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Ordering of the Heisenberg spin glass with the nearest-neighbor Gaussian coupling is investigated by
equilibrium Monte Carlo simulations in four and five dimensions. Ordering of the mean-field Heisenberg spin
glass is also studied for comparison. Particular attention is paid to the nature of the spin-glass and chiral-glass
orderings. Our numerical data suggest that, in five dimensions, the model exhibits a single spin-glass transition
at a finite temperature, where the spin-glass order accompanying the simultaneous chiral-glass order sets in. In
four dimensions, the model exhibits a marginal behavior. Chiral-glass transition at a finite temperature not
accompanying the standard spin-glass order is likely to occur, while the critical region associated with the
chiral-glass transition is very narrow suggesting that the dimension four is close to the marginal dimensionality.
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[. INTRODUCTION which explains the experimentally observed SG transition as
essentially chirality drivefi® Note that the numerical obser-

In numerical studies of spin glass€8G’s), much effort  vation of a finite-temperature chiral-glass transition in the 3D
has been devoted to clarify the properties of the so-calletHeisenberg SG of Refs. 6,8—12 is not inconsistent with the
Edwards-AndersofEA) model! Most of these numerical earlier observations of the absence of the conventional SG
works on the EA model have concentrated on the Ising Eforder at any finite temperature.
model. It is also very important, however, to clarify the prop-  Recently, however, in a series of numerical studies on the
erties of the corresponding Heisenberg model. This is simplgD Heisenberg EA model, Tohoku group criticized the ear-
due to the fact that many of real SG magnets are Heisenberglar numerical works, claiming that in the 3D Heisenberg SG
like rather than Ising-like in the sense that the magnetic ane spin ordered at a finite temperature and that the SG tran-
isotropy is considerably weaker than the isotropic exchanggijsion temperature might coincide with the chiral-glass tran-

H 1.2 . N
Interaction. sition temperature, i.e.Tsg=Tce>0.1%1* By contrast,

Indegd, several numerical works have bgen perfqrmed %Mukushima and Kawamura maintained that in 3D the spin
the Heisenberg EA model. Earlier numerical studies sug-

. ) : and the chirality were decoupled on sufficiently long length
gested that, in apparent contrast to experiments, the isotropic 15 . . ;
; ) : . : o Sctales, and thalsc<Tcg, ~ supporting the earlier numeri-

Heisenberg SG in three dimensiof8D) did not exhibit an cal results. The situation in 3D thus remains controversial

equilibrium SG transition at any finite temperatd@ré.This U du uch >ltuation 1 h 4 ' hed 1 \;] II h
observation leads to general belief that the weak random ti? er .:,uc cflr;:#mstgnc.es, n gE) e.rt to.sh(tab urt efr I'? t
magnetic anisotropy is crucially important in realizing a On the nature ot the ordering in » 1t mig € useiul to

finite-temperature SG transition and a stable SG phasé,tUd.y the problgm for. the g_eneral space dimens.iorllﬁ)i,ty
which causes a crossover from thig=0 isotropic Heisen- particularly for dimensions higher tham= 3. In the limit of

b behavior to th&..>0 anisotropic Isina behavior. Th infinite_ dimensior}sDeoc, the_z model reqluces to the corre-
erg benavior 1o 9 anisotropic 'sing behavior. 1ne gondmg mean-field model, i.e., the Heisenberg Sherrington-

expected Heisenberg-to-Ising crossover, however, has n koatrick (SK del. In th ¢ | weiahts of th
been observed experimentally, and this puzzle has remain rkpatric (. ) model. _n the case ot equal weights of the
erromagnetic and antiferromagnetic interactions, the SK

unexplained-? ; e . -
Meanwhile, a novel possibility was suggested by one 01rnodel is known to exhibit a single continuous SG transition.

the present author@.K.) that the 3D Heisenberg SG might Henge, in thd?ﬂoc limit, t_he_order p_arameter qf the transi-
exhibit an equilibrium phase transition at a finite tempera-io" iS the Heisenberg spin itself, with no exotic phase such

ture, not in the spin sector as usually envisaged, but in th8S the chiral—glas_s phase. Furtherm_ore, t_he SG. ordered state
chirality sector, i.e., might exhibit a chiral-glass transitfon. of the SK model is known to exhibit a hierarchical type of

Chirality is a multispin variable representing the sense or théep_ll_iﬁa-sy[]nmetry breaking?SB)ﬁ_i.re]., a fuII”RSB_. hat
handedness of local noncoplanar spin structures induced bK en, there are questions which naturally ariewhat is

oy . . S .
spin frustration. In the chiral-glass ordered state, the chirality € Is%wer critical dimensiofLCD) of the SG ordedﬁ? (i)
is ordered in a spatially random manner while the Heisenls d¢” the same as the LCD associated with the chiral-glass

berg spin remains paramagnetic. References 6,8—12 claime@dder df®?

that the standard SG order associated with the freezing of the Concerning pointi), several earlier numerical studies in-
Heisenberg spin occurred at a temperature lower than theluding the high-temperature expansidand the numerical
chiral-glass transition temperature @it Tgg<Tcg, quite  domain-wall renormalization-group calculatfolf suggested
possiblyTsg=0. It means that the spin and the chirality are thatd?® might be close to 4. Meanwhile, Anderson and Pond
decoupled on long length scaléspin-chirality decoupling ~ argued thad§G=3.18The first Monte CarldMC) simulation

In fact, based on such a spin-chirality decoupling picture, an the high-dimensional Heisenberg EA model was per-
chirality scenario of the SG transition has been advancedprmed by Stauffer and Bindéf.By studying the temporal
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decay of the EA order parameter, they suggested that a finitg;; works between all possible pairs of totdlspins with a
temperature SG order occurred =5 and 6, but not in ;a0 mean and a variandé/N

