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Equations of state@EOS’S and thermodynamic properties of rare gas so(lR&S'’9 under pressure are
studied by a statistical method. On the basis of empirical effective two-body interactions for Ar, Kr, and Xe
close agreement is obtained with experimental data for the pressure dependencies oh#igeGparameter
and sound velocities as well as for the temperature dependence of the interatomic distance, the heat capacities,
the bulk modulus, and Gngisen parameter at ambient pressures. All these thermodynamic quantities are
finally also calculated for 2, 5, and 10 GPa. Most remarkably a strong suppression of the intrinsic anharmonic
contributions to the Gibbs free energy is noticed under strong compression and quantitatively evaluated.
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[. INTRODUCTION sentation of the experimental data, more recently also first-
principles calculations as well as different methods from sta-
Thermal contributions to the equations of statE©S’'s  tistical theories of solids were applied to describe the
for solids under strong compression have received growinguasiharmonic atomic motion in crystafs2°
attention in recent years for practical reasons related to pres- In principle, these statistical methods allow us not only to
sure determination in diamond-anvil high-pressure stidies calculate the EOS'’s for wide ranges in temperature and pres-
as well as in geophysical studies related to the internal geasyre, but also to determine all the other thermodynamic prop-
dynamics and density gradierft However, the theoretical erties of these crystals under pressure, however, the useful-
description of the thermal properties presents still a considness of these models was strongly limited, because
erable challenge due to the well-known anharmonicity in theyuasielastic interatomic interactions and intrinsic anharmo-
atomic vibrations, which requires especially for large vibra-pjcities of the atomic motions in the crystal were mostly not
tional amplitudes a self-consistent treatment of quasielastigeated self-consistently in these calculations.
interatomic interactions. Thereby it is well understobthat The basis for the theoretical description of the RGS's in
the quasiharmonic approximation of the phonon contributhe present paper is the statistical method recently proposed
tions to the thermal preSSUI’e cannot describe the experimefbr the Study of equ“ibrium properties of So|?d$nd suc-
tal data CorreCtly but intrinsic anharmonic contributions haV%essfu”y app“ed to the description of thermodynamic prop-
to be taken into account in addition to obtaining an accurat@rties Ar, Kr, and Xe at ambient pressdfeln Sec. Il the
modeling. When these intrinsic anharmonicities are mOdele%ain results of this statistical the&?ywm be recalled to
purely on heuristic groundsone is not able to predict the optain the basic relations for the EOS of the present RGS. In
variation of these intrinsic anharmonicities under pressuregec. |1 explicit results are compared with the experimental
which limits the accuracy of these models under strongegjata for Ar, Kr, and Xe. In Sec. IV thermodynamic properties
compressions. For this reason a statistical model with empiriof Ar are presented for pressures of 2, 5, and 10 GPa and
cal effective two-body interactions is applied here to studycompared with ambient pressure data. The pressure depen-
the thermal behavior of rare-gas soli@®GS'’s under strong  dence of the sound velocities for solid Ar is also compared
compression in wide ranges of temperature to gain some fuiyith experimental results in Sec. IV together with a discus-
ther insight into the contributions from the intrinsic anhar-sion of the effect of pressure and temperature on thexGru
monicities and into the effects involving self-consistency ofejsen parameter and a comparison with the constraints of the
the atomic motion in crystals. more commonly used Mie-Gneisen EOS. Results for the
In this paper primary attention will be paid at first to the changes in the thermal expansion, changes in the isobaric
heavier RGS’s Ar, Kr, and Xe, where the contributions fromneat capacity, and in the isobaric bulk modulus are also pre-

quantum motion of the atoms are not so strong as in Ne Ogented in Sec. IV. The effect of pressure on the intrinsic
He. All the thermophysical data for these RGS's at moderatenharmonicity is finally discussed in Sec. V.

compression have been reviewed critically in the literafure,
but more recently, isothermal EOS studies have been ex-
tended for solid argon up to 80 GP&?for solid krypton up
to 55 GPa? % and for solid xenon up to 75 GP& %

