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Diverging magnetothermal response in the one-dimensional Heisenberg chain

Kim Louis and C. Gros
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A current of magnetic moments will flow in the spin-1/2 Heisenberg chain in the presence of an external
magnetic fieldB and a temperature gradientDT along the chain. We show that this magnetothermal effect is
strictly infinite for the integrable Heisenberg model in one dimension. We set up the response formalism and
derive several new generalized Einstein relations for this magnetothermal effect which vanishes in the absence
of an external magnetic field. We estimate the size of the magnetothermal response by exact diagonalization
and quantum Monte Carlo simulations and make contact with recent transport measurements for the one-
dimensional Heisenberg compound Sr2CuO3.
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I. INTRODUCTION

The nature of magnetic and thermal transport in magn
insulators with reduced dimensions is a long-standing pr
lem. Huber, in one of the first works on the subject,1 evalu-
ated the thermal conductivityk(T) for the Heisenberg chain
with an equation-of-motion approximation and found afinite
k(T), a result which is, by now, known to be wrong. A fe
years later, Niemeijer and van Vianen calculatedk(T) in the
caseJz50 using the Jordan-Wigner transform and found
diverging result.2 It has been shown recently3 that the
energy-current operator commutes with the Hamiltonian
the spin-1/2 Heisenberg chain. The thermal conductivity
consequently infinite for this model. The intriguing
question—‘‘under which circumstances does an interac
quantum system show an infinite thermal conductivity’’—
being intensively studied theoretically,4–6 motivated, in part,
by new experimental findings.

An anomalous large magnetic contribution tok has been
observed for the spin-ladder systems Sr142xCaxCu24O41 and
Ca9La5Cu24O41,7,8 raising the possibility of ballistic mag
netic transport limited only by residual spin-phonon and i
purity scattering. Large energy-relaxation times have b
found in recent experimental9 and theoretical4 studies of the
thermal conductivity for the quasi-one-dimensional sp
chain compounds SrCuO2 and Sr2CuO3, consistent with17O
NMR studies.10

It is known3,11 that there is no magnetothermal effect
the Heisenberg chain since the magnetic-current operator
pseudovector. This can be seen by a simple symmetry a
ment in the standard setting, when we consider only a t
perature gradient along the sample. A nonzero magneto
mal effect would yield a magnetization along an arbitra
quantization axis. But because of the isotropic conditio
there is no preferred direction along which such a magn
zation might occur; the effect vanishes consequently.

The situation is, however, different if there is an extern
magnetic field.3 A temperature gradient will now cause
magnetization current with a magnetization vector paralle
the field; see Fig. 1. This magnetothermal effect can be c
sidered the generalization to magnetic systems of the S
beck effect occurring in normal conductors. It is divergi
for the isolated Heisenberg chain, leading to a finite nonz
‘‘magnetothermal Drude weight.’’ In this paper we discu
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magnetothermal effects in spin chains; i.e., we examine h
the magnetic and thermal currents couple to external sour

In Sec. II we will discuss the differences in between t
thermomagnetic effects found in normal metals and the m
netothermal response we study here for magnetic insula
In Secs. III and IV and in Sec. V we set up the formalism f
the magnetic and energy current operators in the presenc
an external magnetic field and for the correlation and
sponse functions, respectively.

In Sec. VI we evaluate the magnetothermal response
the xy chain via a Jordan-Wigner transformation and der
and discuss several generalized Einstein relations in Sec.
In Sec. VIII we derive and discuss a new exact magnetoth
mal Einstein relation.

We present in Sec. IX numerical results obtained fro
quantum Monte Carlo~QMC! simulations and exact
diagonalization studies. Finally, we discuss the size of
magnetothermal effect expected for Sr2CuO3 together with a
dimensional analysis in Sec. X.

II. THERMOMAGNETIC AND MAGNETOTHERMAL
RESPONSE

In a conventional solid there is normally a variety of wa
in which external parameters~e.g., current densityj, tem-
perature gradient, and magnetic fieldB) couple to the volt-
age¹m and the thermal currentj E leading to numerous ther
moelectric and thermomagnetic effects. A phenomenolog
equation which gives full account of all these effects wou
look as~see, e.g., Ref. 12!

S 2“m

jE
D 5F S r Q

P 2k D 1S R N

Ek Lk DB3G S j

“TD .

FIG. 1. Illustration of a quasi-one-dimensional magnetic insu
tor in the presence of an external magnetic fieldB and a longitudi-
nal temperature differentialDT. A magnetic currentj M , with the
moments aligned alongB, is induced.
©2003 The American Physical Society10-1
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~B3 is understood to be applied to both compone
separately.! r is the resistivity,k the thermal conductivity,
and the other coefficients describe the Seebeck (Q), Peltier
(P), Hall (R), Nernst (N), Ettingshausen (E), and Righi-
Leduc effect (L). The latter four effects are calle
thermomagnetic—for obvious reasons—and are not to
confounded with the effects which are to be discussed in
paper which we denotemagnetothermal effects. One should
note that in magnetic systems the magnetic field correspo
to the chemical potential, leaving no analogs for the ent
of the second matrix.

