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Charged vortices in superfluid systems with pairing of spatially separated carriers
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It is shown that in a magnetic field the vortices in superfluid electron-hole systems carry a real electrical
charge. The charge value depends on the relation between the magneticdgreyild the Bohr radius of
electronsag and holesag. In double-layer systems at filling factorg= v,,= v and forag ,ag>€B the vortex
charge is equal to the universal value.
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[. INTRODUCTION from spatially separated electrons and holes belonging to the
conducting band is shown. This possibility is realized in
It is generally believed that the vortices in superconduct-double-layer electron systems in a magnetic field normal to
ors are connected with an applied magnetic field, while thehe layers for the case of the total filling factef= v+ v,
magnetic field does not have any influence on the properties: 1. During almost ten years there were many efforts to
of the vortices in electrically neutral superfluid systems. Theobserve the condenser superconductivity experimenritaly.
aim of this paper is to show that in superfluid systems subNow it seems that these effort have been crowned with
jected by a magnetic field the vortices have a real electricagyccess®1”
charge(the compensating charge of the opposite sign appears | et us consider a bilayer system, where in one conducting
on the surface of the systemin general case, the charge of |ayer the carriers are electrons and in the other one the car-
the vortices is fra_ctional. For th(_—:- first time the fractional jers are holes. The case of equal electrynand holen,,
charge of the vortices was predicted by Laughlior the o gities f.=n,=n) is specified and it is assume the elec-

Eg?d_d'lrmggsiItovr\;ZEZeDs)ta?tl)ﬁgggg igaSelfg aziﬁx?jngﬁﬁgtﬁaggjglz tron effective massn, is much smaller than the hole effec-
: e tive mass m, (in semiconductor heterostructures,
layer electron systems at half filling of the lowest Landau

levels in each layer the vortex should carry the charge equal 0.06/m,, m,~0.4mo, where m is the bare electron

to = e/2 (here and belove is the absolute value of the elec- mas3. We are interest_ed in behavior of the system supjected
tron charge by a strong, perp_endlculgr go the !ayer, _mggneﬂc fBIdg

It is found that in any superfluid system in a magnetic®35¢ Wheg ‘the inequalitpg>{p is satisfied. Hereag
field the charge of the vortex is proportional to the polariz-~""&/Mee” is the effective Bohr radius of the electron and
ability of the particles and inversely proportional to their {8=(cA/€B)7*is the magnetic length. The similar inequal-
effective mass. For the superfluid phases of He isotopes arlfy for the effective Bohr radius of the hole af
for the Bose gases of alkali metals, our estimates yield that 7 “¢/mye?) is not required. The study is restricted to the
even in strongest magnetic fields reachable now this chargéase of low densityn, when the filling factorv=2m¢3n
has an unobservable small value, but it can be of the order ok1. In this case, electrons and holes are paired in the coor-

the electron charge in superfluid systems with pairing of spadinate space. Consequently, at low temperatures, the system
tially separated electrons and holes. behaves as a condensate of electron-hole pairs with the size

The authors of Ref. 4 call the possibility of the electron- of the pairs much smaller than the average distance between
hole pair superfluidity in question based on the fact that théhe pairs.
interband transitions fix the phase of the order parameter and The properties of the condensate are principally depen-
result in a transition into a dielectric state. But it was estab-dent on the spectrum of the pairs. For the three-dimensional
lished in Refs. 5 and 6 that the exclusion of the electron-hol€ase the spectrum of the electron-hole pair in a strong mag-
superfluidity does not take place in systems where spatialljetic field was found many years ago by Gor’kov and Dzy-
separated electrons and holes are coupled. In these systeralgshinskii in their seminal papét.For the 2D case, the
the interband transitions coincide with the interlayer onessame problem was considered for the first time in Ref. 19.
and usually they are exponentially small. A superfiuid statéVhile the consideratioft*®does not contain any assumption
of the pairs with spatially separated components has both th&bout the ratio between the massgsandmy, it is assumed
superfluid and superconducting features. A superfluid flow ofn these papers that two inequalitia§> ¢z and ag>€B are
such electron-hole pairs is accompanied with real supercusatisfied. But the results of Refs. 18 and 19 become inappli-
rents flowing in opposite directions. Therefore, we will call cable for the case when at least one of these two inequalities
these systems the condenser superconductors. is violated?°

