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Diverging magnetothermal response in the one-dimensional Heisenberg chain
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A current of magnetic moments will flow in the spin-1/2 Heisenberg chain in the presence of an external
magnetic fieldB and a temperature gradieAfl along the chain. We show that this magnetothermal effect is
strictly infinite for the integrable Heisenberg model in one dimension. We set up the response formalism and
derive several new generalized Einstein relations for this magnetothermal effect which vanishes in the absence
of an external magnetic field. We estimate the size of the magnetothermal response by exact diagonalization
and quantum Monte Carlo simulations and make contact with recent transport measurements for the one-
dimensional Heisenberg compound,Su0;.
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I. INTRODUCTION magnetothermal effects in spin chains; i.e., we examine how
the magnetic and thermal currents couple to external sources.
The nature of magnetic and thermal transport in magnetic In Sec. Il we will discuss the differences in between the
insulators with reduced dimensions is a long-standing probthermomagnetic effects found in normal metals and the mag-
lem. Huber, in one of the first works on the subjketvalu-  netothermal response we study here for magnetic insulators.
ated the thermal COﬂdUCtiViW(T) for the Heisenberg chain In Secs. lll and IV and in Sec. V we set up the formalism for
with an equation-of-motion approximation and founfirite ~ the magnetic and energy current operators in the presence of
«(T), a result which is, by now, known to be wrong. A few an external magnetic field and for the correlation and re-
years later, Niemeijer and van Vianen calculakéd) in the ~ sponse functions, respectively.
caseJ,=0 using the Jordan-Wigner transform and found a In Sec. VI we evaluate the magnetothermal response for
diverging result It has been shown recentlythat the thexy chain via a Jordan-Wigner transformation and derive
energy-current operator commutes with the Hamiltonian forgand discuss several generalized Einstein relations in Sec. VII.
the spin-1/2 Heisenberg chain. The thermal conductivity idn Sec. VIl we derive and discuss a new exact magnetother-
consequently infinite for this model. The intriguing mal Einstein relation.
question—“under which circumstances does an interacting We present in Sec. IX numerical results obtained from
guantum system show an infinite thermal conductivity”—is quantum Monte Carlo(QMC) simulations and exact-
being intensive|y studied '[heoretic;:';ﬂ'Iy,6 motivated, in part, diagonalization studies. Finally, we discuss the size of the
by new experimental findings. magnetothermal effect expected fo,SuO; together with a
An anomalous large magnetic contribution#chas been dimensional analysis in Sec. X.

observed for the spin-ladder systemg,S§Ca Cu,,0,; and

CalLasCu,,0,4;,"® raising the possibility of ballistic mag- Il. THERMOMAGNETIC AND MAGNETOTHERMAL

netic transport limited only by residual spin-phonon and im- RESPONSE

purity scattering. Large energy-relaxation times have been ) . . .

found in recent experimentaind theoreticélstudies of the In a conventional solid there is normally a variety of ways

BX

J
I VT)'

thermal conductivity for the quasi-one-dimensional spin-N Which external parameter@.g., current density, tem-
chain compounds SrCyGnd SsCuO;, consistent witht’0 ~ Perature gradient, and magnetic fid@)l couple to the volt-
NMR studiest® ageVu and the thermal current leading to numerous ther-

It is knowr! that there is no magnetothermal effect in moele_ctric apd thgrmomagnetic effects. A phenomenological
the Heisenberg chain since the magnetic-current operator is&fuation which gives full account of all these effects would
pseudovector. This can be seen by a simple symmetry arglRok as(see, e.g., Ref. 12
ment in the standard setting, when we consider only a tem-
perature gradient along the sample. A nonzero magnetother- —Vu I[P Q n RN
mal effect would yield a magnetization along an arbitrary RN | Ex Lk
guantization axis. But because of the isotropic conditions,
there is no preferred direction along which such a magneti- A A A
zation might occur; the effect vanishes consequently.

The _situfa\tion is, however, differer_lt if the_:re is an external T JM$$¢{F> T+ AT
magnetic field A temperature gradient will now cause a
magnetization current with a magnetization vector parallel to
the field; see Fig. 1. This magnetothermal effect can be con- B
sidered the generalization to magnetic systems of the See- F|G. 1. lllustration of a quasi-one-dimensional magnetic insula-
beck effect occurring in normal conductors. It is divergingtor in the presence of an external magnetic figldnd a longitudi-
for the isolated Heisenberg chain, leading to a finite nonzer@al temperature differentiadT. A magnetic currenj,,, with the
“magnetothermal Drude weight.” In this paper we discussmoments aligned alonB, is induced.
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(BX is understood to be applied to both components Instead of the electrical current we consider the magnetic
separately. p is the resistivity,x the thermal conductivity, current®

and the other coefficients describe the Seeb&zk Peltier cJ,

(IT), Hall (R), Nernst (N), EttingshausenH), and Righi- JM=i,uB%? > ISIS,.1-5,S 4]

