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Exact solution for spin-orbiton excitations on a ferromagnetically ordered finite chain

S. Cojocaru* and A. Ceulemans
Division of Quantum Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

~Received 22 December 2002; published 13 June 2003!

The finite chain of singly occupied twofold degenerate orbital sites with Hund’s rule coupling is considered.
The equation of motion for the combined spin and orbital excitation is solved exactly. The structure and
stability of bound versus scattered states are examined and the critical momenta for state crossing are deter-
mined. The solutions are also extended to the thermodynamic limit of an infinite chain and compared to the
existing spin-orbiton descriptions@Van den Brinket al., Phys. Rev. B58, 10 276~1998!#. The possibility to
probe orbiton dynamics via spin excitations is discussed.
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I. INTRODUCTION

Orbital degrees of freedom are especially important
the systems containing transition metal ions with degene
or pseudodegenerate strongly correlated energy levels
as cuprates, manganates, and vanadates. Besides of the
est related to the emerging new materials and their app
tions, these systems have attracted a large interest for
fundamental properties. Ordering and excitations of cha
spin, orbital, and other degrees of freedom in such syst
are deeply interconnected, giving rise to a variety of n
properties~see Ref. 1 for a review!. A recent example is the
experimental observation of the orbiton, a fundamental e
tation in a solid with long-range ordering of electron orbita
LaMnO3.2 The low-energy excitations can be described
means of effective models after projecting on the subspac
a relevant energy scale; for example, see Ref. 3. Gener
the coupling constants in such models are anisotropic,
antiferromagnetic ordering of one subsystem favors fe
magnetic ordering in the other one. However, there can e
situations when both subsystems order ferromagnetic
These can be associated with phase-separated or s
phases observed at certain doping in manganites with co
sal magnetoresistance such as La12xCaxMnO3 or in
transition-metal oxides such as NaNiO2 with a layered frus-
trated lattice. A completely ferromagnetically coupled syst
was considered in Ref. 4, where a new type of compos
spin and orbital, bound excitation was described in the th
modynamic limit on one- and two-dimensional lattice
Bound excitations, being the lowest in energy, can be v
important for the low-temperature response of the syst
for the formation of inhomogeneous phases and others
the present paper we describe an exact solution of this m
for a finite chain. It allows us to obtain a deeper insight in
the nature of the spin-orbiton excitation. It turns out that
understand the specific features of the bound excitation
important to analyze the spectra of the scattering sta
which are difficult to observe within the thermodynam
limit treatment itself.

II. THE EQUATION OF MOTION

We consider the following Hamiltonian describing th
low-energy spin and orbital excitations of electrons in dou
degenerate orbital states:
0163-1829/2003/67~22!/224413~6!/$20.00 67 2244
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H52 (
i 50

N21

@JSSi•Si 111JTT i•T i 1114JST~Si•Si 11!

3~T i•T i 11!#, ~1!

where bothSi andT i are spin-1/2 angular momentum oper
tors describing spin and orbital degrees of freedom, resp
tively, on a chain ofN sites with periodic boundary condi
tions and the subscripts of the constantsJ refer to respective
couplings. Qualitative arguments and the energy spect
were given to prove the existence of the combined bou
state for arbitrary interaction strength4 in analogy with the
two-magnon excitation in a simple ferromagnet.5 This bound
state was found to be the lowest-energy elementary exc
tion of the system. We show that in the thermodynamic lim
there exist two combined bound-state modes (ST) that differ
by symmetry of the wave function but have the same disp
sion. However, these are not the lowest-energy excitatio
for any choice of parameters corresponding to the ferrom
netic ground state either the two-magnon (SS) or the two-
orbiton (TT) modes, or both of them have a lower excitatio
energy at any momenta. Moreover, if magnons and orbit
have a different stiffness, i.e.,x[JS2JTÞ0, there exists a
critical value ofx beyond which theST bound state disap
pears at the edge of the Brillouin zone,P5p. For a finite
lattice the instability of theSTexcitation becomes even mor
dramatic. The spectrum splits into two branches and b
bound states merge with the continuum of scattered state
finite areas close to theP50 andP5p. This behavior is in
contrast to the pureSS or TT excitations, where a stabl
bound state exists for arbitrary momenta.

