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Solution to the phase problem for specular x-ray or neutron reflectivity from thin films
on liquid surfaces
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Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323

~Received 25 February 2003; published 5 June 2003!

The phase problem for specular x-ray and neutron reflectivity from liquid surfaces and thin films on liquid
surfaces can be solved in the distorted-wave Born approximation. The gradient of the scattering-length density
~SLD! profile normal to the plane of the surface is bounded in these cases. This provides a powerful constraint
allowing the phase problem to be solved with noa priori assumptions via an iterative Fourier refinement
procedure applied to the Fresnel-normalized reflectivity. The critical boundary condition can be determined
experimentally from the autocorrelation of the gradient profile obtained via an inverse Fourier transform of the
Fresnel-normalized reflectivity without phase information. The phase solution and the resulting gradient SLD
profile can be shown to be unique, and therefore unambiguously determined, when all of phase space is
systematically explored for particular cases, especially for thin films on liquid surfaces. This gradient SLD
profile can then be integrated either numerically, or better, analytically to provide the scattering-length density
profile itself on an absolute scale.

DOI: 10.1103/PhysRevB.67.224201 PACS number~s!: 68.18.Fg
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INTRODUCTION

There seems to be a perception that the phase problem
specular x-ray and neutron reflectivity from liquid surface
or from thin films on liquid surfaces, either has not or cann
be solved even for cases where the distorted-wave Born
proximation is satisfied.1,2 As a result, most resort to th
so-called ‘‘slab-model’’ refinement approach.3 In this ap-
proach, one considers the scattering-length density~SLD!
profile structure of the monolayerr(z) to consist of layers
~or ‘‘slabs’’! of average densityr̄ j bounded by the two inter
faceszj and zj 11 of widths ~or roughnesses! s j and s j 11,
which can be conveniently described by a sum of anal
error functions completely defined by these paramet
Here,z is the profile coordinate normal to the plane of t
surface and the profile structurer(z) is the projection of the
three-dimensional~3D! SLD distribution of the monolaye
parallel to the plane of the monolayer onto thez coordinate.
As a result, the corresponding derivative or gradient pro
dr(z)/dz can be described by a sum of analytic Gauss
functions, the Gaussian for each interface completely defi
by the change in average SLD across the interfaceDr j , j 11,
its position in the profilezj , and its width~or roughness! s j .
Initial models for the SLD profile of the monolayer usin
this method must be then constructed, based on o
physical-chemical knowledge of the system of interest, a
the model then refined against the Fresnel-normalized re
tivity data via

R~qz!/RF~qz!5Ur`
21E ~dr/dz!exp~ iq8z!dzU2

[uF~qz8!u2,

~1!

where R(qz) is the experimental reflectivity~normalized
only by the incident beam flux! as a function of momentum
transferqz normal to the surface,RF(qz) is the Fresnel re-
flectivity from a single infinitely sharp~ideal! interface, the
average SLD of the semi-infinite bulk subphase isr` , qc is
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2 . It is well known that the nonlinear least-squar
fitting procedures employed in the refinement of the rig
hand side of Eq.~1! for the initial model against the exper
mental Fresnel-normalized reflectivity on the left-hand s
necessarily is refined to the gradient profile for the mon
layer most similar to the initial model. Thus, given both t
potential complexity of many of the monolayer thin film sy
tems of interest today4,5 and the fact that the SLD profile i
the projection of a 3D SLD distribution onto a single ax
the so-called ‘‘slab-model’’ refinement method might b
viewed as less than totally objective.

Some time ago, it was recognized that the phase prob
for the SLD distribution itself could be solved in the fir
Born approximation and this solution was unique, provid
that it was bounded in one, two, or three dimensions a
possessed a center of symmetry or antisymmetry, utiliz
the power of both constraints.6 In such cases, the autocorre
lation of the SLD distribution is bounded and it can be ‘‘d
convoluted’’ via either recursion or Fourier methods.7,8 For
asymmetric SLD distributions, an iterative refinement a
proach was developed8–10 that was called ‘‘box refinement,’
where the term ‘‘box’’ referred to the boundedness, and
convergence was driven by this constraint. In such cases
solution was generally not unique, although the system
exploration of phase space could be used to search for
possibility of other solutions.

