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Exact solution for spin-orbiton excitations on a ferromagnetically ordered finite chain
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The finite chain of singly occupied twofold degenerate orbital sites with Hund’s rule coupling is considered.
The equation of motion for the combined spin and orbital excitation is solved exactly. The structure and
stability of bound versus scattered states are examined and the critical momenta for state crossing are deter-
mined. The solutions are also extended to the thermodynamic limit of an infinite chain and compared to the
existing spin-orbiton descriptiorf&an den Brinket al, Phys. Rev. B58, 10276(1998]. The possibility to
probe orbiton dynamics via spin excitations is discussed.
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I. INTRODUCTION N-1

H==2 [3sS-S 13T Tiva+43sx(S- S
Orbital degrees of freedom are especially important for 1=0

the systems containing transition metal ions with degenerate T

><(Tl'T|+1)]u (1)
or pseudodegenerate strongly correlated energy levels such
as cuprates, manganates, and vanadates. Besides of the intehere bothS andT, are spin-1/2 angular momentum opera-
est related to the emerging new materials and their applicaeors describing spin and orbital degrees of freedom, respec-
tions, these systems have attracted a large interest for thetively, on a chain ofN sites with periodic boundary condi-
fundamental properties. Ordering and excitations of chargejons and the subscripts of the constahtefer to respective
spin, orbital, and other degrees of freedom in such systemsouplings. Qualitative arguments and the energy spectrum
are deeply interconnected, giving rise to a variety of newwere given to prove the existence of the combined bound
properties(see Ref. 1 for a reviewA recent example is the state for arbitrary interaction strendtin analogy with the
experimental observation of the orbiton, a fundamental excitwo-magnon excitation in a simple ferromagn@dtis bound
tation in a solid with long-range ordering of electron orbitals, state was found to be the lowest-energy elementary excita-
LaMnOs.? The low-energy excitations can be described bytion of the system. We show that in the thermodynamic limit
means of effective models after projecting on the subspace ahere exist two combined bound-state mod&3)(that differ
a relevant energy scale; for example, see Ref. 3. Generallpy symmetry of the wave function but have the same disper-
the coupling constants in such models are anisotropic, ansion. However, these are not the lowest-energy excitations:
antiferromagnetic ordering of one subsystem favors ferrofor any choice of parameters corresponding to the ferromag-
magnetic ordering in the other one. However, there can exigietic ground state either the two-magnd®g or the two-
situations when both subsystems order ferromagneticallyorbiton (TT) modes, or both of them have a lower excitation
These can be associated with phase-separated or stripgergy at any momenta. Moreover, if magnons and orbitons
phases observed at certain doping in manganites with colograve a different stiffness, i.ex=Js—J1#0, there exists a
sal magnetoresistance such as;LgCa,MnO; or in  critical value ofx beyond which theST bound state disap-
transition-metal oxides such as NaNi@ith a layered frus- pears at the edge of the Brillouin zorle= . For a finite
trated lattice. A completely ferromagnetically coupled systemattice the instability of th&S T excitation becomes even more
was considered in Ref. 4, where a new type of compositegramatic. The spectrum splits into two branches and both
spin and orbital, bound excitation was described in the thernound states merge with the continuum of scattered states in
modynamic limit on one- and two-dimensional lattices. finite areas close to the=0 andP= . This behavior is in
Bound excitations, being the lowest in energy, can be vergontrast to the puré&Sor TT excitations, where a stable
important for the low-temperature response of the systemhound state exists for arbitrary momenta.

for the formation of inhomogeneous phases and others. In The spin-orbiton excitation is defined in the usual way,
the present paper we describe an exact solution of this model

for a finite chain. It allows us to obtain a deeper insight into . o

the nature of the spin-orbiton excitation. It turns out that to )= 2 1 aSﬂnl'nZ)Sannzlm'
understand the specific features of the bound excitation it is . . .
important to analyze the spectra of the scattering statedvhere the ground stat®) is the fully aligned state of maxi-

which are difficult to observe within the thermodynamic MumSandT. By separating the total momentufhwe in-
limit treatment itself. troduce the amplitude of the relative distante n,—n; be-

tween spin and orbital flips,
IIl. THE EQUATION OF MOTION

. NNy
We consider the following Hamiltonian describing the aST(nlanZ):eXF<|P 5 )A(X), 2
low-energy spin and orbital excitations of electrons in doubly
degenerate orbital states: which is decomposed in the Fourier series
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1 where we have introduced two phase variables:
AX)=—= X expiQX)B(Q). 3)
W - P\ Js—Jr
From the periodic boundary conditionsag{(n;,n,) o=arctanta 2 2+Js+ 37’ ™