Following Ref. 12, we write the dependence of the curr
densitiesj M ~particle! and j E ~energy! on external sources
~field ¹B52¹m and temperature gradient¹T) in the fol-
lowing manner:

S j M

j E
D 5S L̂MM L̂ME

L̂EM L̂EE
D S ¹B

~2¹T!
D . ~1!

@We deviate from the standard notation by indexing
components of the tensor byM and E rather than 1 and 2
The notation withM as particle index andB as chemical
potential borrows from spin systems, this article’s chief ca
of interest. Equation~1! may therefore be used as a referen
for both electrical and magnetic systems.# Normally, the two
off-diagonal components governing theSeebeckandPeltier
effects are not independent but related via theOnsagerrela-
tion. Here, with the given choice of external forces, it rea
~whereT denotes temperature!

TL̂ME5L̂EM . ~2!

To compute the response functionsL̂ i j we use the stan
dard Kubo formula2,6,14,13 which yields for the Heisenberg
model generally anL̂ tensor with infinite components, i.e.,
d function times a weight factor. These weight factors will
denoted by the entries of theL tensorLi j ~without the caret!.
Normally, one has an additional finite contribution—th
regular part—which will turn out to be zero for all but th
MM component. We assume that due to some—so far u
counted for—scattering processes with external degree
freedoms ~like phonons or impurities!, the infinite peak
broadens and the coefficients~we consider only the real part!
may be replaced according to~cf., e.g., Ref. 14!

L̂ i j ~v![Li j pd~v!→ Li j t

11~vt!2
, ~3!

with i , j P$M ,E% and a finite relaxation timet—for simplic-
ity, a possible dependence oni and j shall be neglected.

III. CURRENT OPERATORS

In this article, we discuss the analog of the thermoelec
effect in spin chains. The Hamiltonian is the standardxxz
chainH5(nhn with

hn5Jx~Sn
xSn11

x 1Sn
ySn11

y !1JzSn
zSn11

z 1mBBSn
z . ~4!

HeremB is the Bohr magneton and the lattice spacing will
denoted byc; the Sn are supposed to be dimensionless.
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Instead of the electrical current we consider the magn
current15

JM5 imB

c

\

Jx

2 (
n

@Sn
1Sn11

2 2Sn
2Sn11

1 #

5JxmB

c

\ (
n

@Sn3Sn11#z[ i
c

\
@H,PM#, ~5!

where we have defined the magnetic polarizationPM

5mB(nnSn
z , which is possible only for chains with ope

boundary conditions~OBC’s!.
For the energy current2,3 we have equivalently

\

c
JE5 i(

n
@hn ,hn11#5B

\

c
JM1(

n
S̃n•~Sn113S̃n12!

5B
\

c
JM1(

n
det@S̃nSn11S̃n12#[ i @H,PE#, ~6!

where we have usedSn5(Sn
x ,Sn

y ,Sn
z) and the definitionS̃n

5(JxSn
x ,JySn

y ,JzSn
z). In the following we will denote with

j i[Ji /Vol, i P$M ,E%, the respective current densities. He
Vol5cN is the one-dimensional volume, wherec is the lat-
tice constant andN the number of sites.

The energy polarizationPE5(nnhn entering Eq.~6! for
OBC’s represents a temperature gradient and, as is
known,16 entails always a magnetic polarizationPM , which
stems from the chemical potential term~magnetic field term!.
To see this we insert a site-dependent~linear!

b5b~n!5b̄1nc¹b

into the thermodynamical expectation value.13 The Boltz-
mann factor can be rewritten as follows:

expS 2(
n

b~n!hnD 5expF2b̄S H1
c¹b

b̄
(

n
nhnD G

5exp@2b̄~H1FcPE!#, ~7!

whereF5¹b/b̄52(¹T)/T̄. This motivates the use ofPE
to model a temperature gradient.

IV. CORRELATION FUNCTIONS

Setting up the notation for the response theory we de
with17,13

L~AB!~z![
i

\E0

`

eizt^@A~ t !,B#&dt ~8!

the retarded Green’s function of two operatorsA and B. In
our caseA andB will be mostly current operators; we there
fore introduce the notationL(JiJj )[L i j . Here L(AB)(z)
vanishes when one of the operators is a constant of mo
and commutes with the Boltzmann factor: by the cyclic pro
erty of the trace one has in this case^AB&5^BA&.

The energy-current operatorJE commutes with the
Hamiltonian in the absence of an external magnetic fieldB.
Using Eq. ~6! we have LME5LEM5BLMM and LEE
5B2LMM .
0-2
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The isothermal susceptibility13 is given by

xT~AB![E
0

b

^DA~t!DB&dt, ~9!

with DA5A2^A& andDB5B2^B&. It takes the usual form
xT(AB)5b^DADB& when one of the operators is a consta
of motion. The generalized Drude weight~which is used,
e.g., in Ref. 4! is defined by

^^AB&&[ lim
z→0

~2 iz!E
0

`

eitz^DA~ t !DB&dt. ~10!

