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Solution to the phase problem for specular x-ray or neutron reflectivity from thin films
on liquid surfaces
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The phase problem for specular x-ray and neutron reflectivity from liquid surfaces and thin films on liquid
surfaces can be solved in the distorted-wave Born approximation. The gradient of the scattering-length density
(SLD) profile normal to the plane of the surface is bounded in these cases. This provides a powerful constraint
allowing the phase problem to be solved with agoriori assumptions via an iterative Fourier refinement
procedure applied to the Fresnel-normalized reflectivity. The critical boundary condition can be determined
experimentally from the autocorrelation of the gradient profile obtained via an inverse Fourier transform of the
Fresnel-normalized reflectivity without phase information. The phase solution and the resulting gradient SLD
profile can be shown to be unique, and therefore unambiguously determined, when all of phase space is
systematically explored for particular cases, especially for thin films on liquid surfaces. This gradient SLD
profile can then be integrated either numerically, or better, analytically to provide the scattering-length density
profile itself on an absolute scale.
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INTRODUCTION g, at the critical angle for the subphase., and q,

. = \/qﬁ—qg . It is well known that the nonlinear least-squares
There seems to be a perception that the phas_e problem f’ﬂlfting procedures employed in the refinement of the right-

specular x-ray and neutron reflectivity from liquid surfaces,hand side of Eq(1) for the initial model against the experi-

or from thin films on liquid surfaces, either has not or cannot

be solved even for cases where the distorted-wave Born arT_1entaI Fresnel-normalized reflectivity on the left-hand side

proximation is satisfied? As a result, most resort to the necessarily is refined to the gradient profile for the mono-
so-called “slab-model” refinement abproaéhn this ap- layer most similar to the initial model. Thus, given both the
proach, one considers the scattering-length den@tyD) potentiall complexity of many of the monolayer thin film sys-
profile structure of the monolayer(z) to consist of layers t€ms of interest toddy and the fact that the SLD profile is
(or “slabs™) of average density. bounded by the two inter- the projection of a 3D SLD distribution onto a single axis,
g¢ Vi y the so-called “slab-model” refinement method might be
facesz; andz;,, of widths (or roughnessgso; and o, 4, . das| than totallv obiecti
which can be conveniently described by a sum of analyticv'eéve as ess than totally 0 ]ec_|ved. hat the oh bl
error functions completely defined by these parameters. ome time ago, it was recognized that the phase problem
Here, z is the profile coordinate normal to the plane of thefor the SLD.dlstr|but|on |ts.elf cou!d be solve.d in the f!rst
surface and the profile structupéz) is the projection of the BOrn approximation and this solution was unique, provided
three-dimensiona(3D) SLD distribution of the monolayer that it was bounded in one, two, or three dimensions and
parallel to the plane of the monolayer onto theoordinate. PoSsessed a center of symmetry or antisymmetry, utilizing
As a result, the corresponding derivative or gradient profildh€ power of both (_:on_stra_m?sl_.n such cases, the autocorre-
dp(2)/dz can be described by a sum of analytic Gaussianation of the SLD distribution is bounded and it can be “de-
functions, the Gaussian for each interface completely definegonvoluted” via either recursion or Fourier methddsFor

by the change in average SLD across the interfapg; , | asymmetric SLD distrilgutions, an iterative refinement ap-
its position in the profile; , and its width(or roughnessa,; . proach was dev?lopé”dl that was called “box refinement,”
Initial models for the SLD profile of the monolayer using where the term “box” referred to the boundedness, and the

this method must be then constructed. based on one&onvergence was driven by this constraint. In such cases, the

physical-chemical knowledge of the system of interest, angolution was generally not unique, although the systematic

the model then refined against the Fresnel-normalized refle@XPloration of phase space could be used to search for the
tivity data via possibility of other solutions.

