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Ordering of the Heisenberg spin glass in high dimensions

Daisuke Imagawa* and Hikaru Kawamura†

Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
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Ordering of the Heisenberg spin glass with the nearest-neighbor Gaussian coupling is investigated by
equilibrium Monte Carlo simulations in four and five dimensions. Ordering of the mean-field Heisenberg spin
glass is also studied for comparison. Particular attention is paid to the nature of the spin-glass and chiral-glass
orderings. Our numerical data suggest that, in five dimensions, the model exhibits a single spin-glass transition
at a finite temperature, where the spin-glass order accompanying the simultaneous chiral-glass order sets in. In
four dimensions, the model exhibits a marginal behavior. Chiral-glass transition at a finite temperature not
accompanying the standard spin-glass order is likely to occur, while the critical region associated with the
chiral-glass transition is very narrow suggesting that the dimension four is close to the marginal dimensionality.
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I. INTRODUCTION

In numerical studies of spin glasses~SG’s!, much effort
has been devoted to clarify the properties of the so-ca
Edwards-Anderson~EA! model.1 Most of these numerica
works on the EA model have concentrated on the Ising
model. It is also very important, however, to clarify the pro
erties of the corresponding Heisenberg model. This is sim
due to the fact that many of real SG magnets are Heisenb
like rather than Ising-like in the sense that the magnetic
isotropy is considerably weaker than the isotropic excha
interaction.1,2

Indeed, several numerical works have been performed
the Heisenberg EA model. Earlier numerical studies s
gested that, in apparent contrast to experiments, the isotr
Heisenberg SG in three dimensions~3D! did not exhibit an
equilibrium SG transition at any finite temperature.2–8 This
observation leads to general belief that the weak rand
magnetic anisotropy is crucially important in realizing
finite-temperature SG transition and a stable SG ph
which causes a crossover from theTg50 isotropic Heisen-
berg behavior to theTg.0 anisotropic Ising behavior. Th
expected Heisenberg-to-Ising crossover, however, has
been observed experimentally, and this puzzle has rema
unexplained.1,2

Meanwhile, a novel possibility was suggested by one
the present authors~H.K.! that the 3D Heisenberg SG migh
exhibit an equilibrium phase transition at a finite tempe
ture, not in the spin sector as usually envisaged, but in
chirality sector, i.e., might exhibit a chiral-glass transition6

Chirality is a multispin variable representing the sense or
handedness of local noncoplanar spin structures induce
spin frustration. In the chiral-glass ordered state, the chira
is ordered in a spatially random manner while the Heis
berg spin remains paramagnetic. References 6,8–12 cla
that the standard SG order associated with the freezing o
Heisenberg spin occurred at a temperature lower than
chiral-glass transition temperature atT5TSG,TCG, quite
possiblyTSG50. It means that the spin and the chirality a
decoupled on long length scales~spin-chirality decoupling!.
In fact, based on such a spin-chirality decoupling picture
chirality scenario of the SG transition has been advanc
0163-1829/2003/67~22!/224412~14!/$20.00 67 2244
d

A
-
ly
rg-
-
e

n
-
ic

m

e,

ot
ed

f

-
e

e
by
y
-
ed
he
he

a
d,

which explains the experimentally observed SG transition
essentially chirality driven.6,9 Note that the numerical obser
vation of a finite-temperature chiral-glass transition in the
Heisenberg SG of Refs. 6,8–12 is not inconsistent with
earlier observations of the absence of the conventional
order at any finite temperature.

Recently, however, in a series of numerical studies on
3D Heisenberg EA model, Tohoku group criticized the e
lier numerical works, claiming that in the 3D Heisenberg S
the spin ordered at a finite temperature and that the SG t
sition temperature might coincide with the chiral-glass tra
sition temperature, i.e.,TSG5TCG.0.13,14 By contrast,
Hukushima and Kawamura maintained that in 3D the s
and the chirality were decoupled on sufficiently long leng
scales, and thatTSG,TCG,15 supporting the earlier numeri
cal results. The situation in 3D thus remains controversia

Under such circumstances, in order to shed further li
on the nature of the ordering in 3D, it might be useful
study the problem for the general space dimensionalityD,
particularly for dimensions higher thanD53. In the limit of
infinite dimensionsD→`, the model reduces to the corre
sponding mean-field model, i.e., the Heisenberg Sherring
Kirkpatrick ~SK! model. In the case of equal weights of th
ferromagnetic and antiferromagnetic interactions, the
model is known to exhibit a single continuous SG transitio
Hence, in theD→` limit, the order parameter of the trans
tion is the Heisenberg spin itself, with no exotic phase su
as the chiral-glass phase. Furthermore, the SG ordered
of the SK model is known to exhibit a hierarchical type
replica-symmetry breaking~RSB!, i.e., a full RSB.

Then, there are questions which naturally arise.~i! what is
the lower critical dimension~LCD! of the SG orderd,

SG? ~ii !
Is d,

SG the same as the LCD associated with the chiral-gl
orderd,

CG?
Concerning point~i!, several earlier numerical studies in

cluding the high-temperature expansion16 and the numerical
domain-wall renormalization-group calculation4,17 suggested
thatd,

SG might be close to 4. Meanwhile, Anderson and Po
argued thatd,

SG53.18 The first Monte Carlo~MC! simulation
on the high-dimensional Heisenberg EA model was p
formed by Stauffer and Binder.19 By studying the tempora
©2003 The American Physical Society12-1
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decay of the EA order parameter, they suggested that a fi
temperature SG order occurred inD55 and 6, but not in
D<4.19 More recently, the 4D Heisenberg EA model w
studied by Coluzzi by equilibrium MC simulation.20 By ex-
amining the behavior of the Binder ratio, she suggested
occurrence of a finite-temperature SG transition inD54 in
contrast to the suggestion of Ref. 19. There seems to b
consensus as to point~i!.