=ag7(ny+N,n,+N) andagy{(ny,n,)=agny,n,+N) one
obtains the quantization of the total momentui cog d) E
=2wk/IN, k=0,1, ... N—1 and a relation satisfied by the v=arccos% (

amplitude of relative motion cogPI2) |7 2+3s+37) )
A(X)=exp(imk)A(X+N). (4) Iterating the definition of the constantC=(4/
N)ZoB(Q)[ cosfP/2) — cosQ] leads to the eigenenergy equa-

The latter allows us to classify the states into symmeBjc
and antisymmetri¢a) categories, depending on even or odd
values ofk. As a consequence of this relation one obtains

tion

two sequences of values f@ in the Fourier expansio(B): 1o 4 cog9) Nz_l [cog P/2) — cosQp,]?
Q*=2mm/N or Q*=2m(m+3)/N, m=0,1,... N—1. By ~ N(2+Jg+J1)cog P/2) #=o coshv —codQ,—8)
taking the Fourier transform of the equation of motion we (8)
obtain

The integral form of this equation fad—oc coincides with
_ E_ the result in Ref. 4 up to a factor of 2 used to scale the
1-co Q ; : . . .
2 coupling constants. The meaning of introducing the variables
in Eqg. (7) becomes now clear: bound states, if any, corre-

B(Q)[E—(Js+ 1

—(J;+1)| 1 cos(E +Q spond to a real-valued positive solution foin Eq. (8) while
2 scattered states, which are related to the singularities of the
p 1 denominator, correspond to purely imaginary valuew of
=4 Cog<_ —cos{Q)}— E B(Q’) The threshold value =0 establishes a separation line be-
2 N & tween the two types of solutions:
P
X cos(E) —coR’ |, (5) Ec=2+Js+J7
where the excitation enerdy and the coupling constants are _ \/ E Y
scaled with the spin-orbital coupling constat—E/Jst, 4CO§<2 (1+IN(A+HI9+Us= )% (9
Js—JIs/IsT, J1—J7/Js7. For a fixed momentur® the am-
plitude is The phased quantifies the difference of dynamic properties
of magnon and orbiton excitations throughout the Brillouin
Ccosd cogP/2) —cosQ zone. The values of [ 0,7/2] and increase from the center

B(Q)= cog P/2)(2+2J:+x) coshv —cogQ— &)’ ©  towards the edge.

IIl. EXACT SOLUTION FOR THE FINITE CHAIN

To solve Eq.(5) we use the following general expressions for finite sydetails of derivation to be given elsewhgre

sinho &' SIM(ON+2am/N)X] 1 sin (o +i8)(N2=X)+16/2] 1 sinH (v —i8)(N/2—X) =i 6/2]

N mzzo coshv —cog 6/N+8+2am/N)  2i  sinH(v+ido)N/2+i6/2]  2i  sinH(v—i8)N/2—i6/2]

sinhy "o cog (8/N+2mm/N)X] B cosh (v +id)(N/2—X)+i6/2] N cosh (v —16)(N/2—X)—i6/2] 0
N & coshv—coq /N+6+27m/N) 2 sinH (v+i8)N/2+i6/2] 2sinj(v—i8)N/2—i6/2] ' (10

where the phase variables can take complex values<and,N— 1]. Extension outside the physical interval is described by

Eq. (4). For instance, one can check that wifl0) Bethe’s solution for a spin chain is recovered at once without making an
ansatz. We note that for the considered system the solution of Bethe'’s problem describes either the two magnon or two orbiton
excitation with renormalized exchange interactidssds+JgrandJ=J;+ Jg7respectively. The values @ffor the combined

ST excitation are fixed by the conditiofi=PN in (10). As a result we obtain the following equation for the eigenenergy,
irrespective of the symmetry of the mode:

224413-2



EXACT SOLUTION FOR SPIN-ORBITON EXCITATION . . . PHYSICAL REVIEW B 67, 224413 (2003

P _ P . sinh(v)

COS(E)—G vcog ) COS(E)—e vcog d) — c0%9)
exg —N(v+id)]

T coPN)—exd —N(v+19)]
exg —N(v—id)]

cogPN)—exd —N(v—i6)]