It was only recently recognized that the same approach

2 could be applied to specular x-ray reflectivity data from

p;1 (dp/dz)expiq’z)dz E|F(q;)|2, Langmuir monolayers of amphiphiles at the air-water inter-
1) face, since their gradient SLD profiles are bounded and the

distorted-wave Born approximation is satisfied. This re-

where R(q,) is the experimental reflectivitynormalized cent discovery is further elaborated here. It can now be
only by the incident beam fluxas a function of momentum shown to produce a unique solution for particular cases of
transferg, normal to the surfaceRg(q,) is the Fresnel re- thin films on liquid surfaces and the same structural param-
flectivity from a single infinitely shargideal) interface, the eters defined by the slab-model refinement approach, but un-

average SLD of the semi-infinite bulk subphasejs q.is  ambiguously without anya priori assumptions. Somewhat

R(qz)/RF(qz) =
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FIG. 1. lllustration of the box-reflnement method of analysis for Fresnel-normalized x-ray reflectivity data from Langmuir monolayers of
the pure diacylphospholipid DLgPC and its binary mixture with an HIV-1 accessory protein Vpu at a DLgPC/Vpu mole ratio of 10:1. In this
and subsequent figures, reciprocal space functions are plottgd (% 1) as defined in the distorted-wave Born approximatisee tex,
but wherelg,| = (2 sing)/\ instead oflq,| = (4 sin #)/\; all real space functions are plotted vs the profile coordingdg. (A) Trial electron
density profilepyia(2) used to initiate the box refinemer®) Modulus squaredF i, (q.)|? of the Fourier transform of the gradient
[dpyial(2)/dz] as a function of photon momentum transdgr. (C) Phasep,,i, (q5) of the Fourier transform of the gradieidp,,i, (z)/dZz]
as a function of photon momentum transégr. Only this trial phase function originating from the trial electron density prefjlg, () is
used to initiate the box refinemeriD) Experimental normalized reflectivitR(q,)/Re(q,) expressed as a function of photon momentum
transferd. , |Fyia(02)]?. Note that neither case agrees with the modulus squgg, (q.)|? of the Fourier transform of the gradient
[dpyia (2)/dz] shown in(B). (E) Inverse Fourier transform of the experimen|tﬁl§xpl(q;)|2 which provides the autocorrelation of the
gradient of the electron density profil@dpexp{(2)/dz][dpespf —2)/dz]) for the monolayer. The box constraint, key input to the box
refinement analysis, was chosen tolbe 60 A, well beyond the last significant featurezat 40 A. (F) The convergence of the calculated
|F(a,)|? from the box-refinement to the experimer{él,{(ds)|* for iterations 1-10, 20, 30, 40, 505) The convergence of the calculated
dp(2)/dz from the box refinement to the findlp.,,(2z)/dz for iterations 1-10, 20, 30, 40, 5¢4) The numerical integration of the final

convergeddp(z)/dz to the absolute electron density profile for the monolaygr,(z) itself. (This figure reprinted from Ref. 4 with
permission of the Biophysical Society.
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FIG. 2. Theqg,-region of phase space accessed in the Fresnel-normalized x-ray reflectivity data shown in Fig. 1 was systematically
explored using a finite set of gradient electron density profile&)/dz. These were based on all possible combinations of two Gaussian
functions, each of five possible amplitudesg., 0,+ A, =2A), and separated by 50 A, the maximum extent of the bounded region in which
the experimental gradient profiles are nonzero, thereby providing gradient profiles ranging from totally syrtevetyito totally antisym-
metric (odd) with intermediate asymmetric cases, as shown superimpog@d.iA superposition of the phase functiog$q,) of the Fourier
transforms~(q,) of this set of gradient profiles, shown (B), demonstrating their adequacy in searching the available phase space over this
range of momentum transfer, accessed.

