kz .

Expansions given in Tables IV and V represent exact
lutions of the equations of motion. This property can be de
onstrated for example by a check of accuracy with which
solution of Table IV satisfies the boundary condition

kx~ t !u t505a0 . ~5.5!
re

o

c
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For, att50, because of the well-known property of the co
like functions, we have@see Eq.~3.7!#

kx~0!5a11a31a51a71¯ . ~5.6!

On the basis of Table IV the expansion~5.6! becomes
kx~0!5a01
2coskz121coskz22

96~coskz11!
a0

31
~2881100212!coskz1~2711023!cos 3kz11292150121

15360~4 coskz1cos 2kz13!
a0

5

1F ~239183117013282433210113345!coskz

10321920~15 coskz16 cos 2kz1cos 3kz110!
1

~2120017532826321018345!cos 2kz

10321920~15 coskz16 cos 2kz1cos 3kz110!

1
~2531113282210245!cos 3kz

10321920~15 coskz16 cos 2kz1cos 3kz110!
1

46384220533281583210224345

10321920~15 coskz16 cos 2kz1cos 3kz110!Ga0
71¯5a0 .

~5.7!
m

t

Since all terms entering the second step in Eq.~5.7!—beyond
the first one—give exactly zero, we obtain precisely the
sult required by condition~5.5!. The property is checked to
hold also for further powers ofa0 .

It is evident from Table IV that the case of Eq.~5.2! leads
to divergenta1 ,a3 ,... and—because of Eq.~3.8!—also to
divergentb1 ,b3 ,... . A similar divergence applies tov for
the same case; see Table V. This makes the calculations
lined in Sec. IV inapplicable tokz near Eq.~5.2!. Neverthe-
less, it is possible to examine the behavior ofV0t andV lattt
within the interval of kz betweenkz50 and kz,p. We
choose the maximala0 considered for anykz5const slightly
smaller thana0 for the line defined by the points

K5S 3

4
p,

3

4
p,0D ~5.8!

and

K85S p

4
,
p

4
,p D ~5.8a!

lying on the boundary of the first Brillouin zone of the fc
lattice. A reason for the slight decrease of the maximala0
-

ut-

examined in comparison toa0 defined by the lineKK8 is due
to the fact that for theK point in Eq. ~5.8! ~the plane ofkz

50) we obtain

a05AS 3

4D 2

1S 3

4D 2

p5A18

16
p, ~5.9!

which is a number slightly larger than the upper limit ofa0

5p derived in Eq.~5.1b!. The data forkz50 are presented
in Table III. TheV0t andV lattt calculated fora0 lying in the
planes ofkz5p/6, p/3, p/2, 2

3p, and 5
6p are given in Table

VI. The a0 examined for differentkz are limited to a0

52.95 for kz5p/6, a052.55 for kz5p/3, a052.20 for kz

5p/2, a051.80 forkz5
2
3 p, anda051.45 forkz5

5
6 p. For

smalla0 we obtainV0t'V lattt. The dashes near the botto
of the table replace imaginaryV0t andV lattt obtained from
the formulas~3.6! and ~4.6!. A characteristic point is tha
productsV0t considered as functions ofa0 behave—for not
too largea0—in the way much similar toV0t presented in
Tables I–III. But forkz>p/2 anda0 very close to the zone
boundary the products ofV0t and V lattt become equal to
imaginary numbers.
4-6
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TABLE VI. V0t andV lattt—calculated from the band structure parameters of the tightly bounds electrons in the fcc lattice—compare
for differentkz . The data forkz50 are presented in Table III. For smalla0 we haveV0t'V lattt, for a0>0.3 column~i! refers toV0t and
column ~ii ! refers toV lattt.

a0 kz5p/6 kz5p/3 kz5p/2 kz5
2
3 p kz5

5
6 p

0.001 1.63103 1.53103 1.43103 1.23103 6.93102

0.005 3.23102 3.13102 2.83102 2.33102 1.43102

0.01 1.63102 1.53102 1.43102 1.23102 6.93101

0.05 3.23101 3.13101 2.83101 2.33101 1.43101

0.1 1.63101 1.53101 1.43101 1.23101 6.9

a0

kz5p/6 kz5p/3 kz5p/2 kz5
2
3 p kz5

5
6 p

~i! ~ii ! ~i! ~ii ! ~i! ~ii ! ~i! ~ii ! ~i! ~ii !

