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Dynamics of magnetostatically coupled vortices in magnetic nanodisks
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The dynamics of magnetostatically coupled vortices in two nanodisks is here investigated analytically and
numerically. The rigid vortex model is employed to calculate the magnetostatic interaction between the nano-
disks. We use Thiele’s equation where collective degrees of freedom describe the motion of each vortex core.
We find that there are eigenfrequencies of circular vortex core motion around the disk center, which depend on
the core polarizations of the vortices. We also obtain the energy absorption rate of the system when subjected
to an oscillating in-plane magnetic field. Finally, we can draw an analogy between this vortex system and a van
der Waals diatomic molecule.
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. INTRODUCTION —1, respectively. The chiralitg refers to the counterclock-

wise (C=1) or the clockwise C= —1) rotational direction

Recent developments in nanofabrication and precise megf the magnetization in the dot plane.
surement techniques have enabled us to study laterally con-
fined nanoscale magnetic structures. We are thus gaining in-
sight on nanomagnetism. Among these research activities,
investigations on magnetic vortices, stabilized in circular A. Interaction energy of two-coupled vortices
nanodisks, have drawn much attention both

II. ANALYTICAL CALCULATIONS

Let us discuss the dynamics of magnetostatically coupled
vortices. As shown in Fig. 1, the vortices are separated along
. " fhe x axis by a distance between disk centers define® as
sulting from competition between the exchange, magneto-

. - . . ..~ =dR. When each vortex core is shifted from its disk center,
static, and magnetic anisotropy energies, whose magnitude

. magnetic charges(¢;) (i=1,2) emerge on the side surface

_depend on the size ar_1d the sample_ geon'}éﬂi/He_nce th_e of the disk. In the rigid vortex modélthese charges are
important parameters in the system include the disk ragjus iven b
the disk thicknessL, and the exchange lengtiRg 9 y
=\JAlugM_*, whereA is the exchange stiffness constant,
and My is the saturation magnetization. The vortex state is ()= —C; ,
well stabilized in the nanodisks when=L/R<1 andR,L V1+]a|?—2(ay cose;+ay, sing;)
>Rg. B B _ . .

There are theoretical works on the dynamics of the singld/N€rea=(aix i) =(Aix ,Ay)/R is the dimensionless po-
off-centered vortex34 The vortex core was shown to ex. Sition of theith vortex center. Using Eq1), the magneto-

hibit circular motion around the disk center where the rotaStatic energy between the side surfaces of two disks can be

tional direction depends on the sign of the core polarization€*Pressed as

However, the dynamical property of coupled vortices has not 2043
been studied. In this paper, we present results on the dynam- moMsR f dz,d2,d¢1d o0 (1) o(h2)

ajy Sin ¢; —a;, CoS¢;

@

: . ! . - Win(ag,a)=

ics of coupled vortices in two nanodisks. The magnetostatic in(81.2) 8m K(1,21,02,25)
interaction between two closely spaced disks was found to B 3

play an important role in determining the dynamics of vorti- =C1Cal Mm@z Mmya1yd2) + Ola]%), (2)

ces. In addition, we can draw an analogy between the dygnere
namical system of two vortices and a diatomic molecule with
the van der Waals bonding induced by the dipole interaction.
A magnetic vortex is a honlinear spin configuration, and a
kind of topological solitort® Static properties of such a vor-
tex are determined by the following topological quantities:
the vorticity (q==*=1,£2,...), thepolarization p==*+1),
and the chirality C==1). The vorticity q describes the
number of windings of the magnetization vector projected on
the order-parameter space. The plus or minus signdor-
responds to the counterclockwise or clockwise rotation of the
magnetization. In this paper, we only consider ¢fel case.
The polarizationp refers to the magnetization direction of  FIG. 1. Schematic illustration of two disks with vortices. The
the vortex core. The up or down magnetization along thecoordinates of each vortex center are denoted Ay, {A;,) and
cylinder axis of the vortex core correspondsge=1 or (D+Ay . Ay), respectively.
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_M0M§R3J dzdzd¢1de; singy sing, 3a)
8w K(b1,21,¢2,2,) ’
_ woM2R® J dz,dz,d¢,d e, COSh; COSh,
g 8m K(b1,21,¢2,25) ’
(3b)
with K(b1,21,b2,25)=(d%+ 2d(cosp,—cosg,)+2
—2 cosih,— ) +(z—2)?)Y2. The integration of Eq(2) runs