earlier, Clintorf? showed that for such bounded gradientprofile projection as defined can be considered to be effec-
SLD profiles, a unique analytic solution to the phase problentively constant outside some region along the profile axis,
could be provided via the logarithmic dispersion relations forand hence its gradient profile is bounded or zero outside the
Fourier transform&3 However, the restrictions placed on the boundaries defining this region. However, for some systems,
Apji+1’s and the oj's sufficient for a unique solution e.g., for sufficiently thick films, the extent of the gradient
[namely whenF(q,) in Eqg. (1) contains no zeros in the profile may become too large, thereby limiting the available
upper half complexg plane or on the real axisvere such reflectivity data to a range of momentum transfer where the
that the greatest applicability occurs for the case of inorganiglistorted-wave Born approximation may not be valid.
multilayer films in which the SLD contrast could be con-
trolled, i.e., the magnitudes of thp; ; . ,’s, and the interfa-
cial roughnesses, i.e., tlg’s, could be made small, via their
fabrication. This approach was extendfeth cases not satis- The box-refinement method as implemented via @g.
fying these severe restrictiofieamely, whenF(q,) in Eq.  for x-ray reflectivity from a liquid surface was fully de-
(1) contains a finite number of zeros in the upper half com-scribed in Ref. 4. Briefly, the inverse Fourier transform of the
plex q plane or on the real axidoy using an approximate Fresnel-normalized reflectivity itself is used to produce
phase solution, treating the correction to the analytic phaseniquely the autocorrelation of the gradient profile. Since the
solution provided by the logarithmic dispersion relations as aradient profile is bounded, the amplitudes of the fluctuations
perturbation (i.e., smal} that could be solved iteratively. in its autocorrelation decay with increasing shift parameter to
However, this perturbation approach ultimately resulted ina minimal level at, and remain so beyond, the boundary for
the requirement that a portion of the SLD profile be knownboth positive and negative values of the shift parameter, the
independently, making it equivalent to “interferometry.” The autocorrelation being symmetric about the zero value of the
more powerful interferometric approach to solving the phasgarameter. The refinement is initiated via an inverse Fourier
problem for thin films on the surfaces of inorganic substratestransform, here using the square root of the normalized re-
employing the latter as the reference SLD profile, has beefiectivity as the modulus and a trial phase function, to pro-
implemented via both iterative Fourier refinement methodsluce the first approximation to the gradient profile. Since the
in the first Born and distorted-wave Born approximatioté trial phase function is entirely arbitrary, this first approxima-
and direct analytic inversioH:*® The latter analytic inver- tion contains nonminimal fluctuations outside the bounded
sion requires two different reference structures for the sameegion. These are truncated and a new trial phase function is
thin film, unless ferromagnetic effects in the reference strucproduced via a Fourier transform of the so-truncated gradient
ture can be utilized to alter its effective SLD profile in the profile. This procedure is then repeated until convergence to
case of spin-dependent neutron reflectivity. However, the rean appropriately bounded gradient profile is achieved and the
quirement for a reference structure in close apposition to thenodulus square of its Fourier transform, the right-hand side
thin film of interest, in the case of interferometric phasing,of Eq. (1), matches the Fresnel-normalized reflectivity in the
may well present an unacceptable perturbation of the lattdeft-hand side of Eq(1) to within the noise level of the latter
structure. More generally, the box-refinement approactexperimental function. The trial phase function can be gen-
should be applicable to any interfacial system for which theerated from the Fourier transform of the gradient of a density

METHODS
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FIG. 3. (A) The two non-
symmetry-related absolute elec-
tron density profiles for the pure
o8 oo DLgPC case are shown in the top
0.6 0e row. The left profile for this case
0.4 0. has a gradient profile whose Fou-
0.2 02 rier transform modulus squared

N N |F(qy)|? agrees more closely with

0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1 . .
the experimental normalized re-

1.4

1.2

(Residuals)” (Residuals)? flectivity R.(CID/RF(QQ) via Eg.

o ooz o o002 (1), shown in the second row, than
0. 00175 0 06175 that for_the right profile by a fac-
0.0015 0.001S tor of 2 in terms of the magnitudes
0.00125 0.00125 of the uniformly distributed re-