The spin-orbiton excitation is defined in the usual way

uc&5 (
0<n1 , n2<N21

aST~n1 ,n2!Sn1

2 Tn2

2 u0&,

where the ground stateu0& is the fully aligned state of maxi-
mum S and T. By separating the total momentumP we in-
troduce the amplitude of the relative distanceX5n22n1 be-
tween spin and orbital flips,

aST~n1 ,n2!5expS iP
n11n2

2 DA~X!, ~2!

which is decomposed in the Fourier series
©2003 The American Physical Society13-1
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A~X!5
1

AN
(
Q

exp~ iQX!B~Q!. ~3!

From the periodic boundary conditionsaST(n1 ,n2)
5aST(n11N,n21N) andaST(n1 ,n2)5aST(n1 ,n21N) one
obtains the quantization of the total momentumP
52pk/N, k50,1, . . . ,N21 and a relation satisfied by th
amplitude of relative motion

A~X!5exp~ ipk!A~X1N!. ~4!

The latter allows us to classify the states into symmetric~s!
and antisymmetric~a! categories, depending on even or o
values ofk. As a consequence of this relation one obta
two sequences of values forQ in the Fourier expansion~3!:
Qs52pm/N or Qa52p(m1 1

2 )/N, m50,1, . . . ,N21. By
taking the Fourier transform of the equation of motion w
obtain

B~Q!H E2~JS11!F12cosS P

2
2QD G

2~JT11!F12cosS P

2
1QD G J

524FcosS P

2 D2cos~Q!G 1

N (
Q8

B~Q8!

3FcosS P

2 D2cosQ8G , ~5!

where the excitation energyE and the coupling constants a
scaled with the spin-orbital coupling constantE→E/JST,
JS→JS /JST, JT→JT /JST. For a fixed momentumP the am-
plitude is

B~Q!5
C cosd

cos~P/2!~212JT1x!

cos~P/2!2cosQ

coshv2cos~Q2d!
, ~6!
22441
s

where we have introduced two phase variables:

d5arctanF tanS P

2 D JS2JT

21JS1JT
G , ~7!

v5arccoshF cos~d!

cos~P/2! S 12
E

21JS1JT
D G .

Iterating the definition of the constant C5(4/
N)(QB(Q)@cos(P/2)2cosQ# leads to the eigenenergy equ
tion

15
4 cos~d!

N~21JS1JT!cos~P/2! (
m50

N21
@cos~P/2!2cosQm#2

coshv2cos~Qm2d!
.

~8!

The integral form of this equation forN→` coincides with
the result in Ref. 4 up to a factor of 2 used to scale
coupling constants. The meaning of introducing the variab
in Eq. ~7! becomes now clear: bound states, if any, cor
spond to a real-valued positive solution forv in Eq. ~8! while
scattered states, which are related to the singularities of
denominator, correspond to purely imaginary values ofv.
The threshold valuev50 establishes a separation line b
tween the two types of solutions:

Ec521JS1JT

2A4 cos2S P

2 D ~11JT!~11JS!1~JS2JT!2. ~9!

The phased quantifies the difference of dynamic properti
of magnon and orbiton excitations throughout the Brillou
zone. The values ofdP@0,p/2# and increase from the cente
towards the edge.
by
an

o orbiton

gy,
III. EXACT SOLUTION FOR THE FINITE CHAIN

To solve Eq.~5! we use the following general expressions for finite sums~details of derivation to be given elsewhere!:

sinhv
N (

m50

N21
sin@~u/N12pm/N!X#

coshv2cos~u/N1d12pm/N!
5

1

2i

sinh@~v1 id!~N/22X!1 iu/2#

sinh@~v1 id!N/21 iu/2#
2

1

2i

sinh@~v2 id!~N/22X!2 iu/2#

sinh@~v2 id!N/22 iu/2#

sinhv
N (

m50

N21
cos@~u/N12pm/N!X#

coshv2cos~u/N1d12pm/N!
5

cosh@~v1 id!~N/22X!1 iu/2#

2 sinh@~v1 id!N/21 iu/2#
1

cosh@~v2 id!~N/22X!2 iu/2#

2 sinh@~v2 id!N/22 iu/2#
, ~10!