While most of the earlier studies on RGS’s used only The most difficult task in the statistical approach to the
various more or less empirical EOS forffié! in the repre-  thermodynamic description of crystals is a self-consistent de-

Il. THE PRESENT STATISTICAL APPROACH
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TABLE I. Morse potential parameters and values of the de Boelis the de Boer parameter for the Morse potentidland N

paramete\ for RGS's from the literaturéRef. 27). are the atomic mass and the total number of atoms.
1/2
a (A™h Alkg (K) Ro (A) A B1 ©)
c=|—
Ar 1.62 170.76 3.71 0.1360 a’A
Kr 1.52 249.08 3.97 0.0767  is a dimensionless quasielastic bond parameter@nid an
Xe 1.38 332.04 4.32 0.0457  effective force constant for nearest-neighbor atoms.

The average value for the potential energy of the inter-
atomic interactioqU) is calculated with the binary distribu-
termination of the phonon frequencies. A self-consistent wayion function for the atomic displaceme??tsand is given by
to derive an effective quasielastic force constant for the
nearest-neighbor interatomic interaction is used in the (u)= @:e—2b+q(§)/-y*_Ze—b+q({)/4y* @
present approach. The value for this “effective bond AN '
strength” depends on the distribution of atomic disPIace'Wherebybza(R—R) represents a reduced lattice expan-
ments on the nearest lattice sites and, in turn, affects th 0

. . ion, R is the nearest-neighbor distance, and
values of these displacements. To solve this problem, self-

consistent phonoSCP theorie4®*! have been developed 2

many years ago, whereby iteration processes provide the ba- q(d)= 7 3
sis for the determination of a self-consistent interatomic 1+¢— =032+ =08
force constant. In order to avoid the difficulties related with 2 4

the iteration process, a variational approach on the basis @ a correlation factor, which represents the contribution of
the Gibbs-Bogoliubov function® was introducef to ob-  the interatomic correlation to the energy of the interatomic
tain an effective quasielastic bond strength parameter. In thigiteractions, and one may notice tha¢?) changes only

approach a Morse potential between first nearest neighbors éowly with temperature from,~1.87 atT=0 K to q~2 at
used as an effective interatomic pair interaction in the Cryshigh temperature¥’

tal,
c

u(ri;)=Al e 2a(rij—Ro) _ gg=alrij=Rg) 1 =
(i) =Al 1@ =

; f ;(K)
with the three parameters Ry, anda. The values for these
parameters are listed in Table | and were determined

previously’ in such a way that the values for the internal

CA~
Xtan Z_TwJ(K)
energy, the lattice parameter, and the bulk modulus of th'ies a dimensionless parameter<@<1), which describes the

FGS at ziroft;mp?r?_tut_re ?nd 3r§ﬁturg,tﬁalczlated \(lelthlIn trI:Gt‘)rrelation in the displacement of nearest-neighbor atoms.
ramework of the statistical model,fitted the observed val- g inyerse value for the width of the atomic localization on

ues. In the case of Kr the values of potential parameters Were i o :
o . ; attice site is characterized b
modified with respect to the value of the cohesive enétgy. y

e (K)cog2mK,)dK, (8)

The distance between atoms located near the BitesdR; L, C ~ CA - )
is given here by;;=|R;—R;+q,—qj| andg; represents the Y =R ; f wj(K)tanh 5— w;(K) |€j,(K)dK,  (9)
atomic displacement from the site o
The quasiharmonic Gibbs-Bogoliubov functional is wherebye;, represents the phonon polarization vector for the
x direction. The integration in Eq$3), (4), (8), and(9) runs
Feg=Fo+{(U—Uy), (2) over the unit-cell volume of the reciprocal lattice, adare
reduced components of the wave vector, varying from 0 to
whereby the 127
Fo cA The reduced phonon frequencies of the atomic vibrations
SE=TY f In| 2 sin 5~ w;(K) | | dK (3  w;(K) are determined by the dynamical matrix of the har-
NA f 27 N - .
monic crystal, i.e., they depend on the lattice structure only.
and The relation between the scaled frequeEaMK) and the

