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Partially frustrated Ising models in two dimensions
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We examine ordered, periodic, Ising models on asq lattice at varying levelsx of frustration. The thermo-
dynamic singularity of thefully frustrated model (x51) is atT50 while those ofpartially frustrated lattices
(0,x<1) occur at finiteTc . The critical indices in thepartially frustrated lattices that we consider—including
the logarithmic specific heat—are all identical to those in the ferromagnet (x50.) We display exact values of
Tc and of ground-state energy and entropyEo andSo , at x51, 2/3, 1/2 , 2/5 ,...,0.
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INTRODUCTION

This work discusses the phenomenon of par
‘‘frustration.’’ 1 Interest in systems with ‘‘frozen-in’’ random
ness, commonly denoted ‘‘spin glasses,’’ has continued
abated since the 1970s.2 The only statistical systems wit
any chance of being solved in closed form are Ising-mo
spin glasses. These come in at least two varieties: s
centered randomgauge glassesthat can be analyzed com
pletely and sometimes even solved exactly,3 and those with
competing6J interactions that areboth randomand frus-
trated and generally cannot be solved at all. Toulouse id
tified frustrationas the result of competing interactions.4 The
unit of frustration is a plaquette in which the product ofJ’s
around the perimeter has a negative sign.5 Frustration in-
creases both the ground-state energy and the ground-
entropy over their values in the ferromagnet. Ramire6,7

identified ‘‘geometricalfrustration’’ as the disorder inheren
in the correlation functions of what are frustrated but oth
wise structurally perfectly orderedmaterials.~The prototype
is the Ising antiferromagnet on a regular, triangular latti
about which more will be said later. Other well-known e
amples includeice at 0 °C and thepyrochlores.5,6! Still, in
the words of Ramirez,6 ‘‘... there is comparatively little
known about@such# materials,’’ although, at first blush, geo
metrically frustrated materials seem to share many prope
with structurally randomglassy materials having random
bonds and/or fields at every site.

The present work sets out to distinguish between the t
It is introductory and admittedly incomplete, but because
results are exact they may serve as markers in a field th
not fully understood. We show that under certain circu
stances a sharp distinction can be drawn betweenpartially
frustratedsystems~the usual case! and thedisorderedsys-
tems they superficially resemble. We display exact value
ground-state entropySo , ground-state energyEo , critical
temperatureTc , and quasiparticle dispersion calculated
some discrete values ofx ~wherex is the fraction of frus-
trated plaquettes!. We also indicate possible directions fo
future investigations.

As a brief example of how much disordered and frustra
systems can resemble one another, consider the appar
random Edwards-Anderson-Ising spin ladder in Fig.
containing nearest-neighbor bonds Ji , j56J in
H52S ( i , j )Ji , jSiSj . By gauge transformationsS→2S on
0163-1829/2003/67~22!/224414~4!/$20.00 67 2244
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just 2 sites~1 and 2!, it transforms into aregular array in
which the antiferromagnetic~AF! bonds are all on the lef
vertical riser and all other bonds are ferromagnetic. Amo
the many ground states8 of this configuration one finds two
ferromagnetic states~all spins up or all down! and a ground-
state energyE0524uJu. Except in its response to an exte
nal field, this model is an example of perfect geometri
frustration~i.e.,x51) andnot of disorder! Later we shall see
that merely specifying the extent of frustrationx in the range
0,x,1 is also generallyinsufficientto determine whether
this model or material can support an ordered phase.