Leduc effect (). The latter four effects are called n

thermomagnetic—for obvious reasons—and are not to be c c

confounded with the effects which are to be discussed in this :Jxﬂ«sg > [SyXSyi1l,=i %[H,PM], 5)
paper which we denotsmagnetothermal effect©®ne should n

note that in magnetic systems the magnetic field correspondghere we have defined the magnetic polarizatiBgy,

to the chemical potential, leaving no analogs for the entries- , .5 ns’, which is possible only for chains with open

of the second matrix. . boundary condition$OBC's).

densitiesj,, (particle and jg (energy on external sources

(field VB=—Vu and temperature gradieftT) in the fol- h . f ~ ~
im _ VIV Y vB h ~ ~ )
ie Loy Leg) \ (VD) @) :BEJM"'; def $,Sh+1Sh+2]=i[H,Pe], (6)

[We deviate from the standard notation by indexing theyhere we have use8,=(S\,s!,S%) and the definitionS,
components of the tensor By and E rather than 1 and 2. _j <X J,9%,3,5%). In the following we will denote with
The notation withM as particle index and as chemical j;=J;/Vol, i e {M,E}, the respective current densities. Here

potential borrows from spin systems, this article’s chief casq}mch is the one-dimensional volume. wherés the lat-
of interest. Equatioiil) may therefore be used as a referencejce constant andl the number of sites. '

for both electrical and magnetic systefndormally, the two
off-diagonal components governing teebecland Peltier  opcs represents a temperature gradient and, as is well
effects are not independent but related via@resagemela-  n6,yn16 entails always a magnetic polarizati®y, , which

tion. Here, with the given choice of external forces, it readSgtams from the chemical potential tefmagnetic field term
(whereT denotes temperature To see this we insert a site-dependéimtean

Thme=be: @ B=B(n)=p+ncVp

To compute the sesponse functiong we use the stan- into the thermodynamical expectation valdeThe Boltz-
dard Kubo formul&®***3which vyields for the Heisenberg mann factor can be rewritten as follows:

model generally ai. tensor with infinite components, i.e., a

6 function times a weight factor. These weight factors will be cVp

denoted by the entries of thetensorL;; (without the caret exp( a ; B(n)h“> =ex;{ _E( H+ ? ; nh“) l
Normally, one has an additional finite contribution—the

regular part—which will turn out to be zero for all but the :eXF[—E(H-{-FCpE)]' (7)
MM component. We assume that due to some—so far unac- _ _

counted for—scattering processes with external degrees #fhereF=Vg/g=—(VT)/T. This motivates the use d?c
freedoms (like phonons or impuritigs the infinite peak to model a temperature gradient.

broadens and the coefficier{tse consider only the real part

The energy polarizatioPz= X ,nh,, entering Eq.6) for

may be replaced according (of., e.g., Ref. 1% IV. CORRELATION FUNCTIONS

A L. Setting up the notation for the response theory we define

Lij(0)=Ljmé(w)— ——, (3)  with'"*?

1+ (w7)? _
with i,j e {M,E} and a finite relaxation time—for simplic- A(AB)(2)= I—fxeiz%[A(t),B])dt ®)
ity, a possible dependence omndj shall be neglected. fiJo
the retarded Green'’s function of two operatédrand B. In
lll. CURRENT OPERATORS our caseA andB will be mostly current operators; we there-

éore introduce the notatior (J;J;)=A;; . Here A(AB)(2)
vanishes when one of the operators is a constant of motion
and commutes with the Boltzmann factor: by the cyclic prop-
erty of the trace one has in this cageB)=(BA).

ha=Jy(SKS,  + SSY )+ I, 525, 1+ ugBS. () The energy-current operatode commutes with the

Hamiltonian in the absence of an external magnetic field

Hereug is the Bohr magneton and the lattice spacing will beUsing Eq. (6) we have Ayg=Agy=BAyy and Agg
denoted byc; the S, are supposed to be dimensionless. =B%Aywm -

In this article, we discuss the analog of the thermoelectri
effect in spin chains. The Hamiltonian is the standaxd
chainH=ZX_,h, with
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The isothermal susceptibilityis given by regular part. The factor-{iz) ~* accounts for thes function
in the zero-frequency limit and we have

B
X (AB)= fo (AA(T)AB)dT, 9)

_ c

Lii=(kgB)' 1 i—([ji,Pi1)—Ai(0);. (13
with AA=A—(A) andAB=B—(B). It takes the usual form 1= (keh) ﬁm' i)~ A4 (0)
x"(AB)=B(AAAB) when one of the operators is a constant

of motion. The generalized Drude weighihich is used It is also possible to express this result by the correlation

e.g., in Ref. 4is defined by function defined in Eq(10) using Eqgs.(11) and (12):
—lim(—iz) [ et Lij=(keB) " [xT(113) = Ay (0)1=KL 81((j1d;)).
((AB))-iT:)( |z)fo e'"?(AA(t)AB)dt. (10 ] i i j 14