0.3 5.4 5.3 5.2 5.1 4.8 4.7 3.9 3.8 2.5 2.
0.6 2.8 2.6 2.7 2.5 2.4 2.2 2.1 1.8 1.2 0.
0.9 1.9 1.6 1.8 1.5 1.7 1.4 1.5 1.0 — —
1.2 1.5 1.1 1.5 1.0 1.4 0.9 1.1 0.3 — —
1.5 1.3 0.8 1.2 0.7 1.2 0.5 — —
1.8 1.15 0.6 1.13 0.5 1.03 0.1 — —
2.1 1.07 0.4 1.05 0.2 — —
2.4 1.03 0.2 1.00 0.02
2.7 1.00 0.07
V
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or
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e
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VI. ACCURACY OF CALCULATIONS OF V0t

The calculations presented in Tables I–III and Table
are based on the formula~4.6!. The factor ofv2 entering Eq.
~4.6! can be obtained from the expansion ofv given in Ref.
20. But thesev can be checked by comparing them withv
approached on the basis of the Bloch density of states.21 This
check could be done because, on the one hand, we hav
relation ~3.5! referring v to the density of semiclassica
quantum states of the electron gyration performed in a c
stant magnetic field. This density of states is obtained fr
the action function Jlatt calculated for a given cubic
lattice.20,21 But, on the other hand, we have that21

]nx

]Clatt5h latt, ~6.1!

whereh latt is a planar density of the Bloch quantum states
a perfect cubic lattice.21 The formula~6.1!, combined with
Eq. ~3.5!, provides us with a check ofv calculated from the
direct solutions of Ref. 20 and gives insight into their co
vergence.

The equivalence presented in Eq.~6.1! has been demon
strated explicitly for the case of the sc lattice.21 Because of
the importance ofv in the present calculations, we show
Tables VII and VIII that Eq.~6.1! holds also for the bcc and
fcc lattices. A poorer agreement of Eqs.~3.5! and~6.1! in the
bcc case is dictated by a slower convergence of the ex
sion ~3.5! obtained in this case.

The accuracy ofV0t is influenced also by the power ex
pansions entering Eq.~4.6! and can be examined in a nu
merical way. This is done by calculatingV0t from the power
expansions in Eq.~4.6! combined successively of two-
three-, and four-component terms. For smalla0 the plots of
V0t obtained in this way remain indistinguishable. F
22443
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TABLE VII. Density of electron states distributed on the La
dau levels,]nx /]Cbcc, compared with the planar density of th
Bloch states,hbcc, in the bcc lattice for selected values of electro
energiesCbcc; cf. Eqs.~3.5! and ~6.1!.

Cbcc

1

4

]nx

]Cbcc5
p

2
v21

hbcc

0.00 1.571 1.571
0.05 1.611 1.611
0.10 1.655 1.655
0.15 1.701 1.701
0.20 1.751 1.751
0.25 1.805 1.804
0.30 1.863 1.863
0.35 1.926 1.926
0.40 1.995 1.994
0.45 2.071 2.069
0.50 2.156 2.152
0.55 2.250 2.243
0.60 2.355 2.344
0.65 2.463 2.456
0.70 2.588 2.581
0.75 2.732 2.720
0.80 2.888 2.875
0.85 3.072 3.050
0.90 3.278 3.245
0.95 3.523 3.465
1.00 3.823 3.713
4-7
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larger a0 , Figs. 1–3 show also a rapid convergence
V0t: the two-term expansions represented by the das
lines giveV0t very close to that calculated from the fou
term expansions represented by the solid lines. The do
line of the three-term expansions~see Fig. 2! merges with
V0t of the four-term expansions in Figs. 1 and 3. The me
ing of V0t calculated from any kind of expansion to th

TABLE VIII. Density of states on the Landau levels,]nx /]Cfcc,
compared with the planar density of the Bloch states,h fcc, in the fcc
lattice for selected values of electron energiesCfcc; here,kz50.

Cfcc

1

4

]nx

]Cfcc 5
p

2
v21

h fcc

0.00 1.571 1.571
0.05 1.601 1.601
0.10 1.632 1.632
0.15 1.665 1.665
0.20 1.700 1.700
0.25 1.736 1.736
0.30 1.774 1.774
0.35 1.814 1.814
0.40 1.856 1.856
0.45 1.900 1.900
0.50 1.947 1.947
0.55 1.996 1.996
0.60 2.048 2.048
0.65 2.104 2.104
0.70 2.163 2.163
0.75 2.227 2.227
0.80 2.294 2.294
0.85 2.366 2.366
0.90 2.444 2.444
0.95 2.527 2.527
1.00 2.617 2.616
1.05 2.714 2.713
1.10 2.819 2.818
1.15 2.933 2.931
1.20 3.056 3.054
1.25 3.190 3.188
1.30 3.337 3.333
1.35 3.496 3.492
1.40 3.670 3.665
1.45 3.861 3.854
1.50 4.070 4.061
1.55 4.299 4.288
1.60 4.550 4.537
1.65 4.826 4.809
1.70 5.128 5.108
1.75 5.460 5.436
1.80 5.826 5.797
1.85 6.228 6.192
1.90 6.669 6.627
1.95 7.154 7.104
2.00 ` `
22443
f
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value ofV0t51 at a0'p for the fcc lattice~see Fig. 3! is
due to the limiting behavior ofv→0 at a0→p.