A pairing of a conduction-band electron from one layer We begin the consideration from the study of the eigen-
with a valence-band hole from the other layer was considvalue problem for a single electron-hole pair and find the
ered in Refs. 5 and 6. Then in a number of theoreticakffective mass of the paM, as well as its electric polariz-
papers>®7~103 possibility of superfluidity of pairs composed ability a (Sec. I). Then, using the equation for the order
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parameter, the superfluid velocity of a gas of the pairs in th%ubstituting Eq(5) into the equatio ¥ = £¥, one obtains

Iolw—dgnsn)(/jllmlt and 't?. dlszole mltlnlm_entum as adfug.ctlcljln  the equation for the functio® .(r). At #=0 andE=0, this
electric and magnetic fieldsSec. Ill) is computed. Finally, equation has the form

taking into account the dependence of the dipole momentum
on the superfluid velocity, the value of the electric charge of " " = =
a vortex is foundSec. IV). [Ho(r) +Hay(N ] (r)=&®(r). 6)

Here, I:|0(r) is the Hamiltonian for a free electron. In the

Il. ELECTRON-HOLE PAIR IN A MAGNETIC FIELD symmetric gaugé\ = %er it equals to
The Schredinger equation for the electron-hole pair has e 2
the form Ho(r)= —i —BXr/| .
Ho(r) m, inV+ 2CB r) (7)
2 2 I
. e 1 . e The HamiltonianH(r) reads as
(—the+—Ae) +—(—|th——Ah) u(r)
2mg C 2my C
H ! ( ihv eB>< i ¢ (8)
2 =5—| —1hiV——=BXr| - —.
e 17 2m 2c Jr2+d2
+€E - (Fe— )~ ———| ¥ (re.r}p) " eNri+d
eV|re—ry|°+d
The eigenfunctions of the operatbl, are numbered by
=&V (re,rn), (D the radialn, and the azimuthaih quantum numbers. For the

electron frozen in the lowest Landau levgl=0 andm=0

whered is the interlayer distance. Equati¢h) describes the and the eigenfunctions have the form

case when a perpendicular to the layer magnetic fi2ld

=rotA and an electric field, directed parallel to the layers, 12
i 1 e Ime r m r2
are applied to the system. O = (_ exp ——|. (9
It was shown by Gor’kov and DzyaloshinsKiithat the ol oMl m g \€p 402
operator

In the case considered, the inequalities.>#% v, andf w,
. e e >e?/elg (equivalent tom,>m, andag>{y, correspond-
7= —ihVe=iiVpt —(Ae=An) = (BX(re=rn) (2 ingly) are satisfied. It allows to take into account the Hamil-
toniamH (r) as a perturbation. Al<{g, the spectrum of
plays the role of the operator of the momentum of thethe pair obtained in the first order of the perturbation theory
electron-hole pair in a magnetic field. This operator com-S
mutes with Hamiltoniar{1) and all its components commute
with each other. It allows to parameterize the solutions of Eq. I

(1) by a c-number parametetr. The parameters is the 1 1 e? m+ 2

eigenvalue of the operatar. Based on this observation the Em=ghwethop M+ |- ety T(m+1) (10

dependence of the energy on the momentums can be

found. Result(10) is valid for an arbitrary ratio betweetw,, and

It is convenient to formulate the problem using the repre-€®/e{g.
sentation for the wave functiolf = UW¥ with If the momentum of the paitr and the electric fieldE are
nonzero, the Hamiltoniahi contains the additional term
ieA(R)-r
UZEX%T). (3) ~ e |‘IT|2