where the phase variables can take complex values andXP@0,N21#. Extension outside the physical interval is described
Eq. ~4!. For instance, one can check that with~10! Bethe’s solution for a spin chain is recovered at once without making
ansatz. We note that for the considered system the solution of Bethe’s problem describes either the two magnon or tw
excitation with renormalized exchange interactions:J5JS1JST andJ5JT1JST respectively. The values ofu for the combined
ST excitation are fixed by the conditionu5PN in ~10!. As a result we obtain the following equation for the eigenener
irrespective of the symmetry of the mode:
3-2
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~JS1JT22!cos~P/2!sinh~v !

4 cos~d!
5FcosS P

2 D2e2vcos~d!GFcosS P

2 D2e2vcos~d!2
sinh~v !

cos~d! G
1

exp@2N~v1 id!#

cos~PN!2exp@2N~v1 id!# FcosS P

2 D2cosh@~v1 id!#G2

1
exp@2N~v2 id!#

cos~PN!2exp@2N~v2 id!# FcosS P

2 D2cosh@~v2 id!# D 2

. ~11!
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One can notice that the wildly oscillating terms containi
(dN) in the last two lines of the equation are suppressed
thermodynamic limit, provided we are considering the bou
states~real and positive values ofv). In the simplest case
JS5JT , the behavior of theST states is qualitatively simila
to that of SSor TT excitations and coincides with Bethe
solution whenJS5JT5JST. For instance, one finds that
stable bound state exists for an arbitrary magnitude of c
pling constants at any finite momentaP. As in Bethe’s solu-
tion, the antisymmetric bound state becomes unstable
decays into scattering states in the long-wavelength regio
the Brillouin zone, which scales as 1/AN. However, as soon
asJS andJT become different, the distinctive features of t
ST excitations begin to emerge. Both symmetric and a
symmetric bound states states become unstable at smal
mentaP, i.e., they cross the boundary of scattering state
someP5Pc!1. Let us consider the symmetric excitatio
Solving Eq.~11! for v(Pc)50 leads to

Pc
45

2

N
~JS1JT22!sin2S JS2JT

21JS1JT

PcN

4 D
3S ~21JS1JT!2

~JS11!~JT11! D
2

1OS 1

N2D . ~12!

Not only does the symmetric state become unstable, but
the region of instability has become discontinuous due to
oscillating term. But most unexpectedly, an instability a
pears forshort wavelengths of the excitation, where on
would normally expect the strongest binding and localizat
to take place. Indeed, foruJS2JTu.4JST a rather broad in-
stability region is found from Eq.~11! close to the edge o
the Brillouin zone (p2P)!1:

Pc5p2
AJS2JT24

A2N

JS2JT

JT11 UsinS PcN

4 D U1OS 1

ND ,

~13!

where we have assumed thatJS.JT14. If, alternatively,
JT.JS14, then the indicesSandT have to be interchanged
The same equations hold for the antisymmetric excitation
replacing sin with cos in Eqs.~12! and~13!. We note that the
long-wavelength critical point has moved to larger mome
Pc;N21/4 as compared to Bethe’s spin chainPc;N21/2, but
most remarkably, the above equation contains multiple s
tions for Pc for any finiteJSÞJT because of the oscillating
terms on the right-hand side~rhs! of the equations. This
22441
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means that in the critical regions of the Brillouin zone th
scale asN21/4 close toP50 andN21/2 close toP5p one
has to observe reentrant behavior of bound states. This
havior is a consequence of the radical change of the struc
of scattering bands. Figure 1 illustrates the effect interact
has on the combined orbiton and magnon excitation band
finite N. Due to the energy splittings at the crossings of no
interacting bands, the spectrum of the interacting bands
quires a layered structure with undulations within the laye
As a result, the lowest-energy dispersion curve is form
which corresponds to the ‘‘reentrant’’ bound state as
shown for the symmetric state by ‘‘zooming’’ into the are
adjacent to the lower boundary of the scattered statesEc(P)
in Fig. 2. The difference between symmetric and antisy
metric states, which is very significant for purely sp
excitations,7 is almost completely eliminated for the com
bined excitations, as can be seen by comparing Figs. 2 an
The period of the undulations of theST bands is determined
by d andN. It decreases towards small momenta, where
bands become more similar to the monotonous SS ba
~see, e.g., Ref. 6! if d andN are small enough. At first sight
the short-wavelength behavior seems to be in contradic
with the physical arguments and calculations presented
Ref. 4. For instance, the short-wavelength instability of t
bound state ‘‘survives’’ even in the thermodynamic limit.
the stiffness of orbitons is close to that of magnons one