These three correlation functions are not independenfrom Eq.(13) follows the well-known result for the mag-
Comparing the respective eigenstates-representation, e.getic Drude weight Lyy=(—Tym)C/A—Ayn, where

ZA(AB)(0)=Z¢ g AANAB (e PR —e PEn)/(E, Tum=—ilim.Pu] is the kinetic energy per site—apart
—E,), whereZ is the partition function, one finds from a prefactor. In view of Eq(14) we define thegeneral-
ized kinetic energy
B((AB))+A(AB)(0)=x"(AB). (1)
Under open boundary conditions, when the relatiahs Tij=—i[ji(B=0),P;(B=0)]. (15

=i(c/h)[H,P;] are valid, we can express the isothermal

susceptibility, Eq(9), Here one should note a particularity produced by the twofold

role played by the operatd?: in the xxz chain: it not only
c describes thermal response but also acts as a “boost” opera-
x"OBY3)) =i # (L3P0 (12 tor for the constants of motiotf. Hence,Jgz and Tgg are
constants of motion.
as a static expectation value. Note, however, that the value of Taking into account thaflz commutes with the Hamil-
the susceptibility is independent of the boundary conditionsonian forB=0 and using Eqs(6) and(13) we have
in the thermodynamic limity™°®(J3;3;) = x""P®%(J,J)).

. C . . C .
V. MAGNETOTHERMAL COEFFICIENTS Lem=i7([ie,Pul) =BAuM=17([ie(B=0),Py])
We now discuss the general recipe for the computation of c c
the entries of the. tensor, appearing in E¢3). +Bi7([im . Pul) = Aum|=(=Tem) 7 +BLum
We assume a perturbation in the form of a polarization h h
(cf., e.g., Ref. 13 i.e., we add to the Hamiltonian a term (16)

cVB- Py with Py :=ug=,nS, and compute the response of
the current density operator to obtain theM component. and at finiteB: ZLgg/(cksB) ={i{[ie(B=0)+Bjy.Pe(B

(A different but equivalent approach is given in Ref.)ITo ~ =0)+BPy])—B2Aym}=B{(—Twe)+B{(—Tem)—(Tee)
compute the remaining entries of theéensor, we replace the —B2{(Tym)+%AAyw/C}.
magnetic by the energy current densfily the second royw The generalized kinetic ener@ygy=—i[jz,Pul appear-

and/or substitutePg:=3,nh,, for Py,—as well ascVT for  ing in Eq. (16) is given by(in units wgc/#)
cVB—and add a factokggB (in the second column[One
should compare this procedure with E@).] i ~ _

The linear response theory gives the following contribu- Tem=1; E (N€qp, S SHISh. 1574 o+ cyel)

tion to L,, (Ref. 13:

- = S S 1}, /Vol
(kBB)j_lgf L], P (=T, 2 {nS,X (Sh+1xSs2) +oyeld, Vo

where gM:=g, B%:=p?, etc., andj;=J;/Vol (see Sec. I = %I E (S 2X (S5 X Sh10) ~ S X (Sh1 XS0}
Integration by parts yields for the above expression 0

2

- +
T {LioP ) - = f e[ ji(1)J1)dt =Vol 2 |~ S She1Shi2~ S ShaaShr
lim ———— .
0 12 J; for oz et oz
A;i(z) +2_JX(Sn Sn+1Sh+21 S S 1Sh+2

One should note thak;;(0)=0 if one of the currents com-
mutes with the Hamiltonian, and consequently there is no + 825,15, 2+ S5S 1S40 | (17)
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where  “cycl.” means cyclic permutation  of

{n,n+1,n+2}—note that the tilde is permuted with the in-

dices.

(= Tgwm) changes sign under inversion of t8é magneti-
zation M and vanishes consequently fB=0, as does the
magnetothermal response in this case; comparé¢lby. The

PHYSICAL REVIEW B67, 224410 (2003

= Z([[H,Py1Pel+[[Py Pl HI+[[Pe H1,Py).

That this final expression is zero is just Jacobi’s identity.

Here it should be emphasized th&Tyg) has non-
negligible contributions from the boundary and is—unlike

case of a finiteB is therefore of interest. We will consider (Tg\)—sensitive to a change from periodic boundary con-
only the effect linear irB, since magnetic fields amount nor- ditions (PBC’s) to OBC's.
mally only to small energies:
VI. JORDAN-WIGNER TRANSFORM AND FREE
FERMION MODEL

1% c
Lem~B -z Lemls=0=B[(—Tem(—=BM)) 7 +Lyw |-
JB h . I . .
(18) For our spin Hamiltonian all quantities may easily be cal-
culated wherd,=0 via the Jordan-Wigner mapping to a free
The EM coefficient, therefore, consists of two parts. One isférmion system. Under this condition the Hamiltonian is
the B derivative of the zero-field ¢, ; the other comes from  Straightforwardly diagonalized by a Fourier transform with
the change ofi¢ in magnetic fieldnamely, it acquires a term eigenvalues cds (settingJ,=1) following the Fermi-Dirac

BJ) and is already linear iB—for small B.
The quotient ofL g andLypy ,

Qu=Lme/Lyum=Lue/Lywm, (19

is called the(magnetic) thermopowelt has the advantage

that geometric properties of samples cancel in experimental

studies and that the relaxation times cancel.

