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Partially frustrated Ising models in two dimensions
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We examine ordered, periodic, Ising models oscglattice at varying levelx of frustration. The thermo-
dynamic singularity of théully frustrated modelX=1) is atT=0 while those ofpartially frustrated lattices
(0<x=1) occur at finiteT ;. The critical indices in theartially frustrated lattices that we consider—including
the logarithmic specific heat—are all identical to those in the ferromagre0() We display exact values of
T. and of ground-state energy and entrdpyandsS,, atx=1, 2/3, 1/2, 2/5,...,0.
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INTRODUCTION just 2 sites(1 and 2, it transforms into aregular array in
which the antiferromagneti¢AF) bonds are all on the left

This work discusses the phenomenon of partialvertical riser and all other bonds are ferromagnetic. Among
“frustration.” ! Interest in systems with “frozen-in” random- the many ground statésf this configuration one finds two
ness, commonly denoted “spin glasses,” has continued unferromagnetic state@ll spins up or all downand a ground-
abated since the 1978sThe only statistical systems with state energ¥E,= —4|J|. Except in its response to an exter-
any chance of being solved in closed form are Ising-modehg| field, this model is an example of perfect geometrical
spin glasses. These come in at least two varieties: sitgrystration(i.e.,x=1) andnotof disorder! Later we shall see
centered randongauge glasseshat can be analyzed com- a4t merely specifying the extent of frustratisrin the range
pletely and sometimes even solved exattind those with 5y 1 s also generallyinsufficientto determine whether
competing+J interactions that ar&oth randomand frus- this model or material can support an ordered phase.
trated and generally cannot be solved at all. Toulouse iden- trying to understand and systematize the distinction

t'f'.ed frustratm_nas_the result of cpmpefung interactichghe between random and geometrically frustrated systems, we
unit of frustration is a plaquette in which the productJoé e : )
propose a classification scheme. Type A is representative of

around the perimeter has a negative Sigfrustration in- ; . .
creases both the ground-state energy and the ground-st yre geometrical frustration, such as the nearest-neighbor
sing model on a triangular lattice witall equal antiferro-

entropy over their values in the ferromagnet. Ranfifez ) . .

identified “geometricalfrustration” as the disorder inherent MagNetc(AF) bonds in whichall plaquettes are frustrated

in the correlation functions of what are frustrated but other-(le-)9 The thermodynamic properties of this model are

wise structurally perfectly orderednaterials.(The prototype ~KnownZ it has no ordered phase&t-0. Geometrically frus-

is the Ising antiferromagnet on a regular, triangular latticetrated systems such as this can only sustain disordered

about which more will be said later. Other well-known ex- phases at finitd while others(frustrated chessboard or frus-

amples includdce at 0 °C and thepyrochlores’®) Still, in trated hexagonal latticgsnaintain a finite correlation length

the words of Ramire2,“... there is comparatively litle €ven atT=0 and thus possess no critical exponents

known aboufsucH materials,” although, at first blush, geo- whatever’

metrically frustrated materials seem to share many properties Type B: the Edwards-AndersoiE{A) modet on the two-

with structurally randomglassy materials having random dimensionalsq lattice is a prime example of a magnetically

bonds and/or fields at every site. amorphous material in which spin-glass behaviocasised
The present work sets out to distinguish between the twody therandomnessin it, Ising spinsS;==*1 are subject to

It is introductory and admittedly incomplete, but because ourandomly frozen-in nearest-neighb@N) bondsJ; ;= =J.

results are exact they may serve as markers in a field that iBhe prototypeE-A model consists of &q lattice with a

not fully understood. We show that under certain circum-fraction p=3 of antiferromagnetic {<0) bonds located at

stances a sharp distinction can be drawn betwmaially  random. This causes half the plaguettes, on average, to be-

frustrated systems(the usual caseand thedisorderedsys- come frustrated, i.ex=3. The location of the frustrated

tems they superficially resemble. We display exact values gplaquettes is random. In two dimensions this model does not

ground-state entropy,, ground-state energ¥,, critical  exhibit a phase transition at any finite(although it may in

temperatureT., and quasiparticle dispersion calculated athigher dimension$.