FIG. 1. Dispersion curves of the combined antisymmetric sp
orbiton excitation on a finite chain withN58, JS5JST,JT52JST

as defined by the solutions of Eq.~11!. The dotted line correspond
to vanishing interaction of the pseudoparticles:v50 in Eq.~7!. The
continuous lines below~above! it correspond to bound~scattering!
states, respectively.
3-3
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S. COJOCARU AND A. CEULEMANS PHYSICAL REVIEW B67, 224413 ~2003!
deed finds a stable bound state for the whole Brillouin zo
in analogy with the two-magnon problem.4 However, at
larger values the spin-orbiton bound state disappears a
edge of the Brillouin zone despite the Goldstone mode
gularity, keeping its energy away from merging with co
tinuum. Indeed, from the definitions~7! we haved→p/2 and

cos~P/2!

cos~d!
U

P→p

5
uJT2JSu

21JS1JT
.

After substitution into Eq.~11! we obtain a simple relation:

uJT2JSu
4

5e2v. ~14!

Since for a bound statev should be real and positive, thi
equation does not have solutions foruJS2JTu.4. At the
critical point the energy of the bound state reaches the lo
boundary of the band of scattered statesEc , Eq. ~9!. Above
this threshold Eq.~14! is no longer valid sincev becomes
purely imaginary and the description of the band of scat
ing states requires knowledge of finite size corrections c
tained in Eq.~11!. Thus, foruJS2JTu.4 theST bound state
exists at the intermediate momenta outside the critical
gions described by Eqs.~12! and ~13! and its energy almos
coincides with the lower boundary of scattered states. Th
features demonstrate that the binding of mixed spin and
biton excitations can actually be very weak even if theST
coupling is significant.

To understand the physical reason of these instabilitie
is necessary to consider the behavior of theST wave func-
tion on a finite chain. On one side, there is indeed an ene
gain for the spin and orbital excitations to occur within t
range of theST coupling as explained in Ref. 4. Cons
quently, one expects that, just as in the spin-spin problem
tightly bound spin-pseudospin soliton is formed whi
moves as a single entity over the lattice. The larger the n
ber of excited spins, the larger the energy gain of hav
droplets of such excitations. This is essentially the mec
nism of domain wall formation that clearly remains valid f
the spin-orbiton system, providedJS5JT . One obtains a
stable bound state for any momenta that behaves similar

FIG. 2. A few low-energy dispersion curves of the symmet
spin-orbiton excitation forN562,JS5JST,JT56JST. The energy
of excitations is measured with respect toEc(P), which corre-
sponds tov50. The lowest curve illustrates the reentrant behav
of the bound state at long and short wavelengths of the excitat
22441
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the one found by Bethe. However, the situation chan
qualitatively whenuJS2JTuÞ0. This is reflected in the ex
plicit form of the wave function following from the expres
sions~10!:

A~X!;expF idS N

2
2XD G S exp@v~N/22X!#

sinh$N@v1 i ~P1d!#/2%

1
exp@2v~N/22X!#

sinh$N@v2 i ~P1d!#/2% D .