19 : A NISTIN. . .
D<4." More recently, the 4D Heisenberg EA model was  \ne perform an equilibrium MC simulation on these mod-

studied by Coluzzi by equilibrium MC simulatic.By ex-  els. In 4D, the lattices studied are the hypercubic lattices
amining the behavior of the Binder ratio, she suggested thgith N=L* sites withL=4, 6, 8, and 10, whereas in 5D,

occurrence of a finite-temperature SG transitiorDir 4 in N=L5 with L=3, 4, 5, 6, and 7. In the case of the SK
contrast to the suggestion of Ref. 19. There seems to be NRodel,N is taken to beN =32, 64, 128, 256, and 512. In all
consensus as to poifiy. cases, we impose periodic boundary conditions inDatli-

Point (ii) above is closely related to the controversy re-yactions, The sample average is taken over 64—200 indepen-
garding_whether the spin-glass and_the chiral-glass ordelgent bond realizations, depending on the system Isiaed
occur simultaneously or separately in 3D. To the authorsine |attice dimensionalitfp. Error bars of physical quantities
knowledge, no calculation has been reported concerning thgre estimated by the sample-to-sample statistical fluctuation
chiral-glass order ilD=4 dimensions so far. In the present gyer the bond realizations.
paper, we wish to fill this gap. We study both the spin-glass |n order to facilitate efficient thermalization, we combine
and the chiral-glass orders of the Heisenberg EA model iRhe standard heat-bath method with the temperature-
both 4D and 5D by means of a large-scale equilibrium MCeychange techniguié.Care is taken to be sure that the sys-
simulation. In particular, we simulate larger lattices andiem s fully equilibrated. Equilibration is checked by the fol-
lower temperatures than those covered in Ref. 20. For cOMawing procedures. First, we monitor the system to travel
parison, a simulation is also performed on the mean-fielthack and forth many times along the temperature axis during
Heisenberg SK model correspondinge==. ~the the temperature-exchange procéysically more than

Our data suggest that in 5D the model exhibits a single|g timeg between the maximum and minimum temperature
SG transition at a finite temperature reminiscent to the one ghgints. We check at the same time that the relaxation due to
the Heisenberg SK model. The chirality orders simulta-the standard heat-bath updating is reasonably fast at the high-
neously with the spin, but it behaves as the composite opergsst temperature, whose relaxation time is of ordérNiente
tor of.the spin, not as.the order parameter. The SG orderegd 1o steps per spitMCS). This guarantees that different
state in 5D accompanies a peculiar type of RSB, most probayts of the phase space are sampled in each “cycle” of the
ably a one-step-like RSB, which is different in charactertemperature-exchange run. Second, we check the stability of
from the full RSB realized in the SK model. In 4D, in con- he results against at least three times longer runs for a subset
trast, the model exhibits a pure chiral-glass transition at g samples. Third, we use the method recently developed in
finite temperature, not accompanying the standard SG ordegefs. 22,23 for the Gaussian coupling, in which a certain
The critical region associated with the chiral-glass transitionquamity is calculated in two ways, each of which is expected
however, is very narrow, suggesting that the 4D model liego approach the asymptotic equilibrium value either from

close to the marginal dimensionality. The chiral-glass or-apove or from below. Further details of our MC simulation
dered state accompanies a one-step-like RSB. are given in Table I.

The present paper is organized as follows. In Sec. I, we
introduce our model and explain some of the details of the
MC calculation. Various physical quantities calculated in our Ill. PHYSICAL QUANTITIES
MC simulation are defined in Sec. Ill. The results of our MC . . . . . -
simulation on the 4D, 5D, and SK models are presented in In this section, we define various physical quantities cal-

Sec. IV. Section V is devoted to a summary and discussion(.:m""'[Ed in our simulation below.

Il. THE MODEL AND THE METHOD A. Spin-related quantities

The model we consider is the isotropic classical Heisen- BY considering two independent systeffieplicas”) de-
berg model on a 4D or 5D hypercubic lattice, with the SCribed by the same Hamiltonigh), one can define an over-
nearest-neighbor Gaussian coupling. The Hamiltonian idap vanable_. The overlap of the Heisenberg spin is defined as
given by atensorvariableq,,, between theu and v components £,

v=X,Y,z) of the Heisenberg spin
H==2 35S, (1)

Quv=

N
2, S8 (wr=xy.2), @)

Z| -

where§=(S',9,S) is a three-component unit vector and
the(ij) sum is taken over nearest-neighbor pairs on the lat- _ R
tice. The nearest-neighbor couplidg is assumed to obey WhereS,(l) and Sl(z’ are theith Heisenberg spins of the rep-
the Gaussian distribution with a zero mean and a varianckcas 1 and 2, respectively. In our simulation, we prepare the
J2. two replicas 1 and 2 by running two independent sequences
For comparison, we also simulate the correspondingf systems in parallel with different spin initial conditions

infinite-ranged model, i.e., the Heisenberg SK model correand different sequences of random numbers. In terms of
sponding toD — . In the SK model, the Gaussian coupling these tensor overlaps, the SG order parameter is defined by
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TABLE |. Detailed conditions of the MC simulation. HerB,
represents the spatial dimensionaliythe total number of spins,
Nsampthe total number of samplell; the total number of tempera-
ture points used in the temperature-exchange run,Tanpg/J and
Tmin/d the maximum and minimum temperatures in the

temperature-exchange run. Poqsee)
D N Nsamp N+t T max/Jd Trin/Jd
44 140 20 1.0 0.16
4 6 100 34 0.65 0.21
g4 80 50 0.58 0.21
10 80 50 0.48 0.256 A g _qg‘* 0 qg“ o
Giag
3° 120 24 1.2 0.24
45 100 36 1.0 03 FIG. 1 S_ketph of th_e self-overlgp part of the diagc_)na}l §pin-
5 55 96 46 08 031 overlap distribution functltl)rPs(qdi.ag). in the thermodynamic I|m|t.,
65 96 56 0.75 0.40 expectedE\;\vhen there exists a finite SG long-range order with a
75 64 50 0.75 0537  Mnonzerods=0.
32 200 30 05 01 distributed arou.ncmwzo in theL— oo limit, anq SO iSUgiag-
64 200 30 05 0.1 In the hypothetical SQ grdered state, reflectmg the fact that
(SK) 128 200 30 05 01 Qgiag trar)sformg nontrivially under .the independent global
256 100 34 05 01 O(3) spin rotations on the two re;phcas, even a s_elf-overlap
512 100 34 05 01 part of Ps(Qgiag) de_velops a nontrivial shape, i.e., it is not a
simple delta-function located at the EA SG order parameter
+gE*. Hence, we need to clarify first how the function
Ps(dgiag 100ks like in the possible SG ordered state with a
P=[(ad], di= > di,, (3 nonzero*qS".2*
poy=xy.2 Let us hypothesize here thatspinglass ordered state
while the associated spin Binder ratio is defined by exists characterized by a nonzero EA SG order parameter

g5*>0. One can show in thé —c limit that the self-
overlap part ofPg(dgiag is given by