Hw,E_W(”XB)'r+eE'r+ma (11

Here,R=(mgr o+ myry)/(mg+ m,) is the center-of-mass co-

ordinate and =r.—ry, is the relative coordinate. The advan- WhereM =me+m,~m, is the mass of the pair. The terms in
tage of this representation becomes clear under the observad. (11) linear inr do not contribute to the energy of the pair
tion that the momentum operator in representa(@nhas a in the first order of the perturbation theory. In the second

simple fornf! order of the perturbation theory, these terms yield the correc-
tion to the energy that depends on the momentum of the pair
= . J 7r and the electric fielde
m=UnU 1=—i—. (4)
dR = 2
N : +
It follows from Eq. (4) that in this representation the wave Ag= | 772 <¢>1|e( E ) rl®o)
function of the pair with the momentum reads as T 2m;, E—&
~ im7 R\ - |7T|2 M B 1M B 2
\P(R,r)=ex;{ 7 )(I),,(r). (5) = oM, + M—*ﬂ'.u— EM_*mhu (12
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Here,u=c(Ex B)/B? is the drift velocity of the pair in the The last term on the right-hand side of Efj7) describes the
crossed electri¢parallel to the layepsand magneti¢perpen- interaction between the pairs. One can show that in the limit

dicular to the layersfields. The mass d<fgz, the interaction constant is equal toy
=(m/2)%%?d?/e€z. The vanishing of the interaction con-
M 4 gh? 4 0 aE 13 stant atd=0 is a consequence of the exact compensation of
B~ = he_ > the Coulomb forces between the pai®mpare with Ref.
V2w ety \2m € , p _
m B m ® 23). Presenting the order parameter in the fonk
the effective mass of the pair is =|w|e'¢(, one obtains from Eq(17) the velocity of the

superfluid component
M, =Mg+m,. (14
| emphasize that the valld g depends on the magnetic field
and does not depend on the massgsandmy, .

It is useful to compare the expression for the effective
massM, (14) with Lerner and Lozovik expressibhfor the To obtain the dipole momentum of the unit araone
massM:"=Mg obtained by the Gor’kov and Dzyaloshinskii takes into account that the r.h.s. of E#7) is the variational
method™® When m,,>m,, the Gor’kov and Dzyaloshinskii derivative over¥*(r) of the Ginzburg-Landau-type func-
method is applicable iag>gB and just the first-order cor- tional of the energy of a superconductor. The derivative of
rection in the perturbation theory using the paramétgialy  that functional over the electric field taken with the oppo-
yields M, =M." (see Appendix A The second-order cor- Sit€ sign isP,
rection yieldsM , = Mg+ my,. But in the perturbation theory
m,/M B~€B/ag<1 and the second-order correction can be P=a(B)
neglected. It is not the case in my approach, where the ratio
€B/ag is assumed to be arbitrary one and, as a consequence, ) , )
the ratiom,, /M is arbitrary one as well. More arguments on EXPression19) can be rewritten in the form
the validity of Eq.(14) at arbitraryMg and m,, are given

EXB
V= AVe+ a(B)T . (18

M.,

|2, (19

M, * VoxB
M, M,c'?

below. _ 1 2
Introducing the pair polarizability P a(B)( E+ cvS>< B[¥[*. (20
c?  4e 3 This result means that not only the electric fiéd but
“(B):MBEZ \/?eB* (15 also the Lorentz force polarizes the pair, acting in opposite
7 directions on the positive and negative charges of the pair.
one can rewrite the correctiaké in the form One should note that the expressionFof20) is valid within
, a linear accuracy img/c.
AE= ot a(B)% _ @Ez (16) Let us give the proof of the mutual consistence of 84)
2M, c 2 ' for the effective mass of the pam, and Eq.(15) for the

larizability of th ire(B). It foll f Egs.(1) and
Analogous expression was obtained in Ref. 22 for an eIectri(pZ(; ?E;? lity of the paife(B) olows from Egs.(1) an

cally neutral atom in crossed fields for the case of small

magnetic fields. In that case, E¢lL6) contains the zero e

magnetic-field polarizability of the atora(0) instead of a=MV——BX(ro—r}) (21)
a(B) and the mass of the atoM instead of the mass of the ¢

pairM, . (for the first time expressioni21) was given by Gor’kov

Dzyaloshinskit®). Here, v=(mMgVe+ m,Vi)/(Me+ my,)—the

operator of the average velocity of the pair. Using E2{)