Point ~ii ! above is closely related to the controversy
garding whether the spin-glass and the chiral-glass or
occur simultaneously or separately in 3D. To the autho
knowledge, no calculation has been reported concerning
chiral-glass order inD>4 dimensions so far. In the prese
paper, we wish to fill this gap. We study both the spin-gla
and the chiral-glass orders of the Heisenberg EA mode
both 4D and 5D by means of a large-scale equilibrium M
simulation. In particular, we simulate larger lattices a
lower temperatures than those covered in Ref. 20. For c
parison, a simulation is also performed on the mean-fi
Heisenberg SK model corresponding toD5`.

Our data suggest that in 5D the model exhibits a sin
SG transition at a finite temperature reminiscent to the on
the Heisenberg SK model. The chirality orders simul
neously with the spin, but it behaves as the composite op
tor of the spin, not as the order parameter. The SG orde
state in 5D accompanies a peculiar type of RSB, most pr
ably a one-step-like RSB, which is different in charac
from the full RSB realized in the SK model. In 4D, in con
trast, the model exhibits a pure chiral-glass transition a
finite temperature, not accompanying the standard SG o
The critical region associated with the chiral-glass transiti
however, is very narrow, suggesting that the 4D model
close to the marginal dimensionality. The chiral-glass
dered state accompanies a one-step-like RSB.

The present paper is organized as follows. In Sec. II,
introduce our model and explain some of the details of
MC calculation. Various physical quantities calculated in o
MC simulation are defined in Sec. III. The results of our M
simulation on the 4D, 5D, and SK models are presented
Sec. IV. Section V is devoted to a summary and discuss

II. THE MODEL AND THE METHOD

The model we consider is the isotropic classical Heis
berg model on a 4D or 5D hypercubic lattice, with th
nearest-neighbor Gaussian coupling. The Hamiltonian
given by

H52(̂
i j &

Ji j SW i•SW j , ~1!

whereSW i5(Si
x ,Si

y ,Si
z) is a three-component unit vector an

the ^ i j & sum is taken over nearest-neighbor pairs on the
tice. The nearest-neighbor couplingJi j is assumed to obey
the Gaussian distribution with a zero mean and a varia
J2.

For comparison, we also simulate the correspond
infinite-ranged model, i.e., the Heisenberg SK model co
sponding toD→`. In the SK model, the Gaussian couplin
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Ji j works between all possible pairs of totalN spins with a
zero mean and a varianceJ2/N.

We perform an equilibrium MC simulation on these mo
els. In 4D, the lattices studied are the hypercubic latti
with N5L4 sites withL54, 6, 8, and 10, whereas in 5D
N5L5 with L53, 4, 5, 6, and 7. In the case of the S
model,N is taken to beN532, 64, 128, 256, and 512. In a
cases, we impose periodic boundary conditions in allD di-
rections. The sample average is taken over 64–200 inde
dent bond realizations, depending on the system sizeL and
the lattice dimensionalityD. Error bars of physical quantitie
are estimated by the sample-to-sample statistical fluctua
over the bond realizations.

In order to facilitate efficient thermalization, we combin
the standard heat-bath method with the temperatu
exchange technique.21 Care is taken to be sure that the sy
tem is fully equilibrated. Equilibration is checked by the fo
lowing procedures. First, we monitor the system to tra
back and forth many times along the temperature axis du
the the temperature-exchange process~typically more than
10 times! between the maximum and minimum temperatu
points. We check at the same time that the relaxation du
the standard heat-bath updating is reasonably fast at the h
est temperature, whose relaxation time is of order 102 Monte
Carlo steps per spin~MCS!. This guarantees that differen
parts of the phase space are sampled in each ‘‘cycle’’ of
temperature-exchange run. Second, we check the stabilit
the results against at least three times longer runs for a su
of samples. Third, we use the method recently develope
Refs. 22,23 for the Gaussian coupling, in which a cert
quantity is calculated in two ways, each of which is expec
to approach the asymptotic equilibrium value either fro
above or from below. Further details of our MC simulatio
are given in Table I.

III. PHYSICAL QUANTITIES

In this section, we define various physical quantities c
culated in our simulation below.

A. Spin-related quantities

By considering two independent systems~‘‘replicas’’ ! de-
scribed by the same Hamiltonian~1!, one can define an over
lap variable. The overlap of the Heisenberg spin is defined
a tensorvariableqmn between them andn components (m,
n5x,y,z) of the Heisenberg spin

qmn5
1

N (
i 51

N

Sim
(1)Sin

(2) ~m,n5x,y,z!, ~2!

whereSW i
(1) andSW i

(2) are thei th Heisenberg spins of the rep
licas 1 and 2, respectively. In our simulation, we prepare
two replicas 1 and 2 by running two independent sequen
of systems in parallel with different spin initial condition
and different sequences of random numbers. In terms
these tensor overlaps, the SG order parameter is defined
2-2
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qs
(2)5@^qs

2&#, qs
25 (

m,n5x,y,z
qmn

2 , ~3!

while the associated spin Binder ratio is defined by

gs5
1

2 S 1129
@^qs

4&#

@^qs
2&#2D , ~4!

where ^•••& represents the thermal average and@•••# the
average over the bond disorder. Note thatgs is normalized
here so that, in the thermodynamic limit, they vanish in
high-temperature phase and gives unity in the nondegen
ordered state.

The spin-overlap distribution function is originally de
fined in the tensor space, since the relevant spin overlap
33359 independent components. For the convenience
illustration, we introduce here the diagonal spin-overlap d
tribution function

Ps~qdiag8 !5@^d~qdiag8 2qdiag!&# ~5!

defined in terms of the diagonal overlapqdiag which is the
trace of the tensor overlapqmn’s

qdiag5 (
m5x,y,z

qmm5
1

N (
i 51

N

SW i
(1)
•SW i

(2) . ~6!

Note that the spin Binder ratio~4! is defined from the full
tensor overlap distribution function, but cannot be deriv
solely from the diagonal overlap distribution function Eq.~6!.

In zero field, the distribution functionPs(qdiag) is sym-
metric with respect toqdiag50. In the high-temperature
phase, eachqmn (m,n5x,y,z) is expected to be Gaussian

TABLE I. Detailed conditions of the MC simulation. Here,D
represents the spatial dimensionality,N the total number of spins
Nsampthe total number of samples,NT the total number of tempera
ture points used in the temperature-exchange run, andTmax/J and
Tmin /J the maximum and minimum temperatures in t
temperature-exchange run.