1(11_ [<qs>])’

=o 11— 4
B2 e @

3\3 95"~ Qdiag 05"+ Qdiag
where(- - -) represents the thermal average dnd-] the P<(ddiag) = EA EAT EA
average over the bond disorder. Note tgatis normalized 4mQs Sdiag* ds ~ 30diag+ ds

here so that, in the thermodynamic limit, they vanish in the
high-temperature phase and gives unity in the nondegenraignich is illustrated in Fig. 1. The derivation of E(7) is

ordered state. o S given in the Appendix. Note that divergingifunction peaks
The spin-overlap distribution function is originally de- appear aqdiag:i%quA not athiaQZiquA- If the SG or-

fined in the tensor space, since the relevant spin overlap hag, o4 state accompanies RSB, the associated nontrivial
3% 3=9 independent components. For the convenience ofntripution would be added to the one given by Eg.

iII_ustr_ation, we introduce here the diagonal spin-overlap disy, any case, an important observation here is that, as long
tribution function as the ordered state possesses a finite SG long-range

, , order(LRO), the diverging peak should arise iaq) at
Ps(Qdiag):[<5(qdiag_qdiag)>] (5) ( ) 'verging p . I m(leag)

=+ L4EA
leag_ T30s .
defined in terms of the diagonal overlag;,g which is the
trace of the tensor overlag,,’s

B. Chirality-related quantities

A We define the local chirality at thieh site and in theuth
Quing= 2, Qen™N > SM.§2, (6)  direction,y;,, for three neighboring Heisenberg spins by the
B=Xyz =1 scalar
Note that the spin Binder rati¢4) is defined from the full . L
tensor overlap distribution function, but cannot be derived Xin=Si+e, (SXSi-¢ ), (8)
solely from the diagonal overlap distribution function &). .
In zero field, the distribution functio®s(dgiag) is sym-  wheree, (u=X1,X, ... Xp) denotes a unit vector along

metric with respect togg,g=0. In the high-temperature the uth axis. By this definition, there are in totBIN local
phase, eacly,, (u,v=Xx,y,2) is expected to be Gaussian- chiral variables.
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In the case of the SK model, since there are no “neigh- 1 [(q“)]
bors” in the model, the definition of the local chirality ac- 9,=5| 3~ zX 2)_ (18)
companies some difficulties. Here, just for convenience, we 2 [(q))]
E;mber theN spins arbitrarily, and define the local chirality The distribution function of the chiral overlap, is defined

by
Xi= 51 (5XS-0). ® P(a))=[(8(a;~0,)]. (19

Then, there are in totdll chiral variables. B

The mean local amplitude of the chirality, may be de- IV. MONTE CARLO RESULTS
fined by

In this section, we present our MC results on the Heisen-

\/ 1 N berg EA models in 4D, 5D, and in the SK lin{itorrespond-

Y=\ — 2 ing to D=).

NN, 2, i) a0 g )
d

1=1 u=Xq,Xp, ...,
for D=4 and 5, and by A. Chiral Binder ratio
N In Fig. 2, we show the Binder ratio of the chirality in the
— /i 2 [( _2>] (11) cases ofa) 4D, (b) 5D, and(c) the SK model, respectively.
N & XD In all these caseg, exhibits a negative dip, while its tem-

_ perature and size dependence is somewhat different from

for the SK model. Note that the magnitude yptells us the  each other.
extent of the noncoplanarity of the local spin structures. In |n 4D, with increasing the lattice side the negative dip
particular, this quantity vanishes for any coplanar spin contends to deepen while the dip temperatiigg is almost kept
figuration. constant at around/J=0.38: see the inset of Fig. 2. One

As in the case of the Heisenberg spin, one can define agan also see from Fig. 2 that, for variousL cross in the
overlap of the chiral variable by considering the two replicasnegative region ofy, at temperatures slightly abovEy,.
In the cases oD =4 and 5, it is defined by The occurrence of a negative dip deepening wittaccom-
panied by a crossing on the negative sidg pf is similar to
the one previously observed in the corresponding 3D
model;°*?although, in 3D,T;, tends to shift toward lower
(1) @) ) _ temperature with increasirlg As argued in Refs. 10-12, the
wherey;,” andx;;,’ represent the chiral variables of the rep- gccurrence of a negative dip deepening Witfs a signature
licas 1 and 2, respectively. In the case of the SK model, it isf the occurrence of a phase transition in the chiral sector. By

N
1
_ 1, (2)
qX_DNIE 2 DXi,u,Xi/,L ’ (12)

=1 u=Xq.X9, ..., X

defined by making a linear extrapolation @f;,(L) with respect td_"?,
N as shown in the inset of Fig.(®@, we estimate the bulk

q :i E YDy 13) chiral-glass transition temperature @gs/J=0.392). Be-
YN low Tcg, the curves forL=6 almost merge into a curve

exhibiting the nontrivial temperature dependence. Such a be-
havior suggests that the chiral ordered state accompanies a
nontrivial phase-space structure, i.e., RSB.
q(2)=[(q2>] (14) In 5D, although the negative dip tends to deepen up to the
X X sizeL =5, it tends to become shallower foe6. In contrast
The associated chiral-glass susceptibility may be defined byo the 3D and 4D cases, the dip temperatligg tends to
shift toward higher temperature with increasihgThe ob-
X,=DN[(a3)], (15  served temperature and size dependenag, aftrongly sug-
K gests again that the limiy(L— ) corresponds to a tran-
sition temperature in the chiral sector. Thé& Fxtrapolation
of Tgip(L) to L—ce, shown in the inset of Fig.(B), yields
Xy= N[(qf()]. (16)  the estimatelcc/J=0.622).
_ _ _ . o In the SK case, the negative dip @f becomes shallower
Unlike the spin variable, the local magnitude of the chirality with increasingL, andT g, shifts toward higher temperature.
is somewhat temperature dependent. In order to take accoum the inset, T,(N) is plotted as a function ol ~1/3 25.26
of this effect, we also consider the reduced chiral-glas_s SUswhich yieldsTcg/J=0.31(2). Theestimated chiral-glass or-
ceptibility;(x by dividing x, by the appropriate powers ¢f  dering temperature agrees within errors with the exactly-
known SG transition temperature of the Heisenberg SK