(Ug) A A real phonon frequency;(K) is given by
0 C ~ CA ~
m— 4 EJ: J’ a)j(K)COtI'( 2r a)]-(K)

represent théHelmholtz free energy and the average inter-
nal energy of the quasiharmonic crystakkgT/A is a re-
duced temperature,

dK  (4)

AA~
wherebyj represents the specific phonon branch.
The introduction of these reduced variables allows us to
parametrize the expression for the free eng@ywith re-
b spect to a minimal number of physical parameters describing
A= (5)  the thermodynamic properties of the crystal. With these pa-
\/m rameters, the quasiharmonic crystal free endR®)ydepends
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TABLE Il. Numerical coefficients used in Eq&l2)—(17) for the fcc lattice.

No ny n, N3 My my Po P1 S1 Sy ty t2

2 5/6 0.475 0.296 1/4  —7/96 1/3 1/48 1.928 0.550 1.446 0.092

only on the reduced temperatureand on the de Boer con- c T\

stantA. The internal crystal parameter@andb represent the ¥* N 51—32<J> ) (16)
lattice expansion and the dimensionless effective force con-

stant, determined as equilibrium values minimizing the crys- s \4

tal free energy at the given temperature and pressure. @s=CA tl—t2<C—A) , a7

The contribution from the cubic anharmonicity of the
atomic vibrations to the crystal free energy is important es- .
pecially at high temperature and low pressure. The quasihar- ¢3=0,
monic expression for the crystal free enefgy can be cor- and the correlation parameter for an fcc crystal ds
rected in these cases by contributions from cubic~0.136 withgo~1.87. The values for the coefficiergsand
anharmonicity of the atomic vibrations in second-order pert, for the fcc lattice are also listed in Table 1.
turbation theory by a termF5(7,b).**=**It has been shown In any case, the equilibrium value of effective quasielastic
previously?"® that this correction for cubic anharmonicity hond strength parameterand the dimensionless lattice ex-
leads in fact to a good agreement between theory and expefransionb= a(R—R,) are determined by the minimization

ment at zero pressure. The equilibrium state for given valuegf the Gibbs functior(11) with respect tdb andc:
of temperature and pressure corresponds to a minimum of

the Gibbs function with respect to andc. In terms of the ag
present dimensionless functions one has b o =0, (18)
7,P,C
z ~
9(7,P,c,0)=¢y(7,)+ 5{u(7,¢,0)) + ¢s(7,c,0) + Pw, %9 =0. (19
Jc
(12) 7P.b
with @g(7,¢)=(Fo—(Ug))/NA, ¢3(7,c,b)=AF3/NA, and Ill. EQUATION OF STATES

P=P/Aa®, whereby P is the external pressure ana . . : .
=’ is the dimensionless atomic volume. In the case of fcc The relations(18) and(19) give the starting point for the

. . _ determination of the EOS’s and for the equilibrium crystals
crystals one finds for the atomic volume=(R, : )
+bla)?2. parameters under pressure. A direct relation between the ex-

. I h li latti i
At high (7>cA) and low (<cA) temperatures the ex- ternal pressuréd® and the normalized lattice expansidm

. . . . obtained from Eq.(18), is given by the relation20), in
pression for the Gibbs free ener@ll) can be given in ex- : * : .
plicit forms, which simplify the determination of thermody- which the parametey/™ and the cubic ternp; depend still

. o on 7 andc:
namic properties in these temperature ranges.
In the high temperature limit>cA, A
o
P=42———
2 3 cA L2 (Ro+bla)?
* —
r== 505 12 1
=0 x| e~ 2+a* _g-bramy* _ — ZP3| 50
12 db
2
{=mp+m; %) , (13)  Equation(19) gives here a second equation, which deter-
T mines, in combination with Eq18), the equilibrium values
of the internal parameterg(r,P) andbgy(,P).