D N Nsamp NT Tmax/J Tmin /J

44 140 20 1.0 0.16
4 64 100 34 0.65 0.21

84 80 50 0.58 0.21
104 80 50 0.48 0.256

35 120 24 1.2 0.24
45 100 36 1.0 0.3

5 55 96 46 0.8 0.31
65 96 56 0.75 0.40
75 64 50 0.75 0.537

32 200 30 0.5 0.1
64 200 30 0.5 0.1

`(SK) 128 200 30 0.5 0.1
256 100 34 0.5 0.1
512 100 34 0.5 0.1
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distributed aroundqmn50 in theL→` limit, and so isqdiag.
In the hypothetical SG ordered state, reflecting the fact t
qdiag transforms nontrivially under the independent glob
O(3) spin rotations on the two replicas, even a self-over
part of Ps(qdiag) develops a nontrivial shape, i.e., it is not
simple delta-function located at the EA SG order parame
6qs

EA . Hence, we need to clarify first how the functio
Ps(qdiag) looks like in the possible SG ordered state with
nonzero6qs

EA .24

Let us hypothesize here that aspin-glass ordered state
exists characterized by a nonzero EA SG order param
qs

EA.0. One can show in theL→` limit that the self-
overlap part ofPs(qdiag) is given by

Ps~qdiag!5
3A3

4pqs
EA SA qs

EA2qdiag

3qdiag1qs
EA

1A qs
EA1qdiag

23qdiag1qs
EAD ,

~7!

which is illustrated in Fig. 1. The derivation of Eq.~7! is
given in the Appendix. Note that divergingd-function peaks
appear atqdiag56 1

3 qs
EA , not atqdiag56qs

EA . If the SG or-
dered state accompanies RSB, the associated nontr
contribution would be added to the one given by Eq.~7!.
In any case, an important observation here is that, as l
as the ordered state possesses a finite SG long-r
order ~LRO!, the diverging peak should arise inPs(qdiag) at
qdiag56 1

3 qs
EA .

B. Chirality-related quantities

We define the local chirality at thei th site and in themth
direction,x im , for three neighboring Heisenberg spins by t
scalar

x im5SW i 1êm
•~SW i3SW i 2êm

!, ~8!

where êm (m5x1 ,x2 , . . . ,xD) denotes a unit vector alon
the mth axis. By this definition, there are in totalDN local
chiral variables.

FIG. 1. Sketch of the self-overlap part of the diagonal sp
overlap distribution functionPs(qdiag) in the thermodynamic limit,
expected when there exists a finite SG long-range order wit
nonzeroqs

EA.0.
2-3
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In the case of the SK model, since there are no ‘‘neig
bors’’ in the model, the definition of the local chirality ac
companies some difficulties. Here, just for convenience,
number theN spins arbitrarily, and define the local chiralit
by

x i5SW i 11•~SW i3SW i 21!. ~9!

Then, there are in totalN chiral variables.
The mean local amplitude of the chirality,x̄, may be de-

fined by

x̄5A 1

DN (
i 51

N

(
m5x1 ,x2 , . . . ,xD

@^x im
2 &# ~10!

for D54 and 5, and by

x̄5A1

N (
i 51

N

@^x i
2&#, ~11!

for the SK model. Note that the magnitude ofx̄ tells us the
extent of the noncoplanarity of the local spin structures.
particular, this quantity vanishes for any coplanar spin c
figuration.

As in the case of the Heisenberg spin, one can define
overlap of the chiral variable by considering the two replic
In the cases ofD54 and 5, it is defined by

qx5
1

DN (
i 51

N

(
m5x1 ,x2 , . . . ,xD

x im
(1)x im

(2) , ~12!

wherex im
(1) andx im

(2) represent the chiral variables of the re
licas 1 and 2, respectively. In the case of the SK model,
defined by

qx5
1

N (
i 51

N

x i
(1)x i

(2) . ~13!

In terms of this chiral overlapqx , the chiral-glass order pa
rameter is defined by

qx
(2)5@^qx

2&#. ~14!

The associated chiral-glass susceptibility may be defined

xx5DN@^qx
2&#, ~15!

in the cases ofD54 and 5, while in the case of the S
model, it is defined by

xx5N@^qx
2&#. ~16!

Unlike the spin variable, the local magnitude of the chiral
is somewhat temperature dependent. In order to take acc
of this effect, we also consider the reduced chiral-glass s
ceptibility x̃x by dividing xx by the appropriate powers ofx̄

x̃x5
xx

x̄4
. ~17!

The Binder ratio of the chirality is defined by
22441
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gx5
1

2 S 32
@^qx

4&#

@^qx
2&#2D . ~18!

The distribution function of the chiral overlapqx is defined
by

Px~qx8 !5@^d~qx82qx!&#. ~19!

IV. MONTE CARLO RESULTS

In this section, we present our MC results on the Heis
berg EA models in 4D, 5D, and in the SK limit~correspond-
ing to D5`).

A. Chiral Binder ratio

In Fig. 2, we show the Binder ratio of the chirality in th
cases of~a! 4D, ~b! 5D, and~c! the SK model, respectively
In all these cases,gx exhibits a negative dip, while its tem
perature and size dependence is somewhat different f
each other.

In 4D, with increasing the lattice sizeL, the negative dip
tends to deepen while the dip temperatureTdip is almost kept
constant at aroundT/J50.38: see the inset of Fig. 2. On
can also see from Fig. 2 thatgx for variousL cross in the
negative region ofgx at temperatures slightly aboveTdip .
The occurrence of a negative dip deepening withL, accom-
panied by a crossing on the negative side ofgx , is similar to
the one previously observed in the corresponding
model,10–12although, in 3D,Tdip tends to shift toward lower
temperature with increasingL. As argued in Refs. 10–12, th
occurrence of a negative dip deepening withL is a signature
of the occurrence of a phase transition in the chiral sector.
making a linear extrapolation ofTdip(L) with respect toL21,
as shown in the inset of Fig. 2~a!, we estimate the bulk
chiral-glass transition temperature asTCG/J50.38(2). Be-
low TCG, the curves forL>6 almost merge into a curve
exhibiting the nontrivial temperature dependence. Such a
havior suggests that the chiral ordered state accompan
nontrivial phase-space structure, i.e., RSB.