To discussL g is superfluous, if one keeps the Onsager
relation in mind. Anyway, if we follow the same steps as

above, we arrive—with explicitly using OBC's—&n units
wgClh)

Tve=—i[iwm,Pel

=Voi 2 (M[SXShi1,8 Sl + (N DS,
X[Sr1+1vsn+1'31+2]+n[sh+1v§‘n'sn+1]><§n+2)z

=2 {n/234(S =S+ ) — (N+ DG X(S1:1XSh42)
=NS,15X (5% S0,/ Vol

:E J>2</2{_S:Sﬁ+1 ;+2_S;Srz1+18:+2
+(N+1)3,/3(Sy Sh1Sh+ 2t Sn Snv1She2)
N3, 13(SiSn s 1Sh+ 2+ SiSn+1Sn+2)
+M/ pg— S Voll c}/\Vol,

which differs apparently fronfgy, . This does not contradict
the Onsager relation because we find thafe)=(Tem)
still holds. This may be seen by first using E¢s). and (6),

(Twe)~(Tew) = 7([H,Pul,Pel—[[H,Pel. Py,

distribution(n,)=(c}c,)=[1+exp(@cosk)]*.

The Drude weight entering E18) is given simply by
—Lym={(Tum)c/t=J cosk(nydk(2mc)(usc/h?). At the
same timeTgy, simplifies to(again in unitsugc/#)

1 _ _
TEM:W En: {_S;Sﬁ+lsn+2_sn SrZHlSrTJrZ}

B fdk oK
=— ﬁcos( ny.

Following Eg.(18) we need to computé&ight-hand side in
units u3c/h)

B 1
<(_,8M)(_TEM)>:V_£ % COS(2k)<nk( Ng— E) >

Here (ngng)=(n)(ny) holds for k#q, nZ=n, and
S q €oS(K)(n)(ng)=0. We find

(B (~Tew) =y S [~ 0820 TL{nd—{n?)
dk cog 2k)
2mC 4 cosH[ B cogk)/2]

= —IBJ
(20

This result can be related to the temperature derivative of the
kinetic energy,

d
<TEM(_BM)>=ﬁ[T<_TMM>]a (21

whereTyy for the xy model is defined above. The relation
(21) is easily verified using a partial integration.
VII. EINSTEIN RELATIONS

Let us recapitulate Einstein’s relation for diffusive trans-
port in a metal: In a closed system tldfusive currentjp

and then adding a term which is zero by the cyclic property=—DVn, driven by a gradient in the particle densityand

of the trace:

the electrical current driven by aexternal potentigl |
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=0E, add to zerojp= —j. This condition yields Einstein’s (This assumption was only made for simplicity. At least, to

famous relation our knowledge there is no reason why the relaxation times
R should equal each other. However, the assumption is natural
o Vn as in both cases the finite relaxation time comes from the fact
B_E- 22 that magnons lose momentum, and the physical processes

responsible for that should be in both cases the safwIa-

Here in the case of a magnetic system, we are not intertion (24) leads to
ested in a variation of the electron particle density, but in a

change in internal energy or magnetization. Hence, we re- Lve :kB'B2<AMAH>~Bi kBﬁ2<AMAH>
place n(x)—A, where A, is eitherh,, or ugS;. Further- Duym VoI dB Vol
mqre,_the cu_rrents are not driven by a fi@ldbut by a po- By 2 By 33

larization Pr=3,nF, (times the lattice constart), for a —_B B

(AM2AH); (25

(AMAM)—

conserved-: [F,H]=0. In our case the operatéris either Vol Vol

the magnetization or the internal energy. - . L
We will also assume that there is diffusive transport forf(_)r small magnetic field$, the structure of this equation is

both the magnetization and the energy current. Thereby, ngilar to Eq.(18). The first term of the right-hand side of

are led to the following definitions of the corresponding dif- d- (29) is Just.B.X/T’ where y=(AM >/V0|. is the mag-
fusion coefficients: netic susceptibility. The second term of the right-hand side of