In terms of this chiral overlap|,, the chiral-glass order pa-
rameter is defined by

in the cases oD =4 and 5, while in the case of the S
model, it is defined by

~ Xy model Tgg/J=1/3. This coincidence simply confirms the
Xx==%" (17 fact that, at the SG transition of the Heisenberg SK model,
N Heisenberg spins order in a noncoplanar manner, which nec-
The Binder ratio of the chirality is defined by essarily accompanies the onset of a nonzero chiral-glass
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(a) 4D chirality
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(b) 5D chirality |97 (c) SK chirality
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FIG. 2. Temperature and size dependence of the chiral Bindergatio 4D (a), 5D (b), and in the SK mode(c). In the insetsT, is
plotted versus 1/ (or versus IN™ 13 in the case of the SK model

LRO. As is evident, in the SK case, the order parameter oﬁonzeroqEA C,(t) in the L—ce limit should exhibit an
the transition is not the chirality, but the Heisenberg Sp'”upward curvature, tending tof*>0. In the disordered
X

itself. phase,C,(t) should exhibit a downward curvature. Just at
T=Tceg, the linear behavior corresponding to the power-law
decay is expected. As shown in the figures, in the time region
More direct measure of the chiral-glass transition may bevhere the finite-size effect is negligibl€, (t) shows either
obtained from the equilibrium dynamics of the model. Wea downward curvature characteristic of the disordered phase,
compute the autocorrelation function of the chirality definedor an upward curvature characteristic of the ordered phase,

B. Chiral autocorrelation function

by depending on whether the temperature is higher or lower
than a critical value. In 4D, the chiral-glass transition tem-
1 N perature estimated in this way T&g/J=0.382), while in
X(t)_D_ > > [{Xiu(to) Xiu(t+10)) ], 5D it is Tcg/J=0.602). Both are close to our estimate
Th AT (20) above based on the chiral Binder ratio. Our observation that

C,(t) exhibits an upward curvature beldlig indicates that
where the “time” t is measured here in units of MCS. In the chiral-glass ordered state is “rigid” with a nonzero long-
computing Eq(20), the simulation is performed according to range order parameter.
the standard heat-bath updating without the temperature- From the above analysis, the occurrence of the chiral-
exchange procedure, while the starting spin configuration aglass LRO in 4D and 5D seems now well established. The
t=t, is taken from the equilibrium spin configurations gen- next question is whether the chiral-glass order accompanies
erated in our temperature-exchange MC runs. the standard SG order. If the SG order occurs at the same

We show in Fig. 3 the time dependence @f(t) on a  temperature as the chiral-glass order, the transition is likely
log-log plot for the cases d&) 4D and(b) 5D. To check the to be of the standard type, at least in the sense that the order
possible size dependence, the data for the two largest lattigearameter of the transition is the spin, not the chirality.
sizes are given together, one denoted by symbols and thHglere, recall that the SG ordered state in the Heisenberg SG
other by thin lines. In the chiral-glass ordered state with @nevitably accompanies the chiral-glass order as long as the
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0.1 ——r 0.1 —— -
(a) 4D chirality (b) 5D chirality
213 o
001 F 0.01 ¢ 1
TiJ=048 =
TIJ=046
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Ct . L7//=042  » CAt 001 ETW=070  ©
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TiJ=028 « Ti=056 -+
le.os LTH=026_ , . legs IU=054_ ¢
1 10 100 1000 1 10 100 1000
t t

FIG. 3. Temporal decay of the equilibrium chiral autocorrelation function at various temperatures (& 4bd 5D (b). In (a), the
symbols represent the datalof 8 and thin lines those df=10. In(b), the symbols represent the datd 6t 6 and thin lines those df=7.
Solid straight lines represent the power-law fits of the daf&/at=0.38 (a), and atT/J=0.60 (b).

spin is frozen in a noncoplanar manneBy contrast, if the

SG order occurs at a temperature below the ordering tem-
perature of the chirality, it means the unusual situation, i.e., In Fig. 4, we show the temperature and size dependence
the occurrence of the spin-chirality decoupling, the pureof the Binder ratio of the spin in the cases(ef 4D, (b) 5D,
chiral-glass transition and the pure chiral-glass ordered statend (c) the SK model. In each figure, magnified figure is
To clarify this issue, we examine the spin Binder ratio in theembedded to show the detailed behavioggfin the region

C. Spin Binder ratio

next subsection.

of interest. The arrow in each figure indicates the location of

(a) 4D spin 038 ' '
0.8
0.6
s
0.4
L=4
0.2 f:g
L=10
0
TiJ
1 T . T T 1 T T T
(b) 5D spin L=3 —— (c) SK spin ' '
08 r f:g e 08 t I
L=7 —e— i
0.6 | ] 06t I
g, 0.6 g.
0.4 1 04  N=32 0.4 1
0.4 Nt
N=128
0.2 | N=256 |
02 r ' 02 TN=s12
0 — .
0 0.5 0.6 0.7, 0
0 0.2 04 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6
T Ti7

FIG. 4. Temperature and size dependence of the spin Bindergaiin4D (a), 5D (b), and in the SK mode(c). Magnified figures are

given as insets. The arrow in each figure represents the location of the chiral-glass transition point.
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the transition point of the chirality determined above. In 4D, In the SK case, the calculated exhibits a clear crossing

as can be seen from Fig(a}, g for the range of sizes 4 behavior at around/J=1/3, an exactly known SG transi-
<L=8 appears to almost merge at a temperaiid=0.4 tion temperature of the model. At lower temperaturgs,
close to the chiral-glass transition temperature determinethonotonically increases witN in contrast to the 4D and 5D
above. This seems to suggest that the spin sector also beases, and eventually appear to converge to the temperature-
comes critical aff=Tg, which may indicate the simulta- dependent values less than unity. The observation that the
neous spin-glass and chiral-glass transitionTa§=0.4. ~ asymptoticg(L—) in the region 6<T<3J=T differs
Quite remarkably, however, the spin Binder ragigfor our from unity reflects thg fact that the SG 'ordered state of the
largest sizeL =10 comes definitely below the curves for S model accompanies a fulbr hierarchical RSB.