In trying to understand and systematize the distinct
between random and geometrically frustrated systems,
propose a classification scheme. Type A is representativ
pure geometrical frustration, such as the nearest-neigh
Ising model on a triangular lattice withall equal antiferro-
magnetic~AF! bonds in whichall plaquettes are frustrate
(x51.) The thermodynamic properties of this model a
known:9 it has no ordered phase atT.0. Geometrically frus-
trated systems such as this can only sustain disord
phases at finiteT while others~frustrated chessboard or frus
trated hexagonal lattices! maintain a finite correlation length
even at T50 and thus possess no critical expone
whatever.9

Type B: the Edwards-Anderson (E-A) model1 on the two-
dimensionalsq lattice is a prime example of a magnetical
amorphous material in which spin-glass behavior iscaused
by the randomness. In it, Ising spinsSi561 are subject to
randomly frozen-in nearest-neighbor~NN! bondsJi , j56J.
The prototypeE-A model consists of asq lattice with a
fraction p5 1

2 of antiferromagnetic (J,0) bonds located a
random. This causes half the plaquettes, on average, to
come frustrated, i.e.,x5 1

2 . The location of the frustrated
plaquettes is random. In two dimensions this model does
exhibit a phase transition at any finiteT ~although it may in
higher dimensions.!

The Hamiltonian in the E-A model is H
52S ( i j )Ji , jSiSj , the sum being over NN’s. Its partition
function is Z5Tr$exp2bH%. But it is the free energy,
F52kBT ln Z and notZ that needs be averaged over t
random variables. In addition to the temperatureT51/kBb
one needs consider at least one supplementary mat
parameter.10 This extra parameter is frequently taken to bep,
the fraction of AF~–! bonds.11
©2003 The American Physical Society14-1
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The fully frustrated Ising model~FFIM!, illustrated in Fig.
2~a!,11 has p5 1

4 and x51. Any additional, or any fewer
antiferromagnetic bonds necessarily decrease the fractiox
of frustrated plaquettes. As illustrated, this model does
exhibit any structural randomness. Taking the unit cell
consist of two neighboring columns, this model exhib
translational periodicity—no less so than does the triang
lattice with all antiferromagnetic bonds. It is therefore
type A. By trivial gauge transformations it can be made
look perfectly random and seemingly impossible to solve
the ordinary methods of statistical mechanics! Yet it has b
known11 to be solvable since 1977.

The FFIM has already been the subject of several inv
tigations, including a mapping onto eight-vertex mode
renormalization-group~RG! studies, etc.,12,13 that revealed a
sort of ‘‘phase transition’’ atTc50 with a power-law corre-
lation function}1/r h, exponenth5 1

2 . The divergentT50
paramagnetic susceptibility calculated by Kandel, Ben-
and Domany,12 x}L22h, with h50.50760.009, confirms
this unusual value ofh that is shared with the triangular A
lattice,the prototype of species A.13 Both haveTc50 and
comparable ground-state entropiesper site. Additional sym-
metries, including some form ofduality, have been uncov

FIG. 1. Random, or ‘‘ordered but geometrically frustrated
Heavy lines are AF bonds, light lines are ferrmagnetic. The ap
ently disordered ladder on the left turns into an ordered~but equally
frustrated!! ladder after two spins are ‘‘flipped’’ by a gauge tran
formation:S1→2S1 andS2→2S2 .

FIG. 2. The frustrated 2D Ising model on asq lattice.~a! FFIM:
special case ofn (number of columns in a unit cell)52. SpinsS5
61 live at each vertex, with nearest neighbors connected by fe
magnetic~light lines! or antiferromagnetic bonds~heavy lines.! A
unit cell consists of 2 vertical lines~one of antiferromagnetic bond
and one of ferromagnetic bonds.! Horizontal lines contain only fer-
romagnetic bonds.~b! Illustrating the periodic,partly (x52/3) frus-
trated, 2D Ising model forn53.
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Type C: Regular, homogeneous, systems with par
frozen-in frustration. The Ising versions have finite values
Tc , hence an ordered low-temperature phase~and h5 1

4 in
two dimensions!. This is the category denoted ‘‘partially
frustrated,’’ that is studied below.