cA\? The variation of the equilibrium valuegy(7,P) for Ar

¢s= 7 Potps| —| [+37In| —], (14 under pressure is illustrated in Fig. 1 at two different tem-
peratures =0 K and T=295 K). The steep increase of
) Co(7,P) at low pressures is typical for RGS'’s, which show a
_ @ —2b+ric?_ E — b+ r/ac? 2 15 similarly strong increase in the bulk modulus in this range.
$3= 6 € e ’ ( ) .
Cc 4 The temperature dependencecgfr,P) at constanP is ob-

viously very small(Fig. 1), however, a temperature depen-
wherebyas;~1.5. The numerical coefficients;, m;, and dence ofcy(v,7) can be noticed clearly at constant volume,
p;, calculated in the case of the fcc lattice, are listed in Tableas illustrated in Fig. 2.
I One may recall here thaty(7,P) is directly proportional
In the case of low temperature<cA, to the(acousti¢ Debye temperatur® which shows therefore
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FIG. 1. Effect of pressure on the effective quasielastic bond F|G. 3. Calculated EOS for Ar af=295 K (solid line and
parametercy(P) for Ar at two temperaturesT=0 K (circles and experimental data from the literatu(@efs. 10 and 11
T=295 K (solid line).

However, it should be noted that the parameters in Table |
had been deduced from experimental values for the cohesive

andby(r,P) from the Eqs(18) and(19) (for given values of energy, the bulk modulus, and_the interatomic distance at
P and 7) one can calculate the EOS, which represents th €10 pressure and temperz_ature in such a way tha_t the p(_)ten-
pressure and temperature dependence of the equilibrium vo'—al represents an effective nearest-neighbor interaction,

ume. For Ar, Kr, and Xe Figs. 3—-5 compare the calculated’vh'cc;h may be dt'.ﬁereTt fr?ﬁtaﬂzree atf?”.‘t potgnual.h .
room-temperature isotherms with experimental data. ne may nofice aiso that the explicit cubic anharmonic
ontributions to the pressure given by the last term in Eq.

The good agreement between the experimental and theﬁéo) ianificant only at hiah t t dd
retical EOS data in these wide pressure ranges together wi are S'g,né icant only at high temperature and decreases
teeply (-c™°) with increasing pressure.

the previously published results for the other thermodynamlt,S For the static lattice case, which correspondsqle®

data of Ar, Kr, and Xe at ambient presstfr& illustrates .
clearly that the approximation of effective interatomic inter- =0 z_and/l\ :d('), Eq.(ég)zfafrfl be represented in the fn?rm of the
actions by the Morse potentiél) with the parameters given Previously discuss effective Morse-type EOS:

in Table | reproduces in the framework of the present statis-

tical model of solids all the available thermodynamic data

very reasonably. Therefore this potential can be used for the (X)= 3Ko i(e—Z(Ké—l)(l—x)ie—(Ké—l)(l—x))
description of a wide range of microscopic properties for Ko—1 x2 '
these RGS’s in the whole pressure and temperature region (22)
covered only partly by the previous experimental studies.

the same pressure and temperature dependencg 8%).
With the determination of the equilibrium valueg(r,P)

70
60 - theory
50 a  Aleksandrov et al.
e Polian et al.
o 40- o Hama and Suito
o o
© O 30
o 20-
10 -
04
B 20 25 30 3 15 20 25 30 35 40
v (A) v(A)

FIG. 2. Effect of volume on the effective quasielastic bond pa- FIG. 4. Calculated EOS for Kr &t=295 K (solid line) and data
rametercy(v) for Ar at two temperature§;=0 K (lower solid ling from the literature for experimentéRefs. 13 and 14and theoret-
andT=295 K (upper dashed line ical (Ref. 15 studies.
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T (K)