0. 008 0.001 siduals, shown in the third row.
0. 00075 0.00075 The only non-symmetry-related
0. 0003 0.0003 absolute electron density profile
0.00025 0.00025 .

eariiee s AN for the DLGPC/Vpi- 10:1 mole
0.02 0.04 006 0.08 0.1 0.02 004 006 0.08 0.1 ratio case is shown i(B).
(b) P(Z) Pz
1.4
1.2

profile for a uniform liquid with an ideally smooth surface, the boundaries, as opposed to fluctuations about some small,
the gradient of a density profile that is clearly “incorrect” but nonzero constant value. The latter can arise, for example,
based on one’s physical-chemical knowledge of the systenirom any errors in the Fresnel-normalized reflectivity at
or the gradients of any number of otherwise totally arbitrarysmaller values of momentum transfer and appear similarly in
density profile structures. As in any refinement approachthe autocorrelation of the gradient profile beyond its bound-
there is no uniqueness theorem. Thus, the possibility of otheary.
non-symmetry-related solutions is best approached when However, returning to the so-called “slab model” for the
phase space is otherwise systematically expldesd., Ref. ~ SLD profile described in the Introduction, the gradient pro-
19), as described in the Results section. The approach déHe dp(z)/dzcan be described by a sum of analytic Gaussian
scribed can now be easily implemented via symbolic comfunctions for each interface completely defined by the
putation such as WitiMATHEMATICA . change in average scattering-length density across the inter-
The resulting gradient SLD profile can be integrated nufaceAp; ;. 4, its position in the profile;, and its width(or
merically to provide the SLD profile itself, utilizing the roughnesso;. Thus, the gradient profiledp(z)/dz deter-
known scattering-length density of the subphase to determingined unambiguously, utilizing the box-refinement method
the constant of integration. However, there are errors assodie solve the phase problem in the distorted-wave Born ap-
ated with such numerical integration methods and the inteproximation, can be considered to contain a sum of Gaussian
gration specifically requires that the gradient profile exhibitfunctions uniquely defining the positions of the interfazes
minimal amplitude fluctuations strictly about zero beyondin the monolayer profile structure. One can then fit a sum of
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dp(z)/dz effects of Fourier transform truncation, namely, they contain
a low amplitude, minimum wavelength component through-
025} out determined completely by the largest valueggfwith
/‘_/Q\ ° which significant specular reflectivity data are obserted.
30 a0 10 \13. 10 20 30 z(A) Clearly the larger maxima and minima in these gradient pro-
-0.02 files arise from the positions of the dominant interfaces in the

monolayer profile structure. One can find the positions of
these maxima and minima by simply differentiating the gra-
-0.075F dient profile and solving for the positions of the zeros. We
note that these positions obtained with this approach are not
exactly the same as those found via the fitting of a sum of
-0.125} Gaussian functions to the gradient profile because the posi-
tions of neighboring Gaussians can be affected by their re-
spective widths relative to their separation. However, the re-
sulting so-fitted sum of Gaussian functions to the gradient
profile is very appealing because it allows for its analytic

-0.05}

-0.1}

dp(z)/dz integration to accurately provide the absolute SLD profile
0,025 p(2) itself for the monolayer. Importantly, this analytic inte-
L err——— gration provides the absolute scattering-length density profile
o o0 =) S p(2) in precisely the terms employed in the less unambigu-
_0.025} ous slab-model refinement, namely, in terms of lay@ns
“slabs”) of average density; bounded by the two interfaces
-0.05 .
zj andz; ., of widths (or roughnessesr; and o, ;.
—0.075 Both the method of steepest descents and the Levenberg-
o1 Marquardt algorithm have been utilized to effect the non-
‘ linear least-squares fitting, as provided for example in
-0.125} MATHEMATICA . As is generally the case, given the large num-
ber of parameters required to describe even a small number