one can find the density of the momentum of the superfluid
Replacing the momentum with the operator-i2V, one  medium of the electron-hole pairs

obtains from Eq(16) the Hamiltonian for the electron-hole

pairs. In the low-density limit, when the size of the pair is II=Mnvs+BXPlc, (22

much smaller than the distance between the pairs and the ) ) . )

exchange effects are inessential, the pairs can be considerégieren is the density of the medium arRi=ne(r,—re) is

as true bosons. At low temperatures, the rarefied Bose g&¢nsity the dipole momentum of the medium. The same re-

should form a superﬂuid state. The superﬂuid phase can b@llt was obtained in Ref. 24 USing the laws of transformation

described by the order parametkr It satisfies the equation ©Of the energy and the momentum of the medium under tran-
sition from one inertial system of reference into another one.

Ill. THE CONDENSATE OF THE ELECTRON-HOLE
PAIRS IN CROSSED FIELDS

v 1 _ ExB\?  a(B) _, Let the electric fieldE=0. Then, it follows from Egs.
ih—— =Sy | T1AV+aB)—— | V- ——FEW (18) and(20) thatv,n=II/M, andP=an(vsX B)/c, corre-
* spondingly. Substituting these expressions into 8) one

+ | V| 2w, (17)  can easily find that alI+0 Eq. (22) is valid if
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Finally, in ultrahigh fields ag>es) the effective mas#,
=Mg(1+ \/2w€B/4ag)HMB and the vortex charge obeys
the universal relation= = ve.

One should note that no assumptions about the value of the Let us present here some estimates. In the magnetic field

magnetic field was done under the derivation of re2®).
At strong magnetic field 45> ¢g) the polarizability «(B)
=Mgc?/B? and, as it follows from Eq(23), M, =M+ Mg
=m,+ Mg, which is consistent with Eq14).

IV. THE CHARGE OF THE VORTEX

The polarization charge,, can be found by taking the
two-dimensional divergence of both sides of E#§9). To
calculate the derivatives on the r.h.s. of Efj9), one takes
into account that

curl,Ve=27>, 8(r—rn, (24)

wheren;= =1 and the uppetlow) sign corresponds to the

vortices rotating in the counter-clockwiselockwise direc-

tion, and the summation is over the vertex centers. Beside

this one omits the terms containing the quan¥jW¥|. We

are not interested here in the structure of the vortex ¢bre

was considered as the mathematical poifst small fieldsE,
the terms containiny |'¥| are small out of the core. It al-
lows to replace¥|? with the pair densityn. Finally, one
obtains

m
Ppol(r): —a(B)n M

. #B
*dIV2E+2i 27TM—*Cni5(r—ri) .
(29

Thus, in a superfluid system subjected by a magnetic field

B=10 T, the magnetic lengthiz~80 A. In GaAs heteros-
tuctures with the dielectric constamst=13, the magnetic
mass is very smallNlg~10" 28 g). Due to the smallness of
this quantity, the vortex charge can be the of order of the
electron charge only in superfluid systems with the boson
mass of the order of the electron mawsg For the electron-
hole bilayer system am,=0.4m, and m,=0.067n,, one
obtainsMgz/M,~0.2 and the vortex charge §~0.2ve.
For the electron-electron double-layer system with the same
me, one finds Mg/M,~0.5 and the vortex charge
~0.5ve. The derivation ofg from the universal value is
connected with the ratiég/ag~0.8 and the strong inequal-
ity €B<aE does not satisfy in this case.

The number of the vortices and their spatial distribution
depends on the electric fielel Integrating both sides of Eq.
(18) along a certain contour, one finds

a(B)
M, §V5d|=2ﬂ'ﬁNU—TB~3g Exdl. (29

Here,N, is the number of the vortices inside the conttthe
vortices of the same vorticity were considerelt follows
from Eq. (29) that the velocityv, decreases when the vorti-
ces emerge—it yields a gain in the kinetic energy of the
system. When the vortex distribution is considered as a con-
tinuous one, the vortex density,(r) can be introduced and

szf n,(r)dr. (30)

the polarization charge emerges when the medium is polar-
ized by the electric field with a nonzero divergence or thePutting the r.h.s. of Eq29) to zero, one finds from Eq&29)
quantized vortices exist in the system. It also follows fromand(30) the relation

Eq. (25 that the charge of théth vortex is equal to the
coefficient of §(r —r;), namely,

N hB
q—_27TM

Ca(B)n.