These three correlation functions are not independ
Comparing the respective eigenstates-representation,
ZL(AB)(0)5(EnÞEk

DAnkDBkn(e
2bEk2e2bEn)/(En

2Ek), whereZ is the partition function, one finds

b^^AB&&1L~AB!~0!5xT~AB!. ~11!

Under open boundary conditions, when the relationsJj
5 i (c/\)@H,Pj # are valid, we can express the isotherm
susceptibility, Eq.~9!,

xT,OBC~JiJj !5 i
c

\
^@Ji ,Pj #& ~12!

as a static expectation value. Note, however, that the valu
the susceptibility is independent of the boundary conditio
in the thermodynamic limit:xT,OBC(JiJj )5xT,PBC(JiJj ).

V. MAGNETOTHERMAL COEFFICIENTS

We now discuss the general recipe for the computation
the entries of theL tensor, appearing in Eq.~3!.

We assume a perturbation in the form of a polarizat
~cf., e.g., Ref. 13!, i.e., we add to the Hamiltonian a term
c¹B•PM with PMªmB(nnSn

z and compute the response
the current density operator to obtain theMM component.
~A different but equivalent approach is given in Ref. 17.! To
compute the remaining entries of theL tensor, we replace the
magnetic by the energy current density~in the second row!
and/or substitutePEª(nnhn for PM—as well asc¹T for
c¹B—and add a factorkBb ~in the second column!. @One
should compare this procedure with Eq.~7!.#

The linear response theory gives the following contrib
tion to L̂ i j ~Ref. 13!:

~kBb! j 21
c

\E0

`

eizt^ i @ j i ,Pj~2t !#&dt,

wherebM
ªb, bE

ªb2, etc., andj i5Ji /Vol ~see Sec. III!.
Integration by parts yields for the above expression

One should note thatL i j (0)50 if one of the currents com
mutes with the Hamiltonian, and consequently there is
22441
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regular part. The factor (2 iz)21 accounts for thed function
in the zero-frequency limit and we have

Li j 5~kBb! j 21H i
c

\
^@ j i ,Pj #&2L i j ~0!J . ~13!

It is also possible to express this result by the correlat
function defined in Eq.~10! using Eqs.~11! and ~12!:

Li j 5~kBb! j 21@xT~ j iJj !2L i j ~0!#5kB
j 21b j^^ j iJj&&.

~14!

From Eq. ~13! follows the well-known result for the mag
netic Drude weight LMM5^2TMM&c/\2LMM , where
TMM52 i @ j M ,PM# is the kinetic energy per site—apa
from a prefactor. In view of Eq.~14! we define thegeneral-
ized kinetic energy

Ti j 52 i @ j i~B50!,Pj~B50!#. ~15!

Here one should note a particularity produced by the twof
role played by the operatorPE in the xxz chain: it not only
describes thermal response but also acts as a ‘‘boost’’ op
tor for the constants of motion.18 Hence,JE and TEE are
constants of motion.

Taking into account thatJE commutes with the Hamil-
tonian forB50 and using Eqs.~6! and ~13! we have

LEM5 i
c

\
^@ j E ,PM#&2BLMM5 i

c

\
^@ j E~B50!,PM#&

1BH i
c

\
^@ j M ,PM#&2LMMJ [^2TEM&

c

\
1BLMM

~16!

and at finiteB: \LEE /(ckBb)5$ i ^@ j E(B50)1B jM ,PE(B
50)1BPM#&2B2LMM%5B^2TME&1B^2TEM&2^TEE&
2B2$^TMM&1\LMM /c%.

The generalized kinetic energyTEM52 i @ j E ,PM# appear-
ing in Eq. ~16! is given by~in units mBc/\)

TEM5
2 i

Vol (n
~neabg@S̃n

a ,Sn
z#Sn11

b S̃n12
g 1cycl.!

5(
n

$nS̃n3~Sn113S̃n12!1cycl.%z /Vol

5
1

Vol (n
$S̃n123~S̃n3Sn11!2S̃n3~Sn113S̃n12!%z

5
Jx

2

Vol (n
H 2Sn

1Sn11
z Sn12

2 2Sn
2Sn11

z Sn12
1

1
Jz

2Jx
~Sn

1Sn11
2 Sn12

z 1Sn
2Sn11

1 Sn12
z

1Sn
zSn11

2 Sn12
1 1Sn

zSn11
1 Sn12

2 !J , ~17!
0-3
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where ‘‘cycl.’’ means cyclic permutation o
$n,n11,n12%—note that the tilde is permuted with the in
dices.

^2TEM& changes sign under inversion of theSz magneti-
zation M and vanishes consequently forB50, as does the
magnetothermal response in this case; compare Eq.~16!. The
case of a finiteB is therefore of interest. We will conside
only the effect linear inB, since magnetic fields amount no
mally only to small energies:

LEM'B
]

]B
LEMuB505BF ^2TEM~2bM !&

c

\
1LMM G .

~18!

The EM coefficient, therefore, consists of two parts. One
theB derivative of the zero-fieldLEM ; the other comes from
the change ofJE in magnetic field~namely, it acquires a term
BJ) and is already linear inB—for small B.

The quotient ofLME andLMM ,

QM5L̂ME /L̂MM5LME /LMM , ~19!

is called the(magnetic) thermopower. It has the advantage
that geometric properties of samples cancel in experime
studies and that the relaxation times cancel.