_ _ ~ of interfaces at three parameters per interface, it is often

FIG. 4. Gradients of the monolayer electron density profilesnecessary to perform a so-called grid search for some of the
dp(2)/dz derived unambiguously from the experimental Fresnel-parameters, allowing the remainder to float in order to best
normalized x-ray reflectivity data via the box-refinement method,minimize the goodness of fit. It should be noted that the
exactly as in Ref. 4, are shown as the dotted lines for the purgitting of Gaussian functions to a particular region of the
phospholipid DLgPCitop) and its binary mixture with an HIV-1  gradient profile can generally be localized only to that region

accessory protein Vpu at a DLgPC/Vpu mole ratio of M@dttom. ot the gradient profile. Only when a Gaussian has an unusu-
The minimum representing the hydrocarbon/helium interface occurally large amplitude coupled with an unusually broad width

in the region + 20 A<z<+26 A in both monolayer profiles as can it affect the fitting of Gaussian functions to more distant
shown here, which places that for the polar headgroup/hydrocarbope ions of the aradient profile. This is because the phase
chain interface at the=0 A origin for the pure DLgPC case, that 9 9 P : P

choice being entirely arbitrary and of no other consequence. Thgroblen: hgs bttaen Sf[owfd. a?r? thle Sttlngdlsl pefrformedtln real
best nonlinear least-squares fits of the sum of five Gaussian funcPace. In direct contrast, in the slab-model refinement proce-

tions to the gradients of the monolayer electron density profilesqure traditionally employed, the parameters defining any par-
dp(2)/dz from box refinement are shown as the solid lines. ticular interface are delocalized throughout momentum trans-

fer space, which increases the coupling between the

Gaussian functions to the unambiguously determined gradiparameters to be determined.
ent profilesdp(z)/dz using an objective nonlinear least-
squares fitting procedure, the goodness of fit provided by a RESULTS
combination of both the global sum of the residuals and the
distribution of the residuals over the range of the profile co- Some key results are shown here for Langmuir monolay-
ordinatez within the bounded region. Here, a minimum num- ers of binary mixtures of an HIV-1 accessory protein Vpu
ber of such Gaussian functions is sought to represent thend a diacylphospholipid DLgPC over a range of mole ratios
gradient profiledp(z)/dz sufficient to makga) the modulus taken from Refs. 4 and 20. Figures 1A—H show all of the
squared of its Fourier transform match the experimental norfunctions employed in deriving the gradient SkDe., elec-
malized reflectivity data via Eq1) and (b) the analytic in-  tron density profiles from the Fresnel-normalized x-ray re-
tegration of the sum of Gaussian functions fitted to the graflectivity data via box refinement and their numerical inte-
dient profiledp(z)/dz match the absolute SLD profile(z) gration to provide the absolute electron density profiles for
obtained by numerical integration of the gradient profiletwo monolayers at the extremes of mole ratios investigated.
dp(z)/dz In this example, the iteration for both monolayers was initi-

The gradient profilesdp(z)/dz determined unambigu- ated with the phase$igure 1Q for the same gradient SLD
ously via the box-refinement method necessarily exhibit theprofile (Figure 1A, which could not be correct for either,
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FIG. 5. Criterion(a): Experimental Fresnel-normalized reflectivity data are shown as dotted lines for pure DlegP@nd its binary
mixture at a DLgPC/Vpu mole ratio of 101tight) and|F(q,)|?, calculated via Eq(1) for the best nonlinear least-squares fits of the sum
of five Gaussian functions to the gradients of the monolayer electron density pcyfiles dz from box refinement, are shown as the solid
lines.

