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Equations of state and thermodynamic properties of rare-gas solids under pressure calculated
using a self-consistent statistical method
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Equations of states~EOS’s! and thermodynamic properties of rare gas solids~RGS’s! under pressure are
studied by a statistical method. On the basis of empirical effective two-body interactions for Ar, Kr, and Xe
close agreement is obtained with experimental data for the pressure dependencies of the Gru¨neisen parameter
and sound velocities as well as for the temperature dependence of the interatomic distance, the heat capacities,
the bulk modulus, and Gru¨neisen parameter at ambient pressures. All these thermodynamic quantities are
finally also calculated for 2, 5, and 10 GPa. Most remarkably a strong suppression of the intrinsic anharmonic
contributions to the Gibbs free energy is noticed under strong compression and quantitatively evaluated.
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I. INTRODUCTION

Thermal contributions to the equations of states~EOS’s!
for solids under strong compression have received grow
attention in recent years for practical reasons related to p
sure determination in diamond-anvil high-pressure studie1–3

as well as in geophysical studies related to the internal g
dynamics and density gradients.2,4 However, the theoretica
description of the thermal properties presents still a con
erable challenge due to the well-known anharmonicity in
atomic vibrations, which requires especially for large vib
tional amplitudes a self-consistent treatment of quasiela
interatomic interactions. Thereby it is well understood5,6 that
the quasiharmonic approximation of the phonon contri
tions to the thermal pressure cannot describe the experim
tal data correctly but intrinsic anharmonic contributions ha
to be taken into account in addition to obtaining an accur
modeling. When these intrinsic anharmonicities are mode
purely on heuristic grounds7 one is not able to predict th
variation of these intrinsic anharmonicities under pressu
which limits the accuracy of these models under stron
compressions. For this reason a statistical model with em
cal effective two-body interactions is applied here to stu
the thermal behavior of rare-gas solids~RGS’s! under strong
compression in wide ranges of temperature to gain some
ther insight into the contributions from the intrinsic anha
monicities and into the effects involving self-consistency
the atomic motion in crystals.

In this paper primary attention will be paid at first to th
heavier RGS’s Ar, Kr, and Xe, where the contributions fro
quantum motion of the atoms are not so strong as in Ne
He. All the thermophysical data for these RGS’s at moder
compression have been reviewed critically in the literatu8

but more recently, isothermal EOS studies have been
tended for solid argon up to 80 GPa,9–12 for solid krypton up
to 55 GPa,13–16 and for solid xenon up to 75 GPa.17–20

While most of the earlier studies on RGS’s used o
various more or less empirical EOS forms22,21 in the repre-
0163-1829/2003/67~22!/224301~9!/$20.00 67 2243
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sentation of the experimental data, more recently also fi
principles calculations as well as different methods from s
tistical theories of solids were applied to describe t
quasiharmonic atomic motion in crystals.23–26

In principle, these statistical methods allow us not only
calculate the EOS’s for wide ranges in temperature and p
sure, but also to determine all the other thermodynamic pr
erties of these crystals under pressure, however, the us
ness of these models was strongly limited, beca
quasielastic interatomic interactions and intrinsic anharm
nicities of the atomic motions in the crystal were mostly n
treated self-consistently in these calculations.

The basis for the theoretical description of the RGS’s
the present paper is the statistical method recently propo
for the study of equilibrium properties of solids27 and suc-
cessfully applied to the description of thermodynamic pro
erties Ar, Kr, and Xe at ambient pressure.28 In Sec. II the
main results of this statistical theory27 will be recalled to
obtain the basic relations for the EOS of the present RGS
Sec. III explicit results are compared with the experimen
data for Ar, Kr, and Xe. In Sec. IV thermodynamic properti
of Ar are presented for pressures of 2, 5, and 10 GPa
compared with ambient pressure data. The pressure de
dence of the sound velocities for solid Ar is also compa
with experimental results in Sec. IV together with a discu
sion of the effect of pressure and temperature on the G¨n-
eisen parameter and a comparison with the constraints o
more commonly used Mie-Gru¨neisen EOS. Results for th
changes in the thermal expansion, changes in the isob
heat capacity, and in the isobaric bulk modulus are also p
sented in Sec. IV. The effect of pressure on the intrin
anharmonicity is finally discussed in Sec. V.