<8. In fact, theL=10 curve lies below thé.<8 curves

more than four sigmas, and the observed departure is statis- D. Chiral overlap distribution function

tically well significant. From this observation, we conclude | Fig. 5, we show the overlap distribution function of the
that, although the spin sector once becomes near critical ghirality, P.(a,), well below Tcg, at aroundT=3Tcg.

the chiral-glass transitioif = Tcg on short length scales, it |n 4D, in addition to the “side peaks” corresponding to
eventually remains off criticalparamagneticat T=Tcg on g =+q5* which grow and sharpen with increasiig a
longer length scales. Namely, the spin-chirality decoupling‘central peak” appears a,=0 for L=6, which also sharp-
previously observed in 3D in Ref. 10 seems to come intecens and gets higher with increasihg These features were
play in 4D as well, which keeps the spin sector being parareminiscent to the ones observed in 3D, which was inter-
magnetic even beloWw=T. If this is the case, the transi- preted as a signature of the one-step-like RSB in the chiral-
tion in 4D is a pure chiral-glass transition and the orderedglass ordered stat8-*? Our present data suggest that the
state is a pure chiral-glass state not accompanying the staphiral-glass state in 4D also accompanies the one-step-like
dard SG order. Even in certain temperature range beloyrSB as in the 3D case. This is fully consistent with the
Tea, Os is expected to approach zero in the-c limit, observed behavior of the chiral Binder ratio.

which seems consistent with the present data. We interpret A central peak inP,(q,) is also observed in 5D in the
the strange structure observedginnearT=Tg for largerL  largest lattice siz& =6. This suggests the occurrence of the
as a remanence of the near-critical behavior of the spin at thene-step-like RSB also in 5D.

chiral-glass transition. Meanwhile, due to the lack of our data In the SK case, the calculate®,(q,) exhibits the side

in the lower temperature regiof/J=<0.2, it is difficult to ~ peaks at], = iq)E(A only, without a central peak at,= 0 for
determine from the present data whether the SG transitioany size studied. Instead, the valueRf(0) gradually de-
occurs either only at zero temperatiifgs=0 or at a finite  creases with increasirlg, where 1N-extrapolation ofP, (0)
temperature below the chiral-glass transition temperature @ N-—o gives a nonzero valueP,(q,=0N=c)=6.0
<Tse<Tcs. Nevertheless, Fig.(d) strongly suggests that X104 Thus, in the SK case, the chirality exhibits the stan-

Tse, if it is nonzero, is less than Q12 dard full RSB, in apparent contrast to the 4D and 5D cases.
We note in passing that the spin Binder ratjg of the
same 4D model was calculated by Coluzzi for smaller sizes E. Spin overlap distribution function

L=3, 4, and 5 and at higher temperatufésd=0.52° She _ . _ o
observed thaig for L=3, 4, and 5 appeared to merge In_Flg. 6, we show the diagonal spin-overlap distribution
aroundT/J=0.5, and suggested that there occurred a starfNction Ps(daiag) for the cases ofa) 4D, (b) 5D, and(c) the
dard SG transition af/J=0.5. In the present calculation K model. The temperatures are taken to be the same as
made for larger lattice sizes and for lower temperatures, athose 2for the chiral overlap distribution shown in Fig. 5, i.e.,
though we indeed observed a near-merging behavigg oit about; Tcg- o
occurred at a temperaturé/J=0.4 nearTos, somewhat _ N the SK case shown in Fig(®, the shape oP(dgiag
lower than the estimate of Ref. 20 and most importangly, 'S similar to the one of Fig. 1, with symmetric dlvgrglng
for larger lattices show clear deviation from the merging be-P€aKs observed @fj,g= = 0.2. Tlh‘?ie peaks are then identi-
havior, suggesting that the Heisenberg spin remains pardi€d with the ones expected at3qs™ when there is a finite
magnetic even below the chiral-glass transition point. SG LRO. This observation is fully consistent with the fact
Now, we turn to the spin Binder ratio in 5D. As shown in that the standard SG LRO with a nonzerg is realized in
F|g 4(b), Os for 3L <7 show a Crossing at a temperature the ordered state of the SK model. In 5D, the growing sym-
aroundT/J=0.60, strongly suggesting that the SG order oc-metric peaks also appear @~ +0.18 forL=5, suggest-
curs atTse/J=0.60(2). At lower temperaturesy, for larger  ing that the SG LRO characterized by a nonzeff is real-
L tends to come down again, exhibiting a behavior reminisized.
cent to the one observed in 4D. In particular, at low enough In 4D, by contrast, no peaks correspondingttéq‘fA are
temperaturesg, decreases witl.. The observed nonmono- observed, at least within the range of sizes we simulate. In-
tonic temperature dependence and the peculiar size depestead,Pg(qgiag €xhibits a marginal behavior, staying nearly
dence ofgs below Tsg suggests that the SG state beldws  flat with a plateaulike structure fgd <0.2 forL=6. With
might be a nontrivial one accompanied by a peculiar RSBjncreasingL, this plateau gradually gets higher but no side
possibly the one-step-like one as observed in the chiralitpeaks show up. Since the normalization condition of
sector. Ps(dgiag inhibits the plateau of finite width getting higher
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FIG. 5. Overlap distribution function of the chirality, in 4D @ J=0.26 (a), in 5D at T/J=0.40 (b), and in the SK model at/J
=0.10(c).