(Jst+JIt—2)cogP/2)sinh(v) B
4 cog 6) B

P 2
cos(E) —cosrﬁ(v+i5)]}

P 2
cos(§>—cosrﬁ(v—i5)]) . (11

One can notice that the wildly oscillating terms containingmeans that in the critical regions of the Brillouin zone that
(8N) in the last two lines of the equation are suppressed irscale asN Y close toP=0 andN~*2 close toP= 7 one
thermodynamic limit, provided we are considering the bounchas to observe reentrant behavior of bound states. This be-
states(real and positive values af). In the simplest case, havior is a consequence of the radical change of the structure
Js=Jt, the behavior of th&T states is qualitatively similar of scattering bands. Figure 1 illustrates the effect interaction
to that of SSor TT excitations and coincides with Bethe’s has on the combined orbiton and magnon excitation bands at
solution whenJs=J;=Jg7. For instance, one finds that a finite N. Due to the energy splittings at the crossings of non-
stable bound state exists for an arbitrary magnitude of counteracting bands, the spectrum of the interacting bands ac-
pling constants at any finite momerfaAs in Bethe’s solu- quires a layered structure with undulations within the layers.
tion, the antisymmetric bound state becomes unstable andls a result, the lowest-energy dispersion curve is formed
decays into scattering states in the long-wavelength region ofthich corresponds to the “reentrant” bound state as is
the Brillouin zone, which scales as\IM. However, as soon shown for the symmetric state by “zooming” into the area
asJg andJ; become different, the distinctive features of the adjacent to the lower boundary of the scattered stat¢B)

ST excitations begin to emerge. Both symmetric and antiin Fig. 2. The difference between symmetric and antisym-
symmetric bound states states become unstable at small m@etric states, which is very significant for purely spin
mentaP, i.e., they cross the boundary of scattering states a@xcitations] is almost completely eliminated for the com-
someP=P.<1. Let us consider the symmetric excitation. bined excitations, as can be seen by comparing Figs. 2 and 3.

Solving Eq.(11) for v(P.)=0 leads to The period of the undulations of tf&T bands is determined
by 6 andN. It decreases towards small momenta, where the
4 2 i Js—Jt PN bands become more similar to the monotonous SS bands
Pe=y(JsT Jr—2)sir? 2435t 3, 4 ) (see, e.g., Ref.)af 8 andN are small enough. At first sight,

the short-wavelength behavior seems to be in contradiction
(2+J3s+J1)? \? ( 1) with the physical arguments and calculations presented in
)
2

(Jst1)(I++1)

(12 Ref. 4. For instance, the short-wavelength instability of the
bound state “survives” even in the thermodynamic limit. If

Not only does the symmetric state become unstable, but aldhe Stiffness of orbitons is close to that of magnons one in-
the region of instability has become discontinuous due to the
oscillating term. But most unexpectedly, an instability ap-
pears forshort wavelengths of the excitation, where one

would normally expect the strongest binding and localization 8
to take place. Indeed, fqds— J¢|>4Jst a rather broad in-
stability region is found from Eq(11) close to the edge of 6

the Brillouin zone r—P)<1:

)

o WsmIrma3s-dr| (PN|| (1
T 2N I+l 4 N/’
(13

where we have assumed tha>J;+4. If, alternatively, e ‘ ‘ ‘ ‘
J;>Jgst+4, then the indiceSandT have to be interchanged.
The same equations hold for the antisymmetric excitation by
replacing sin with cos in Eq¢12) and(13). We note that the FIG. 1. Dispersion curves of the combined antisymmetric spin-
long-wavelength critical point has moved to larger momentéyhiton excitation on a finite chain witN==8, Js=Js7,Jr=2Js7
P.~N~"*as compared to Bethe's spin ch&g~N""% but a5 defined by the solutions of EQ.1). The dotted line corresponds
most remarkably, the above equation contains multiple soluto vanishing interaction of the pseudoparticles:0 in Eq.(7). The
tions for P, for any finite Js# J; because of the oscillating continuous lines belowabove it correspond to bounéscattering
terms on the right-hand sidéhs) of the equations. This states, respectively.
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FIG. 2. A few low-energy dispersion curves of the symmetric /\ A
spin-orbiton excitation foN=62Js=Jg7,J1=6Js7. The energy 0] ‘0‘5‘ T
of excitations is measured with respect EQ(P), which corre- e

sponds taw=0. The lowest curve illustrates the reentrant behavior

of the bound state at long and short wavelengths of the excitation.
FIG. 3. Dispersion curves of the antisymmetric spin-orbiton ex-

deed finds a stable bound state for the whole Brillouin zonéitation forN=62Js=Js7,Jr=6Js7. The energy of excitations is
in analogy with the two-magnon probleéhnHowever, at measured with respect #,(P) as in Fig. 2.
larger values the spin-orbiton bound state disappears at the o
edge of the Brillouin zone despite the Goldstone mode sinthe one found by Bethe. However, the situation changes
gularity, keeping its energy away from merging with con- qualitatively when|Js—J[#0. This is reflected in the ex-
tinuum. Indeed, from the definitior{g) we haves— /2 and  Plicit form of the wave function following from the expres-
sions(10):
cog P/2) |3+ —Jg