It was only recently recognized that the same appro
could be applied to specular x-ray reflectivity data fro
Langmuir monolayers of amphiphiles at the air-water int
face, since their gradient SLD profiles are bounded and
distorted-wave Born approximation is satisfied.11,4 This re-
cent discovery is further elaborated here. It can now
shown to produce a unique solution for particular cases
thin films on liquid surfaces and the same structural para
eters defined by the slab-model refinement approach, but
ambiguously without anya priori assumptions. Somewha
©2003 The American Physical Society01-1
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J. KENT BLASIE, SONGYANN ZHENG, AND JOSEPH STRZALKA PHYSICAL REVIEW B67, 224201 ~2003!
FIG. 1. Illustration of the box-refinement method of analysis for Fresnel-normalized x-ray reflectivity data from Langmuir monola
the pure diacylphospholipid DLgPC and its binary mixture with an HIV-1 accessory protein Vpu at a DLgPC/Vpu mole ratio of 10:1.
and subsequent figures, reciprocal space functions are plotted vsqz8 (Å21) as defined in the distorted-wave Born approximation~see text!,
but whereuqzu5(2 sinu)/l instead ofuqzu5(4p sinu)/l; all real space functions are plotted vs the profile coordinatez(Å). ~A! Trial electron
density profiler tr ial (z) used to initiate the box refinement.~B! Modulus squareduFtrial (qz8)u

2 of the Fourier transform of the gradien
@dr tr ial (z)/dz# as a function of photon momentum transferqz8 . ~C! Phasef tr ial (qz8) of the Fourier transform of the gradient@dr tr ial (z)/dz#
as a function of photon momentum transferqz8 . Only this trial phase function originating from the trial electron density profiler tr ial (z) is
used to initiate the box refinement.~D! Experimental normalized reflectivityR(qz8)/RF(qz8) expressed as a function of photon momentu
transferqz8 , uFtrial (qz8)u

2. Note that neither case agrees with the modulus squareduFtrial (qz8)u
2 of the Fourier transform of the gradien

@dr tr ial (z)/dz# shown in ~B!. ~E! Inverse Fourier transform of the experimentaluFexpt(qz8)u
2 which provides the autocorrelation of th

gradient of the electron density profilê@drexpt(z)/dz#@drexpt(2z)/dz#& for the monolayer. The box constraint, key input to the b
refinement analysis, was chosen to beL560 Å, well beyond the last significant feature atz'40 Å. ~F! The convergence of the calculate
uF(qz8)u

2 from the box-refinement to the experimentaluFexpt(qz8)u
2 for iterations 1–10, 20, 30, 40, 50.~G! The convergence of the calculate