indefinitely, one plausible asymptotic behavior Rf(dgiag) temperature and size dependence of the reduced chiral-glass
might be that it eventually converges in the-< limit to  susceptibility, wherey, is plotted as a function of the re-
the Gaussian distribution aroungi,q=0. In that sense, the duced temperaturel(— Tg)/ Teg On a log-log scale. As de-
observed behavior is consistent with the spin disorder at thissrmined aboveT g is taken to beTg/J=0.38 in 4D and
temperature. However, solely from the present data, we carr../J=0.60 in 5D. In the SK case, we plitg/J= % which

not completely rule out the possibility that theqs”/3 peaks s exact.

characteristic of the SG LRO ever_1tua||y sh_ow up for still  As can be seen from Figs.(d and 7c), the reduced
larger L. Anyway, in the range of sizes studiéd<10, we  chiral-glass susceptibilities of the 5D and the SK models do
have observed no sign of such side peaks, in contrast to they: exhipit any sign of divergence: They stay small at any

5D case where the side peaks appear already fob. An- temperaturd >Tg, and most notablj()( gets smaller with

other possibility may be that the 4D model exhibits a finite-. i th ve Such a size d d .
temperature SG transition but the SG state is a critical phag8¢'€@sing the system size Such a size dependence Is com-

with a vanishing SG order parametquzo, as expected pletely opposite to the one expected for a diverging quantity

for the system at its LCD. However. as argued below, such ! the critical region. We note that even at temperatures

LCD behavior is not supported from our data of the criticaldose_ o the transition temperature, no sign OT the reversal of
properties the size dependence is discernible. In fact, in the SK case,

such a nondiverging behavior}}g( is just as expected. In the

) .. SK model, the standard SG exponents are known tarbe

F. Chiral-glass susceptibility =-1, Bsc=1, andysg=1. Then the chiral-glass exponent

From the data presented above, we have concluded that B¢ is expected to b@-s=3, because the chirality is cubic
4D the chirality is an order parameter of the transition, butin the spin variables. Then, the chiral-glass susceptibility ex-

not so in 5D and in the SK model: In the latter cases, thgonent is obtained ag-z=—3 from the scaling relatiomx

order parameter of the transition is the spin, while the chiral-+28cs+ ycg=2. Negativeycg means that the chiral-glass
ity order is parasitic to the spin order. In order to examinesusceptibility of the SK model does not diverge at the SG
further the validity of such a picture, we show in Fig. 7 the transition. Very much similar behavior observed in 5D sug-
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FIG. 6. Overlap distribution function of the diagonal part of the spin in 4D/dt=0.26(a), in 5D atT/J=0.40(b), and in the SK model
at T/J=0.10(c).

gests that the the chiral-glass susceptibility of the 5D modelents us from estimating the chirality exponents. In order to
does not diverge at the transition, either. Hence, our obseestimate the asymptotic chiral critical exponents, one needs
vations fory, are fully consistent with our previous finding 0 approach the temperature regime10™* with larger lat-

that the order parameter of the transition in 5D and in the SKices L=10, which is not feasible with the computational

model is the spin, not the chirality. capability presently available to us.
By contrast, in 4D,}X exhibits a different behavior. Al-
though in the investigated temperature regjmestays rather G. Critical exponents
small and tends to decrease with increadingsimilarly to In this subsection, we analyze the critical properties of the

the behavior observed in 5D and in the SK limit, its size SG transition in each case of 5D and of the SK model. In the
dependence is about to change in a close vicinityfgé.  case of 4D, our analysis has suggested that the transition is a
More specifically, the. =10 data catch up the=8 data at pure chiral-glass transition, the associated chiral critical re-
t=0.04, and at temperatures further closeTtg;, exceeds gime being narrowf<10 2, which prevents us from esti-
the L=8 data, where the data show significant finite-sizemating the chiral critical exponents.

rounding preventing the observation of the asymptotic criti- |n 5D, we have concluded that the transition is the stan-
cal behavior. This suggests that the critical region of thedard SG transition, i.e., the order parameter is the spin, not
chiral-glass transition might be very narrow in 4D, limited to the chirality, although the chirality also takes a nonzero value
the regimet=<10"2. In the temperature range outside this, in the SG ordered state reflecting the noncoplanar character
the chirality exhibits a mean-field-like nondiverging behaviorof the spin order. We estimate the associated SG exponents

similar to the one of the SK model. Although we cannotvia the standard finite-size-scaling analysig , based on
directly get into this narrow critical region in our present the relation

simulation due to the computational limitation, the observed

behavior ofy, of the 4D model indeed suggests that such a qP =L~ (@2t nsdf (Lrsq T—Tgd), (21)
crossover from the mean-field-like behaviortat10™2 to

the diverging critical behavior at=10~? does occur. Unfor- where theTgg value is set to the best value determined
tunately, inaccessibility to the asymptotic critical region pre-above, Tgg/J=0.60. The best estimates of the SG expon-
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Indeed, as shown in Fig. 9, our data gf are entirely
the standard scaling relation, we get other exponents agpnsistent with such a mean-field behavByz=1 and 7gg

— 0 25,26

these exponents are not far from the mean-field exponents In concluding this section, we touch upon the near-critical
behavior of the spin observed around the chiral-glass transi-

expected above the upper critical dimensips 6.

In the SK case, mean-field exponents should be exacfion point in 4D. Although our data of the Binder ratios and
the overlap distribution functions given above have strongly
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FIG. 10. Finite-size scaling plot of the spin-glass order parameter in 4D, ass(@hifigs/J=Tcg/J=0.38 and(b) Tgc=0. In (b), our
best value ofpgg is reasonably close to the exact valuesgf;= —2 expected for thd =0 transition.

suggested that the Heisenberg spin remains paramagnesiector. Such a one-step-like character of the RSB is at vari-
even belowTcg in 4D, the preseng(® data can be scaled ance with the full (hierarchical RSB realized in the SK
reasonably well with assumingsg/J=Tcc/J=0.382), at model corresponding tb =cc. It means that the RSB pattern
least from the purely numerical viewpoint. Such a con-of the ordered state changes its nature at some borderline
strained finite-size scaling analysis qf) yields the esti- dimensionality, presumably at the upper critical dimension
matesvgs=1.3(2) andysg= —0.7(2): seeFig. 10a). Note  D=6.