VII. DISCUSSION

Historically, the problem of magnetoresistance has
tracted much interest of experimentalists. Kapitza23,24

pointed out that a change of resistance in a magnetic fiel

FIG. 1. ProductV0t calculated for largea0 in the sc lattice.
Dashed line: two-term power expansions applied in Eq.~4.6!.
Solid line: three-term and four-term power expansions applied
Eq. ~4.6!.

FIG. 2. ProductV0t calculated for largea0 in the bcc lattice.
Dashed line: two-term power expansions. Dotted line: thr
term power expansions. Solid line: four-term power expansi
applied in Eq.~4.6!.
4-8
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relatively very small for numerous metals: proportiona
to results of the performed measurements, but with the p
lem of magnetic breakdown neglected, a change of the m
netic field by 106 G is found to make a change of the res
tance of a metal by about some 10%. Simultaneously, s
exceptions in the behavior of metals have been discove
for example, for a given change of the magnetic field
change of resistance of metallic Bi was found to be m
than 1.53104 times larger than a similar change of resistan
of metallic Li.

Gradually, a saturation of magnetoresistance for a la
field Bz became a well-established experimental fact
served in many metals, especially those which possess cl
Fermi surfaces~In, Al, Na, Li!.6 Also, some alloys having
more than two components—for example, Cu-Ni alloys w
the addition of Sn or Zn~Ref. 25!—exhibit this saturation
property. On the other hand, for a single crystal of Sn
saturation is observed with the current directed along thc

axis and a special orientation of theBW field in the basal
plane.5,26 As a consequence, a typical problem concern
magnetoresistance became its rapid change with directio
the magnetic field when this field is tilted to the crystall
graphic axes.4,6 In high fields the observed magnetores
tance tends to saturate except in those directions in w
open orbits exist.27–30 This effect of open orbits is usuall
quite pronounced, providing us with an indication conce
ing the shape of the Fermi surfaces. A limit of this behav
is the strength of the magnetic field for which the breakdo
effects for the circulating electrons may occur. Briefly, t
experiments indicated an important factor of the shape of
Fermi surface for magnetoresistance or, more precisely,
importance of the shape of the orbits along which the e
trons circulate. A statement that for metals there is no cha

FIG. 3. ProductV0t calculated for largea0 in the fcc lattice.
Dashed line: two-term power expansions. Solid line: three-te
and four-term power expansions applied in Eq.~4.6!. At a0→p the
V0t obtained from all expansions merge to the value ofV0t51
because ofv→0; see Sec. VI.
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in magnetic resistanceR(Bz) due to the change ofBz when
the electrons occupy one band only2 has been formulated.

This fact—which presented a difficulty in a forme
theory4—is confirmed by our calculations. For, in our cas
the well-known expression4,6,31

R~Bz!2R~0!

R~0!
5~V lattt!25~vV0t!2 ~7.1!

remains a term independent ofBz . This property is due to
V0t calculated in Eq.~4.6!, which is a number dependen
solely on the band structure parameters. But the band sh
have a certain anisotropy in order to provide us with a fin
V0t. For a small anisotropy~small a0) the productV0t
remains still very large, decreasing gradually with an
crease ofa0 . A property of the independence of the fieldBz
applies to all parameters entering the left-hand side of
~4.6! including v.20

The result of the constancy of Eq.~4.6! or ~7.1! projects
on the behavior of the relaxation timet for magnetoresis-
tance. In numerous textbooks it is assumed that the chang
Bz , or V0 , would imply a similar change ofV0t—and
consequently V lattt—because t is independent of
Bz .3,4,6,7,29,32,33This seems to be not true: the product
V0t should be a constant term as far as the band struc
remains uninfluenced by the strength of the applied magn
field. The property of the constancy of Eq.~4.6!, or Eq.~7.1!,
makes any change of the magnetic field accompanied b
corresponding reciprocal change of the value oft. The point,
shown to be sound for the transversal magnetoresista
measured in a plane being parallel to a crystallograp
plane, may be, however, different for a magnetic field tilt
to the crystallographic axes; see remarks below Eq.~7.3!.