In 5D, although the negative dip tends to deepen up to
sizeL55, it tends to become shallower forL>6. In contrast
to the 3D and 4D cases, the dip temperatureTdip tends to
shift toward higher temperature with increasingL. The ob-
served temperature and size dependence ofgx strongly sug-
gests again that the limitTdip(L→`) corresponds to a tran
sition temperature in the chiral sector. The 1/L extrapolation
of Tdip(L) to L→`, shown in the inset of Fig. 2~b!, yields
the estimateTCG/J50.62(2).

In the SK case, the negative dip ofgx becomes shallowe
with increasingL, andTdip shifts toward higher temperature
In the inset,Tdip(N) is plotted as a function ofN21/3,25,26

which yieldsTCG/J50.31(2). Theestimated chiral-glass or
dering temperature agrees within errors with the exac
known SG transition temperature of the Heisenberg
model TSG/J51/3. This coincidence simply confirms th
fact that, at the SG transition of the Heisenberg SK mod
Heisenberg spins order in a noncoplanar manner, which n
essarily accompanies the onset of a nonzero chiral-g
2-4
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FIG. 2. Temperature and size dependence of the chiral Binder ratiogx in 4D ~a!, 5D ~b!, and in the SK model~c!. In the insets,Tdip is
plotted versus 1/L ~or versus 1/N21/3 in the case of the SK model!.
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LRO. As is evident, in the SK case, the order paramete
the transition is not the chirality, but the Heisenberg s
itself.

B. Chiral autocorrelation function

More direct measure of the chiral-glass transition may
obtained from the equilibrium dynamics of the model. W
compute the autocorrelation function of the chirality defin
by

Cx~ t !5
1

DN (
i 51

N

(
m5x1 ,x2 , . . . ,xD

@^x im~ t0!x im~ t1t0!&#,

~20!

where the ‘‘time’’ t is measured here in units of MCS. I
computing Eq.~20!, the simulation is performed according
the standard heat-bath updating without the temperat
exchange procedure, while the starting spin configuratio
t5t0 is taken from the equilibrium spin configurations ge
erated in our temperature-exchange MC runs.

We show in Fig. 3 the time dependence ofCx(t) on a
log-log plot for the cases of~a! 4D and~b! 5D. To check the
possible size dependence, the data for the two largest la
sizes are given together, one denoted by symbols and
other by thin lines. In the chiral-glass ordered state with
22441
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nonzeroqx
EA , Cx(t) in the L→` limit should exhibit an

upward curvature, tending toqx
EA.0. In the disordered

phase,Cx(t) should exhibit a downward curvature. Just
T5TCG, the linear behavior corresponding to the power-la
decay is expected. As shown in the figures, in the time reg
where the finite-size effect is negligible,Cx(t) shows either
a downward curvature characteristic of the disordered ph
or an upward curvature characteristic of the ordered ph
depending on whether the temperature is higher or lo
than a critical value. In 4D, the chiral-glass transition te
perature estimated in this way isTCG/J50.38(2), while in
5D it is TCG/J50.60(2). Both are close to our estimat
above based on the chiral Binder ratio. Our observation
Cx(t) exhibits an upward curvature belowTCG indicates that
the chiral-glass ordered state is ‘‘rigid’’ with a nonzero lon
range order parameter.

From the above analysis, the occurrence of the chi
glass LRO in 4D and 5D seems now well established. T
next question is whether the chiral-glass order accompa
the standard SG order. If the SG order occurs at the s
temperature as the chiral-glass order, the transition is lik
to be of the standard type, at least in the sense that the o
parameter of the transition is the spin, not the chiral
~Here, recall that the SG ordered state in the Heisenberg
inevitably accompanies the chiral-glass order as long as
2-5
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FIG. 3. Temporal decay of the equilibrium chiral autocorrelation function at various temperatures in 4D~a! and 5D ~b!. In ~a!, the
symbols represent the data ofL58 and thin lines those ofL510. In ~b!, the symbols represent the data ofL56 and thin lines those ofL57.
Solid straight lines represent the power-law fits of the data atT/J50.38 ~a!, and atT/J50.60 ~b!.
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spin is frozen in a noncoplanar manner.! By contrast, if the
SG order occurs at a temperature below the ordering t
perature of the chirality, it means the unusual situation, i
the occurrence of the spin-chirality decoupling, the pu
chiral-glass transition and the pure chiral-glass ordered s
To clarify this issue, we examine the spin Binder ratio in t
next subsection.
22441
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C. Spin Binder ratio

In Fig. 4, we show the temperature and size depende
of the Binder ratio of the spin in the cases of~a! 4D, ~b! 5D,
and ~c! the SK model. In each figure, magnified figure
embedded to show the detailed behavior ofgs in the region
of interest. The arrow in each figure indicates the location
FIG. 4. Temperature and size dependence of the spin Binder ratiogs in 4D ~a!, 5D ~b!, and in the SK model~c!. Magnified figures are
given as insets. The arrow in each figure represents the location of the chiral-glass transition point.
2-6
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the transition point of the chirality determined above. In 4
as can be seen from Fig. 4~a!, gs for the range of sizes 4
<L<8 appears to almost merge at a temperatureT/J.0.4
close to the chiral-glass transition temperature determi
above. This seems to suggest that the spin sector also
comes critical atT.TCG, which may indicate the simulta
neous spin-glass and chiral-glass transition atT/J.0.4.
Quite remarkably, however, the spin Binder ratiogs for our
largest sizeL510 comes definitely below the curves forL
<8. In fact, theL510 curve lies below theL<8 curves
more than four sigmas, and the observed departure is st
tically well significant. From this observation, we conclu
that, although the spin sector once becomes near critica
the chiral-glass transitionT5TCG on short length scales, i
eventually remains off critical~paramagnetic! at T5TCG on
longer length scales. Namely, the spin-chirality decoupl
previously observed in 3D in Ref. 10 seems to come i
play in 4D as well, which keeps the spin sector being pa
magnetic even belowT5TCG. If this is the case, the trans
tion in 4D is a pure chiral-glass transition and the orde
state is a pure chiral-glass state not accompanying the s
dard SG order. Even in certain temperature range be
TCG, gs is expected to approach zero in theL→` limit,
which seems consistent with the present data. We inter
the strange structure observed ings nearT5TCG for largerL
as a remanence of the near-critical behavior of the spin a
chiral-glass transition. Meanwhile, due to the lack of our d
in the lower temperature regionT/J&0.2, it is difficult to
determine from the present data whether the SG trans
occurs either only at zero temperatureTSG50 or at a finite
temperature below the chiral-glass transition temperatur
,TSG,TCG. Nevertheless, Fig. 4~a! strongly suggests tha
TSG, if it is nonzero, is less than 0.2J.