some discrete values of (wherex is the fraction of frus- The Hamiltonian in the E-A model is H
trated plaquettgs We also indicate possible directions for =—2;J; ;S;S;, the sum being over NN’s. Its partition
future investigations. function is Z=Tr{exp—BH}. But it is the free energy,

As a brief example of how much disordered and frustrated== —kgT InZ and notZ that needs be averaged over the
systems can resemble one another, consider the apparentgndom variables. In addition to the temperattire 1/kgB
random Edwards-Anderson-Ising spin ladder in Fig. 1,0ne needs consider at least one supplementary material
containing  nearest-neighbor ~ bonds J; j=*J in parametet® This extra parameter is frequently taken tohe
H=-3;Ji;SS;. By gauge transformationS——S on the fraction of AF(-) bonds'*

0163-1829/2003/622)/2244144)/$20.00 67 224414-1 ©2003 The American Physical Society



JIANSHENG WU AND DANIEL C. MATTIS PHYSICAL REVIEW B 67, 224414 (2003

ered in other fully frustrated models and may exist here
also!*?

AF AF Type C: Regular, homogeneous, systems with partial
| frozen-in frustration. The Ising versions have finite values of
AP T., hence an ordered low-temperature phémed =73 in

two dimensions This is the category denotedpartially

AF frustrated” that is studied below.

—aF—

DISTINCTION BETWEEN TYPES

ad 4 Type-C systems exhib&omegeometrical frustration and

their ground states are typically degenerate. But unlike type
A, they support an ordered phase and unlike type B they are
FIG. 1. Random, or “ordered but geometrically frustrated?” not random(although the unit cell may be largeBy an
Heavy lines are AF bonds, light lines are ferrmagnetic. The apparebvious gauge symmetry of theq lattice, or of bipartite
ently disordered ladder on the left turns into an ordeted equally  |attices in generalF(1—p)=F(p) in the absence of finite
frustrated) ladder after two spins are “flipped” by a gauge trans- external fields. Hence we cdand shall limit our studies to
formation:S;——S; andS,——S;. o< pg% )
At the upper limit ofp=3 one uncovers a fundamental
Thefully frustrated Ising modeFFIM), illustrated in Fig.  difference between types C and B in two dimensions. Con-
2(a)," hasp=3 and x=1. Any additional, or any fewer, sider the following type-C model onsx lattice: all vertical
antiferromagnetic bonds necessarily decrease the fragtion honds are antiferromagnetie-) and all horizontal bonds are
of frustrated plaquettes. As illustrated, this model does noferromagnetic(+). Not a single plaquette is frustrated and
exhibit any structural randomness. Taking the unit cell tothere is a phase transition from disorder to an ordered phase
consist of two neighboring columns, this model exhibitsas one lowers below a critical temperature. This is to be
translational periodicity—no less so than does the triangulagontrasted with th&-A model atp=1 on the same lattice,
lattice with all antiferromagnetic bonds. It is therefore of \which is of type B. As we have already noted, in the latter
type A. By trivial gauge transformations it can be made tocase half the plaquettes are frustrated on averageTand
look perfectly random and seemingly impossible to solve by—g. gqo just specifying the fractiop of antiferromagnetic
the ordinary methods of statistical mechanics! Yet it has beeRonds does not tell us what thermodynamic phase diagram
known' to be solvable since 1977. can be expected.
~ The FFIM has already been the subject of several inves- pyt then, neither is the fractiox of frustrated plaquettes
tigations, including a mapping onto eight-vertex models,jngicative of the thermodynamic properties that are to be
renormalization-grougiRG) studies, etc'?**that revealed a eypected! For example, the thermodynamic behavior of the
sort of “phase transition” all ;=0 with a power-law corre-  gpove-mentioned two-dimensionB-A model x=1) dif-
lation function=1/r 7, exponenty=3. The divergenT=0  fers completely from that of the=4 model of type C in-
paramagnetic2 susceptibility calculated by Kandel, I_-D’e”'AV’vestigated below(in which x=1 alsg. Unlike the former,
and Domany? x<L?"7, with »=0.507=0.009, confirms  the Iatter has a second-order phase transition and supports an
this unusual value of that is shared with the triangular AF 5rgered low-temperature phase.
lattice,the prototype of species *A.Both haveT,=0 and
comparable ground-state entropjesr site. Additional sym-
metries, including some form afuality, have been uncov-