Eq. (25) simplifies to
iM=DwumVM, je=DgeVE,
Jm MM Je EE BkBES d 3d Y B d
whereM andE are the magnetization and internal energy. v @(AMAM}:kBBﬁ aBp T Tl X
Generalized Einstein relations can be derived using the
static responseof VA|,:=(A,;1—A,)/c to a perturbation We therefore find the new relation

cPg, wherec is the lattice constant along the chain:
LME B B d dX

M = =[Tx]=-B-=%. 26
Vn/E— >, xT(VA|,cPg)/Vol, Dy TX Tari X dT (26)
n

where we perform a volume averag&his becomes manda- Classically, the diffusion constant B=v?r, wherev is the

tory because we consider the response to the current densif§!0city of the elementary excitations, here the magnon ve-

rather than to the current at a fixed sitdlsing the linearity  [0City. This leads at low temperatures to a temperature-

of the isothermal susceptibility we fin@y a discrete version independent diffusion coefficier®=D/7=v? and via Eq.

of an integration by parjs (26) to a vanishing magnetothermal response Tor0,
whenevery(T) becomes constant far—0. SettingA=M
andF=M in the general Einstein relation yiefds*

X (VAP =2 (XA 1(MFw)]1= X TA(MF) ]} g Y
Lvm/Dwmm = X, (27

— T _ T ) ) .
—% [(M+1)x " (AnFm) —mx (AgFm)] and with the choiceA=H=F one may obtait® an analo-
gous relatiorLgg/Dgg=cy, .
We will now introduce a formula which we believe to be

— T
- % X (AnFm) approximately valid at small. As stated above, the diffusion
) ) constant is known not to vary much neb+=0. Because of
and with the volume average on both sides our restriction to low T we assume a temperature-
independent diffusion coefficienDy, (see discussion
> cx"(VA|,P)/Vol= B(AAAF)/Vol. (23)  above. Then we can rewrite Eq27) as
n
. d d d
We rewrite Eq.(22) for the case of a magnetothermal d—TLMMzd—T[XDMM]wDMMd—_I_X,

responsd y=LyeVT=DywVM=—jp, and find
Inserting this expression into ER6) we obtain

— T — — T
5 Dy, VT kgT (V) KeBX (VMIaPe)

D d
MM (_LME):BﬁLMM' (28)
ke B*
Vol (AMAH), (24 In the case of free fermions this is just the result of &1).
o R In the case of a finite interaction it seems to be correct in the
where we have assumed equal relaxation timesr Lye  limit T—0 if we use data from Ref. 21. We provide tests of
=7Lye and the magnetization diffusiodDyy=7Dum - this relation in Sec. IX.
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VIIl. EXACT EINSTEIN EQUATION 0.4

Jz=0
= Jz=0.3]x
Jz=cos(m/3)Jx
— Jz=cos(m/4)Jx
Jz=Jx
Jz=1.5]x

In Sec. VII we set up several versions of generalized Ein-
stein relations appropriate for magnetothermal response.
Those relations may be viewed as a link between the dy-
namical and static response theory, as they connect corre-
sponding correlation functions by introducing diffusion con-
stants.

Upon closer examination of the right-hand sides of Ein-
stein relations like Eq.(27)—namely, x, c¢y, and
dx/dT—we find that that these are static expectation values
of products ofAM and AH operators which could be gen-
erated by derivatives. Hence, it is an easy task to establish ‘ : :
functional relations between the static correlations, e.g., 0 05 1 15
d? d d T[Ix/k]

[TZ_(TX)

e
w

<(-BMIT,, >
o
N

o
-y

2 - L _ 2
T decU dT

FIG. 2. Monte Carlo dat&48 and 96 sites, PBQ'dor the di-

S L . _mensionless{(—BM)Tgy) and various interaction strengths
An intriguing question is whether the analogous equations ;; " the statistical MC error bars are given
XX .

obtained by switching between static and dynamical *

responses—y— Ly , etc.—could also be valid. For one of  nNormally, with MC methods it is problematic to measure
these relations, E¢28), the range of validity is confined to operators which are not diagonal in ti82 eigenbasis. But
the low-temperature regime unles=0. (A detailed discus-  \yith SSE another class of operators is easily accessible: Fol-
sion follows in Sec. IX. One reason for the failure could be |oing a standard procedure in statistical mechanics, we

the fact that in this particular case one of the correlatiorhave<h y=(3, Z)/Z. For the SSE this means that we can
functions does not reduce to a thermodynamical expectation " n L I .
easure any operatbw, appearing in the Hamiltonian sim-

value. We therefore focus on a relation between the thermaﬂ; b tina h ften it in th duct led
and magnetothermal response coefficients—both mere th "y by counting how often It appears in the products sample

mal expectation values. We claim that the relation y our SSE progrartand dividing byJ,). So itis fairly easy
to measure sums of products of parts of the Hamiltonian as