First we note that a difference in the stiffness of the exc
tions means that the pseudo-particles move over the la
with different velocity. From Eqs.~6!–~8! it also follows that
d is a measure of momentum exchanged between the
interacting pseudoparticles, and it becomes nonzero as
as uJS2JTuÞ0. This produces an oscillating factor exp(iXd)
in the wave function. At short wavelengths we haved
;p/2 and the wave function changes sign on the distanc
a lattice spacing. The dynamic potential represented by
variablev should be strong enough to make the binding p
sible. For the spin-spin problem, for instance, this
achieved due to the divergence ofv at P5p, which leads to
a strongly bound state of two spin deviations localized
strictly nearest-neighbor sites. But the dynamic potential
self depends on the differenceJS2JT and, as follows from
Eq. ~14!, decreases very fast until it reaches zero at the c
cal value. Diminishingv leads to a more delocalized shap
of the wave function, which allows the oscillating term
annihilate the effect of the attractive potential. This results
formation of a scattering or a resonance state, shown in
4. Away from the edge of the Brillouin zone the phase an
d becomes smaller and the bound state is stabilized at in
mediate momenta as illustrated by Figs. 3 and 4. Howe
the competition of binding,v, and unbinding,d, tendencies
determines the reentrant behavior in the critical regions, E
~12! and ~13!. At longer wavelengths the bound state b
comes unstable again due to the large extent of the w
function that has nodes (dÞ0) even for the symmetric stat

FIG. 3. Dispersion curves of the antisymmetric spin-orbiton e
citation for N562,JS5JST,JT56JST. The energy of excitations is
measured with respect toEc(P) as in Fig. 2.
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EXACT SOLUTION FOR SPIN-ORBITON EXCITATIONS . . . PHYSICAL REVIEW B 67, 224413 ~2003!
as shown in Fig. 5. In a two-dimensional~2D! system the
same physical mechanisms are operative, but the critica
gions are governed by logarithmic terms inN, instead of
power law dependencies.7 Therefore one has to expect th
bound spin and orbital excitations would exist in a mu
more restricted region of the Brillouin zone at intermedia
momenta. In a 3D system bound states are likely not to
pear at all even in the thermodynamic limit.

Another distinctive property of theST excitations is their
stronger ability to destroy long range ordering in the syste
Coupling of magnons and orbitons due to the biquadr
term in the Hamiltonian~1! acts to diminish the energy of th
combined excitation. This leads to a stronger restriction s
excitations set on the stability of the ground state, as co
pared to pure spin or orbital excitations. The restriction
quires that excitation energyE be positive. Keeping only the
main terms in Eq.~11! for theP!1 expansion we find in the
limit N→`,

~JS1JT22!sinh~v !

4
5S E

21JS1JT
2v D Fv2

2
1

1

2 S P

2 D 2G .
~15!

The terms withv on the rhs. can be neglected in the lim
P→0 and we obtain the conditionJS1JT22.0, which
was found in Ref. 4 by solving a two-site problem. T
above result seems to imply that the combined excita
also sets the lowest-energy scale for the elementary ex
tions. However, we show below that it actually never is t
lowest one and in the thermodynamic limit either theSSor
the TT ~or both! bound states have a lower dispersion in t
whole Brillouin zone. The energies of the latter areESS
5(JS11)sin2(P/2) and ETT5(JT11)sin2(P/2), respec-
tively. The long-wavelength solution for theST excitation
follows from Eq.~15!:

EST52~21JS1JT!sin2S P

4 D2
1

2

21JS1JT

~JS1JT22!2 S P

2 D 8

1••• .

Therefore at small momenta at least one of the splittings
the respective dispersions is always positive:

FIG. 4. The resonance behavior of the relative amplitude of
symmetric state on a chain withN520 anduJS2JTu.4JST for a
short-wavelength excitation,P&p.
22441
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EST2ESS5
1

2 S P

2 D 2

~JT2JS!1
P4

384
~617JS2JT!1•••,

EST2ETT5
1

2 S P

2 D 2

~JS2JT!1
P4

384
~617JT2JS!1•••.

These splittings become larger towards the edge of the B
louin zone.