THIS WORK

We investigate the range=1/(2n)=%, &, ,..., all

<%, wheren (n=2) is the number of columns in the unit
AF AF AF AF cell’® In the regular example illustrated in Fig(k?, each
unit cell of n columns contains one AF vertical and two
AF A AF N3 hee ferromagnetic vertical lines and correspondsxte . (All
horizontal bonds are ferromagnetidn general, forn—1
AF Al AF AF ferromagnetic vertical lines the fraction of frustrated
plaquettes ix=2n=4p=1, £, 3,.... Geometrical regular-
ity, such as it is, allows us to calculate the free energy using
FIG. 2. The frustrated 2D Ising model orsg lattice.(a) FFIM: an (exacy transfer-matrix approagh. Unfortunately —this
special case ofi (number of columns in a unit cely2. Spinss= ~ Method does not easily extend to higipewhere the system
+1 live at each vertex, with nearest neighbors connected by ferrdS also partially frustrated. Clearly the range<p<3; is
magnetic(light lines) or antiferromagnetic bondéeavy lines. A complementary to what we cover on the present work and
unit cell consists of 2 vertical line®ne of antiferromagnetic bonds represents an important area of investigation for the future,
and one of ferromagnetic bongi$iorizontal lines contain only fer- whether studied by exact methods, numerical methods or
romagnetic bondgb) lllustrating the periodicpartly (x=2/3) frus- RG.
trated, 2D Ising model fon=3. In the present work, we find that—with the singular ex-
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T<TC
T>Te 87

12

FIG. 3. Calculated ground-state energiymes —1): —Eq(n) q

(©), ground-state entrop$y(n) (0), and critical temperature of
the order-disorder phasg;(n) (O), as functions ofn, for n=2
(i.e., FFIM) and n=3, 4,....(Lines connecting points are just a
visual aid) Note: x=2/n, the fraction of frustrated squares, ranges
from 1 to O.

FIG. 4. £(q) vs g below, at, and abov@&,. This figure illus-
trates the quasiparticle spectrum of the transfer matrix at three tem-
peratures. In this example calculatechat 3, they areT . (given by
sinh 2J/kT.=2) andT substantially below or abovE,; (as given
by sinh 2/kT=5 or 1) One notes the appearance and disappearance
of the mass gap and the apearafalbeit irrelevant to the critical-
point thermodynamigsof novel structure near the Brillouin-zone
boundaries at|= = .

ception ofn=2 (for whichx=1, the FFIM which is actually

of type A)—the columnar models of type C for>2 all have

an order-disorder phase transition at finftg{n) and share

all critical exponents af c with those in the limin=o, i.e.,  genvalue of this transfer operator then takes the f@m

with the ferromagnetic two-dimension@D) Ising model. =114 0Z,, Where
The precise value of; increases withn. This is shown in 4=