2 d Sy b1 S, S 1, or S{S7. 1. To make use of this fact in
—2(—TEE)= d—T[T2<TEM(—BM)>] (290  the given context, it is expedient to find an expression for
dB Tem Which consists only of terms appearing in the Hamil-

is exact. The proof is provided in the Appendix. This equa-tonian. Here we present on&gy in units ugc/%):
tion could be useful to derive an analytical solution for the iz
magnetothermal response. T _ ! i h Th. i Vol
The arguments of the proof rely mainly on the fact that =™ ugc ; {Lin:Pncal +L0n Jnsa ]}/ VO
one of the currents is a constant of motion. It is by the same 1
line of arguments possible to show that EB8) is exact in N Tr2fete oot + oo
the case whergH,J,,]=0. Unfortunately, this is a very re- En: 2{‘]>‘[Sn Sne17Sn Sne1sSheaSheal
stricting constraint; only thexy model and the Haldane- ot - . .
Shastry Hamiltonial? meet the requirement. REUTESHES WIS RS SRS AUIPINS SPES AP Rt M P RS ARS W)

_SrTSrleSrZHlSrsz]"'JxJz[sﬁ %Prl! rT+1Sr;+2

= Sy1Sh+ 21}/ Vol,

T2

IX. NUMERICAL RESULTS

In the free fermion caség)y is easily accessible by a
simple evaluation of the analytic expressi@®) and a cor-  \hich then allows us to assess the magnetothermal coeffi-
responding one fokyy=—(Tuwm), using Eq.(18). If J,  cient by the SSE.

#0, we have to compute a mere thermal expectation value The Drude weight—which is the other input in E48)—

in order to obtainTgy, a task which is tractable to Monte may in principle be calculated by the Bethe-ansatz method.
Carlo simulations. Here, we use the stochastic series expamrhis was attempted by several auth&é! but their calcula-
sion (SSB, which is a Taylor expansion based Monte Carlotions are still under discussidi,and so far there are no
method?’ reliable results. We therefore use exact diagonalization to

We assume a Hamiltonian of the forkh=X,J,h,; we  obtain data for the Drude peak. This has clearly the disad-
may write the partition function Z=X[(—8)"/m!]  vantage that we cannot make any statements about th& low-
X(alll{L 13, _ihy (iyl@) where the sum runs over all num- and highd, regimes where the convergence with Vot is
bersm, all functions ¢,:{1,... m}—N, and S* eigenbasis slow (cf. Ref. 24.
statesa. The SSE program now samples the products of In Figs. 2 and 3 we plo{(—BM)Tgy) in units of
operators appearing in this expressiorzafith their relative Jx,uélh—a detailed discussion of units follows in the next
weight factors. section; compare Eq$31) and (16)—as a function of tem-

224410-6



DIVERGING MAGNETOTHERMAL RESPONSE IN THE . .. PHYSICAL REVIEW B 67, 224410(2003

0.4 . - - . 0.15 —— Jz=0 (Jordanl—wiﬁner)
Jz=cos(m/3)Jx |
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FIG. 3. Monte Carlo daté48 and 96 sitesat smallT for PBC’s
in comparison(lines) with the estimates fo((— 8M)Tgy) by Eq.
(28) and data from Ref. 21 for the Drude weight. The cades
=cos(r/4) andJ,=1 are offset for clarity.

FIG. 4. The linear partin B) of Lgy as a function of tempera-
ture [see Eq.(18)] obtained by exact diagonalization for both
((=BM)Tgy) and the Drude weight. We plotted data for three
system sizegl14, 16, and 18 siteswith different line styles(long-
dashed, dashed, and solid lines, respectjvely
perature for various interaction strengths. The dataJfor
#0 are obtained by MC simulations and—in Fig. 3—by x(klJ;ln)e”#5v/Z (Z is again the partition function for
Egs.(28) and(18). (Tem) We simply use the expression in E4.7). The use of

The MC results in Fig. 2 are clearly not good enough tothese expressions makes it possible for us to exploit transla-
determine exactly th@=0 value. However, fod,=J, the  tional symmetry which allows us to consider slightly larger
data seem to extrapolate to 0.25, which is the Bethe-ansatgstems than in Ref. 2¢hamely, up to 18 sitgs
result for the dimensionlesé=0 Drude weight for the iso- Because of the resulting finite-size gap, we can only dis-
tropic Heisenberg chaif?. This result would imply via Eq. cuss the highF regime.(In thexy model we find a vanishing
(18) a vanishing magnetothermal responseTer0 and via  thermopower aff =0 with a linear power lawy.

Eqg. (28) a vanishingT derivative of the Drude weight, in For smallJ, we find a maximum at intermediate tempera-

contrast to previous resulfs. tures which decreases and is shifted to higheas we in-
In Fig. 3 we present a comparis¢at low T) between the creasel, .
MC results for((— M) Tey) and the results from Eq28), At higher J, the convergence becomes slower, so we can-

where we have used Bethe Ansatz resuitscause of the not make any precise statements about the transport coeffi-
finite-size gap exact diagonalization provides here no alterejents. However, in Figs. 4 and 5 the curves decrease with
native) from Ref. 21—which we prefer to Ref. 22 because itsystem size(for T sufficiently large. This behavior can be
is in agreement with Ref. 23—for the temperature-dependergonfirmed for all systems sizésmaller than 18 siteslf we
Drude weightLyy . The agreement is very good far
<0.2. As a consequence we may deduce from(E§). that 1.5
((=BM)Tem)=Lumfi/c at T=0; the linear magnetother-
mal effect as given by Eq18) vanishes consequently for
T—0.
The results forLg,, and the thermopoweithe prime de-
notes a derivative with respect to the magnetic fig)dQ,, @
; - ! <
=Lye/Lum are presented in Figs. 4 and 5, respectively. §
=