It was pointed out above that for the combined excitatio
the differences due to symmetry of the excited state are m
less pronounced than those for the SS excitations. In o
dimensional systems such differences are relatively sm
and vanish very fast in the limitN→`. For instance, the
long-wavelength instability of the antisymmetric two
magnon bound state occurs in the region where the so ca
string hypothesis breaks down~see, e.g., Refs. 8 and 9!. The
origin of this instability can be explained as follows. Th
flipped spins tend to be located nearby with a probabi
distribution decaying with lattice distance. The quantum n
ture of the excitation allows a formation of an ‘‘antibonding
~antisymmetric! state. The nodal point of this state corr
sponds to large separation of flipped spins. Reaching su
separation becomes possible for a long-wavelength exc
tion and therefore leads to the dissociation into scatte
states.10 Thus, the critical region is in fact determined by th
vanishing of the dynamic interaction,v. However, beyond
the critical point these states remain special in the sense
they still conserve some solitonic features even within
band of scattered states. For instance, they have the lo
energy and the most flat dispersion or a ‘‘heavier mas
which leads to a sharp density of states. In higher dimens
one expects that such excitations would become reson
states in the limitN→`.11,12 The different nature of mag
nons and orbitons leads to an oscillatory character of
wave function at all momenta. This causes the dynamic
teraction to vanish not only at long but also at short wa
lengths irrespective of the symmetry. Also for highe
dimensional systems only small differences due to symm
should be expected for anST excitation. This is in contras
with purely spin excitations, where bound states of differe

FIG. 5. Long-wavelength behaviour of the relative amplitude
the symmetric state,P!1, for uJS2JTuÞ0.
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S. COJOCARU AND A. CEULEMANS PHYSICAL REVIEW B67, 224413 ~2003!
symmetry are well separated in energy.11,7 Instead, severa
closely lying resonances should be observed inside the
tinuum of scattering states.

IV. DISCUSSION

The exact solution for a finite chain presented above
allowed revelation of several distinctive properties of t
combined spin-orbiton excitations that are important for
understanding of their nature. It suggests that in a reali
situation these excitations are more likely to be found in
resonant state within the continuum of scattering states
as true bound states. Despite setting stronger restriction
the stability of the ordered phase, the combined spin-orb
excitations have a higher energy and are less stable
excitations of the spin or orbital subsystems. This, howe
opens a possibility to probe the orbiton dynamics via exc
tions of the spin subsystem, e.g., by neutron scattering. C
pling to the orbital degrees of freedom would produce th
resonances in the magnon excitation spectrum when
magnon dispersion crosses with theST resonance. The over
all effect of the band of scattering states on the one-mag

*On leave from the Institute of Applied Physics, Chis¸inău,
Moldova.

1D.I. Khomskii, Int. J. Mod. Phys. B15, 2665~2001!.
2E. Saitoh, S. Okamoto, K. T. Takahashi, K. Tobe, K. Yamomo

T. Kimura, S. Ishihara, S. Maekawa, and Y. Tokura, Natu
~London! 410, 180 ~2001!.

3K. I. Kugel’ and D. I. Khomskii, Zh. E´ksp. Teor. Fiz.64, 1429
~1973! @Sov. Phys. JETP37, 725 ~1973!#; Usp. Fiz. Nauk136,
621 ~1982! @Sov. Phys. Usp.25, 231 ~1982!#.

4J. vandenBrink, W. Stekelenburg, D.I. Khomskii, G.A. Sawatz
22441
n-

s

e
ic
a
an
on
n
an
r,
-
u-
n
he

n

dispersion is yet to be studied. But the exact solution fo
discrete chain reveals a qualitative difference of the ene
spectrum in such bands as compared to the magnon ba
Interaction in magnon bands produces a uniform shift
noninteracting magnons without changing their structu
The ST bands, on the contrary, undergo a radical chan
from smooth magnonlike in the absence of interaction t
layered structure with ridge-shaped individual subban
Such a structure can have a large effect on renormalizing
magnon spectrum, especially at short wavelengths, where
cillations in the wave function and energy dispersion are
largest. The splitting of orbital energy levels due to anis
ropy, crystal field, etc., would shift the spectrum ofST exci-
tations to higher energies without changing the intrin
structure of the bands.
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