3
v (A ) FIG. 6. Isochoric temperature dependence of the phonon pres-
FIG. 5. Calculated EOS for Xe &f=295 K (solid line) and  sure at three different volumes.
experimental data from the literatu(Ref. 18.
and the more commonly known Debye-@aisen parameter
whereby the parameters of the present approach are easjlydiscussed in the next section.
related to the commonly used values for the bulk modulus at
zero pressurel,<0:(4/3)\/§Aa2/R0, to its pressure deriva-
tive at zero pressureky=aRy+1, and to the scaled dis- IV. THERMAL PROPERTIES

tance parameters=(v/vo) " with UO:(llﬁ)Rg for the As already indicated in the previous section the dominant
zero-pressure volume. From a comparison of @€1) with  changes in the thermal properties of the RGS’s under pres-
Eq. (20) one can see that the pressure of the static latticgre ‘are related in the present model to the increase of the
becomes at high pressure the dominant contribution to thﬁuasielastic bond paramet@igs. 1 and 2 which leads also
total pressure when to increases of the phonon frequendi#g), to an increase of
Ib|>q/2* 22 the corresponding Debye temperature, and to a related de-
crease in the phonon occupation numbers at a given tempera-
and the contributions from both quantum and thermal presture. For nonmetallic crystals like the RGS'’s the total pres-
sure can then be obtained as leading texf(x,7) in an sureP can be split into the pressure of the static lattije
expansion of Eq(20) with respect tog/y* <1 in the form and an additional phonon contribution, which includes both
zero-point and thermal contributions, and one obtains with

the internal energy of the phonon subsyste
AP(X,7)= 3Ko 1 efz(Kgfl)(lfx)_}ef(Kgfl)(lfx) & P YSIEm
Ko—1 %2 4
P=P|+(’}/tb/V)Eph' (24)
*Q(i) . 23
¥*(7,Co) 2.8
The variation of this phonon pressufeéP(x,7) by com- 2.6-.
pression is illustrated in Fig. 6 by three curves for three
different fixed volumes. 24+

First of all one may notice in Fig. 6 that compression of

the crystal leads to an increase of the zero-point pressure, _ .
which is directly related to the increase of tk@cousti¢ > 204 ¢
Debye temperature illustrated by the corresponding increase
of co(v,7) already in Fig. 2. The extension of the flat region
at low temperatures reflects in the same way the increase of 1.6-
the Debye temperature. The change in the slopes between the
low-pressure and the high-pressure curves represents a spe 1.4

2.2

cial feature, which corresponds to a volume dependegpce 0 20 40 60 80
=("aln i/ dINV)1<1 of the corresponding “thermobaric” P (GPa)

Gruneisen parametey,, in contrast to the usual expectation

ap=1 for the volume dependence of the Geisen param- FIG. 7. Effect of pressure on the Greisen parametey,, at two

eter at moderate pressufeﬂje reason for the distinction different temperaturesT=0 K (upper solid ling and T=295 K
between the “thermobaric” Gmeisen parametéused here (lower dashed ling
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In the case of a quasiharmonic Debye model, the therSince the acoustic Debye temperature is directly proportional
mobaric Greisen parametey,, defined by this relation, is to c,(7,b),?®
identical to the commonly used Debye-@aisen parameter
vp=(dIn 65/9In V). However, wherd, becomes tempera-
ture dependent due to effects fr_c(mtrmsm) anharmonicity 0D:(6\/§W2)1/3<Kjk>AACO(U;T)y (26)
as in the present approachy, defined by Eq(24) becomes

__ (@In6p/dInV)y (25 and Eq(19) gives an analytical expression fog(7,b) in the
Yo T T (G ag/anT)y form

;
Co(7,b) = \/2e—2b—e—b+ \/4e—3b(e-b—1)+e-2b+ Ee—b(fse-b—l), 27

one can easily calculatgy, from cqo(7,b), and also all the a?A\ 12

other thermal properties of the crystal under pressure, e.g., Uj=xjk| 77| R(TICo(P.T). (28)
thermal expansion and heat capacities. With EB5)—(27)

one obtains for the pressure and volume dependenog, of From Eq.(28) sound velocities are calculated for Ar and

the rgsylts shown N Figs. 7 and 8, r'esp(.ac'uvely. compared in Fig. 9 with experimental values from the
Within the quasiharmonic approximation one expects NQjiaratyrel?