dr(z)/dz from the box refinement to the finaldrexpt(z)/dz for iterations 1–10, 20, 30, 40, 50.~H! The numerical integration of the fina
convergeddr(z)/dz to the absolute electron density profile for the monolayerrexpt(z) itself. ~This figure reprinted from Ref. 4 with
permission of the Biophysical Society.!
224201-2
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SOLUTION TO THE PHASE PROBLEM FOR SPECULAR . . . PHYSICAL REVIEW B 67, 224201 ~2003!
FIG. 2. Theqz-region of phase space accessed in the Fresnel-normalized x-ray reflectivity data shown in Fig. 1 was system
explored using a finite set of gradient electron density profilesdr(z)/dz. These were based on all possible combinations of two Gaus
functions, each of five possible amplitudes~e.g., 0,6D, 62D), and separated by 50 Å, the maximum extent of the bounded region in w
the experimental gradient profiles are nonzero, thereby providing gradient profiles ranging from totally symmetric~even! to totally antisym-
metric~odd! with intermediate asymmetric cases, as shown superimposed in~A!. A superposition of the phase functionsf(qz) of the Fourier
transformsF(qz8) of this set of gradient profiles, shown in~B!, demonstrating their adequacy in searching the available phase space ov
range of momentum transferqz accessed.
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earlier, Clinton12 showed that for such bounded gradie
SLD profiles, a unique analytic solution to the phase probl
could be provided via the logarithmic dispersion relations
Fourier transforms.13 However, the restrictions placed on th
Dr j , j 11’s and the s j ’s sufficient for a unique solution
@namely whenF(qz8) in Eq. ~1! contains no zeros in the
upper half complexq plane or on the real axis! were such
that the greatest applicability occurs for the case of inorga
multilayer films in which the SLD contrast could be co
trolled, i.e., the magnitudes of theDr j , j 11’s, and the interfa-
cial roughnesses, i.e., thes j ’s, could be made small, via the
fabrication. This approach was extended14 to cases not satis
fying these severe restrictions@namely, whenF(qz8) in Eq.
~1! contains a finite number of zeros in the upper half co
plex q plane or on the real axis# by using an approximate
phase solution, treating the correction to the analytic ph
solution provided by the logarithmic dispersion relations a
perturbation ~i.e., small! that could be solved iteratively
However, this perturbation approach ultimately resulted
the requirement that a portion of the SLD profile be kno
independently, making it equivalent to ‘‘interferometry.’’ Th
more powerful interferometric approach to solving the ph
problem for thin films on the surfaces of inorganic substra
employing the latter as the reference SLD profile, has b
implemented via both iterative Fourier refinement metho
in the first Born and distorted-wave Born approximations15,16

and direct analytic inversion.17,18 The latter analytic inver-
sion requires two different reference structures for the sa
thin film, unless ferromagnetic effects in the reference str
ture can be utilized to alter its effective SLD profile in th
case of spin-dependent neutron reflectivity. However, the
quirement for a reference structure in close apposition to
thin film of interest, in the case of interferometric phasin
may well present an unacceptable perturbation of the la
structure. More generally, the box-refinement appro
should be applicable to any interfacial system for which
22420
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profile projection as defined can be considered to be ef
tively constant outside some region along the profile ax
and hence its gradient profile is bounded or zero outside
boundaries defining this region. However, for some syste
e.g., for sufficiently thick films, the extent of the gradie
profile may become too large, thereby limiting the availab
reflectivity data to a range of momentum transfer where
distorted-wave Born approximation may not be valid.1

METHODS

The box-refinement method as implemented via Eq.~1!
for x-ray reflectivity from a liquid surface was fully de
scribed in Ref. 4. Briefly, the inverse Fourier transform of t
Fresnel-normalized reflectivity itself is used to produ
uniquely the autocorrelation of the gradient profile. Since
gradient profile is bounded, the amplitudes of the fluctuatio
in its autocorrelation decay with increasing shift paramete
a minimal level at, and remain so beyond, the boundary
both positive and negative values of the shift parameter,
autocorrelation being symmetric about the zero value of
parameter. The refinement is initiated via an inverse Fou
transform, here using the square root of the normalized
flectivity as the modulus and a trial phase function, to p
duce the first approximation to the gradient profile. Since
trial phase function is entirely arbitrary, this first approxim
tion contains nonminimal fluctuations outside the bound
region. These are truncated and a new trial phase functio
produced via a Fourier transform of the so-truncated grad
profile. This procedure is then repeated until convergenc
an appropriately bounded gradient profile is achieved and
modulus square of its Fourier transform, the right-hand s
of Eq. ~1!, matches the Fresnel-normalized reflectivity in t
left-hand side of Eq.~1! to within the noise level of the latte
experimental function. The trial phase function can be g
erated from the Fourier transform of the gradient of a den
1-3
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J. KENT BLASIE, SONGYANN ZHENG, AND JOSEPH STRZALKA PHYSICAL REVIEW B67, 224201 ~2003!
FIG. 3. ~A! The two non-
symmetry-related absolute elec
tron density profiles for the pure
DLgPC case are shown in the to
row. The left profile for this case
has a gradient profile whose Fou
rier transform modulus square
uF(qz8)u