II. THE PRESENT STATISTICAL APPROACH

The most difficult task in the statistical approach to t
thermodynamic description of crystals is a self-consistent
©2003 The American Physical Society01-1
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termination of the phonon frequencies. A self-consistent w
to derive an effective quasielastic force constant for
nearest-neighbor interatomic interaction is used in
present approach. The value for this ‘‘effective bo
strength’’ depends on the distribution of atomic displac
ments on the nearest lattice sites and, in turn, affects
values of these displacements. To solve this problem, s
consistent phonon~SCP! theories29–31 have been develope
many years ago, whereby iteration processes provide the
sis for the determination of a self-consistent interatom
force constant. In order to avoid the difficulties related w
the iteration process, a variational approach on the bas
the Gibbs-Bogoliubov functional32 was introduced27 to ob-
tain an effective quasielastic bond strength parameter. In
approach a Morse potential between first nearest neighbo
used as an effective interatomic pair interaction in the cr
tal,

u~r i j !5A@e22a(r i j 2R0)22e2a(r i j 2R0)# ~1!

with the three parametersA, R0, anda. The values for these
parameters are listed in Table I and were determi
previously27 in such a way that the values for the intern
energy, the lattice parameter, and the bulk modulus of
RGS at zero temperature and pressure, calculated within
framework of the statistical model,27 fitted the observed val
ues. In the case of Kr the values of potential parameters w
modified with respect to the value of the cohesive energ36

The distance between atoms located near the sitesRi andRj
is given here byr i j 5uRi2Rj1qi2qj u andqi represents the
atomic displacement from the sitei.

The quasiharmonic Gibbs-Bogoliubov functional is

FGB5F01^U2U0&, ~2!

whereby the

F0

NA
5t(

j
E lnF2 sinhS cL

2t
ṽ j~K ! D G dK ~3!

and

^U0&
NA

5
cL

4 (
j
E ṽ j~K !cothS cL

2t
ṽ j~K ! D dK ~4!

represent the~Helmholtz! free energy and the average inte
nal energy of the quasiharmonic crystal.t5kBT/A is a re-
duced temperature,

L5
\a

AMA
~5!

TABLE I. Morse potential parameters and values of the de B
parameterL for RGS’s from the literature~Ref. 27!.

a (Å21) A/kB ~K! R0 ~Å! L

Ar 1.62 170.76 3.71 0.1360
Kr 1.52 249.08 3.97 0.0767
Xe 1.38 332.04 4.32 0.0457
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is the de Boer parameter for the Morse potential,M and N
are the atomic mass and the total number of atoms.

c5S b1

a2A
D 1/2

~6!

is a dimensionless quasielastic bond parameter andb1 is an
effective force constant for nearest-neighbor atoms.

The average value for the potential energy of the int
atomic interaction̂ U& is calculated with the binary distribu
tion function for the atomic displacements27 and is given by

^u&5
^U&
AN

5e22b1q(z)/g* 22e2b1q(z)/4g* , ~7!

wherebyb5a(R2R0) represents a reduced lattice expa
sion,R is the nearest-neighbor distance, and

q~z!5
2

11z2
7

2
z21

3

4
z3

is a correlation factor, which represents the contribution
the interatomic correlation to the energy of the interatom
interactions, and one may notice thatq(z) changes only
slowly with temperature fromq0'1.87 atT50 K to q'2 at
high temperatures.27

z52
c

Lg*
(

j
E ṽ j~K !

3tanhFcL

2t
ṽ j~K !Gejx

2 ~K !cos~2pKx!dK , ~8!

is a dimensionless parameter (0,z,1), which describes the
correlation in the displacement of nearest-neighbor ato
The inverse value for the width of the atomic localization
a lattice site is characterized by

g* 5
c

L (
j
E ṽ j~K !tanhFcL

2t
ṽ j~K !Gejx

2 ~K !dK , ~9!

wherebyejx represents the phonon polarization vector for t
x direction. The integration in Eqs.~3!, ~4!, ~8!, and~9! runs
over the unit-cell volume of the reciprocal lattice, andK are
reduced components of the wave vector, varying from 0
1.27