DISTINCTION BETWEEN TYPES

Type-C systems exhibitsomegeometrical frustration and
their ground states are typically degenerate. But unlike t
A, they support an ordered phase and unlike type B they
not random~although the unit cell may be large!. By an
obvious gauge symmetry of thesq lattice, or of bipartite
lattices in general,F(12p)5F(p) in the absence of finite
external fields. Hence we can~and shall! limit our studies to
0,p< 1

2 .
At the upper limit ofp5 1

2 one uncovers a fundamenta
difference between types C and B in two dimensions. C
sider the following type-C model on asq lattice: all vertical
bonds are antiferromagnetic~2! and all horizontal bonds are
ferromagnetic~1!. Not a single plaquette is frustrated an
there is a phase transition from disorder to an ordered ph
as one lowersT below a critical temperature. This is to b
contrasted with theE-A model atp5 1

2 on the same lattice
which is of type B. As we have already noted, in the lat
case half the plaquettes are frustrated on average anTc
50. So just specifying the fractionp of antiferromagnetic
bonds does not tell us what thermodynamic phase diag
can be expected.

But then, neither is the fractionx of frustrated plaquettes
indicative of the thermodynamic properties that are to
expected! For example, the thermodynamic behavior of
above-mentioned two-dimensionalE-A model (x5 1

2 ) dif-
fers completely from that of then54 model of type C in-
vestigated below~in which x5 1

2 also!. Unlike the former,
the latter has a second-order phase transition and suppor
ordered low-temperature phase.

THIS WORK

We investigate the rangep51/(2n)5 1
4 , 1

6 , 1
8 ,..., all

< 1
4 , wheren (n>2) is the number of columns in the un

cell.15 In the regular example illustrated in Fig. 2~b!, each
unit cell of n columns contains one AF vertical and tw
ferromagnetic vertical lines and corresponds tox5 2

3 . ~All
horizontal bonds are ferromagnetic.! In general, forn21
ferromagnetic vertical lines the fraction of frustrate
plaquettes isx52/n54p51, 2

3 , 1
2 ,... . Geometrical regular-

ity, such as it is, allows us to calculate the free energy us
an ~exact! transfer-matrix approach. Unfortunately th
method does not easily extend to higherp where the system
is also partially frustrated. Clearly the range14 <p, 1

2 is
complementary to what we cover on the present work a
represents an important area of investigation for the futu
whether studied by exact methods, numerical methods
RG.

In the present work, we find that—with the singular e
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ception ofn52 ~for which x51, the FFIM which is actually
of type A!—the columnar models of type C forn.2 all have
an order-disorder phase transition at finiteTc(n) and share
all critical exponents atTc with those in the limitn5`, i.e.,
with the ferromagnetic two-dimensional~2D! Ising model.

The precise value ofTc increases withn. This is shown in
Fig. 3 at the discrete values ofn52,3,4,5,..., i.e., forx51,
2
3 , 1

2 , 2
5 ,... . Forn@1, we obtain the asymptotic dependen

of Tc(n) on n,

sinh 2J/kTc511
1.2465

n
1o~1/n!. ~1!

This formula agrees with the classic result in limn→`.
Our solution is obtained by transforming the transfer ma
into an exponential form in free fermions, following Onsa
er’s procedure~cf. the detailed review!.16 The dispersion of
the free fermions exhibits a mass gap at allT except pre-
cisely at Tc . At all values ofn.2 the appearance of th
mass gap, both above and belowTc , and its disappearanceat
Tc , parallels the behavior in the two-dimensional Ising f
romagnet. Minor discrepancies manifest themselves onl
the Brillouin-zone boundaries.