Fig. 3 at the discrete values a=2,3,4,5,..., i.e., fox=1,

2 1 2. .Forn>1, we obtain the asymptotic dependence

of T.(n) onn,

Z,=[A%(T)]"e®a(D, 2

in which A?(T)=2 sinh 2/kT andey(T), defined in terms of

_ 1.2465 g, fq, andd,, describe the quasiparticle dispersion. It is the
sinh 2)/kT,=1+ +0o(1/). (1) largest real solution of the following set of equatidiis:
This formula agrees with the classic result in fms . coshe (T)=coshnf, cosh 4/kT
Our solution is obtained by transforming the transfer matrix
into an exponential form in free fermions, following Onsag- —sinhnfysinh 4/kTsind,, (39
er's procedurecf. the detailed review'® The dispersion of
the free fermions exhibits a mass gap at Blexcept pre- cosk 2J/kT
cisely at T.. At all values ofn>2 the appearance of the coshfq(T)Em_COSq, (3b)

mass gap, both above and beldw, and its disappearaneg
T., parallels the behavior in the two-dimensional Ising fer-
romagnet. Minor discrepancies manifest themselves only and
the Brillouin-zone boundaries.
sinhfy(T)sinhd4(T)=cosh 2/kT—coth 21/kT cosq(. )
3c

DETAILS . .
Thanks to some additional symmetries, the resultrfor

Here we outline details of the calculations. The partition=2 can be simplified and agrees with that given explicitly by
function is given by the largest value of the transfer matrix,Villain.*!8|t is the only instance in whicf,=0.
evaluated along the horizontal direction, in which all the Generally, Eqs(3) have to be solved numerically, as we
bonds are ferromagnetiin order to avoid imaginary terms have done at various values of Choosing a typical value,
that occur in the exponent of theertical transfer matrix. In n=3, in Fig. 4, we display the calculated dispersion in the
its Hermitean representation, our transfer matrix consists ofree fermion spectrura(q) at three different temperatures:
three factors for each unit cell. These have to be combinetbwer than, equal toand higher th@g(n), this last being the
and Fourier transformed, following the Jordan-Wigner transtemperature at which the gap disappears. Based on the
formation to fermion operators labeled by The largest ei- premise thatll critical thermodynamic quantities are func-
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tionals of the dispersion relations at smagll(long wave- 1 1++5 0.4812

lengths we are now able to conclude that all systems of type —In ~ =S, /kg (n=3). (4
) : n 2 n

C (n>2) belong to the same universality class as the ferro-

magnet () CONCLUSION

The ground-state energy is found by inspectidbyt the
ground-state entrop$, requires more study. Far=2 is it Frustration promotes violation of Nernst’s “third law”
easily computed by differentiating the free energyTatO; (the presumption that the ground-state entrqgy particle
this yields?® S,/kg=0.2916.... At largen a similar proce- vanisheg In the presence of finite ground-state entropy the
dure could be used, although the formulas are enormouslgritical temperature for the order-disorder phase transition is
more complicated. lower than it might otherwise be. We have determined for a

It is more practical to calculat&, as follows: starting class of partly frustrated, geometrically ordered models, that
from the fully ferromagnetic state, one counts the degeneratence the amount of frustration is insufficient to suppress a
configurations created by flipping any number of spins orphase transition at finit& the critical indices af revert to
any AF column, subject to the ruleo two flipped spins are those of the pure ferromagnet. These are exact results in our
nearest neighborsFor all n=3, neighboring AF columns model, yet they do not speak to models of type B in which
constitute domain walls that are statistically independent irfpercolation” and disorder may be playing an additional
the ground state. A one-dimensional calculation yields theole. To finally close this chapter it will be necessary to find
exact ground-state degeneracy and ground-state enp@py a convenient way to introduce a controlled amount of disor-
spin?! After some algebra we obtai, in terms of the der and to extend the analysis into a regbsp<1 that

golden mean. It vanishes amnli.e., asxx in lim x—0: remains inaccessible by present means.
*Electronic address: dancmat@attbi.com [these have been denoted “superfrustrated” by AtoSiiid. 44,
1Basically, extending R. Liebmann’s treatiSeatistical Mechanics 121(1981).]
of Periodic Frustrated Ising SysteniSpringer-Verlag, Berlin,  1%We restrict ourselves to zero fieldsence to zero-field suscepti-
New York, 1986. bility) in order to be able to solve the various models explicitly.
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