The reduced phonon frequencies of the atomic vibrati
ṽ j (K ) are determined by the dynamical matrix of the ha
monic crystal, i.e., they depend on the lattice structure o
The relation between the scaled frequencyṽ j (K ) and the
real phonon frequencyv j (K ) is given by

v j~K !5c
AL

\
ṽ j~K !, ~10!

wherebyj represents the specific phonon branch.
The introduction of these reduced variables allows us

parametrize the expression for the free energy~2! with re-
spect to a minimal number of physical parameters describ
the thermodynamic properties of the crystal. With these
rameters, the quasiharmonic crystal free energy~2! depends

r

1-2
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TABLE II. Numerical coefficients used in Eqs.~12!–~17! for the fcc lattice.

n0 n1 n2 n3 m0 m1 p0 p1 s1 s2 t1 t2

2 5/6 0.475 0.296 1/4 27/96 1/3 1/48 1.928 0.550 1.446 0.09
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only on the reduced temperaturet and on the de Boer con
stantL. The internal crystal parametersc andb represent the
lattice expansion and the dimensionless effective force c
stant, determined as equilibrium values minimizing the cr
tal free energy at the given temperature and pressure.

The contribution from the cubic anharmonicity of th
atomic vibrations to the crystal free energy is important
pecially at high temperature and low pressure. The quasi
monic expression for the crystal free energy~2! can be cor-
rected in these cases by contributions from cu
anharmonicity of the atomic vibrations in second-order p
turbation theory by a termDF3(t,b).33–35It has been shown
previously,27,28 that this correction for cubic anharmonicit
leads in fact to a good agreement between theory and ex
ment at zero pressure. The equilibrium state for given val
of temperature and pressure corresponds to a minimum
the Gibbs function with respect tob and c. In terms of the
present dimensionless functions one has

g~t,P,c,b!5ws~t,c!1
z

2
^u~t,c,b!&1w3~t,c,b!1 P̃w,

~11!

with ws(t,c)5(F02^U0&)/NA, w3(t,c,b)5DF3 /NA, and
P̃5P/Aa3, whereby P is the external pressure andw
5a3v is the dimensionless atomic volume. In the case of
crystals one finds for the atomic volumev5(R0

1b/a)3/A2.
At high (t.cL) and low (t,cL) temperatures the ex

pression for the Gibbs free energy~11! can be given in ex-
plicit forms, which simplify the determination of thermody
namic properties in these temperature ranges.

In the high temperature limitt.cL,

g* 5
c2

t (
l 50

3

nl S cL

t D 2l

, ~12!

z5m01m1S cL

t D 2

, ~13!

ws5tFp01p1S cL

t D 4G13t lnS cL

t D , ~14!

w352
a3

c6 S e22b1t/c2
2

1

4
e2b1t/4c2D 2

t2, ~15!

wherebya3'1.5. The numerical coefficientsnl , ml , and
pl , calculated in the case of the fcc lattice, are listed in Ta
II.

In the case of low temperaturet,cL,
22430
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g* 5
c

L Fs12s2S t

cL D 4G , ~16!

ws5cLF t12t2S t

cL D 4G , ~17!

w350,

and the correlation parameter for an fcc crystal isz0
'0.136 withq0'1.87. The values for the coefficientssl and
t l for the fcc lattice are also listed in Table II.

In any case, the equilibrium value of effective quasielas
bond strength parameterc and the dimensionless lattice ex
pansionb5a(R2R0) are determined by the minimizatio
of the Gibbs function~11! with respect tob andc:

]g

]b U
t,P,c

50, ~18!

]g

]c U
t,P,b

50. ~19!

III. EQUATION OF STATES

The relations~18! and~19! give the starting point for the
determination of the EOS’s and for the equilibrium crysta
parameters under pressure. A direct relation between the
ternal pressureP and the normalized lattice expansionb,
obtained from Eq.~18!, is given by the relation~20!, in
which the parameterq/g* and the cubic termw3 depend still
on t andc:

P54A2
Aa

~R01b/a!2

3Fe22b1q(z)/g* 2e2b1q(z)/4g* 2
1

12

]w3

]b G . ~20!

Equation ~19! gives here a second equation, which det
mines, in combination with Eq.~18!, the equilibrium values
of the internal parametersc0(t,P) andb0(t,P).