2 agrees more closely with
the experimental normalized re
flectivity R(qz8)/RF(qz8) via Eq.
~1!, shown in the second row, tha
that for the right profile by a fac-
tor of 2 in terms of the magnitude
of the uniformly distributed re-
siduals, shown in the third row
The only non-symmetry-related
absolute electron density profil
for the DLgPC/Vpu510:1 mole
ratio case is shown in~B!.
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profile for a uniform liquid with an ideally smooth surfac
the gradient of a density profile that is clearly ‘‘incorrec
based on one’s physical-chemical knowledge of the syst
or the gradients of any number of otherwise totally arbitra
density profile structures. As in any refinement approa
there is no uniqueness theorem. Thus, the possibility of o
non-symmetry-related solutions is best approached w
phase space is otherwise systematically explored~e.g., Ref.
19!, as described in the Results section. The approach
scribed can now be easily implemented via symbolic co
putation such as withMATHEMATICA .

The resulting gradient SLD profile can be integrated n
merically to provide the SLD profile itself, utilizing the
known scattering-length density of the subphase to determ
the constant of integration. However, there are errors ass
ated with such numerical integration methods and the in
gration specifically requires that the gradient profile exh
minimal amplitude fluctuations strictly about zero beyo
22420
,
y
,

er
n

e-
-

-

ne
ci-
-

t

the boundaries, as opposed to fluctuations about some s
but nonzero constant value. The latter can arise, for exam
from any errors in the Fresnel-normalized reflectivity
smaller values of momentum transfer and appear similarl
the autocorrelation of the gradient profile beyond its bou
ary.

However, returning to the so-called ‘‘slab model’’ for th
SLD profile described in the Introduction, the gradient pr
file dr(z)/dz can be described by a sum of analytic Gauss
functions for each interface completely defined by t
change in average scattering-length density across the i
faceDr j , j 11, its position in the profilezj , and its width~or
roughness! s j . Thus, the gradient profilesdr(z)/dz deter-
mined unambiguously, utilizing the box-refinement meth
to solve the phase problem in the distorted-wave Born
proximation, can be considered to contain a sum of Gaus
functions uniquely defining the positions of the interfaceszj
in the monolayer profile structure. One can then fit a sum
1-4
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SOLUTION TO THE PHASE PROBLEM FOR SPECULAR . . . PHYSICAL REVIEW B 67, 224201 ~2003!
Gaussian functions to the unambiguously determined gr
ent profiles dr(z)/dz using an objective nonlinear leas
squares fitting procedure, the goodness of fit provided b
combination of both the global sum of the residuals and
distribution of the residuals over the range of the profile
ordinatez within the bounded region. Here, a minimum num
ber of such Gaussian functions is sought to represent
gradient profiledr(z)/dz sufficient to make~a! the modulus
squared of its Fourier transform match the experimental n
malized reflectivity data via Eq.~1! and ~b! the analytic in-
tegration of the sum of Gaussian functions fitted to the g
dient profiledr(z)/dz match the absolute SLD profiler(z)
obtained by numerical integration of the gradient profi
dr(z)/dz.

The gradient profilesdr(z)/dz determined unambigu
ously via the box-refinement method necessarily exhibit

FIG. 4. Gradients of the monolayer electron density profi
dr(z)/dz derived unambiguously from the experimental Fresn
normalized x-ray reflectivity data via the box-refinement meth
exactly as in Ref. 4, are shown as the dotted lines for the p
phospholipid DLgPC~top! and its binary mixture with an HIV-1
accessory protein Vpu at a DLgPC/Vpu mole ratio of 10:1~bottom!.
The minimum representing the hydrocarbon/helium interface oc
in the region120 Å,z,126 Å in both monolayer profiles a
shown here, which places that for the polar headgroup/hydroca
chain interface at thez50 Å origin for the pure DLgPC case, tha
choice being entirely arbitrary and of no other consequence.
best nonlinear least-squares fits of the sum of five Gaussian f
tions to the gradients of the monolayer electron density profi
dr(z)/dz from box refinement are shown as the solid lines.
22420
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effects of Fourier transform truncation, namely, they cont
a low amplitude, minimum wavelength component throug
out determined completely by the largest value ofqz with
which significant specular reflectivity data are observe4