_ _ [N exdv(N/2—X)]
S 2+Jg+J ~ 5
cosd) |, stdr A(X) eXF{"S(z X) (sini‘n{N[u+i(P+5)]/2}

exi] — v (N/2—X)] )
T SN[ —1(P+8)1/2} )"

After substitution into Eq(11) we obtain a simple relation:

93
4

(14
First we note that a difference in the stiffness of the excita-

Since for a bound state should be real and positive, this tions means that the pseudo-particles move over the lattice
equation does not have solutions fidis—J¢|>4. At the  with different velocity. From Eqg6)—(8) it also follows that
critical point the energy of the bound state reaches the loweé is a measure of momentum exchanged between the two
boundary of the band of scattered staigs Eq. (9). Above interacting pseudoparticles, and it becomes nonzero as soon
this threshold Eq(14) is no longer valid since becomes as|Js—J¢|#0. This produces an oscillating factor eiff)
purely imaginary and the description of the band of scatterin the wave function. At short wavelengths we hage
ing states requires knowledge of finite size corrections con-- /2 and the wave function changes sign on the distance of
tained in Eq.(11). Thus, for|Js—J¢|>4 theSTbound state a lattice spacing. The dynamic potential represented by the
exists at the intermediate momenta outside the critical revariablev should be strong enough to make the binding pos-
gions described by Egq$12) and(13) and its energy almost sible. For the spin-spin problem, for instance, this is
coincides with the lower boundary of scattered states. Thesachieved due to the divergencewft P= 7, which leads to
features demonstrate that the binding of mixed spin and ora strongly bound state of two spin deviations localized on
biton excitations can actually be very weak even if §i€  strictly nearest-neighbor sites. But the dynamic potential it-
coupling is significant. self depends on the differendg—J; and, as follows from

To understand the physical reason of these instabilities iEq. (14), decreases very fast until it reaches zero at the criti-
is necessary to consider the behavior of 8ilEwave func- cal value. Diminishing) leads to a more delocalized shape
tion on a finite chain. On one side, there is indeed an energygf the wave function, which allows the oscillating term to
gain for the spin and orbital excitations to occur within the annihilate the effect of the attractive potential. This results in
range of theST coupling as explained in Ref. 4. Conse- formation of a scattering or a resonance state, shown in Fig.
qguently, one expects that, just as in the spin-spin problem, 4. Away from the edge of the Brillouin zone the phase angle
tightly bound spin-pseudospin soliton is formed which § becomes smaller and the bound state is stabilized at inter-
moves as a single entity over the lattice. The larger the nummediate momenta as illustrated by Figs. 3 and 4. However,
ber of excited spins, the larger the energy gain of havinghe competition of bindingy, and unbindingg, tendencies
droplets of such excitations. This is essentially the mechaedetermines the reentrant behavior in the critical regions, Egs.
nism of domain wall formation that clearly remains valid for (12) and (13). At longer wavelengths the bound state be-
the spin-orbiton system, providedk=J;. One obtains a comes unstable again due to the large extent of the wave
stable bound state for any momenta that behaves similarly ttunction that has nodes’¢0) even for the symmetric state
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FIG. 4. The resonance behavior of the relative amplitude of the
symmetric state on a chain witi=20 and|Js— J{|>4Jg7 for a FIG. 5. Long-wavelength behaviour of the relative amplitude of
short-wavelength excitatiol?< . the symmetric state?<1, for [Jg—J¢|#0.
as shown in Fig. 5. In a two-dimension&D) system the 1/P\2 p4
same physical mechanisms are operative, but the critical re- Est— ESS:E(E) (Jr—J9+ 3—84(6+7J5—JT)+ R

gions are governed by logarithmic terms M) instead of
power law dependenciésTherefore one has to expect that
bound spin and orbital excitations would exist in a much 1/p\2 p4

more restricted region of the Brillouin zone at intermediate g_ ETT:_<_) (Js=J)+ == (6+7Ir—=Jg)+ - -.
momenta. In a 3D system bound states are likely not to ap- 212 384

pear at all even in the thermodynamic limit.