We note in passing that the spin Binder ratiogs of the
same 4D model was calculated by Coluzzi for smaller si
L53, 4, and 5 and at higher temperaturesT/J>0.5.20 She
observed thatgs for L53, 4, and 5 appeared to merg
aroundT/J.0.5, and suggested that there occurred a s
dard SG transition atT/J.0.5. In the present calculatio
made for larger lattice sizes and for lower temperatures,
though we indeed observed a near-merging behavior ofgs , it
occurred at a temperatureT/J.0.4 nearTCG, somewhat
lower than the estimate of Ref. 20 and most importantly,gs
for larger lattices show clear deviation from the merging b
havior, suggesting that the Heisenberg spin remains p
magnetic even below the chiral-glass transition point.

Now, we turn to the spin Binder ratio in 5D. As shown
Fig. 4~b!, gs for 3<L<7 show a crossing at a temperatu
aroundT/J.0.60, strongly suggesting that the SG order o
curs atTSG/J50.60(2). At lower temperatures,gs for larger
L tends to come down again, exhibiting a behavior remin
cent to the one observed in 4D. In particular, at low enou
temperatures,gs decreases withL. The observed nonmono
tonic temperature dependence and the peculiar size de
dence ofgs belowTSG suggests that the SG state belowTSG
might be a nontrivial one accompanied by a peculiar RS
possibly the one-step-like one as observed in the chira
sector.
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In the SK case, the calculatedgs exhibits a clear crossing
behavior at aroundT/J51/3, an exactly known SG transi
tion temperature of the model. At lower temperatures,gs
monotonically increases withN in contrast to the 4D and 5D
cases, and eventually appear to converge to the tempera
dependent values less than unity. The observation that
asymptoticgs(L→`) in the region 0,T, 1

3 J5TSG differs
from unity reflects the fact that the SG ordered state of
SK model accompanies a full~or hierarchical! RSB.

D. Chiral overlap distribution function

In Fig. 5, we show the overlap distribution function of th
chirality, Px(qx), well below TCG, at aroundT. 2

3 TCG.
In 4D, in addition to the ‘‘side peaks’’ corresponding t
qx56qx

EA which grow and sharpen with increasingL, a
‘‘central peak’’ appears atqx50 for L>6, which also sharp-
ens and gets higher with increasingL. These features were
reminiscent to the ones observed in 3D, which was in
preted as a signature of the one-step-like RSB in the ch
glass ordered state.10–12 Our present data suggest that t
chiral-glass state in 4D also accompanies the one-step
RSB as in the 3D case. This is fully consistent with t
observed behavior of the chiral Binder ratio.

A central peak inPx(qx) is also observed in 5D in the
largest lattice sizeL56. This suggests the occurrence of t
one-step-like RSB also in 5D.

In the SK case, the calculatedPx(qx) exhibits the side
peaks atqx56qx

EA only, without a central peak atqx50 for
any size studied. Instead, the value ofPx(0) gradually de-
creases with increasingN, where 1/N-extrapolation ofPx(0)
to N→` gives a nonzero valuePx(qx50,N5`).6.0
31024. Thus, in the SK case, the chirality exhibits the sta
dard full RSB, in apparent contrast to the 4D and 5D cas

E. Spin overlap distribution function

In Fig. 6, we show the diagonal spin-overlap distributi
functionPs(qdiag) for the cases of~a! 4D, ~b! 5D, and~c! the
SK model. The temperatures are taken to be the sam
those for the chiral overlap distribution shown in Fig. 5, i.
about 2

3 TCG.
In the SK case shown in Fig. 6~c!, the shape ofPs(qdiag)

is similar to the one of Fig. 1, with symmetric divergin
peaks observed atqdiag.60.2. These peaks are then iden
fied with the ones expected at6 1

3 qs
EA when there is a finite

SG LRO. This observation is fully consistent with the fa
that the standard SG LRO with a nonzeroqs

EA is realized in
the ordered state of the SK model. In 5D, the growing sy
metric peaks also appear atqdiag.60.18 forL>5, suggest-
ing that the SG LRO characterized by a nonzeroqs

EA is real-
ized.

In 4D, by contrast, no peaks corresponding to6 1
3 qs

EA are
observed, at least within the range of sizes we simulate.
stead,Ps(qdiag) exhibits a marginal behavior, staying near
flat with a plateaulike structure atuqdiagu&0.2 forL>6. With
increasingL, this plateau gradually gets higher but no si
peaks show up. Since the normalization condition
Ps(qdiag) inhibits the plateau of finite width getting highe
2-7
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FIG. 5. Overlap distribution function of the chirality, in 4D atT/J50.26 ~a!, in 5D at T/J50.40 ~b!, and in the SK model atT/J
50.10 ~c!.
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indefinitely, one plausible asymptotic behavior ofPs(qdiag)
might be that it eventually converges in theL→` limit to
the Gaussian distribution aroundqdiag50. In that sense, the
observed behavior is consistent with the spin disorder at
temperature. However, solely from the present data, we c
not completely rule out the possibility that the6qs

EA/3 peaks
characteristic of the SG LRO eventually show up for s
larger L. Anyway, in the range of sizes studiedL<10, we
have observed no sign of such side peaks, in contrast to
5D case where the side peaks appear already forL55. An-
other possibility may be that the 4D model exhibits a fini
temperature SG transition but the SG state is a critical ph
with a vanishing SG order parameterqs

EA50, as expected
for the system at its LCD. However, as argued below, suc
LCD behavior is not supported from our data of the critic
properties.