from O tog in z;,z, and from O to 27 in ¢4,¢,. Here we
assume that the vortex displacemeat is much smaller
than the disk radiu®R and expand the above energy in a
series orja|, up to second order. Since the core radius of th
vortex is small enough compared with the disk radRishe
interactions between the charge distribution on the top an
bottom surfaces of two disks are negligible. By adding the
magnetostatic energy in E) to the energy given in Ref. 9,

the total energy of two off-centered vortices in two nearby

disks is given by

2

W(alaaZ):Zl [Wed|ai|) +Wo(&) ]+ Win(ag,a,). (4)

Here,W.{|a|) = «|aj|%/2+ O(|&|*) is a sum of the exchange

and magnetostatic energies of a single off-centered vortex;

k= uoM3VIF1(9) — (Re/R)’], F1(g)=[5dkf(kg)I3(k)/
k, f(x)=1—(1-e ¥)/x, V is the volume of the disk, and
J1(x) is the Bessel's function of the first order. On the other
hand,Wz(&) = — CjuoM V[ Hy(t)aiy —Hy(t)aix] + (|a||3) is

d!
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Type I Type I Type III Type IV
Pi=1 P=1 P1=1 P2=1 Pi=1 P>=-1 Pi=1 PpPr=-1
C1—-1 Cr=-1 Cl— -1 CZ— C1— -1 Cz— -1 C1— -1 C2—

FIG. 2. Schematic diagram of vortices for various combinations
of polarizationsp and chiralitiesC. A circle with a dot and a circle
with cross represent polarizations for= +1 and—1, respectively.
Circular arrows represent the chiralities.

equal to two-dimensional damped coupled oscillations in a
ime-dependent external field. There are topologically differ-
ent types of the two-vortex system. They are classified into
R)/ur types labeled “type I,” “type II,” “type Ill,” and “type
" as in Fig. 2, according to different combinations of po-
Ianzatlons and chiralities of vortices: p{,p,,C1,C5)
1,1,-1,-1),(11,-1,1),(2~7/1-1,-1),(2-1-11).
All the possible combinations belong to one of these types.
From the above set of Eq$5), we obtain eigenfrequencies
which depend on the polarizatiops of vortices:

the Zeeman energy of the in-plane external magnetic field

Hy(t) e+ Hy(t)e, .

EX

B. Dynamics of two-coupled vortices

The investigation of the dynamics of vortices is based on

Thiele’s equatiort®!’ This equation is described by collec-
tive degrees of freedom of magnetic domains, which is de
rived from the Landau-Lifshitz-Gilbert equation. Conditions
for applying Thiele’s equation are the constant saturation
magnetizatiorM ¢ and the vortex core displacement without
distortion. In the case of a magnetic vortex, these collectiv
degrees of freedom are the core position of the vortex. Her
we consider the displacement paramet&rsto be the dy-
namical variable®\;(t). Using these variables, the equation
of motion of the vortex center can be written as

dAi(t)
dt

dAi(t)
dt

P

_ IW(@ay(h),a(t)
A

i ; )

whereG; and Bi are the gyrovector and the dissipation dy-
adic. In the rigid vortex model, they are calculated as

2mpik uoM
i:_ﬂ'p,—,u()s ’ (63)
Y
o~ 2mLapoM
Bi=- " (ecete e, (6b)

where v is the gyromagnetic ratio, and is the nondimen-
sional damping parameter. The set of equations above