To discussLME is superfluous, if one keeps the Onsag
relation in mind. Anyway, if we follow the same steps
above, we arrive—with explicitly using OBC’s—at~in units
mBc/\)

TME52 i @ j M ,PE#

5
2 i

Vol (n
~n@S̃n3Sn11 ,S̃n•Sn11#1~n11!S̃n

3@Sn11 ,Sn11•S̃n12#1n@Sn11 ,S̃n•Sn11#3S̃n12!z

5( $n/2Jx
2~Sn2Sn11!2~n11!S̃n3~Sn113S̃n12!

2nS̃n123~S̃n3Sn11!%z /Vol

5(
n

Jx
2/2$2Sn

1Sn11
z Sn12

2 2Sn
2Sn11

z Sn12
1

1~n11!Jz /Jx~Sn
1Sn11

2 Sn12
z 1Sn

2Sn11
1 Sn12

z !

2nJz /Jx~Sn
zSn11

2 Sn12
1 1Sn

zSn11
1 Sn12

2 !

1M /mB2S0
z
•Vol/c%/Vol,

which differs apparently fromTEM . This does not contradic
the Onsager relation because we find that^TME&5^TEM&
still holds. This may be seen by first using Eqs.~5! and ~6!,

^TME&2^TEM&5
c

\
^@@H,PM#,PE#2@@H,PE#,PM#&,

and then adding a term which is zero by the cyclic prope
of the trace:
22441
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5
c

\
^@@H,PM#,PE#1@@PM ,PE#,H#1@@PE ,H#,PM#&.

That this final expression is zero is just Jacobi’s identity.
Here it should be emphasized that^TME& has non-

negligible contributions from the boundary and is—unli
^TEM&—sensitive to a change from periodic boundary co
ditions ~PBC’s! to OBC’s.

VI. JORDAN-WIGNER TRANSFORM AND FREE
FERMION MODEL

For our spin Hamiltonian all quantities may easily be c
culated whenJz50 via the Jordan-Wigner mapping to a fre
fermion system. Under this condition the Hamiltonian
straightforwardly diagonalized by a Fourier transform w
eigenvalues cosk ~settingJx[1) following the Fermi-Dirac
distribution ^nk&5^ck

†ck&5@11exp(b cosk)#21.
The Drude weight entering Eq.~18! is given simply by

2LMM5^TMM&c/\5* cosk^nk&dk/(2pc)(mB
2c/\2). At the

same timeTEM simplifies to~again in unitsmBc/\)

TEM5
1

Vol (n
$2Sn

1Sn11
z Sn12

2 2Sn
2Sn11

z Sn12
1 %

52E dk

2pc
cos~2k!nk .

Following Eq. ~18! we need to compute~right-hand side in
units mB

2c/\)

^~2bM !~2TEM!&5
2b

Vol (
k,q

cos~2k!K nkS nq2
1

2D L .

Here ^nknq&5^nk&^nq& holds for kÞq, nk
25nk and

(k,q cos(2k)^nk&^nq&50. We find

^~2bM !~2TEM!&5
b

Vol (k
@2cos~2k!#@^nk&2^nk&

2#

52bE dk

2pc

cos~2k!

4 cosh2@b cos~k!/2#
.

~20!

This result can be related to the temperature derivative of
kinetic energy,

^TEM~2bM !&5
d

dT
@T^2TMM&#, ~21!

whereTMM for the xy model is defined above. The relatio
~21! is easily verified using a partial integration.

VII. EINSTEIN RELATIONS

Let us recapitulate Einstein’s relation for diffusive tran
port in a metal: In a closed system thediffusivecurrent j D

52D̂¹n, driven by a gradient in the particle densityn and
the electrical current driven by anexternal potential, j
0-4
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5ŝE, add to zero:j D52 j . This condition yields Einstein’s
famous relation

ŝ

D̂
5

¹n

E
. ~22!

Here in the case of a magnetic system, we are not in
ested in a variation of the electron particle density, but i
change in internal energy or magnetization. Hence, we
place n(x)→An where An is either hn or mBSn

z . Further-
more, the currents are not driven by a fieldE, but by a po-
larization PF5(nnFn ~times the lattice constantc), for a
conservedF: @F,H#50. In our case the operatorF is either
the magnetization or the internal energy.

We will also assume that there is diffusive transport
both the magnetization and the energy current. Thereby
are led to the following definitions of the corresponding d
fusion coefficients:

j M[D̂MM¹M , j E[D̂EE¹E,

whereM andE are the magnetization and internal energy
Generalized Einstein relations can be derived using

static responseof ¹Aunª(An112An)/c to a perturbation
cPF , wherec is the lattice constant along the chain:

¹n/E→(
n

xT~¹AuncPF!/Vol,

where we perform a volume average.~This becomes manda
tory because we consider the response to the current de
rather than to the current at a fixed site.! Using the linearity
of the isothermal susceptibility we find~by a discrete version
of an integration by parts!

cxT~¹AunPF!5(
m

$xT@An11~mFm!#2xT@An~mFm!#%

5(
m

@~m11!xT~AnFm!2mxT~AnFm!#

5(
m

xT~AnFm!

and with the volume average on both sides

(
n

cxT~¹AunPF!/Vol5b^DADF&/Vol. ~23!