temperature dependence fgj, at constant volume in con- e can notice, that the values mf along the direction

trast to the strong_the_rm_al effects sec_er!.in Fig._E_B, which iIIus—<111> is 2/\/3, giving the highest velocity for the longitudi-
trates that some intrinsic anharmonicitiy addition to the nal acoustic(LA) phonon branch. For thé100 direction
anha.lrmo'nicit.y already included in the quasiharmonic ap—Kjkzl gives the lowest velocity for the LA branch in this
proximation) is taken into account by the present approachyjirection. As one can see from Fig. 9 the agreement between
giving significant contributions in the RGS's especially atobserved? and calculated data is rather good for these two
low pressures. LA branches. For the transverse acousfié) branches the
For small values of the wave vectérone can use the differences between experimental datand the present the-
relation(10) in the formZ)]-(k)zxjkkR, whereby the coeffi- oretical results are, however, slightly larger. The vakjge
cientsj, account also for the different polarizations of the = 1/y2~0.7 along the(100) direction for largest velocities
acoustic waves in a given direction, and this relation give®f the TA branch andk;,=0.5 along thg110) direction for
for the pressure and temperature dependence of the soufte direction with the lowest velocities of the TA branch do

velocitiesuj; :

2.8

2.6

2.4
2.2

L3

2.0
1.8

1.6

14

15 20 25 30 35
v (A3)

P (GPa)

FIG. 9. Effect of pressure on the sound velocitigs min ,
FIG. 8. Effect of volume on the Gneisen parametey,, at two U amaxs UTAmax @ndura min for solid argon. Solid lines are calcu-
different temperatureT=0 K (upper solid ling and T=295 K lated from(28) and symbols represent experimental data from the
(lower dashed ling literature Ref. 12.
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3.9 500
3.8 / P=0GPa
3.7 400+ P=10GPa
3.6' _—
P =2GPa S 300+
__ 35 % \
< —— ~ 200
¥ 4 P=5GPa v P=5GPa
s3{ = B
3.2- P=10GPa P=2GPa
I Al o
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FIG. 12. Temperature dependence of the isothermal bulk modu-

FIG. 19' Temperature dependgnce of the interatomic dlstanc%s for solid Ar at different pressures. The highest temperature for
for Ar at different pressures. The highest temperature for each CUNVEach curve corresponds to the melting point

corresponds to the melting point.

tancesR(7), the isobaric heat capacityp, and isothermal

not give good agreement with the experimental dataow-  bulk modulusk;, respectively. What is most striking is the
ever, a much better agreement between theoretical and egtrong decrease in the ratioc=Cp/Cy,=Kg/K; under pres-
perimental dat¥ for these TA branches can be obtained with sure illustrated in Fig. 13.
kjxk=0.61 andk;,=0.43, respectively. Such a scaling of the  Effects from intrinsic anharmonicities are also clearly no-
calculated velocities for the TA branches can be related to théced in the temperature dependence for the thermobaric
noncentral character of interatomic interactiofs. Gruneisen parameteyy, [defined by Eg.(25)] and in the

The average over the sound velocities results in the well¢differeny temperature dependence of the more commonly
known acoustic, low-temperature limit of the Debye tem-used “thermal” Grineisen parameter,
peraturefp, given by Eq.(26), and the steep increase in the
velocities in Fig. 9 results in a similar increase &f with _ayKyV
pressure, which widens the temperature range of the quan- Y= Cy '
tum behavior under pressure. Due to the strong decreasing _ _ . i
(~c™4 ¢ 9 of the anharmonic contributions to the free yvhereav is therr_nal volum_e expansion coefficient. Figure 14
energy of a crystal under pressure the temperature depe}l,I_ustrates the dlffere_nce in the temperature dependence of
dence of thermal-expansion coefficient decreases rapidly it @nd vy at three different pressures. _
the classical high-temperature regiori(cA) and the tem- yVh!Ie the apparent small difference in the two different _
perature dependence of isothermal bulk moduts be- Gruneisen parameters at low temperatures represents an arti-
comes linear. These effects are illustrated in Figs. 10—13act due to the limited numerical accuracy of the present

showing the temperature dependence for the interatomic di&@lculations, the increasing difference at higher temperatures
represents the effect of intrinsic anharmonicity taken into