F. Chiral-glass susceptibility

From the data presented above, we have concluded th
4D the chirality is an order parameter of the transition, b
not so in 5D and in the SK model: In the latter cases,
order parameter of the transition is the spin, while the chi
ity order is parasitic to the spin order. In order to exam
further the validity of such a picture, we show in Fig. 7 t
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temperature and size dependence of the reduced chiral-

susceptibility, wherex̃x is plotted as a function of the re
duced temperature (T2TCG)/TCG on a log-log scale. As de
termined above,TCG is taken to beTCG/J50.38 in 4D and
TCG/J50.60 in 5D. In the SK case, we putTCG/J5 1

3 which
is exact.

As can be seen from Figs. 7~b! and 7~c!, the reduced
chiral-glass susceptibilities of the 5D and the SK models
not exhibit any sign of divergence: They stay small at a

temperatureT.TCG, and most notably,x̃x gets smaller with
increasing the system sizeL. Such a size dependence is com
pletely opposite to the one expected for a diverging quan
in the critical region. We note that even at temperatu
close to the transition temperature, no sign of the reversa
the size dependence is discernible. In fact, in the SK ca
such a nondiverging behavior ofx̃x is just as expected. In the
SK model, the standard SG exponents are known to ba
521, bSG51, andgSG51. Then the chiral-glass exponen
bCG is expected to bebCG53, because the chirality is cubi
in the spin variables. Then, the chiral-glass susceptibility
ponent is obtained asgCG523 from the scaling relationa
12bCG1gCG52. NegativegCG means that the chiral-glas
susceptibility of the SK model does not diverge at the S
transition. Very much similar behavior observed in 5D su
2-8
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FIG. 6. Overlap distribution function of the diagonal part of the spin in 4D atT/J50.26~a!, in 5D atT/J50.40~b!, and in the SK model
at T/J50.10 ~c!.
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gests that the the chiral-glass susceptibility of the 5D mo
does not diverge at the transition, either. Hence, our ob
vations forx̃x are fully consistent with our previous findin
that the order parameter of the transition in 5D and in the
model is the spin, not the chirality.

By contrast, in 4D,x̃x exhibits a different behavior. Al-
though in the investigated temperature regimex̃x stays rather
small and tends to decrease with increasingL, similarly to
the behavior observed in 5D and in the SK limit, its si
dependence is about to change in a close vicinity ofTCG.
More specifically, theL510 data catch up theL58 data at
t.0.04, and at temperatures further close toTCG, exceeds
the L58 data, where the data show significant finite-s
rounding preventing the observation of the asymptotic cr
cal behavior. This suggests that the critical region of
chiral-glass transition might be very narrow in 4D, limited
the regimet&1022. In the temperature range outside th
the chirality exhibits a mean-field-like nondiverging behav
similar to the one of the SK model. Although we cann
directly get into this narrow critical region in our prese
simulation due to the computational limitation, the observ
behavior ofx̃x of the 4D model indeed suggests that suc
crossover from the mean-field-like behavior att*1022 to
the diverging critical behavior att&1022 does occur. Unfor-
tunately, inaccessibility to the asymptotic critical region p
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vents us from estimating the chirality exponents. In order
estimate the asymptotic chiral critical exponents, one ne
to approach the temperature regimet&1022 with larger lat-
tices L>10, which is not feasible with the computation
capability presently available to us.

G. Critical exponents

In this subsection, we analyze the critical properties of
SG transition in each case of 5D and of the SK model. In
case of 4D, our analysis has suggested that the transition
pure chiral-glass transition, the associated chiral critical
gime being narrow,t&1022, which prevents us from esti
mating the chiral critical exponents.

In 5D, we have concluded that the transition is the st
dard SG transition, i.e., the order parameter is the spin,
the chirality, although the chirality also takes a nonzero va
in the SG ordered state reflecting the noncoplanar chara
of the spin order. We estimate the associated SG expon
via the standard finite-size-scaling analysis ofqs

(2) , based on
the relation

qs
(2)'L2(d221hSG) f ~L1/nSGuT2TSGu!, ~21!

where theTSG value is set to the best value determin
above,TSG/J50.60. The best estimates of the SG expo
2-9
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FIG. 7. Temperature and size dependence of the reduced chiral-glass susceptibility in 4D~a!, 5D ~b!, and in the SK model~c!.
en
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ete ter
ents arenSG50.6(2) andhSG520.8(2), seeFig. 8. From
the standard scaling relation, we get other exponents
a521.0(5),bSG50.7(3), andgSG51.7(5). Onesees that
these exponents are not far from the mean-field expon
expected above the upper critical dimensionD56.

In the SK case, mean-field exponents should be ex

FIG. 8. Finite-size scaling plot of the spin-glass order param
in 5D.
22441
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Indeed, as shown in Fig. 9, our data ofqs
(2) are entirely

consistent with such a mean-field behaviorbSG51 andhSG
50.25,26

In concluding this section, we touch upon the near-criti
behavior of the spin observed around the chiral-glass tra
tion point in 4D. Although our data of the Binder ratios an
the overlap distribution functions given above have stron

r FIG. 9. Finite-size scaling plot of the spin-glass order parame
in the SK model.
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FIG. 10. Finite-size scaling plot of the spin-glass order parameter in 4D, assuming~a! TSG/J5TCG/J50.38 and~b! TSG50. In ~b!, our
best value ofhSG is reasonably close to the exact value ofhSG522 expected for theT50 transition.
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suggested that the Heisenberg spin remains paramag
even belowTCG in 4D, the presentqs