“P1op 1+ a?
P1P A+ Ny |
x\/(1+plp2xx)<1—xy>—a2(% ,
(78

* _ @Yo

wpl'p2_1+a2

p1p2)\x+ 7\y :
2

X \/(1_ P1P2N ) (1+Ny) — a2<

(7b)

where wy=k/(R?|G|)=yMJF(g)—(Re/R)?]/2 is the

characteristic frequency of the circulating single vortex, and
=n;/k (i=X,y). The eigenmotions with their eigenfre-

'auenmeScol 1,01 for each type can be excited with an
initial condition on Egs.(5) as (A14(0),A1(0),A%(0),
A,,(0))=(0,C,;6HR,0,C,6HR). HereH is a uniform exter-
nal magnetic field in thex direction to set initially each vor-
tex center on an off-centered position, ahé the appropri-
ate constant determined by the steady condition of Egjs.
After removing the magnetic fieltl, both vortex cores co-
herently rotate around the disk centers with the normal-mode
frequenciesw, ; for types I and Il andv, _; for types Il and
IV, and relax back to the disk centers in the absence of a
time-dependent external magnetic field. On the other hand, if
we impose the initial condition on Egs.5) as
(Alx(0)7Aly(0)1A2X(0)1A2y(0)):(01C15H R,O,_ C25H R)1
the other normal modesy ;,w? _; are excited. This initial
condition corresponds to the case where a spatially modu-
lated magnetic field is initially applied along the positixe
direction on a boundary between centers of the two disks.
isfter all, vortex cores coherently rotate in the same direction

224404-2



DYNAMICS OF MAGNETOSTATICALLY COUPLED. .. PHYSICAL REVIEW B67, 224404 (2003

for types I and Il p;=1,p,=1), and in the opposite direc- . 1-7jw1 o a = 0.05
tion for types il and IV p;=1,p,=—1). N6 0 o 0800600 wo/2m
We now consider the effect of the periodically oscillating g5 1.5 IRy & = EEEEEZE T+ o
external magnetic field,Hg(t)=H(t)e,, with Hgyt) 14 ;"‘ ‘//2;; e-e-e Analvtical
=H,¢,cost), on the motion of the vortices. When the fre- 9 ;51 " nalytica
quency () is close to the resonant frequen@/;l’pz, the % 121
vortex core continues to rotate around the disk center, while g 1.1
absorbing the external energy. From Eg), the energy ab- é 109w jor Numerical
sorption rate per unit time is given by §0 091 w’%’l—}% e e
AT RRCC SR o 5= SEREEEE TEES |
) 07 w¥ 1/21r « 777
(a,Q wg)=— 2, dAi(t D dAi(t) ®) 18 20 22 24 26 28 3.0
CEEOT S dt T dt d=D/R
where the over line means the time average over a period. "'C- 3- Analytically estimated eigenfrequencies,, Par @b, p,)
The above equation can be calculated as and numerically estimated elgenfrequencmu%‘(pz plsz) as a
function of the nondimensional distande= D/R for a weak damp-
ing a=0.05.
I(a,Qwg)= y’uo v ngf(a,Q/wO), 9) A. Numerical evaluation of analytical results