We rewrite Eq.~22! for the case of a magnetotherm
responsej M[L̂ME¹T5D̂MM¹M[2 j D , and find

L̂ME

D̂MM

5
LME

DMM
5

¹M

¹T
5

kB

kBT

¹M

~¹T/T!
5kBbxT~¹M unPE!

5
kBb2

Vol
^DMDH&, ~24!

where we have assumed equal relaxation timest for L̂ME

5tLME and the magnetization diffusion:D̂MM5tDMM .
22441
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~This assumption was only made for simplicity. At least,
our knowledge there is no reason why the relaxation tim
should equal each other. However, the assumption is na
as in both cases the finite relaxation time comes from the
that magnons lose momentum, and the physical proce
responsible for that should be in both cases the same.! Equa-
tion ~24! leads to

LME

DMM
5

kBb2

Vol
^DMDH&'B

d

dB

kBb2

Vol
^DMDH&

5
BkBb2

Vol
^DMDM &2

BkBb3

Vol
^DM2DH&; ~25!

for small magnetic fieldsB, the structure of this equation i
similar to Eq.~18!. The first term of the right-hand side o
Eq. ~25! is just Bx/T, wherex5b^DM2&/Vol is the mag-
netic susceptibility. The second term of the right-hand side
Eq. ~25! simplifies to

BkBb3

Vol

d

db
^DMDM &5kBBb3

d

db

x

b
52

B

T

d

dT
@Tx#.

We therefore find the new relation

LME

DMM
5

B

T
x2

B

T

d

dT
@Tx#52B

dx

dT
. ~26!

Classically, the diffusion constant isD̂5v2t, wherev is the
velocity of the elementary excitations, here the magnon
locity. This leads at low temperatures to a temperatu
independent diffusion coefficientD5D̂/t5v2 and via Eq.
~26! to a vanishing magnetothermal response forT→0,
wheneverx(T) becomes constant forT→0. SettingA5M
andF5M in the general Einstein relation yields11,14

LMM /DMM5x, ~27!

and with the choiceA5H5F one may obtain11,6 an analo-
gous relationLEE /DEE5cV .

We will now introduce a formula which we believe to b
approximately valid at smallT. As stated above, the diffusio
constant is known not to vary much nearT50. Because of
our restriction to low T we assume a temperature
independent diffusion coefficientDMM ~see discussion
above!. Then we can rewrite Eq.~27! as

d

dT
LMM5

d

dT
@xDMM#'DMM

d

dT
x.

Inserting this expression into Eq.~26! we obtain

~2LME!5B
d

dT
LMM . ~28!

In the case of free fermions this is just the result of Eq.~21!.
In the case of a finite interaction it seems to be correct in
limit T→0 if we use data from Ref. 21. We provide tests
this relation in Sec. IX.
0-5
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VIII. EXACT EINSTEIN EQUATION

In Sec. VII we set up several versions of generalized E
stein relations appropriate for magnetothermal respo
Those relations may be viewed as a link between the
namical and static response theory, as they connect co
sponding correlation functions by introducing diffusion co
stants.

Upon closer examination of the right-hand sides of E
stein relations like Eq. ~27!—namely, x, cV , and
dx/dT—we find that that these are static expectation val
of products ofDM and DH operators which could be gen
erated by derivatives. Hence, it is an easy task to estab
functional relations between the static correlations, e.g.,

T2
d2

dB2
cv5

d

dT FT2
d

dT
~Tx!G .

An intriguing question is whether the analogous equati
obtained by switching between static and dynami
responses—x↔LMM , etc.—could also be valid. For one o
these relations, Eq.~28!, the range of validity is confined to
the low-temperature regime unlessJz50. ~A detailed discus-
sion follows in Sec. IX.! One reason for the failure could b
the fact that in this particular case one of the correlat
functions does not reduce to a thermodynamical expecta
value. We therefore focus on a relation between the ther
and magnetothermal response coefficients—both mere
mal expectation values. We claim that the relation

T2
d2

dB2
^2TEE&5

d

dT
@T2^TEM~2bM !&# ~29!

is exact. The proof is provided in the Appendix. This equ
tion could be useful to derive an analytical solution for t
magnetothermal response.

The arguments of the proof rely mainly on the fact th
one of the currents is a constant of motion. It is by the sa
line of arguments possible to show that Eq.~28! is exact in
the case where@H,JM#50. Unfortunately, this is a very re
stricting constraint; only thexy model and the Haldane
Shastry Hamiltonian19 meet the requirement.