The variation of the equilibrium valuec0(t,P) for Ar
under pressure is illustrated in Fig. 1 at two different te
peratures (T50 K and T5295 K). The steep increase o
c0(t,P) at low pressures is typical for RGS’s, which show
similarly strong increase in the bulk modulus in this rang
The temperature dependence ofc0(t,P) at constantP is ob-
viously very small~Fig. 1!, however, a temperature depe
dence ofc0(v,t) can be noticed clearly at constant volum
as illustrated in Fig. 2.

One may recall here thatc0(t,P) is directly proportional
to the~acoustic! Debye temperature,28 which shows therefore
1-3
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the same pressure and temperature dependence asc0(t,P).
With the determination of the equilibrium valuesc0(t,P)
andb0(t,P) from the Eqs.~18! and~19! ~for given values of
P and t) one can calculate the EOS, which represents
pressure and temperature dependence of the equilibrium
ume. For Ar, Kr, and Xe Figs. 3–5 compare the calcula
room-temperature isotherms with experimental data.

The good agreement between the experimental and t
retical EOS data in these wide pressure ranges together
the previously published results for the other thermodyna
data of Ar, Kr, and Xe at ambient pressure27,28 illustrates
clearly that the approximation of effective interatomic inte
actions by the Morse potential~1! with the parameters given
in Table I reproduces in the framework of the present sta
tical model of solids all the available thermodynamic da
very reasonably. Therefore this potential can be used for
description of a wide range of microscopic properties
these RGS’s in the whole pressure and temperature re
covered only partly by the previous experimental studi

FIG. 1. Effect of pressure on the effective quasielastic bo
parameterc0(P) for Ar at two temperatures,T50 K ~circles! and
T5295 K ~solid line!.

FIG. 2. Effect of volume on the effective quasielastic bond p
rameterc0(v) for Ar at two temperatures,T50 K ~lower solid line!
andT5295 K ~upper dashed line!.
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However, it should be noted that the parameters in Tab
had been deduced from experimental values for the cohe
energy, the bulk modulus, and the interatomic distance
zero pressure and temperature in such a way that the po
tial represents an effective nearest-neighbor interact
which may be different from a free atom potential.

One may notice also that the explicit cubic anharmo
contributions to the pressure given by the last term in E
~20! are significant only at high temperature and decrea
steeply (;c26) with increasing pressure.

For the static lattice case, which corresponds toq/g*
50 andL50, Eq.~20! can be represented in the form of th
previously discussed22,21 effective Morse-type EOS:

P~x!5
3K0

K0821

1

x2
~e22(K0821)(12x)2e2(K0821)(12x)!,

~21!

d

-

FIG. 3. Calculated EOS for Ar atT5295 K ~solid line! and
experimental data from the literature~Refs. 10 and 11!.

FIG. 4. Calculated EOS for Kr atT5295 K ~solid line! and data
from the literature for experimental~Refs. 13 and 14! and theoret-
ical ~Ref. 15! studies.
1-4
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EQUATIONS OF STATE AND THERMODYNAMIC . . . PHYSICAL REVIEW B 67, 224301 ~2003!
whereby the parameters of the present approach are e
related to the commonly used values for the bulk modulu
zero pressure,K05(4/3)A2Aa2/R0, to its pressure deriva
tive at zero pressure,K085aR011, and to the scaled dis
tance parameter,x5(v/v0)1/3, with v05(1/A2)R0

3 for the
zero-pressure volume. From a comparison of Eq.~21! with
Eq. ~20! one can see that the pressure of the static lat
becomes at high pressure the dominant contribution to
total pressure when

ubu@q/2g* ~22!

and the contributions from both quantum and thermal pr
sure can then be obtained as leading termDP(x,t) in an
expansion of Eq.~20! with respect toq/g* !1 in the form

DP~x,t!5
3K0

K0821

1

x2S e22(K0821)(12x)2
1

4
e2(K0821)(12x)D

3
q~z!

g* ~t,c0!
. ~23!

The variation of this phonon pressureDP(x,t) by com-
pression is illustrated in Fig. 6 by three curves for thr
different fixed volumes.