The assumption of the closed orbits is fully taken in
account in our considerations on the electron motion in
magnetic field and the derivation of Eq.~4.6!. An immediate
insight into the behavior ofV0t for a single-band model can
be obtained from some special values ofv; see Eq.~4.6!. If
v→0—as it is obtained for thes-band states on a concav
Fermi surface in the fcc lattice which is going to touch t
boundary of the Brillouin zone@see Eqs.~3.5!, ~5.1b!, and
~6.1! and Table VIII#—the productV0t should necessarily
tend to unity.

The formula~7.1! can be applied to identify the measur
ments done on the magnetoresistance of metals25,34,35—for
example, that of Na—with the results of our calculation
The experimental saturation of the magnetoresistance o
begins roughly atV lattt'1. In our theory developed for the
bcc lattice, for parametera0 taken rather close to the bound
ary of the Brillouin zone, the productV lattt attains a value
not far from unity; see Table II. In reality, thes electrons in
the bcc lattice of an alkali metal are far from being strong
tightly bound and an exact comparison between experim
and theory requires much more developed calculations of
band structure than those outlined above.36–39Moreover, the
temperature effects neglected in the calculations of
present paper may become sound.

A more general approach to magnetoresistance than
represented by Eq.~7.1! is given by the formula3
4-9
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R~Bz!2R~0!

R~0!
5Att

2Bz
2, ~7.2!

whereAt is usually a complicated expression dependent
the band structure.3 In the case when Eq.~7.1! is put equal to
Eq. ~7.2! we have

At5
e2

c2m2 v2. ~7.3!

In fact, the band structure—calculated for the tightly bouns
electrons in the bcc lattice and a magnetic field normal to
crystallographic plane—makesAt several times smaller tha
Eq. ~7.3!.40 It should be noted, however, that in the quot
references 3 and 40 the coefficientAt was not separated from
t2, but formed a joint term equal to

Bt5Att
2. ~7.4!

Simultaneously, the property of the constancy of the prod
tBz entering the right-hand side of Eq.~7.2! remained unno-
ticed. Nevertheless, the calculations ofAt ~or v! separated
from those ont may become important for a magnetic fie
tilted to the crystallographic axes. Experimentally, the pro
lems of magnetotransport phenomena in a tilted magn
field have been raised recently in organic metals.41–43

An immediate application of our theory is the cyclotro
resonance effect where the frequency of the external mi
wave field becomes equal to that of the electron orbital
quencyV latt5vV0 attained in a constant magnetic field4

The impedanceZ in a metal skin layer in the presence of
magnetic fieldBz is modified in comparison toZ for Bz50
by the formula6

Z~Bz!>Z~0!F12expS 2
2p

V lattt
2 i

2pV

V latt D G1/3

, ~7.5!

whereV is the frequency of the applied external field. T
constantV lattt is that calculated in the present paper~Tables
I–III and VI!. On each electron revolution the current
multiplied by the phase factor

e2w[expS 2
2p

V lattt
2 i

2pV

V latt D , ~7.6!

so the factor of the total current arising from all cycles b
comes

11e2w1e22w1¯5
1

12e2w . ~7.7!

This expression enters the formula of the effect
conductivity,6 which—in its turn—modifies the impedanc
of a metal skin layer in the way indicated in Eq.~7.5!.
22443
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Let us note that the property of constancy obtained
product

j5V lattt, ~7.8!

which holds independently of the scattering processes in
bulk of a metal, can be suggested also by an elemen
reasoning. The ratio between componentssxy andsxx of the
conductivity tensor in a constant magnetic field becomes6

sxy

sxx
5V0

efft. ~7.9!

On the other hand, in a high-field limit of two carriers mod
we have4,6

sxy5~n12n2!
ec

Bz
~7.10!

because of the relationsxy52syx . Let us assume thatn2
!n1 , so n2 can be practically neglected. For the Hall fie
the value of the electric currentj x in the direction ofx re-
mains unchanged in comparison to that in the absence
magnetic field; therefore,

sxx5
ne2t

meff . ~7.11!

By dividing Eq. ~7.10! for n2'0 by sxx entering Eq.~7.11!
and by puttingn1'n we have

sxy

sxx
5

nec

Bz

meff

ne2t
5

cmeff

Bzet
5

1

V0
efft

. ~7.12!

A comparison of Eqs.~7.9! and ~7.12! gives the result

~V0
efft!251. ~7.13!

Rather surprisingly, the productsV0t calculated in the
present theory fora0 , which are not far from the boundary o
the first Brillouin zone, become equal to a number not mu
different from 1; see Tables I–III and VI. This property an
still smaller numbers obtained forV lattt provide us with the
problem of broadening of the Landau levels present at
mentioneda0 .7
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