DETAILS

Here we outline details of the calculations. The partiti
function is given by the largest value of the transfer matr
evaluated along the horizontal direction, in which all t
bonds are ferromagnetic~in order to avoid imaginary term
that occur in the exponent of thevertical transfer matrix!. In
its Hermitean representation, our transfer matrix consist
three factors for each unit cell. These have to be combi
and Fourier transformed, following the Jordan-Wigner tra
formation to fermion operators labeled byq. The largest ei-

FIG. 3. Calculated ground-state energy~times 21): 2Eo(n)
~L!, ground-state entropyS0(n) ~h!, and critical temperature o
the order-disorder phaseTc(n) ~s!, as functions ofn, for n52
~i.e., FFIM! and n53, 4,... . ~Lines connecting points are just
visual aid.! Note: x52/n, the fraction of frustrated squares, rang
from 1 to 0.
22441
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genvalue of this transfer operator then takes the formZ
5)q.0Zq , where

Zq5@A2~T!#ne«q(T), ~2!

in which A2(T)52 sinh 2J/kT and«q(T), defined in terms of
q, f q , andqq , describe the quasiparticle dispersion. It is t
largest real solution of the following set of equations:17

cosh«q~T![coshn fq cosh 4J/kT

2sinhn fq sinh 4J/kT sinqq , ~3a!

coshf q~T![
cosh2 2J/kT

sinh 2J/kT
2cosq, ~3b!

and

sinhf q~T!sinhqq~T![cosh 2J/kT2coth 2J/kT cosq.
~3c!

Thanks to some additional symmetries, the result fon
52 can be simplified and agrees with that given explicitly
Villain.11,18 It is the only instance in whichTc50.

Generally, Eqs.~3! have to be solved numerically, as w
have done at various values ofn. Choosing a typical value
n53, in Fig. 4, we display the calculated dispersion in t
free fermion spectrum«(q) at three different temperatures:T
lower than, equal toand higher thanTc(n), this last being the
temperature at which the gap disappears. Based on
premise thatall critical thermodynamic quantities are func

FIG. 4. «(q) vs q below, at, and aboveTc . This figure illus-
trates the quasiparticle spectrum of the transfer matrix at three
peratures. In this example calculated atn53, they areTc ~given by
sinh 2J/kTc52) andT substantially below or aboveTc ~as given
by sinh 2J/kT55 or 1.! One notes the appearance and disappeara
of the mass gap and the apearance~albeit irrelevant to the critical-
point thermodynamics! of novel structure near the Brillouin-zon
boundaries atq56p.
4-3
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tionals of the dispersion relations at smallq ~long wave-
lengths! we are now able to conclude that all systems of ty
C (n.2) belong to the same universality class as the fe
magnet (n→`.)

The ground-state energy is found by inspection,19 but the
ground-state entropySo requires more study. Forn52 is it
easily computed by differentiating the free energy atT50;
this yields:20 So /kB50.2916... . At largern a similar proce-
dure could be used, although the formulas are enormo
more complicated.

It is more practical to calculateSo as follows: starting
from the fully ferromagnetic state, one counts the degene
configurations created by flipping any number of spins
any AF column, subject to the rule:no two flipped spins are
nearest neighbors. For all n>3, neighboring AF columns
constitute domain walls that are statistically independen
the ground state. A one-dimensional calculation yields
exact ground-state degeneracy and ground-state entropper
spin.21 After some algebra we obtainSo in terms of the
golden mean. It vanishes as 1/n, i.e., as}x in lim x→0:
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CONCLUSION

Frustration promotes violation of Nernst’s ‘‘third law
~the presumption that the ground-state entropyper particle
vanishes!. In the presence of finite ground-state entropy t
critical temperature for the order-disorder phase transitio
lower than it might otherwise be. We have determined fo
class of partly frustrated, geometrically ordered models, t
once the amount of frustration is insufficient to suppres
phase transition at finiteT the critical indices atTc revert to
those of the pure ferromagnet. These are exact results in
model, yet they do not speak to models of type B in whi
‘‘percolation’’ and disorder may be playing an addition
role. To finally close this chapter it will be necessary to fi
a convenient way to introduce a controlled amount of dis
der and to extend the analysis into a region1

4 <p< 1
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remains inaccessible by present means.
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