IX. NUMERICAL RESULTS

In the free fermion caseLEM is easily accessible by
simple evaluation of the analytic expression~20! and a cor-
responding one forLMM52^TMM&, using Eq.~18!. If Jz
Þ0, we have to compute a mere thermal expectation va
in order to obtainTEM , a task which is tractable to Mont
Carlo simulations. Here, we use the stochastic series ex
sion ~SSE!, which is a Taylor expansion based Monte Ca
method.20

We assume a Hamiltonian of the formH5(nJnhn ; we
may write the partition function Z5(@(2b)m/m! #
3^au) i 51

m Jfm( i )hfm( i )ua& where the sum runs over all num

bersm, all functionsfm :$1, . . . ,m%→N, and Sz eigenbasis
statesa. The SSE program now samples the products
operators appearing in this expression ofZ with their relative
weight factors.
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Normally, with MC methods it is problematic to measu
operators which are not diagonal in theSz eigenbasis. But
with SSE another class of operators is easily accessible:
lowing a standard procedure in statistical mechanics,
have ^hn&5(]Jn

Z)/Z. For the SSE this means that we ca

measure any operatorhn appearing in the Hamiltonian sim
ply by counting how often it appears in the products samp
by our SSE program~and dividing byJn). So it is fairly easy
to measure sums of products of parts of the Hamiltonian
Sn

1Sn11
2 , Sn

2Sn11
1 , or Sn

zSn11
z . To make use of this fact in

the given context, it is expedient to find an expression
TEM which consists only of terms appearing in the Ham
tonian. Here we present one (TEM in units mBc/\):

TEM5
2 i\

mBc (
n

$@ j n ,hn11#1@hn , j n11#%/Vol

5(
n

1

2
$Jx

2@Sn
1Sn11

2 2Sn
2Sn11

1 ,Sn11
1 Sn12

2 #

1Jx
2@Sn

1Sn11
2 2Sn

2Sn11
1 ,Sn11

2 Sn12
1 #1JxJz@Sn

1Sn11
2

2Sn
2Sn11

1 ,Sn11
z Sn12

z #1JxJz@Sn
zSn11

z ,Sn11
1 Sn12

2

2Sn11
2 Sn12

1 #%/Vol,

which then allows us to assess the magnetothermal co
cient by the SSE.

The Drude weight—which is the other input in Eq.~18!—
may in principle be calculated by the Bethe-ansatz meth
This was attempted by several authors,22,21 but their calcula-
tions are still under discussion,23 and so far there are no
reliable results. We therefore use exact diagonalization
obtain data for the Drude peak. This has clearly the dis
vantage that we cannot make any statements about the loT
and high-Jz regimes where the convergence with Vol→` is
slow ~cf. Ref. 24!.

In Figs. 2 and 3 we plot̂ (2bM )TEM& in units of
JxmB

2/\—a detailed discussion of units follows in the ne
section; compare Eqs.~31! and ~16!—as a function of tem-

FIG. 2. Monte Carlo data~48 and 96 sites, PBC’s! for the di-
mensionless ^(2bM )TEM& and various interaction strength
Jz /Jxx . The statistical MC error bars are given.
0-6
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perature for various interaction strengths. The data forJz
Þ0 are obtained by MC simulations and—in Fig. 3—b
Eqs.~28! and ~18!.

The MC results in Fig. 2 are clearly not good enough
determine exactly theT50 value. However, forJz5Jx the
data seem to extrapolate to 0.25, which is the Bethe-an
result for the dimensionlessT50 Drude weight for the iso-
tropic Heisenberg chain.15 This result would imply via Eq.
~18! a vanishing magnetothermal response forT→0 and via
Eq. ~28! a vanishingT derivative of the Drude weight, in
contrast to previous results.22

In Fig. 3 we present a comparison~at low T) between the
MC results for^(2bM )TEM& and the results from Eq.~28!,
where we have used Bethe Ansatz results~because of the
finite-size gap exact diagonalization provides here no al
native! from Ref. 21—which we prefer to Ref. 22 because
is in agreement with Ref. 23—for the temperature-depend
Drude weight LMM . The agreement is very good forT
,0.2. As a consequence we may deduce from Eq.~28! that
^(2bM )TEM&5LMM\/c at T50; the linear magnetother
mal effect as given by Eq.~18! vanishes consequently fo
T→0.

The results forLEM and the thermopower~the prime de-
notes a derivative with respect to the magnetic fieldB) QM8
5LME8 /LMM are presented in Figs. 4 and 5, respective
Here we use exact diagonalization, because for the com
tation of the Drude weight QMC methods normally fail
higherT. ~The standard proceeding is to extrapolate from
Matsubara frequencies tov50 as attempted in Ref. 14. Thi
procedure becomes soon unstable ifT—and hence the spac
ing of the Matsubara frequencies—grows.! We use exact di-
agonalization for the computation of^TEM& as well. Since
^TEM& converges much faster with system size than
Drude weight, the finite-size error is determined by t
Drude weight, so using QMC simulations for^TEM& alone
would not give better results. On the contrary, if we us
MC data, we would introduce the statistical error. For t
Drude peak we use Eq.~14! with ^^ j iJj&&5(En5Ek

^nu j i uk&

FIG. 3. Monte Carlo data~48 and 96 sites! at smallT for PBC’s
in comparison~lines! with the estimates for̂(2bM )TEM& by Eq.
~28! and data from Ref. 21 for the Drude weight. The casesJz

5cos(p/4) andJz51 are offset for clarity.
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3^kuJjun&e2bEn/Z (Z is again the partition function!; for
^TEM& we simply use the expression in Eq.~17!. The use of
these expressions makes it possible for us to exploit tran
tional symmetry which allows us to consider slightly larg
systems than in Ref. 24~namely, up to 18 sites!.