that the value oy’ is far from the LCD valueyp’ =«. We In 4D, the model exhibits a significantly different behav-
also note that the samqéz) data can also be fitted with a ior from the 5D and the SK models. The bulk of our data,
comparable quality by assuming a zero-temperature SG trafarticularly the Binder ratio, indicate that the 4D model ex-
sition Tsg=0, see Fig. 1(). As mentioned, we believe that hibits a pure chiral-glass transition at a finite temperature
the v&s and 74 values obtained by assumifigg=Tcg do Teg= 0.38(2) without accompanying the standard SG order.
not represent true asymptotic exponent values, but just rept the chiral-glass transition, however, the spin becomes al-
resent effective exponents describing the short-scale neamost critical which manifests itself as a pseudocritical phe-
critical phenomena which is an echo of the chiral-glass tranfomenon observable at short length scales. The critical re-
sition. Indeed, at short scales, the chirality is neverdion associated with the chiral-glass transition is very
independent of the spin by its definition. Hence, the behavioP&rrow, limited tot=10"2, suggesting that the dimension 4
of the spin-correlation related quantities might well reflectis close to the marginal dimensionality. The SG transition

the critical singularity associated with the chirality up to cer-0ccurs either al'sg=0 or at a finite temperature, but below
tain length and time scales. the chiral-glass transition temperatufgs<T.g. Our data

suggest that the chiral-glass ordered state accompanies a one-
step-like RSB in the chiral sector. Again, such a one-step-like
character of the RSB differs from the fihierarchical RSB

In summary, we performed a large-scale equilibrium MCrealized in the SK model.
simulation of the 4D, 5D, and SK Heisenberg spin glasses. In Next, we wish to compare out present results on the 4D
5D, the model exhibits a single SG transition at a finite tem-and 5D Heisenberg SG’s with those of the previous authors.
perature, reminiscent to the one of the corresponding meard-0 our knowledge, our results for the chiral order are new.
field model. Below the transition temperaturésg/J  Concerning the spin order, our present conclusion, i.e., the
=0.6((2), thespin is frozen in a spatially random noncopla- presence of the SG LRO in 5D and the absence of it in 4D,
nar configuration. Although the SG order accompanies a fiis consistent with most of numerical simulations, in particu-
nite chiral-glass LRO reflecting the noncoplanar nature ofar, with the one of Stauffer and Bind&'.Our conclusion,
the spin order, the order parameter of the transition is théowever, is at variance with that of Coluzzi, who suggested
spin, not the chirality, and the chiral-glass susceptibility re-that the SG LRO set in at a finite temperatiig;/J=0.5.2
mains nondiverging af = Tgg. Similar behavior is also ob- Although the numerical data themselves seem to be consis-
served in the Heisenberg SK model. The SG exponents in 5ent between the two works, Coluzzi simulated rather small
are estimated as=—1.0(5), Bsc=0.7(3), vsc=1.7(5), latticesL=<5 and high temperature&/J=0.5, which ham-
and vgz=0.6(2), most of which are rather close to the pered a direct examination of the asymptotic ordering behav-
mean-field exponents. Since the upper critical dimension oior. Our new data for larger latticds<10 and for tempera-
the SG is believed to be 6, the observed closeness to tHares including lower oned,/J=0.26, have clarified that the
mean-field values seems reasonable. Our data suggest thnsition occurs in the chiral sectorBtg/J=0.4, which is
the SG ordered state accompanies a peculiar phase-spasm@mewhat lower thaifigg estimated in Ref. 20. Furthermore,
structure, namely, a one-step-like RSB, at least in its chirathe Heisenberg spin appears to remain paramagnetic at the

V. SUMMARY AND DISCUSSION
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chiral-glass transition point on sufficiently long length mean-field values, which is consistent with a common belief
scales, i.e., the transition @i.g/J=0.4 is not the conven- that the mean-field SG exponents arise above six dimensions.
tional SG transition, but a pure chiral-glass transition.
Finally, we wish to discuss implication of our present re-
sult to the 3D case. The behavior of the 4D model observed The numerical calculation was performed on the HITA-
in the present work is qualitatively similar to the one of the CHI SR8000 at the supercomputer system, ISSP, University
3D model observed in Refs. 10,15 except that the behaviopf Tokyo, and Intel Pentium4 1.8GHz PCs in our laboratory.
of the 4D model looks much more marginal. For examp|e,The authors are thankful to Dr. K. Hukushima and Dr. H.
the reduced chiral-glass susceptibility of the 3D model isYoshino for useful discussion.
much larger in magnitude than that of the 4D model, and the
associated chiral-glass critical region is much wider in 3D
than in 4D. As one judges from the size dependence of the In this appendix, we give the derivation of E). It
reduced chiral-glass susceptibility shown in Fig. 3 of Ref. 10describes the self-overlap part of the diagonal spin-overlap
the width of the chiral critical region is about 18, which distribution function in the thermodynamic limit, when the
should be compared with our present estimate for the 4I$G ordered state with a nonzero EA order paramefer
model, 10° 2. All these suggest that the spin-chirality decou- >0 exists. Since the diagonal spin-overlag., transforms
pling is more eminent in lower dimensions. As the dimen-nontrivially under globaD(3) rotations, even a self-overlap
sionality is increased, the spin-chirality decoupling tends tdPart Of the distribution funcggn is not just a simple delta
be suppressed. In 4D, the spin-chirality decoupling stilfunction located atjgag=*qs", but exhibits a nontrivial
seems to persist, but it is limited only to a very narrow tem-P€havior given by Eq(7). _ ,
perature region close to the transition temperature, suggest- W& consider a diagonal spin-overlap between a particular
ing that 4D is close to the borderline dimensionality. As theSpin state described by the configurati§nand a state gen-
dimensionality is further increased, the spin-chirality decou-erated from this state via a glob@i(3) rotationR,
pling no longer occurs. There, the order parameter of transi- 1 N
tion is the spin, not the chirality. This is indeed the case for Udiag= > S-RS. (A1)
5D. However, at least in the case of 5D, the SG ordered state N =1
exhibits a peculiar One-Step-like RSB, which differs in Char-We first consider the case of proper rotations with ﬂg;t(
acter from the full RSB of théd =« SK model. Estimated =1. The SQ(3) rotation matrixR is known to be param-
SG critical exponents of the 5D model are rather close to thetrized by the Euler angle®, ®, and¥, as
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APPENDIX: DERIVATION OF Eq. (7)