2
The characteristic resonant frequenoy of an isolated

with vortex with no damping can be estimated as,
=1.53 GHz. Numerically integrating Eq3a) then vyields
eigenfrequencies for the coupled vortices. Figure 3 shows
2a{ BT+ BEX7IX2 eigenfrequencies obtained for various combinations of polar-
ﬁ§ﬂ§+{a2(ﬂi+ﬂ§)—Zﬂlﬁz}XZJrﬂgX‘" izationspi and_ initial magngtic cqnfigurations as afunction
(10) of nondlmepsmnal separating distandefor a _suff|C|entIy
weak dampingx=0.05. In the case of large distande-1,
where B;=1+p1pohy, Bz=1—\,, and B2=1+a2 The all eigenfrequencies are degenerate at the eigenfrequency
energy absorption raté(a,Q/wg) is proportional to the Of the isolated vortex. When the separating dls_tadcrs
square of the amplitude of magnetic fig#l,, and depends d_ecreased, th_e d_egeneracy is removed, and the e|genfrequen-
on the polarizationg; of the vortices. From Eq(10), the =~ C1€S are split into four frequency levels, two higher
resonant frequenc@fflypz is given by .wlyl,wly,l) and two lower ;3,05 1) than wg, for thg .
isolated vortex case. It should be noted here that the chirality
of the vortex has nothing to do with the rotational direction
,85,82 determined only by the core polarization. For types | and Il
> (1) with w; 1, the average magnetization vectors in the coupled

Bs(BatB2) = B3 disks always align parallel to each other during rotation be-

. . . cause of the same core polarizatipp=p,=1. On the other
Strictly speaking, the resonant frequerﬁﬁ p, 1S MOUhE  and for types Il and 1V, withw, 4, the average magneti-
same as the eigenfrequency in E@) because the pumping zation vectors rotate opposite to each other because of dif-
magnetic fieldH,(t) is a linearly polarized field. If appro- ferent core polarizationg; = —p,=1, resulting in an anti-
priate circularly polarized magnetic fields are applied to theparallel configuration of the magnetization vectors appearing
rotating vortices system, the resonant frequency and thguring rotation. This may diminish the magnetostatic inter-
eigenfrequency coincide well with each other. In the case ofction energy, resulting in the lowest frequeney_;. In the
a weak damping otr<<1, both frequencies obtained from same manner, it can be understood that different initial con-
Egs. (78 and(11) are in good agreement up to the leading ditions and magnetic vector configurations lead to the high-
order O(a?). estw} _; and the second highest; ;. All the above results

draw an analogy between the dynamical vortices system and
1. NUMERICAL CALCULATIONS a molecula_r system Wit_h the van der Waals interaction in-
duced by dipole-dipole interaction.

Here, we evaluate numerical values on the basis of results Here, we estimate the binding energy of the system as the
obtained from the analytical calculation and the numericatime-averaged magnetostatic interaction enétgy vs sepa-
simulation. The computational material parameters are typirating distancel in the case of lower frequencies motion and
cal for permalloy; the saturation magnetizatidh,=8.60 no damping. Figure 4 shows that this interaction energy var-
X10° Aim, the exchange stiffness constamh=1.3 ies proportional to the minus sixth power of the separating
x10 ' J/m, the gyromagnetic constanty=2.2x10° distanced. The energy thus behaves similarly to that of the
m/As, the disk radiufR=0.1 um, and the disk thickness van der Waals molecular system when two atoms do not
L=20 nm. overlap each other.

f(a,x)=

R _
Qplrpz_
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FIG. 4. The time-averaged magnetostatic interaction enétgy rd
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illustrates van der Waals interaction. Type IV
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Figure 5 shows the energy absorption rigte, )/ wg), in
units of yMOMsVH§X/2=2.38>< 10°° J/s, as a function of the
reduced frequency)/w, for types | and Il withp;=p,

~-0.05

Magnetization components

=1. For types Ill and IV, the absorption curves are almost 0 1 ) 3
the same as those for types | and Il. Notice that the resonan Time (ns)
frequencies)? _ for various distances lie on the lower ) . o
P1-P2 FIG. 6. Time evolution of magnetization componehtg(t) and

eigenfrequencies in Fig. 3. Therefore a spatially unlfgrmMy(t) for various combinations of polarizations and chiralities. We
magnetic fieldH,(t) may excite the lower eigenfrequencies take the damping parametar=0.05, the nondimensional separat-
(w1,1,01,-1), whereas the higher frequencies’(;,»] ;) ing distanced=2.4. A circular arrow of dashed line represents a
may only be excited by a spatially modulated magnetic fieldrotational direction of vortex motion.