Because of the resulting finite-size gap, we can only d
cuss the high-T regime.~In thexy model we find a vanishing
thermopower atT50 with a linear power law.!

For smallJz we find a maximum at intermediate temper
tures which decreases and is shifted to higherT as we in-
creaseJz .

At higherJz the convergence becomes slower, so we c
not make any precise statements about the transport co
cients. However, in Figs. 4 and 5 the curves decrease w
system size~for T sufficiently large!. This behavior can be
confirmed for all systems sizes~smaller than 18 sites!. If we

FIG. 4. The linear part~in B) of LEM as a function of tempera
ture @see Eq.~18!# obtained by exact diagonalization for bot
^(2bM )TEM& and the Drude weight. We plotted data for thre
system sizes~14, 16, and 18 sites! with different line styles~long-
dashed, dashed, and solid lines, respectively!.

FIG. 5. The part of the thermopower~19! linear in B as a func-
tion of temperature@see Eq.~18!# with exact-diagonalization data
for ^(2bM )TEM& and the Drude weight. We plotted data for thre
system sizes~14, 16, and 18 sites! with different line styles~long-
dashed, dashed, and solid lines, respectively!.
0-7
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assume that the direction of convergence does not chang
larger system sizes, our curves provide an upper bound to
exact results. But this would imply a reversion of the effe
~negative thermopower!. While at Jz50 the effect is
positive—disregarding the lowT regime where the negativ
sign is due to the finite-size gap—one findsQM8 <0 for a
certainT interval if Jz is large enough. Because of the slo
convergence it is impossible for us to predict the prec
location of this interval. Here one should emphasize that
conclusions were drawn from the inspection of relative
small systems, so we cannot really exclude that the obse
reversion is only due to finite-size effects.

However, we see the reason for this reversion in the
that the magnetothermal coefficient consists of two su
mands@see Eq.~18!# which turn out to have opposite sign
These behave very differently under a change ofJz . While
the Drude weight dominates atJz50, it drops dramatically
as Jz is increased towards 1~this was also reported in Re
22!. The generalized kinetic energy does not decay so m
such that it becomes the dominating part.

X. SIZE OF THE MAGNETOTHERMAL EFFECT

Based on Eqs.~1! and~30! and using the low-B approxi-
mation in Eq.~18! we present in this section estimates of t
size of the magnetic Seebeck effect.

A. Dimensional analysis

As we are considering effects linear in the magnetic fi
B we use a prime as a shorthand for]/]B. Using @JM#
5@mB# m/s and@JE#5W m „compare Eqs.~5! and ~6! and
@ j M /E#5@JM /E#/m… we may decompose the response coe
cients into dimension-full and dimension-less quantities:4

LME8 5
kBmB

\

mBc

\
~Jxb!3L̃ME8 , ~30!

LEM8 5
JxmB

\

mBc

\
~Jxb!2L̃EM8 , ~31!

where the tilde denotes the dimensionless theory result,c is
the distance between neighbor sites, andmB is the Bohr mag-
neton. Note thatLME has a factor 1/T with respect toLEM ,
hence a third factorJxb in Eq. ~30!. Inspection of that for-
mula shows the units ofLME to be J T22 m/(K s2).

For the sake of completeness we state the analogou
sults

LMM5
JxmB

\

mBc

\
~Jxb!L̃MM

for the magnetic Drude weight and

LEE5
kBJx

\

Jxc

\
~Jxb!2L̃EE

for the thermal Drude weight. The units can be read off

@LMM#5J T22 m/s2 and @LEE#5J m/(K s2). Note that@ L̂ i j #
5@Li j # s; see Eq.~3!.
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We take the well-studied one-dimensional Heisenb
chain Sr2CuO3 as an example,9 with the following param-
eters c53.91 Å,25 Jx /kB52.23103 K.26 There are two
chains in an area of 12.6833.48 Å2.25 This leads to a mag-
non velocityvs5Jxc/\.1.23105 m/s. The mean free path
ls(T) extracted from a quasiclassical interpretation of th
mal conductivity data9 is strongly temperature dependent;
ranges fromls(200 K)'100 Å to ls(50 K)'800 Å. This
results via ls5vst in a relaxation timet(200 K).0.8
310213 s andt(50 K).6.6310213 s, in order of magni-
tude.

B. Thermopower

For thethermopower, we obtain

QM8 5
LME8

LMM
5

kB

Jx
~Jxb!2

L̃ME8

L̃MM

[
kB

Jx
Q̃M8 .

Typically, kB /Jx'1023 K21 ~e.g., in Sr2CuO3) and at room
temperatureQ̃M8 '0.1. This yieldsQM8 '1024 K21.