(2) data can be scale
reasonably well with assumingTSG/J5TCG/J50.38(2), at
least from the purely numerical viewpoint. Such a co
strained finite-size scaling analysis ofqs

(2) yields the esti-
matesnSG8 51.3(2) andhSG8 520.7(2): seeFig. 10~a!. Note
that the value ofn8 is far from the LCD value,n85`. We
also note that the sameqs

(2) data can also be fitted with
comparable quality by assuming a zero-temperature SG t
sition TSG50, see Fig. 10~b!. As mentioned, we believe tha
the nSG8 andhSG8 values obtained by assumingTSG5TCG do
not represent true asymptotic exponent values, but just
resent effective exponents describing the short-scale n
critical phenomena which is an echo of the chiral-glass tr
sition. Indeed, at short scales, the chirality is nev
independent of the spin by its definition. Hence, the beha
of the spin-correlation related quantities might well refle
the critical singularity associated with the chirality up to ce
tain length and time scales.

V. SUMMARY AND DISCUSSION

In summary, we performed a large-scale equilibrium M
simulation of the 4D, 5D, and SK Heisenberg spin glasses
5D, the model exhibits a single SG transition at a finite te
perature, reminiscent to the one of the corresponding me
field model. Below the transition temperatureTSG/J
50.60(2), thespin is frozen in a spatially random noncopl
nar configuration. Although the SG order accompanies a
nite chiral-glass LRO reflecting the noncoplanar nature
the spin order, the order parameter of the transition is
spin, not the chirality, and the chiral-glass susceptibility
mains nondiverging atT5TSG. Similar behavior is also ob
served in the Heisenberg SK model. The SG exponents in
are estimated asa521.0(5), bSG50.7(3), gSG51.7(5),
and nSG50.6(2), most of which are rather close to th
mean-field exponents. Since the upper critical dimension
the SG is believed to be 6, the observed closeness to
mean-field values seems reasonable. Our data sugges
the SG ordered state accompanies a peculiar phase-s
structure, namely, a one-step-like RSB, at least in its ch
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sector. Such a one-step-like character of the RSB is at v
ance with the full ~hierarchical! RSB realized in the SK
model corresponding toD5`. It means that the RSB patter
of the ordered state changes its nature at some borde
dimensionality, presumably at the upper critical dimens
D56.

In 4D, the model exhibits a significantly different beha
ior from the 5D and the SK models. The bulk of our da
particularly the Binder ratio, indicate that the 4D model e
hibits a pure chiral-glass transition at a finite temperat
TCG50.38(2) without accompanying the standard SG ord
At the chiral-glass transition, however, the spin becomes
most critical which manifests itself as a pseudocritical ph
nomenon observable at short length scales. The critical
gion associated with the chiral-glass transition is ve
narrow, limited tot&1022, suggesting that the dimension
is close to the marginal dimensionality. The SG transiti
occurs either atTSG50 or at a finite temperature, but belo
the chiral-glass transition temperatureTSG,TCG. Our data
suggest that the chiral-glass ordered state accompanies a
step-like RSB in the chiral sector. Again, such a one-step-
character of the RSB differs from the full~hierarchical! RSB
realized in the SK model.

Next, we wish to compare out present results on the
and 5D Heisenberg SG’s with those of the previous auth
To our knowledge, our results for the chiral order are ne
Concerning the spin order, our present conclusion, i.e.,
presence of the SG LRO in 5D and the absence of it in 4
is consistent with most of numerical simulations, in partic
lar, with the one of Stauffer and Binder.19 Our conclusion,
however, is at variance with that of Coluzzi, who sugges
that the SG LRO set in at a finite temperatureTSG/J.0.5.20

Although the numerical data themselves seem to be con
tent between the two works, Coluzzi simulated rather sm
latticesL<5 and high temperaturesT/J>0.5, which ham-
pered a direct examination of the asymptotic ordering beh
ior. Our new data for larger latticesL<10 and for tempera-
tures including lower ones,T/J>0.26, have clarified that the
transition occurs in the chiral sector atTCG/J.0.4, which is
somewhat lower thanTSG estimated in Ref. 20. Furthermore
the Heisenberg spin appears to remain paramagnetic a
2-11
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chiral-glass transition point on sufficiently long leng
scales, i.e., the transition atTCG/J.0.4 is not the conven-
tional SG transition, but a pure chiral-glass transition.

Finally, we wish to discuss implication of our present r
sult to the 3D case. The behavior of the 4D model obser
in the present work is qualitatively similar to the one of t
3D model observed in Refs. 10,15 except that the beha
of the 4D model looks much more marginal. For examp
the reduced chiral-glass susceptibility of the 3D model
much larger in magnitude than that of the 4D model, and
associated chiral-glass critical region is much wider in
than in 4D. As one judges from the size dependence of
reduced chiral-glass susceptibility shown in Fig. 3 of Ref.
the width of the chiral critical region is about 1021, which
should be compared with our present estimate for the
model, 1022. All these suggest that the spin-chirality deco
pling is more eminent in lower dimensions. As the dime
sionality is increased, the spin-chirality decoupling tends
be suppressed. In 4D, the spin-chirality decoupling s
seems to persist, but it is limited only to a very narrow te
perature region close to the transition temperature, sugg
ing that 4D is close to the borderline dimensionality. As t
dimensionality is further increased, the spin-chirality deco
pling no longer occurs. There, the order parameter of tra
tion is the spin, not the chirality. This is indeed the case
5D. However, at least in the case of 5D, the SG ordered s
exhibits a peculiar one-step-like RSB, which differs in ch
acter from the full RSB of theD5` SK model. Estimated
SG critical exponents of the 5D model are rather close to
s
,
o
a

am
in
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mean-field values, which is consistent with a common be
that the mean-field SG exponents arise above six dimensi
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APPENDIX: DERIVATION OF Eq. „7…

In this appendix, we give the derivation of Eq.~7!. It
describes the self-overlap part of the diagonal spin-ove
distribution function in the thermodynamic limit, when th
SG ordered state with a nonzero EA order parameterqs

EA

.0 exists. Since the diagonal spin-overlapqdiag transforms
nontrivially under globalO(3) rotations, even a self-overla
part of the distribution function is not just a simple del
function located atqdiag56qs

EA , but exhibits a nontrivial
behavior given by Eq.~7!.