B. Micromagnetic calculation 10 mT in the positivex direction. Time evolution of the com-

For comparison, the dynamical behavior of the coupledPonentsM,(t) andM,(t) were then simulated after remov-
vortex was evaluated using the Object-Oriented Micromaging the magnetic field. As shown in Fig. 6, the components
netic FrameworkoommF) (Ref. 18 software. We took a cell My(t) andM(t) for types | and Il exhibit damped oscilla-
size of 4.0 nm. Figure 6 shows time evolution of magnetizaiions, corresponding to the fact that both vortices coherently
tion ComponentM X(t) and My(t) for various combinations rotate in same direction and relax back to the disk centers.
of p; andC; with d=2.4. As an initial condition, we set the For types Ill and 1V, the compone,(t) exhibits damped
state where both vortex cores were shifted alongytleeis  Oscillation, while the componeni(t) stays constant. This

from the center by applying a uniform magnetic field of implies that vortices rotate opposite to each other, to cancel
the netM(t) component, supporting the analytically ob-

e oM,V H?, tained results in the above discussion.

(@, /“’”)/ The highero? ) andw}"; as well as the lowew}; and
w’f‘,l eigenfrequencies are estimated as a function of the
separating distance from micromagnetic calculations as
shown in Fig. 3. The tendency of the variation is in good
agreement with the analytically obtained results although the
numerical values of the eigenfrequencies and the difference

between the higher and the lower eigenfrequenaiglé'p2

2
Qs 1)/ MV Hy, | 20 . .
Hen@fen )/ 7 112 —oN are smaller than the analytical ones. This has been
P1.P2

pointed out in Ref. 13, where the authors separately esti-
L mated the eigenfrequeney on the basis of rigid vortex and
0 e T 2"_"2'; """ s two vortex “side charges free” modefQAIthqugh the latter
) Q/w(‘) ) model is in good quantitative agreement with the micromag-
netic calculation of the eigenfrequeney, it is not suitable
FIG. 5. The energy absorption raitex, )/ w,) as a function of ~ for the coupled vortices system because the vortex structure
Q/w, in the case of type-I and -l coupled vortex system. We takeOf this model always has no side surface charges responsible
the nondimensional distanck=2.4. for the coupling. Hence a more precise model is needed to

20

—a=0.05

15

10

Energy absorption rate
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describe quantitatively the dynamics of coupled vortices sysenergy varies as the minus sixth power of the separating
tem, though the rigid vortex model is useful for a qualitativedistanced. Hence these results can draw an analogy between

understanding. the dynamical system of coupled nearby vortices and a di-
atomic molecule with the van der Waals bonding induced by
IV. SUMMARY AND DISCUSSION the dipolar interaction. Magnetic charges on the side surfaces

. , ) , ) . of the off-centered nearby vortices induce the magnetic
In conclusion, we investigated in detail the dynamics ofgipole-dipole interaction. Furthermore, without difficulty, our
magnetostatically coupled vortices in magnetic circularipyestigation can be extended to an array of magnetostati-
nanodisks, both analytically and numerically. It was shownca"y coupledN X N dots, and it is expected that such a sys-
that coupled vortices coherently rotate around the disk cenem forms a band structure. Finally, we hope that our inves-
ters with circular eigenfrequencies, which depend on the POigation will open up the possibility of studying two-

Iari;ations of the yortices. Remarkably,'the chiraliti'es of thegimensional artificial crystals in magnetic vortex systems.
vortices do not influence the dynamics of vortices. We

showed that these lower eigenfrequencies {,w; ;) for

each type of coupled vortex system can be excited by a time- ACKNOWLEDGMENT

dependent periodically oscillating external magnetic field. It

was found that the time-averaged magnetostatic interaction We are grateful to F. Nori for many useful discussions.
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