Clearly the larger maxima and minima in these gradient p
files arise from the positions of the dominant interfaces in
monolayer profile structure. One can find the positions
these maxima and minima by simply differentiating the g
dient profile and solving for thez positions of the zeros. We
note that these positions obtained with this approach are
exactly the same as those found via the fitting of a sum
Gaussian functions to the gradient profile because the p
tions of neighboring Gaussians can be affected by their
spective widths relative to their separation. However, the
sulting so-fitted sum of Gaussian functions to the gradi
profile is very appealing because it allows for its analy
integration to accurately provide the absolute SLD pro
r(z) itself for the monolayer. Importantly, this analytic inte
gration provides the absolute scattering-length density pro
r(z) in precisely the terms employed in the less unambi
ous slab-model refinement, namely, in terms of layers~or
‘‘slabs’’ ! of average densityr̄ j bounded by the two interface
zj andzj 11 of widths ~or roughnesses! s j ands j 11.

Both the method of steepest descents and the Levenb
Marquardt algorithm have been utilized to effect the no
linear least-squares fitting, as provided for example
MATHEMATICA . As is generally the case, given the large nu
ber of parameters required to describe even a small num
of interfaces at three parameters per interface, it is of
necessary to perform a so-called grid search for some of
parameters, allowing the remainder to float in order to b
minimize the goodness of fit. It should be noted that t
fitting of Gaussian functions to a particular region of t
gradient profile can generally be localized only to that reg
of the gradient profile. Only when a Gaussian has an unu
ally large amplitude coupled with an unusually broad wid
can it affect the fitting of Gaussian functions to more dista
regions of the gradient profile. This is because the ph
problem has been solved and the fitting is performed in r
space. In direct contrast, in the slab-model refinement pro
dure traditionally employed, the parameters defining any p
ticular interface are delocalized throughout momentum tra
fer space, which increases the coupling between
parameters to be determined.

RESULTS

Some key results are shown here for Langmuir monol
ers of binary mixtures of an HIV-1 accessory protein V
and a diacylphospholipid DLgPC over a range of mole rat
taken from Refs. 4 and 20. Figures 1A–H show all of t
functions employed in deriving the gradient SLD~i.e., elec-
tron density! profiles from the Fresnel-normalized x-ray r
flectivity data via box refinement and their numerical int
gration to provide the absolute electron density profiles
two monolayers at the extremes of mole ratios investiga
In this example, the iteration for both monolayers was in
ated with the phases~Figure 1C! for the same gradient SLD
profile ~Figure 1A!, which could not be correct for either
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J. KENT BLASIE, SONGYANN ZHENG, AND JOSEPH STRZALKA PHYSICAL REVIEW B67, 224201 ~2003!
FIG. 5. Criterion~a!: Experimental Fresnel-normalized reflectivity data are shown as dotted lines for pure DLgPC~left! and its binary
mixture at a DLgPC/Vpu mole ratio of 10:1~right! and uF(qz8)u

2, calculated via Eq.~1! for the best nonlinear least-squares fits of the s
of five Gaussian functions to the gradients of the monolayer electron density profilesdr(z)/dz from box refinement, are shown as the so
lines.
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based on one’s prior independent knowledge of these mo
layer systems. The corresponding trial gradient profile is
shown here.