C. Seebeck effect

The dimensionlessB derivative of the magnetothermal re
sponse is (Jxb)3L̃ME8 .0.1, in order of magnitude; see Fig. 4
We therefore obtain from Eq.~30! at T5200 K for the mag-
netic particle current density a value of

0.0363B3¹T moments/s

per tesla per~K/m!, i.e., in SI units. For a sample of lengt
1 cm51022 m with a temperature difference of 10 K and
field of 10 T we have a current of 360 spin-1 moments~mag-
nons! per second. A sample of Sr2CuO3 with a cross section
of 1 mm2 contains 4.531012 chains. It would induce a mag
netic current of 1.631015 moments per second.

D. Closed system

Finally, we consider again the setting of aclosed system.
We are given a sample with open ends such that no cur
may flow. A temperature gradient should therefore lead t
gradient in the magnetization. Using the Einstein relation
the magnetization current and Eq.~26! we have

¹M5
LME

DMM
¹T52B

]x

]T
¹T.

HerexB5M is the magnetization caused by the presence
a magnetic field. Hence, dividing byM,

¹M /M52
]

]T
@ ln x̃ #¹T,

or multiplying both sides with the system length,

DM /M52
kB

Jx

]

]T̃
@ ln x̃ #DT.
0-8
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Note thatDM /M is not directly a function of magnetothe
mal coefficients. The magnitude of the dimensionless qu
tity ( ]/]T̃)@ ln x̃# varies about 0.1. We therefore find wit
Jx /kB52200 K that the relative change in magnetization
from one end of the sample to the other—should be a fr
tion of the order of 531025K213DT.

E. Peltier effect

We want to review now briefly the adjoint(Peltier) effect,
described by the coefficientLEM . We now turn once again to
our reference system Sr2CuO3. Here it is instructive to com-
pare the energy currents driven by a temperature grad
and a gradient in the magnetic field.

We set all quantities as above, with the exception of
values (Jxb)2L̃EM8 .0.01 and (Jxb)2L̃EE8 .0.1, which we
find more appropriate. We also do not compute the ene
current density for one chain but per volume in SI units. T
result for the thermal response is

j E5163¹T J/~s m2!

and for the magnetic response

j E53.3310243¹B3B J/~s m2!.

XI. CONCLUSION

We have shown that nontrivial magnetothermal curre
may be induced in one-dimensional quantum-spin chain
an external magnetic field. We have argued that these eff
might be especially important for the one-dimension
Heisenberg chain where the energy-current operator c
mutes with the Hamiltonian and the magnetothermal
sponse diverges. We have presented estimates of the siz
the current of magnetic moments induced by a thermal t
perature difference for Sr2CuO3. We believe the size of the
induced magnetic current to be sizeable and note that
observability of magnetic currents in magnetic insulators
been discussed recently.27
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APPENDIX: PROOF OF Eq. „29…

Proof, first step

We present the proof of Eq.~29! in two steps. First we
extend the Hamiltonian to comprise the static response
thermal current:

H~l,B!5H~B!1lJE .

We indicate the expectation value at nonzerol and B by
indices. Moreover, we mean that these variables are zer
we omit them in an index or an argument. ‘‘D’’ means sub-
traction of the expectation value.

We now show that
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^JMDH&l,B5^JEDM &l,B . ~A1!

We explicitly assume PBC’s—no polarization operators
and invoke the equation of continuity to obtain a local ve
sion of the above formula:

^~JM
n 2JM

n21!Dhm&l,B52^ i @H,DSn
z#Dhm&l,B

5^DSn
zi @H,Dhm#&l,B

52^DSn
z~JE

m2JE
m21!&l,B .

On the right-hand side of the above equation we perform
reflection in space:

^~JM
n 2JM

n21!Dhm&l,B5^DS2n
z ~JE

2m2JE
2m11!&2l,B .

Translational invariance leads for

an,mª^JM
n Dhm&l,B , bn,mª2^JE

nDSm
z &2l,B

to an,m[an2m and to

ak2ak215bk112bk⇔ak2bk115ak212bk ,

wherek5n2m. This last equation implies that

cªak2bk11

does not depend on the indexk. Our strategy is to show tha
c—a function onl andB—may be neglected with impunity
in the thermodynamic limit. To this end we look at the fo
lowing estimate:

uc~B,l!u5ubk112aku<min
k

$ubk11u1uaku%.

The fact that all correlation function of the form̂DG1DG2&
~such as, e.g.,ak and bk) decay to zero when the spatia
extension ~i.e., the index k) goes to infinity leads to
limVol→`c50. Hence we find that in the thermodynam
limit ak5bk11⇒(ak5(bk . And therefore

^JMH&l,B /Vol52^JEM &2l,B /Vol.

The initial claim ~A1! follows—once again—a reflection in
space on the second term.

Proof, second step

Having attained our first goal the further proceeding
standard. We apply consecutively derivatives with respec
l andB on our result and obtain

^JMJEDHDM &52T
d

dB
^JEJEDM &B .

We note that theDH (DM ) might come from a deriva-
tive with respect to 2d/db5T2d/dT (2Td/dB) and
use ^TEM(2bDM )&52b^JJE(2bDM )& and ^2TEE&
5b2^JEJE&. Our formula may then be rewritten as

d

dT
@T2^TEM~2bM !&#5T2

d2

dB2
^2TEE&B .

Q.E.D.
0-9
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