First of all one may notice in Fig. 6 that compression
the crystal leads to an increase of the zero-point press
which is directly related to the increase of the~acoustic!
Debye temperature illustrated by the corresponding incre
of c0(v,t) already in Fig. 2. The extension of the flat regio
at low temperatures reflects in the same way the increas
the Debye temperature. The change in the slopes betwee
low-pressure and the high-pressure curves represents a
cial feature, which corresponds to a volume dependenceqD
5(] ln gtb /] ln V)T,1 of the corresponding ‘‘thermobaric
Grüneisen parameterg tb in contrast to the usual expectatio
qD>1 for the volume dependence of the Gru¨neisen param-
eter at moderate pressures.4 The reason for the distinction
between the ‘‘thermobaric’’ Gru¨neisen parameter7 used here

FIG. 5. Calculated EOS for Xe atT5295 K ~solid line! and
experimental data from the literature~Ref. 18!.
22430
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and the more commonly known Debye-Gru¨neisen paramete
is discussed in the next section.

IV. THERMAL PROPERTIES

As already indicated in the previous section the domin
changes in the thermal properties of the RGS’s under p
sure are related in the present model to the increase of
quasielastic bond parameter~Figs. 1 and 2!, which leads also
to increases of the phonon frequencies~10!, to an increase of
the corresponding Debye temperature, and to a related
crease in the phonon occupation numbers at a given temp
ture. For nonmetallic crystals like the RGS’s the total pre
sureP can be split into the pressure of the static latticePl
and an additional phonon contribution, which includes bo
zero-point and thermal contributions, and one obtains w
the internal energy of the phonon subsystemEph

P5Pl1~g tb /V!Eph. ~24!

FIG. 6. Isochoric temperature dependence of the phonon p
sure at three different volumes.

FIG. 7. Effect of pressure on the Gru¨neisen parameterg tb at two
different temperatures:T50 K ~upper solid line! and T5295 K
~lower dashed line!.
1-5
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In the case of a quasiharmonic Debye model, the th
mobaric Gru¨neisen parameterg tb , defined by this relation, is
identical to the commonly used Debye-Gru¨neisen paramete
gD5(] ln uD /] ln V)T . However, whenuD becomes tempera
ture dependent due to effects from~intrinsic! anharmonicity
as in the present approach,g tb defined by Eq.~24! becomes

g tb52
~] ln uD /] ln V!T

12~] ln uD /] ln T!V
. ~25!
e.
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-
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r-Since the acoustic Debye temperature is directly proportio
to c0(t,b),28

uD5~6A2p2!1/3^k j k&ALc0~v,t!, ~26!

and Eq.~19! gives an analytical expression forc0(t,b) in the
form
c0~t,b!5A2e22b2e2b1A4e23b~e2b21!1e22b1
t

2
e2b~8e2b21!, ~27!
d
he
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one can easily calculateg tb from c0(t,b), and also all the
other thermal properties of the crystal under pressure,
thermal expansion and heat capacities. With Eqs.~25!–~27!
one obtains for the pressure and volume dependence og tb

the results shown in Figs. 7 and 8, respectively.
Within the quasiharmonic approximation one expects

temperature dependence forg tb at constant volume in con
trast to the strong thermal effects seen in Fig. 8, which ill
trates that some intrinsic anharmonicity~in addition to the
anharmonicity already included in the quasiharmonic
proximation! is taken into account by the present approa
giving significant contributions in the RGS’s especially
low pressures.

For small values of the wave vectork one can use the

relation~10! in the formṽ j (k)5k j kkR, whereby the coeffi-
cientsk j k account also for the different polarizations of th
acoustic waves in a given direction, and this relation giv
for the pressure and temperature dependence of the s
velocitiesuj k :

FIG. 8. Effect of volume on the Gru¨neisen parameterg tb at two
different temperature:T50 K ~upper solid line! and T5295 K
~lower dashed line!.
g.,

o

-

-
h
t

s
nd

uj k5k j kS a2A

M D 1/2

R~T!c0~P,T!. ~28!