Given the maximum possible extents of the gradient S
profiles based on their respective autocorrelation functi
shown in Figure 1E, a set of trial gradient SLD profiles we
generated to represent the full range of gradient profiles f
totally symmetric~even! to totally antisymmetric~odd!, as
shown in Figure 2A, whose Fourier transforms would po
sess a modulus that varied as rapidly as physically poss
and a phase that sampled all of phase space within the r
of 6p over the range of momentum transferqz accessed, as
shown in Figure 2B. Neglecting for the moment the ob
ously equivalent, symmetry-related solutions to Eq.~1! for
the gradient SLD profilesdr(z)/dz, namely,2dr(z)/dz,
dr(2z)/dz, and2dr(2z)/dz since they possess the sam
Fourier transform modulus, only two distinct solutions we
obtained for the pure DLgPC case. One predicted the exp
mental normalized reflectivity~Figure 3A, middle! with uni-
formly distributed residuals smaller by a factor of 2 com
pared with the other~Figure 3A, bottom!. The numerical
integrals of these two possible solutions, namely, the co
sponding SLD profilesr(z), are shown in Figure 3A, top
left-hand side and right-hand side, respectively. Given
noise level due to the counting statistics in the experime
data where these differences in the residuals occur for
two possible solutions, the one corresponding to the S
profile shown on the right-hand side may be rejected on
basis alone. We note that since the normalized reflecti
data and the autocorrelation of the gradient SLD profile
related by a unique Fourier transform, the differences in
residuals for the two possible solutions shown in Figure 3
bottom, should also be manifest in the corresponding a
correlation functions as well. Only one solution was obtain
for the DlgPC/Vpu510:1 mole ratio case whose correspon
ing SLD profile is shown in Figure 3B. Since these SL
profiles contain a region whose SLD is greater than tha
the subphase, the equivalent symmetry-related solutio
2dr(z)/dz and2dr(2z)/dz are not physically reasonable
22420
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as they require that region to possess negative SLD, whic
not possible for the x-ray case. The remaining symme
related solutiondr(2z)/dz is trivially related todr(z)/dz
because the average SLD values over the two regions ou
the boundaries of the gradient SLD profile, wheredr(z)/dz
is zero, are known.

In Ref. 20, the best fits of four Gaussian functions, rep
senting four interfaces defining three layers~or slabs! within
the profile structure, to the gradient electron density profi
determined via box refinement for the same two monolay
at the extremes of mole ratios~shown as dotted lines in Fig
4! were obtained. Here, the Gaussians were fitted to the
maxima/minima in the gradient profiles within the regio
215 Å,z,30 Å ignoring the maximum atz'220 Å for
both monolayers. Nevertheless, the best fits for these
cases satisfy to a large extent the criteria~a! the modulus
square of its Fourier transform matching the experimen
normalized reflectivity data via Eq.~1! and ~b! the analytic
integration of the sum of Gaussian functions fitted to t
gradient profiledr(z)/dz matching the absolute electro
density profiler(z) obtained by numerical integration of th
gradient profile dr(z)/dz. Including the maximum atz
'20 Å but ignoring the minimum atz'10 Å for both
monolayers in the best fits of only four Gaussian functions
the gradient profiles, results in criterion~a! being satisfied to
a significantly lesser extent. Perhaps not surprisingly, b
nonlinear least-squares fitting algorithms mentioned ab
failed, attempting to utilize five Gaussian functions describ
by 15 parameters.

In Fig. 4, these best four-Gaussian fits were combin
easily providing with only minor adjustments guided b
least-squares minimization, the best fits of five Gauss
functions~shown as solid lines! to the gradient SLD profiles
determined via box refinement for the same two monolay
at the extremes of mole ratios investigated. These best
satisfy both criteria exactly, including criterion~a! to within
the noise level throughout the range of momentum tran
Qz investigated, as shown in Figs. 5 and 6. The parame
1-6