based on one’s prior independent knowledge of these monas they require that region to possess negative SLD, which is
layer systems. The corresponding trial gradient profile is nohot possible for the x-ray case. The remaining symmetry-
shown here. related solutiondp(—2z)/dz is trivially related todp(z)/dz
Given the maximum possible extents of the gradient SLDpecause the average SLD values over the two regions outside
profiles based on their respective autocorrelation functionghe poundaries of the gradient SLD profile, whelyg(z)/dz
shown in Figure 1E, a set of trial gradient SLD profiles werejs zero, are known.
generated to represent the full range .of gradient profiles from |, Ref. 20, the best fits of four Gaussian functions, repre-
totally symmetric(even to totally antisymmetridodd), as  genting four interfaces defining three layéos slabs within

shown in Figure 2A, whose Fourier transforms would poSye hrqfile structure, to the gradient electron density profiles
sess a modulus that varied as rapidly as physically pOSSIbI(?etermined via box refinement for the same two monolayers
and a phase that sampled all of phase space within the ran

of = 7 over the range of momentum transtgraccessed, as 9¥ the extremes of mole ratigshown as dotted lines in Fig.
- 9 ' = 4) were obtained. Here, the Gaussians were fitted to the four

shown in Figure 2B. Neglecting for the moment the ObV'_maxima/minima in the gradient profiles within the region
ously equivalent, symmetry-related solutions to EL. for . . .
y €q Y y £y —15 A<z<30 A ignoring the maximum at~—20 A for

the gradient SLD profileslp(z)/dz, namely, —dp(z)/dz, )
dp(—gz)/dz and—(?p(—z)/g(z gince they pzssesps( tr)1e zamebOth monolayers. Nevertheless, the best fits for these two

Fourier transform modulus, only two distinct solutions wereCaSes satisfy to a large extent the critef@ the modulus
obtained for the pure DLgPC case. One predicted the experfduare of its Fourier transform matching the experimental
mental normalized reflectivitgFigure 3A, middl¢ with uni- ~ normalized reflectivity data via Ed1) and (b) the analytic
formly distributed residuals smaller by a factor of 2 com-integration of the sum of Gaussian functions fitted to the
pared with the otheXFigure 3A, bottom The numerical gradient profiledp(z)/dz matching the absolute electron
integrals of these two possible solutions, namely, the corredensity profilep(z) obtained by numerical integration of the
sponding SLD profilesp(z), are shown in Figure 3A, top, gradient profiledp(z)/dz. Including the maximum atz
left-hand side and right-hand side, respectively. Given the=20 A but ignoring the minimum atz~10 A for both
noise level due to the counting statistics in the experimentainonolayers in the best fits of only four Gaussian functions to
data where these differences in the residuals occur for ththe gradient profiles, results in criteri¢a) being satisfied to
two possible solutions, the one corresponding to the SLDa significantly lesser extent. Perhaps not surprisingly, both
profile shown on the right-hand side may be rejected on thisonlinear least-squares fitting algorithms mentioned above
basis alone. We note that since the normalized reflectivitfailed, attempting to utilize five Gaussian functions described
data and the autocorrelation of the gradient SLD profile ardy 15 parameters.

related by a unique Fourier transform, the differences in the In Fig. 4, these best four-Gaussian fits were combined,
residuals for the two possible solutions shown in Figure 3Ageasily providing with only minor adjustments guided by
bottom, should also be manifest in the corresponding autdeast-squares minimization, the best fits of five Gaussian
correlation functions as well. Only one solution was obtainedunctions(shown as solid lingsto the gradient SLD profiles
for the DIgPC/Vpu=10:1 mole ratio case whose correspond-determined via box refinement for the same two monolayers
ing SLD profile is shown in Figure 3B. Since these SLD at the extremes of mole ratios investigated. These best fits
profiles contain a region whose SLD is greater than that ofatisfy both criteria exactly, including criteridia) to within

the subphase, the equivalent symmetry-related solutionsthe noise level throughout the range of momentum transfer
—dp(z)/dzand—dp(—2z)/dz are not physically reasonable, Q, investigated, as shown in Figs. 5 and 6. The parameters
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p(z)/ Puzo TABLE I. Parameters from the best five-Gaussian fits to the
gradients of the monolayer electron density profiles shown in Fig. 4.
The absolute electron density profiles constructed from these pa-
rameters appear in Fig. 6 as dotted lines. Note that psypphase
=0.333 /A% and pg=py~0.00G /A3