We consider a diagonal spin-overlap between a partic
spin state described by the configurationSW i and a state gen
erated from this state via a globalO(3) rotationR,

qdiag5
1

N (
i 51

N

SW i•RSW i . ~A1!

We first consider the case of proper rotations with det(R)
51. The SO(3) rotation matrixR is known to be param-
etrized by the Euler anglesF, Q, andC, as
R5S Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz
D 5S cosQ cosF cosC2sinF sinC cosQ sinF cosC1sinF cosC 2sinQ cosC

2cosQ cosF sinC2sinF cosC 2cosQ sinF sinC1cosF cosC sinQ sinC

sinQ cosF sinQ sinF cosQ
D .
n

g
f

Then,qdiag can be written as

qdiag5
1

N (
i 51

N

@RxxSix
2 1RyySiy

2 1RzzSiz
2 1~Rxy1Ryx!SixSiy

1~Ryz1Rzy!SiySiz1~Rzx1Rxz!SizSix#. ~A2!

The spin direction at each site can be represented aSW i
5(sinuicosfi ,sinuisinfi ,cosfi). If one notes the fact that
in the SG ordered state, the spin direction is entirely rand
on long length scales giving a uniform distribution on
sphere in spin space, one can replace in the thermodyn
limit the summation over spins by the integral over sp
directions as (1/N)( i 51

N →(1/4p)*21
1 d cosu*0

2pdf. Then,
only the diagonal terms containingRmm survive in Eq.~A2!,
leading to
m

ic

qdiag5
cos~F1C!11

3
cosQ1

cos~F1C!

3

5
cos~F1C!11

3
x1

cos~F1C!

3
, ~A3!

wherex[cosQ. Note that this is a function of the rotatio
matrix R only, not depending on the spin configurationSW i
any more. The overlapqdiag takes various values dependin
on theO(3) matrix R. We then consider the distribution o
qdiag arising from the distribution ofR, or equivalently,x, F
and C. The appropriate measure is21<x<1, 0<F
,2p, and 0<C,2p being uniform. It is convenient to
change the variables from (F,C) to (a,b)5@F1C,(2F
1C)/2#, where 0<a,4p and 0<b,p. With this change
of the variables, Eq.~A3! becomes independent ofb, and is
given by
2-12
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qdiag5
cosa11

3
x1

cosa

3
. ~A4!

The distribution functionPs(qdiag) is proportional to

Ps~qdiag!}E dx

dqdiag
da5E

0

ac(qdiag) 3

11cosa
da, ~A5!

where we have used Eq.~A3!. Note that, for a givenqdiag,
the integral with respect toa is restricted to the range
@0,ac#, with ac(qdiag)5cos21@(3qdiag21)/2#. This may be
seen from Fig. 11, where we plotqdiag as a function ofx for
variousa. Obviously, for a givenqdiag, no contribution to
the integral arises from the region ofa between@ac ,p#. The
qdiag dependence ofPs(qdiag) arises from this upper limit of
the integral. The integration in Eq.~A5! can be easily carried
out to yield

Ps~qdiag!}tan
ac~qdiag!

2
531/2A 12qdiag

3qdiag11
.

So far, we have considered proper rotations. The con
bution from improper rotations, which can be viewed
proper rotations combined with the spin inversionSW i→
2SW i , may be obtained immediately by the replacem
qdiag→2qdiag. Adding the contributions from both prope
and improper rotations with equal weights, and reproduc
the appropriate normalization factor, we get

Ps~qdiag!5
3A3

4p SA 12qdiag

3qdiag11
1A 11qdiag

23qdiag11D . ~A6!

Finally, we note that at finite temperatures a state should
regarded as a pure state. The spin length is then no lo
unity, and the unity in Eq.~A6! should be replaced byqs

EA .
We finally obtain

*Electronic address: imag@spin.ess.sci.osaka-u.ac.jp
†Electronic address: kawamura@ess.sci.osaka-u.ac.jp URL:
http://thmat8.ess.sci.osaka-u.ac.jp/;kawamura
1For reviews on spin glasses, see, e.g., K. Binder and A. P. Yo

FIG. 11. Sketch ofqdiag as a function ofx for variousa. For a
given value ofqdiag, there is no possible value ofx for a range ofa
satisfyingac(qdiag)<a<p.
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Ps~qdiag!5
3A3

4pqs
EA SA qs

EA2qdiag

3qdiag1qs
EA

1A qs
EA1qdiag

23qdiag1qs
EAD ,

~A7!

which is Eq.~7!.
The derivation above, valid in the thermodynamic lim

N→`, is quite general. In order to get some feeling abo
the finite-size effect, we also computePs(qdiag) numerically
for finite-N Heisenberg spins, the direction of which is a
sumed to be completely random in three-component s
space. More specifically, we prepare a random and unco
lated configuration ofN spins, numerically generateO(3)
rotation matrixR with appropriate measure~i.e., the one gen-
erated randomly from the uniform distribution of21<x
<1, 0<F,2p, 0<C,2p, and the determinant61), op-
erate R to the initial spin configuration, and compute th
diagonal spin-overlapqdiag between the initial and the
O(3)-rotated spin configurations. We generate 104 distinct
O(3) matrices for a given initial spin configuration, and ge
erate several hundreds of initial spin configuration
Ps(qdiag) being accumulated over these procedures. The
sult is shown in Fig. 12. TheN5` result analytically ob-
tained above is also shown. It can be seen that the roun
peak at6 1

3 qs
EA grows asN increases, eventually exhibiting

divergent behavior in theN5` limit. Of course, the finite-N
result computed here is valid only for non-interacting spi
It would differ from the corresponding result for the interac
ing system, in contrast to the analyticalN5` result which is
valid even for the interacting system. It still gives some fe
ing how the finite-size rounding takes place in finite-N SG
models.
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