yt

is
is

ce

ia
th
n
n
ar

rfu
s

ve
ise
-

ac-
wn
ffi-
he
ity
e
can
the
n-
s of
he
of

ted-
so-
ent
ical
ase.
l in
on-
the
w-
for
in

trate
ure
d-

e of
t in
the
the

m is

the
. 4.
pa-

gr

SOLUTION TO THE PHASE PROBLEM FOR SPECULAR . . . PHYSICAL REVIEW B 67, 224201 ~2003!
of the five Gaussians are given in Table I and the anal
integration of the gradient profiles to the absolute SLD~elec-
tron density! profiles for these same two monolayers
shown in Fig. 6. It may be noted that from Table I, it
apparent that theDr ’s for the DLgPC/Vpu510:1 mole ratio
case satisfy one criterion in Ref. 12 necessary to produ
unique solution, namely, that the magnitude ofDr for one
interface be greater than the sum of theDr magnitudes for
the others, although the other criterion that the interfac
roughnesses be small is clearly not met. In contrast, nei
criterion is satisfied for the pure DLgPC case, although o
solution is clearly favored over the other, provided the cou
ing statistics errors on the normalized reflectivity data
sufficiently small.

DISCUSSION

The so-called box-refinement approach utilizes a powe
boundary condition that can be determined unambiguou

FIG. 6. Criterion~b!: The absolute electron densityr(z) profiles
calculated byanalytic integration~solid lines! of the best nonlinear
least-squares fits of the sum of five Gaussian functions to the
dients of the monolayer electron density profilesdr(z)/dz from
box refinement for the case of pure DLgPC~top! and its binary
mixture at a DLgPC/Vpu mole ratio of 10:1~bottom!. The absolute
electron densityr(z) profiles calculated bynumerical integration
of the gradients of the monolayer electron density profilesdr(z)/dz
from box refinement appear as dotted lines.
22420
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from the experimental normalized reflectivity data, to sol
the phase problem. It is important to note that its prec
value is not important, only that the boundary condition im
posed in the iterative refinement not be smaller than the
tual bounds of the gradient SLD profile. It has been sho
that the bounded nature of the gradient SLD profile is su
cient to provide a solution to the phase problem for t
Fresnel-normalized specular x-ray or neutron reflectiv
from a liquid surface or from a thin film on a liquid surfac
in the distorted-wave Born approximation. Phase space
furthermore be systematically explored to investigate
possibility of other solutions, symmetry related or not. No
symmetry-related solutions can be rejected on the basi
the two criteria provided herein, depending mostly on t
accuracy of the normalized reflectivity data over the range
momentum transfer accessed, provided that the distor
wave Born approximation is satisfied. Symmetry-related
lutions can only be rejected on the basis of independ
knowledge of the system, e.g., physical or physical-chem
such as the non-negative electron density in the x-ray c
Otherwise, the box-refinement approach is more genera
that it can be shown to provide unique solutions under c
ditions that are not sufficient for the approach based on
logarithmic dispersion relations for Fourier transforms. Ho
ever, neither approach is as powerful as that available
phasing the specular x-ray or neutron reflectivity from th
films on solid substrates. In such cases, the solid subs
can be tailored synthetically to provide a reference struct
for interferometric phasing, whether or not the distorte
wave Born approximation is satisfied,15–17,21 and the solu-
tions are shown to be unique. Unfortunately, the presenc
the solid substrate may perturb the system of interes
which case the box refinement and to a lesser extent
logarithmic dispersion relation approaches are superior to
slab-model refinement approach in that the phase proble
solved.

TABLE I. Parameters from the best five-Gaussian fits to
gradients of the monolayer electron density profiles shown in Fig
The absolute electron density profiles constructed from these
rameters appear in Fig. 6 as dotted lines. Note thatr15rsubphase

50.333e2/Å3 andr65rHe'0.000e2/Å3.

Monolayer j zj ~Å! s j ~Å! r j 11

(e2/Å3)
Dr j , j 11

(e2/Å3)

DLgPC 1 219.106 2.028 0.345 10.012
2 26.750 3.321 0.471 10.126
3 22.005 4.578 0.319 20.152
4 10.327 2.904 0.282 20.037
5 23.464 3.661 0.001 20.281

DLgPC:Vpu510:1 1 218.050 4.593 0.382 10.049
2 28.996 3.002 0.403 10.021
3 22.851 2.901 0.365 20.038
4 11.427 2.904 0.329 20.036
5 22.476 4.337 0.001 20.328

a-
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