(26)

«(B)B

c div,E.

nu(f)ZW (31)

A macroscopic number of the vortices with equal vortic-

Equation(26) yields the vortex charge for the electron-hole ites.can also emerge in the apsence_ of the eIeptric field. It is
bilayer systems in an arbitrary magnetic fields. The saméealized when besides the uniform fieid there is an extra
result is valid for the electron-electron double-layer systendield B, with div,B,#0 (B, is parallel to the plane of the

with the substitutiorM , =Mg+2m,.

In weak magnetic fields{z>ag), the polarizability «
= y(ag)® with y~1 and the effective massl, =m;,+m,
=my,. Then the vortex charge is equal to

2

e
ag e h
aSagne.

g

2T
’ 27

q==*

€

In high magnetic fields a(§>€Bzag) using Eq.(15) for
«(B), one obtains

Mg

B
e=x
M.

M,

q=*+2m3n ve. (28)

structure. Indeed, one can sho@@ompare with Ref. 2llthat
in the field B, the energy of the pair of spatially separated
electron and hole is equal to

1 2

T 2Mm,

ed.
7+ —zXB,
c

AE (32

One can see that enerd$2) differs from the expressions
(16) only by that the induced dipole momentua{B)E is

replaced with the spontaneous momentadz Therefore,
the dipole momentum of the unit area can be obtained from
Eq. (20) replacing the induced momentum with the sponta-
neous one. Then, taking the divergencePofone finds
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a(B)Bn[e

Ppol(r)=— M, c —dlsz +Z 27hn; 8(r—r; )}

(33
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(A4)

5(°)=ﬁ13 n-+ 1(1+|m|—ym) .
nm uc 2

In the casemy>m, considered here the electron cyclotron

It follows from this expression that in this case the vortexfrequencyw,=eB/mqc considerably exceeds the hole cyclo-
charge is equal to the value found above and in the continutron frequencyw,,=eB/m,c. Therefore, we will further con-

ous limit the vortex density is,(r) = (ed27#c)div,B, .

sider then=0 andm>0 case when the zero-order energy is

At nonzero temperatures, the charged vortices will emergequal to
in condenser superconductors in a fluctuation way, in simi-

larity with the same phenomena in a thin He-ll film. The
circumstance that the vortices are charged does not influence

m+ =

5| (A5)

hw
5g?>=76+ﬁwh

in the first approximation on the thermodynamic features of _ _
the system. It is connected with that the Coulomb correctionfhe distance between the unperturbed energy leveéisjs,
to the interaction between the vortices falls down muchwhile the Coulomb energyat small momentar) is of the

faster(by the power law than the bare logarithmic interac-

order of ezls(fB Therefore, if hw,>e?/elg (Which is

tion between them. The last one, as is well known, results irequivalent toaf>¢) the Coulomb interaction term in Eq.

a Kosterlitz-Thouless transition. Since the sign of the vorteXA3) can be treated as a perturbation. The first-order correc-
charge is in one to one correspondence with the sign of thgon to the energy of the pair in the ground state=0 is
vorticity, at temperatures below the Kosterlitz-Thouless tem-

perature the vortex-antivortex pairs should be electrically e?
neutral. At temperature above the Kosterlitz-Thouless the
vortices and antivortices decouple, and free electrical charges
appear. It reveals itself in a principal change of the conduct-

ing properties of the system under the phase transition.
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APPENDIX

Let us show how Eq(1) can be solved by the Gor’kov
and Dzyaloshinskii methotf In this method, the wave func-
tion W(rq,r,) is sought in the form

iyrar
exp{ Zﬁ )CD(r—ro)
(A1

e
7+ —BXr
C

[
\P(rl,rz)zexr{%R

where y=(mp—mg)/(my+my),

1
2=

X a7 gﬁ. (A2)

I‘0= g

Substituting Eq(A1) into the Schredinger equatioril)

taken in the symmetric gauge, one arrives to the following

equation for the function of relative motich(r):

ﬁZA ief: BV e’ 522
Topt T e BNV g BB
e2
- D(r)=EPD(r), (A3)

e([r—ro|?[+d?)Y?

where u=mem;,/(my+my) is the reduced mass.

eN=—(@ d
0 < O|g(|r—r0|2+d2)1/2| 0>
e? o 20
=- d?r : (A6)
273 VIr=rol?+d?