(29

14
P=0GPa

1.24
] P=2GPa P=5GPa

1.0

- P=10GPa
0.8

Z 1 >

™ i

2 06

© 0.4-

0.2

P =10 GPa

0.0

0 200 400 600 800 1000 0 200 400 600 800 1000
T (K) T (K)
FIG. 11. Temperature dependence of isobaric heat capacity of FIG. 13. The temperature dependenc&efCr/C,=Ks/Ky at

solid Ar at different pressures. The highest temperature for eacHifferent pressures. The highest temperature for each the curve cor-
curve corresponds to the melting point. responds to the melting point.
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22 phonon pressure, the thermal expansion, and the heat capac-
ity, respectively. The relatiof26) with («;,)~0.677 for sol-
ids with fcc lattices, like the RGS’s, provides a direct link
between the quasielastic bond parametgrr,v) calculated
by the present approach and the commonly usedusti¢
Debye temperaturé,, which becomes temperature depen-
dent at constant volume in the present approach due to the
inclusion of intrinsic anharmonic contributions beyond the
quasiharmonic anharmonicities usually represented by a
purely volume dependent Debye-@grisen parameteyp,
1.8+ P =10 GPa which becomes temperature dependent at constant volume,
when intrinsic anharmonic contributions are taken into ac-
1.7 i i i . count, like in the present approach. Besides the well-known
0 200 400 600 800 1000 decrease of the quasiharmonic anharmonicity represented by
T (K) the decrease in pressufat zero temperatuyethe present
calculation of the temperature dependence for the different

FIG. 14. Temperature dependence of the r@isen parameter Gruneisen parameters, presented in Fig. 14, indicates that the
Y1 (upper solid curve and yy, (lower dashed curyeat different  intrinsic anharmonicities decrease also with increasing pres-
pressures. sure, at least for the simple RGS’s in the pressure range of

the present calculations.
account by the present calculations. One may notice that this In comparison with the recent first-principles calculations
difference seems to decrease with increasing pressure.  for Ar under pressufé one may notice that these calcula-
tions were restricted to the static lattice case and gave no
V. CONCLUSION information on effects from intrinsic anharmonicities and the
related thermal effects considered in the present work.

The present statistical approach to a calculation of the Finally, one may notice that a good description of the
thermodynamic properties for solids reveals clear differencethermodynamic properties, including the EOS’'s of the
in the temperature dependences of the differentn@isen RGS's, was obtained by the use of an effective nearest-
parametersyp , vy, andyy, due to intrinsic anharmonic con- neighbor interaction of the Morse-type with the three param-
tributions, which are very significant in the presently studiedeters of Table I, derived from the interatomic distance, cohe-
RGS'’s at moderate pressures and elevated temperatures. Tdiee energy, and the bulk modulus at zero pressure and
strong increase with pressure for the Debye temperature temperature. Probably such procedure allows an effective po-
directly related to the increase in the quasielastic bond paential, in which each atom of the crystal moves, to be deter-
rametercy(7,P) of the present approadifrig. 1). The tem-  mined rather exactly. Since the present statistical method is,
peraturer,=cgoA for the borderline between the quantum however, not limited to the use of an effective Morse-type
and quasiclassical behavior in the thermodynamic propertiegotential, the present approach can be extended to much
of solids increases with, and leads to a strong expansion of higher pressure also by the use of more appropriate effective
the quantum regime with pressure, especially in the relatwo-body interactior® to the pressure range, where the
tively soft RGS’s as illustrated in Figs. 6, 10, and 11 for theMorse potential begins to become inadequate.

2.1

2.0

Yo Tin

1.9

*Electronic address: akaras@imp.kiev.ua Appl. Phys. Lett.39, 892(1981).
M. H. Manghnani, L. C. Ming, J. Balog, E. F. Skelton, S. B. 1°J. Xu, H. K. Mao, and P. M. Bell, High Temp.-High Preds,
Qadri, and D. Schiferl, High Temp.-High Pred$, 563(1984. 495 (1984).