Monolayer iz A oA pjar Apjja
(e 1A% (e A3

DLgPC 1 —-19.106 2.028 0.345 +0.012
2 —6.750 3.321 0.471 +0.126
3 —2.005 4578 0.319 -0.152
4 10.327 2.904 0.282 —0.037
5

23.464  3.661 0.001 -0.281

Z(A)

DLgPC:Vpu=10:1 1 —18.050 4.593 0.382 +0.049
P2/ Przo 2 —-8996 3.002 0403 +0.021
3 —2851 2901 0.365 -0.038
4
5

——//M 11.427 2.904 0.329 —0.036

22476  4.337 0.001 -0.328

from the experimental normalized reflectivity data, to solve
the phase problem. It is important to note that its precise
value is not important, only that the boundary condition im-
z(A) posed in the iterative refinement not be smaller than the ac-
tual bounds of the gradient SLD profile. It has been shown
FIG. 6. Criterion(b): The absolute electron densjtyz) profiles  that the bounded nature of the gradient SLD profile is suffi-
calculated byanalytic integration(solid line9 of the best nonlinear cient to provide a solution to the phase problem for the
least-squares fits of the sum of five Gaussian functions to the gra=resnel-normalized specular x-ray or neutron reflectivity
dients of the monolayer electron density profils(z)/dz from  from a liquid surface or from a thin film on a liquid surface
box refinement for the case of pure DLgR®p) and its binary  in the distorted-wave Born approximation. Phase space can
mixture at a DLgPC/Vpu mole ratio of 10(bottom). The absolute  furthermore be systematically explored to investigate the
electron densityp(z) profiles calculated bymerical integration  possibility of other solutions, symmetry related or not. Non-
of the gradients of the monolayer electron density protileé&z)/dz ~ symmetry-related solutions can be rejected on the basis of
from box refinement appear as dotted lines. the two criteria provided herein, depending mostly on the
accuracy of the normalized reflectivity data over the range of
momentum transfer accessed, provided that the distorted-
of the five Gaussians are given in Table | and the analytivave Born approximation is satisfied. Symmetry-related so-
integration of the gradient profiles to the absolute Sefec-  1Utions can only be rejected on the basis of independent
tron density profiles for these same two monolayers is Klowledge of the system, e.g., physical or physical-chemical
shown in Fig. 6. It may be noted that from Table I, it is such as the non-negative electron densny in the x-ray case.
apparent that thé p’s for the DLgPC/Vpu=10:1 mole ratio Otherwise, the box-refinement approach is more general in

: oo that it can be shown to provide unique solutions under con-
case satisfy one criterion in Ref. 12 necessary to produce a. g
; . . itions that are not sufficient for the approach based on the
unique solution, namely, that the magnitude/qgs for one

interface be areater than the sum of the maanitudes for logarithmic dispersion relations for Fourier transforms. How-
9 p mag gver, neither approach is as powerful as that available for

. L L L n
-30 -20 -10 10 20 30

the others, although the other criterion that the interfacia hasing the specular x-ray or neutron reflectivity from thin

roughnesses be small is clearly not met. In contrast, neith lims on solid substrates. In such cases, the solid substrate

criterion Is safisfied for the pure DLgPC case, although ON%an be tailored synthetically to provide a reference structure
solution is clearly favored over the other, provided the count-

) o . s for interferometric phasing, whether or not the distorted-
ing statistics errors on the normalized reflectivity data arg, -ve Born approximation is satisfiéd;*"? and the solu-
sufficiently small. '

tions are shown to be unique. Unfortunately, the presence of

the solid substrate may perturb the system of interest in

DISCUSSION Which case f[he qu refingment and to a lesser e>_<tent the

logarithmic dispersion relation approaches are superior to the

The so-called box-refinement approach utilizes a powerfuslab-model refinement approach in that the phase problem is
boundary condition that can be determined unambiguouslgolved.
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