Here we use exact diagonalization, because for the compu-
tation of the Drude weight QMC methods normally fail at
higherT. (The standard proceeding is to extrapolate from the
Matsubara frequencies to=0 as attempted in Ref. 14. This
procedure becomes soon unstabl&-#and hence the spac-
ing of the Matsubara frequencies—growéle use exact di- -1
agonalization for the computation ¢fgy) as well. Since TOx/k.]

(Tem) converges much faster with system size than the B

Drude weight, the finite-size error is determined by the FG, 5. The part of the thermopowét9) linear inB as a func-
Drude weight, so using QMC simulations foTgy) alone  tion of temperaturdsee Eq.(18)] with exact-diagonalization data
would not give better results. On the contrary, if we usedfor ((— M) Tgy) and the Drude weight. We plotted data for three
MC data, we would introduce the statistical error. For thesystem size$14, 16, and 18 siteswith different line styles(long-
Drude peak we use Eq14) with ((j;J;))=2g _g(nljilk)  dashed, dashed, and solid lines, respectively
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assume that the direction of convergence does not change for We take the well-studied one-dimensional Heisenberg
larger system sizes, our curves provide an upper bound to thehain SsCuQ; as an examplg,with the following param-
exact results. But this would imply a reversion of the effecteters c=3.91 A?® J,/kg=2.2<10° K.?® There are two
(negative thermopowgr While at J,=0 the effect is chains in an area of 12.683.48 A2.2° This leads to a mag-
positive—disregarding the low regime where the negative non velocityv = J,c/A=1.2Xx 10° m/s. The mean free path
sign is due to the finite-size gap—one fin@g,<0 for a  \¢(T) extracted from a quasiclassical interpretation of ther-
certainT interval if J, is large enough. Because of the slow mal conductivity datais strongly temperature dependent; it
convergence it is |mp053|ble for us to predict the precisganges from\ (200 K)~100 A to A((50 K)~800 A. This
location of this interval. Here one should emphasize that ouresults viaAg=vgsr in a relaxation timer(200 K)=0.8
conclusions were drawn from the inspection of relativelyx 10 '3s and 7(50 K)=6.6x10 13s, in order of magni-
small systems, so we cannot really exclude that the observedde.
reversion is only due to finite-size effects.

However, we see the reason for this reversion in the fact B. Thermopower
that the magnetothermal coefficient consists of two sum-
mands[see Eq.18)] which turn out to have opposite signs.
These behave very differently under a changd of While

For thethermopowerwe obtain

the Drude weight dominates d;=0, it drops dramatically , _ﬁ_k_ ZLME

asJ, is increased towards (this was also reported in Ref. M Llum ( BT [ XQM

22). The generalized kinetic energy does not decay so much,

such that it becomes the dominating part. Typically, kg /J,~10"2 K1 (e.g., in SsCuQ;) and at room

temperature;,~0.1. ThIS yieldsQ[,~10 4 K™%
X. SIZE OF THE MAGNETOTHERMAL EFFECT

Based on Eqs(1) and(30) and using the lovB approxi- C. Seebeck effect
mation in Eq.(18) we present in this section estimates of the  The dimensionlesB derivative of the magnetothermal re-

size of the magnetic Seebeck effect. sponse isd,8)°L;z=0.1, in order of magnitude; see Fig. 4.
We therefore obtain from E¢30) at T=200 K for the mag-
A. Dimensional analysis netic particle current density a value of

As we are considering effects linear in the magnetic field
B we use a prime as a shorthand f@tdB. Using [Jy]
—[ns] m/s and[Je]=Wm (compare Eqs(5) and(6) and oy tegja pefk/m), i.e., in SI units. For a sample of length
[imel=[Imel/m) we may decompose the response coeffi-y ¢ 1972 m with a temperature difference of 10 K and a

cients into dimension-full and dimension-less quantifies: field of 10 T we have a current of 360 spin-1 mome(msg-
Kejts MB nong per second. A sample of SLuG; with a cross section
Lie=—— == (3,8 e (30)  of 1 mn? contains 4.% 10" chains. It would induce a mag-
h netic current of 1.& 10™ moments per second.

0.036xBX VT moments/s

J
Lem= XMB MB — (3B (3D D. Closed system

Finally, we consider again the setting otklsed system
where the tilde denotes the dimensionless theory resist, \We are given a sample with open ends such that no current
the distance between neighbor sites, apds the Bohr mag-  may flow. A temperature gradient should therefore lead to a
neton. Note that g has a factor 7 with respect tdLgy,  gradient in the magnetization. Using the Einstein relation for
hence a third factod, in Eq. (30). Inspection of that for- the magnetization current and E@6) we have
mula shows the units df e to be J T2m/(K ).