2W. Utsumi, D. J. Weidner, and R. C. LiebermannPiroperties of 1M, Ross, H. K. Mao, P. M. Bell, and J. A. Xu, J. Chem. PIg5.
Earth and Planetary Materials at High Pressure and Tempera-  1028(1986.

ture, Geophys. Monograph 1dAm. Geophys. Union, Washing-  2H. Shimizu, H. Tashiro, T. Kume, and S. Sasaki, Phys. Rev. Lett.

ton, DC, 1998, p. 327. 86, 4568(2001).

3W. B. Holzapfel, M. Hartwig, and W. Sievers, J. Phys. Chem.13|. v, Aleksandrov, A. N. Zisman, and S. M. Stishov, Sov. Phys.
Ref. Data30, 515 (2002. JETP65, 371(1987).

4J.-P. Poirier,Introduction to the Physics of the Earth's Interior 4A. Polian, J. M. Besson, M. Grimsditch, and W. A. Grosshans,
(Cambridge University Press, Cambridge, England, 2000 Phys. Rev. B39, 1332(1989.

5p. Choquard,The Anharmonic Crysta(Benjamin, New York, 153, Hama and K. Suito, Phys. Lett. 140, 117 (1989.
1967. 16A. Polian, J. P. ltie, E. Dartyge, A. Fontaine, and G. Tourillon,

R. J. Hardy, J. Geophys. Re&5, 7011(1980. Phys. Rev. B39, 3369(1989.

"W. B. Holzapfel, J. Phys.: Condens. Mattiet, 10 525(2002). 7M. Ross and A. K. McMahan, Phys. Rev. R, 1658(1980.

8Rare Gas Solidsedited by M. L. Klein and J. A. Venabld#ca- A, N. Zisman, I. V. Aleksandrov, and S. M. Stishov, Phys. Rev. B
demic, New York, 197%. 32, 484(1985.

L. W. Finger, R. M. Hazen, H. K. Mao, P. M. Bell, and G. Zou, A, P Jephcoat, H.-k. Mao, L. W. Finger, D. E. Cox, R. J. Henley,

224301-8



EQUATIONS OF STATE AND THERMODYNAMC . ..

and C.-s. Zha, Phys. Rev. Le§9, 2670(1987.

PHYSICAL REVIEW B 67, 224301 (2003

published.

20w, A. Caldwell, J. H. Nguyen, B. G. Pfrommer, F. Mauri, S. G. ?°N. Boccara, and G. Sarma, Physi¢®ng Island City, N.Y) 1,

Louie, and R. Jeanloz, Scien¢&ashington, DC, U.$.77, 930
(1997).

2. B. Holzapfel, Rep. Prog. Phys§9, 29 (1996.

22\V. B. Holzapfel, High Press. Re&6, 81 (1998.

233, H. Kim, T. Ree, and F. H. Ree, J. Chem. P1945.3133(1989.

2N. D. Drummond and G. J. Ackland, Phys. Rev.6B, 184104
(2002.

25E. La Nave, S. Mossa, and F. Sciortino, Phys. Rev. L&8.
225701(2002.

26T, litaka and T. Ebisuzaki, Phys. Rev.@5, 012103(2002.

27A. I. Karasevskii and V. V. Lubashenko, Phys. Rev6® 054302
(2002.

28, 1. Karasevskii and W. B. Holzapfel, Low Temp. Phy#o be

219(1965.

30T, R. Koehler, Phys. Rev. Letl7, 89 (1966.

31H. Horner, Z. Phys205, 72 (1967).

%2R. P. Feynman Statistical MechanicgBenjamian, New York,
1972.

3N. S. Gillis, N. R. Werthamer, and T. R. Koehler, Phys. R85,
951 (1968.

34V, V. Goldman, G. K. Horton, and M. L. Klein, Phys. Rev. Lett.
21, 1527(1968.

35N. N. Plakida and T. Siklos, Acta Phys. Acad. Sci. Hudg, 37
(1978.

%D, A. Young, Phase Diagrams of the Elementsniversity of
California Press, Berkeley, 1987

224301-9