Another gl_lstmctlve property of thSTexu_tatpns Is their These splittings become larger towards the edge of the Bril-
stronger ability to destroy long range ordering in the SyStemlouin Sone

Coupling of magnons and orbitons due to the biquadratic It was pointed out above that for the combined excitations

term in the Hamiltoniaril) acts to diminish the energy of the . X
. o . . he differences due to symmetry of the excited state are much
combined excitation. This leads to a stronger restriction suc o
o i ess pronounced than those for the SS excitations. In one-
excitations set on the stability of the ground state, as com-

. . I - dimensional systems such differences are relatively small
pared to pure spin or orbital excitations. The restriction re-

quires that excitation enerdy be positive. Keeping only the and vanish very fast in the limi-—z. For instance, the

main terms in Eq(11) for the P<1 expansion we find in the long-wavelength instability .Of the _antlsymmetrlc two-
magnon bound state occurs in the region where the so called

limit N—c, string hypothesis breaks dowsee, e.g., Refs. 8 and.9he
) origin of this instability can be explained as follows. The
(Jst+Jr—2)sinh(v) E U_2+E P\ flipped spins tend to be located nearby with a probability
4 12435137 Iz T 212) | distribution decaying with lattice distance. The quantum na-

(15  ture of the excitation allows a formation of an “antibonding”
(antisymmetri¢ state. The nodal point of this state corre-

The terms withv on the rhs. can be neglected in the limit sponds to large separation of flipped spins. Reaching such a
P—0 and we obtain the conditiods+Jr—2>0, which  separation becomes possible for a long-wavelength excita-
was found in Ref. 4 by solving a two-site problem. Thetion and therefore leads to the dissociation into scattered
above result seems to imply that the combined excitatiorstates® Thus, the critical region is in fact determined by the
also sets the lowest-energy scale for the elementary excitaanishing of the dynamic interactiom, However, beyond
tions. However, we show below that it actually never is thethe critical point these states remain special in the sense that
lowest one and in the thermodynamic limit either ®8or  they still conserve some solitonic features even within the
theTT (or both bound states have a lower dispersion in theband of scattered states. For instance, they have the lowest
whole Brillouin zone. The energies of the latter dfgs energy and the most flat dispersion or a “heavier mass,”
=(Js+1)sirf(P/2) and Eqr=(J;+1)sirf(P/2), respec- which leads to a sharp density of states. In higher dimensions
tively. The long-wavelength solution for th8 T excitation one expects that such excitations would become resonance

follows from Eq.(15): states in the limitN—o.'%1? The different nature of mag-
nons and orbitons leads to an oscillatory character of the
8 wave function at all momenta. This causes the dynamic in-
Py 1 2+3s+37 (P ; ;
Egr=2(2+Jg+Ip)si| = | — = —————| = teraction to vanish not only at long but also at short wave-
4] 2 (Jgt+31—2)%\2 lengths irrespective of the symmetry. Also for higher-

dimensional systems only small differences due to symmetry
Therefore at small momenta at least one of the splittings o$hould be expected for 8T excitation. This is in contrast
the respective dispersions is always positive: with purely spin excitations, where bound states of different
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symmetry are well separated in enetdy.Instead, several dispersion is yet to be studied. But the exact solution for a
closely lying resonances should be observed inside the comliscrete chain reveals a qualitative difference of the energy

tinuum of scattering states. spectrum in such bands as compared to the magnon bands.
Interaction in magnon bands produces a uniform shift of
IV. DISCUSSION noninteracting magnons without changing their structure.

) o ) The ST bands, on the contrary, undergo a radical change

The exact solution for a finite chain presented above hagom smooth magnonlike in the absence of interaction to a
allowed revelation of several distinctive properties of thejayered structure with ridge-shaped individual subbands.
combined spin-orbiton excitations that are important for thegch a structure can have a large effect on renormalizing the
understanding of their nature. It suggests that in a realistighagnon spectrum, especially at short wavelengths, where os-
situation these excitations are more likely to be found in &;jjations in the wave function and energy dispersion are the
resonant state within the continuum of scattering states thaggest. The splitting of orbital energy levels due to anisot-
as true bound states. Despite setting stronger restrictions Qpy crystal field, etc., would shift the spectrumST exci-
the stability of the ordered phase, the combined spin-orbitoR,tions to higher energies without changing the intrinsic
excitations have a higher energy and are less stable thagj,cture of the bands.
excitations of the spin or orbital subsystems. This, however,
opens a possibility to probe the orbiton dynamics via excita-
tions of the spin subsystem, e.g., by neutron scattering. Cou-
pling to the orbital degrees of freedom would produce then
resonances in the magnon excitation spectrum when the Financial support from the Concerted Action Scheme of
magnon dispersion crosses with tB& resonance. The over- the Flemish Government and from the National Science
all effect of the band of scattering states on the one-magnoRoundation(FWO) is gratefully acknowledged.
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