For the sake of completeness we state the analogous re- Lve ax
sults VM:DMMVT:_BEVT.
L _JxMB MB (3,81 HerexB=M is the magnetization caused by the presence of
MM™ 4 XPJ=MM a magnetic field. Hence, dividing b,

for the magnetic Drude weight and 9
VM/M =~ —[InX]VT,
.  keJdy JXC(J 8T

En o T TEE or multiplying both sides with the system length,
for the thermal Drude weight. The units can be read off as
[Lyw]=3 T2m/ and[Leg]=Im/(K$). Note tha[ (] AMIM=— 8 7 [1nTaT.
=[L;] s; see Eq(3). Jx oT
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Note thatAM/M is not directly a function of magnetother- (InAH), g=(JeAM), 5. (A1)
mal coefficients. The magnitude of the dimensionless quan\—Ne explicitly assume PBC's—no polarization operators
tity (9/9T)[In x] varies abou_t 0.1 we therefore f'_nd .W'th and invoke the equation of continuity to obtain a local ver-
Jy/kg=2200 K that the relative change in magnetization—

sion of the above formula:
from one end of the sample to the other—should be a frac-

tion of the order of 5107 °K "X AT. (I =30 AR, 5= —(i[H,ASZ AN, &
E. Peltier effect :<A5rz1i[H vAhm]>)\,B
We want to review now briefly the adjoi@Peltier) effect, =—(ASSIE-IE H)he.

described by the coefficieht-, . We now turn once again to
our reference system f£uQO;. Here it is instructive to com-
pare the energy currents driven by a temperature gradie
and a gradient in the magnetic field. U, [ A —(ASE (JoM_ g-m+l

We set all quantities as above, with the exception of the ( M _) _m>”’B (AS%n(Je e ))one:
values Oxﬁ)ZE'EMZO-Ol and (]xﬂ)ZE'EEZO-ly which we Translational invariance leads for
find more appropriate. We also do not compute the energy an mi=(I0 AN Brmi=— (JRASE)
current density for one chain but per volume in Sl units. The nMEASMETmAB - Fn,m T EZSm/-x.B

On the right-hand side of the above equation we perform a
IJ;fteflection in space:

result for the thermal response is to a, n=a,_, and to
je=16XVT Ji(s ) ax—ax-1= b1~ b ag—by 1 =a,-1— by,
and for the magnetic response Wherek:n_m. ThIS |aSt equation Imp|les that
je=3.3X 104X VBXB JI(s n?). Ci=a Diig
does not depend on the indkxOur strategy is to show that
X]. CONCLUSION c—a function on\ andB—may be neglected with impunity

in the thermodynamic limit. To this end we look at the fol-
We have shown that nontrivial magnetothermal currentsowing estimate:
may be induced in one-dimensional quantum-spin chains in
an external magnetic field. We have argued that these effects [c(B,N)|=|bys1—a <min{|by 1| +]ay}.
might be especially important for the one-dimensional k

Heisenberg chain where the energy-current operator coMrhe fact that all correlation function of the fortd G;AG,)
mutes with the Hamiltonian and the magnetothermal retgych as, e.g.a, andb,) decay to zero when the spatial

sponse diverges. We have presented estimates of the size {Qfiension (i.e., the indexk) goes to infinity leads to
the current of magnetic moments induced by a thermal temnmvOI .c=0. Hence we find that in the thermodynamic

perature difference for SEuO;. We believe the size of the jimit a,=b, ,,=Sa,=Sb,. And therefore
induced magnetic current to be sizeable and note that the
observability of magnetic currents in magnetic insulators has (ImH)\ g/Vol=—(JeM) _, g/Vol.

been discussed recentfy. The initial claim (A1) follows—once again—a reflection in

space on the second term.
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standard. We apply consecutively derivatives with respect to
APPENDIX: PROOF OF Eq. (29) X andB on our result and obtain

Proof, first step

d
We present the proof of Eq29) in two steps. First we <‘]""‘]EM—'A'\A):_Td_B<‘]EJEA'VI>B'

extend the Hamiltonian to comprise the static response to

thermal current: \%e note that theAH (AM) might come from a deriva-

tive with respect to—d/dg=T?d/dT (—Td/dB) and
H(\,B)=H(B)+\Jg. use (Tem(—BAM))=—pB(IJ(-BAM)) and (—Tegg)
=B%(JgJg). Our formula may then be rewritten as
We indicate the expectation value at nonzarand B by

indices. Moreover, we mean that these variables are zero, if d ) ) 2
we omit them in an index or an argument\™means sub- d_T[T (Tem(=BM))]=T @<_TEE>B-
traction of the expectation value.

We now show that Q.E.D.
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