From Eq.~28! sound velocities are calculated for Ar an
compared in Fig. 9 with experimental values from t
literature.12

One can notice, that the values ofk j k along the direction
^111& is 2/A3, giving the highest velocity for the longitudi
nal acoustic~LA ! phonon branch. For thê100& direction
k j k51 gives the lowest velocity for the LA branch in th
direction. As one can see from Fig. 9 the agreement betw
observed12 and calculated data is rather good for these t
LA branches. For the transverse acoustic~TA! branches the
differences between experimental data12 and the present the
oretical results are, however, slightly larger. The valuek j k

51/A2'0.7 along thê 100& direction for largest velocities
of the TA branch andk j k50.5 along thê 110& direction for
the direction with the lowest velocities of the TA branch d

FIG. 9. Effect of pressure on the sound velocitiesuLA,min ,
uLA,max , uTA,max, anduTA,min for solid argon. Solid lines are calcu
lated from~28! and symbols represent experimental data from
literature Ref. 12.
1-6
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EQUATIONS OF STATE AND THERMODYNAMIC . . . PHYSICAL REVIEW B 67, 224301 ~2003!
not give good agreement with the experimental data,12 how-
ever, a much better agreement between theoretical and
perimental data12 for these TA branches can be obtained w
k j k50.61 andk j k50.43, respectively. Such a scaling of th
calculated velocities for the TA branches can be related to
noncentral character of interatomic interactions.12

The average over the sound velocities results in the w
known acoustic, low-temperature limit of the Debye te
peratureuD , given by Eq.~26!, and the steep increase in th
velocities in Fig. 9 results in a similar increase ofuD with
pressure, which widens the temperature range of the q
tum behavior under pressure. Due to the strong decrea
(;c24, c26) of the anharmonic contributions to the fre
energy of a crystal under pressure the temperature de
dence of thermal-expansion coefficient decreases rapidl
the classical high-temperature region (t.cL) and the tem-
perature dependence of isothermal bulk modulusKT be-
comes linear. These effects are illustrated in Figs. 10–
showing the temperature dependence for the interatomic

FIG. 10. Temperature dependence of the interatomic dista
for Ar at different pressures. The highest temperature for each c
corresponds to the melting point.

FIG. 11. Temperature dependence of isobaric heat capacit
solid Ar at different pressures. The highest temperature for e
curve corresponds to the melting point.
22430
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3,
is-

tancesR(t), the isobaric heat capacityCP , and isothermal
bulk modulusKT , respectively. What is most striking is th
strong decrease in the ratiok5CP /CV5KS /KT under pres-
sure illustrated in Fig. 13.

Effects from intrinsic anharmonicities are also clearly n
ticed in the temperature dependence for the thermob
Grüneisen parameterg tb @defined by Eq.~25!# and in the
~different! temperature dependence of the more commo
used ‘‘thermal’’ Grüneisen parameter,

g th5
aVKTV

CV
, ~29!

whereaV is thermal volume expansion coefficient. Figure
illustrates the difference in the temperature dependenc
g tb andg th at three different pressures.

While the apparent small difference in the two differe
Grüneisen parameters at low temperatures represents an
fact due to the limited numerical accuracy of the pres
calculations, the increasing difference at higher temperatu
represents the effect of intrinsic anharmonicity taken in

ce
ve

of
h

FIG. 12. Temperature dependence of the isothermal bulk mo
lus for solid Ar at different pressures. The highest temperature
each curve corresponds to the melting point.

FIG. 13. The temperature dependence ofk5CP /CV5KS /KT at
different pressures. The highest temperature for each the curve
responds to the melting point.
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account by the present calculations. One may notice that
difference seems to decrease with increasing pressure.

V. CONCLUSION

The present statistical approach to a calculation of
thermodynamic properties for solids reveals clear differen
in the temperature dependences of the different Gru¨neisen
parametersgD , g tb , andg th due to intrinsic anharmonic con
tributions, which are very significant in the presently stud
RGS’s at moderate pressures and elevated temperatures
strong increase with pressure for the Debye temperatur
directly related to the increase in the quasielastic bond
rameterc0(t,P) of the present approach~Fig. 1!. The tem-
peraturetb5c0L for the borderline between the quantu
and quasiclassical behavior in the thermodynamic prope
of solids increases withc0 and leads to a strong expansion
the quantum regime with pressure, especially in the re
tively soft RGS’s as illustrated in Figs. 6, 10, and 11 for t
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phonon pressure, the thermal expansion, and the heat ca
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