R Ry Ry cos® cosd cosV¥ —sin® sin¥ cosO sin® cos¥ +sin® cos¥  —sin® cos¥
rR=| Ryx Ryy Ryz| _| —cosO cos®sin¥—sin® cos¥ —cosO sin® sin¥+cos® cos¥  sin® sin¥
Rix Ry Ry sin® cos® sin® sin® cosO®
|
Then, qgjag Can be written as cogd+V¥)+1 cogd+V¥)
Qiiag= %7 C0SO + ————
3 3
N
1 cogd+V)+1 cogd+V)
Quiag=y 2 [RuoSix Ry Sy +ReS + (Roy Ry S Sy - xt——3 . (A3
+ ( Ryz+ Rzy)siysiz+ (sz+ sz)SzSix]- (AZ)

wherex=cos®. Note that this is a function of the rotation

_ matrix R only, not depending on the spin configuratién
The spin direction at each site can be represented as any more. The overlap,q takes various values depending
=(sin#cosd¢;,sinbdsin ¢, ,cose). If one notes the fact that, on theO(3) matrix R. We then consider the distribution of
in the SG ordered state, the spin direction is entirely randongy,4 arising from the distribution oR, or equivalentlyx, ®
on long length scales giving a uniform distribution on aand ¥. The appropriate measure isl<sx<1, 0<®
sphere in spin space, one can replace in the thermodynamic27, and O<W¥ <27 being uniform. It is convenient to
limit the summation over spins by the integral over spinchange the variables from(¥) to (a,8)=[®+W¥,(—®
directions as (M)=N ,—(1/47) [ dcosdf5"dp. Then, +W)/2], where O<a<47 and O< < . With this change
only the diagonal terms containirg),, survive in Eq.(A2),  of the variables, E(/A3) becomes independent gf and is
leading to given by
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given value oftgqg, there is no possible value effor a range of FIG. 12. The diagonal spin-overlap distribution function
satisfying ac(qgiag < @< 7. P«(dgiag Of finite-size systems oN Heisenberg spins with com-
pletely random uncorrelated spin configurations. The resuliNfor
cosa+1 COSa = given by Eq.(7) is also shown by the solid curve. For further
diag= 3 X+ 3 (Ad)  getails, see the text.
The distribution functiorP4(qgiag) iS proportional to EA EA
® |ag) p (q g)_ 3\/§ ( \/qs _qdiagL \/ Us +qdiag
dx ac(dgi 3 s\Hdiag/ — EA EA ' EA |’
Ps(qdiag)ocf da:f ¢ dlag—da, (A5) 4 3Qdiag"' ds _3Qdiag+ ds
ddgiag 0 1+cosa (A7)

where we have used E¢A3). Note that, for a giver g, which is Eq.(7).

the integral with respect tar is restricted to the range  The derivation above, valid in the thermodynamic limit
[0.rc], With a(Ogiag =COS [(30giag—1)/2]. This may be N—, is quite general. In order to get some feeling about
seen from Fig. 11, where we plqgiag as a function ok for  the finite-size effect, we also compu®g(giag NUMerically
various a. Obviously, for a givenggag, NO contribution to  for finite-N Heisenberg spins, the direction of which is as-
the integral arises from the region efbetweerf a.,7]. The  sumed to be completely random in three-component spin
Oaiag dependence dP¢(dqiag) arises from this upper limit of  space. More specifically, we prepare a random and uncorre-
the integral. The integration in EGAS) can be easily carried |ated configuration olN spins, numerically genera®(3)

out to yield rotation matrixR with appropriate measufee., the one gen-
erated randomly from the uniform distribution of 1<x
P.(dq g)octanac(%iag) — 3172, / 1_qdia9_ <1, 0=s® <27, 0¥ <27, and the determinant 1), op-
st Hdia 2 3Qgiagt 1 erateR to the initial spin configuration, and compute the

So far, we have considered proper rotations. The contridiagonal spin-overlapgg,y between the initial and the
bution from improper rotations, which can be viewed asO(3)-rotated spin configurations. We generaté tigstinct

proper rotations combined with the spin inversi@—  O(3) matrices for a given initial spin configuration, and gen-
erate several hundreds of initial spin configurations,

—§i, may be obtained immediately by the replacementP i
s ; - s(ddiag) being accumulated over these procedures. The re-
Qaiag— — Jdiag: Adding the contributions from both proper ult is shown in Fig. 12. Thé&l =< result analytically ob-

and improper rotations with equal weights, and reproducing’ . .
prop g g P ained above is also shown. It can be seen that the rounded
divergent behavior in thil=c limit. Of course, the finiteN
Finally, we note that at finite temperatures a state should bing system, in contrast to the analytiddd=co result which is

the appropriate normalization factor, we get . -
Pprop g peak at+ %qEA grows asN increases, eventually exhibiting a
3V3 1-qq 1+qg;
Ps(ddiag) = . ( \/Sq , fi+ \/_ 304 Iigl . (A6) result computed here is valid only for non-interacting spins.
diag diag It would differ from the corresponding result for the interact-
regarded as a pure state. The spin length is then no longealid even for the interacting system. It still gives some feel-
unity, and the unity in Eq(A6) should be replaced by5”. ing how the finite-size rounding takes place in finlleSG

We finally obtain models.

*Electronic address: imag@spin.ess.sci.osaka-u.ac.jp Rev. Mod. Phys58, 801(1986; K. H. Fischer and J. A. Hertz,
"Electronic address: kawamura@ess.sci.osaka-u.ac.jp URL: Spin GlassegCambridge University Press, Cambridge, 1991
http://thmat8.ess.sci.osaka-u.ac;jgawamura A. Mydosh, Spin GlassegTaylor & Francis, London, 1993

IFor reviews on spin glasses, see, e.g., K. Binder and A. P. Young, Spin Glasses and Random Fieldslited by A. P. YoungWorld
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