Puttingr,=0 in Eq.(A6), one finds the bound energy of the
pair as a function of g andd (see Ref. 2b

e d)y=— Z 1/2e_2€ d_z 1—d d_2
A b RY A PV 203) |

where

(A7)

d(x)=— j exp(—t?)dt.

Jr
One should note that the bound energy does not depend on
the electron and hole masses. Further on, we will be inter-
ested in the case af<{g. Putting in Eq.(A6) d=0, one
finds'

1/2 |7T|2€ |7T|2€2
W= T = _ B
£6°(m) (2> 8€B|°( 452 )eXp< an? |’
(A8)
It follows from Eg. (A8) that at small momenta
(|| <hleg)
2 2
@)= o) |=l*__ 1=®
Eyi(m)=E&; (0)+2NI €t My (A9)

where eg= — (7/2)Y%e?/e £z and Mg is determined by Eq.
(13). Thus, in that approximation the effective mass of the
pair does not depend an, andmy,. The situation is changed

In zero-order approximation with respect to the interac-if one takes into account the higher-orders correction terms.

tion the wave functiofA3) coincides with the functiom
(9) and the energy is equal'tb

In the second order of the perturbation theory the correction
to the energy is equal to

214515-5
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V192 M, =Mg+m,. (A15)
EP(m =~ = (A10)
€o —&1 This result coincides with Eq(l4). It seems that in the
where the matrix element;, atd=0 reads as Gor’kov and Dzyaloshinskii method, EA15) is valid only
with a linear in€B/ag accuracy, because, as it follows from
v 1 ezJ' 2, e e i exp< r2 ) Eq. (A14), the higher order iz /a]} terms may modify the
10 227 €63 elr—rg 262 result obtained. Nevertheless, one can show that an accurate

(A11) acpounting of all terms of the order offglag)2 leaves re-
lation (A15) unchanged.

At small momenta the integral in E¢A11) can be easily  The third-order correction to the energy is equafto:
evaluated and

Jme? ||
Ca

Substituting this expression into EGA10), one obtains pro-
portional to| 7|2 correction to the energy:

_ VOlvllVlO |V10| 2

2.2 10055 2

Q) , (A16)

where fiw1=E9— P =tiw,. One can easily find that
V11=Vod/2= €/2. Therefore, the third-order correction term

) | 7|2 me? is reduced to
50 (W):_ﬁ_whl%zl (A].Z)
€ |V1d?
This correction results in a renormalization of the effective 883)= - ?O%. (A17)
mass of the pair. Collecting tHer|> depending terms i {") hfwio

(A9) and£?) (A12), one obtains _ . , .
Using the expression fdiv,g* found above and adding en-

| 7|2 re? , | |2 ergy (A17) to expressior(A.13), one can find the renormal-
TEETT |7r|°= T (A13)  ized value ofM, . To do this one can expand E@Q14) up
B 160hwy * to the terms of the order of(i(g/ag)z and takes into account
It follows from Eq. (A13) that the same order terms emerged from correctida?7). One
can see that in this expansion the terms of the order of
1 \/;65 -t (¢g/af)? compensate each other exactly and relafidhs)
M, =Msg| 1- 2 Ea_g (A14) survives. Based on this result and taking into account that

relation (A15) can be obtained by another method without
Expanding Eq(A14) in series with respect to the parameter implying the smallness dfSjz/af} (see the body of the pa-
€B/ag<1 and taking into account the Iinearé’r@/ag terms, pen one can conclude that in the Gor’kov and Dzyaloshin-
one finds the following expression for the effective mass ofskii method expressioA15) should be valid in all orders of
the pair: the perturbation theory.
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