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Charged vortices in superfluid systems with pairing of spatially separated carriers
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It is shown that in a magnetic field the vortices in superfluid electron-hole systems carry a real electrical
charge. The charge value depends on the relation between the magnetic length,B and the Bohr radius of
electronsaB

e and holesaB
h . In double-layer systems at filling factorsne5nh5n and foraB

e ,aB
h@,B the vortex

charge is equal to the universal valuene.
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I. INTRODUCTION

It is generally believed that the vortices in supercondu
ors are connected with an applied magnetic field, while
magnetic field does not have any influence on the prope
of the vortices in electrically neutral superfluid systems. T
aim of this paper is to show that in superfluid systems s
jected by a magnetic field the vortices have a real electr
charge~the compensating charge of the opposite sign app
on the surface of the system!. In general case, the charge
the vortices is fractional. For the first time the fraction
charge of the vortices was predicted by Laughlin1 for the
two-dimensional~2D! electron gas in a quantized magne
field. Then it was established in Refs. 2 and 3 that in doub
layer electron systems at half filling of the lowest Land
levels in each layer the vortex should carry the charge eq
to 6e/2 ~here and belowe is the absolute value of the elec
tron charge!.

It is found that in any superfluid system in a magne
field the charge of the vortex is proportional to the polar
ability of the particles and inversely proportional to the
effective mass. For the superfluid phases of He isotopes
for the Bose gases of alkali metals, our estimates yield
even in strongest magnetic fields reachable now this ch
has an unobservable small value, but it can be of the orde
the electron charge in superfluid systems with pairing of s
tially separated electrons and holes.

The authors of Ref. 4 call the possibility of the electro
hole pair superfluidity in question based on the fact that
interband transitions fix the phase of the order parameter
result in a transition into a dielectric state. But it was est
lished in Refs. 5 and 6 that the exclusion of the electron-h
superfluidity does not take place in systems where spat
separated electrons and holes are coupled. In these sys
the interband transitions coincide with the interlayer on
and usually they are exponentially small. A superfluid st
of the pairs with spatially separated components has both
superfluid and superconducting features. A superfluid flow
such electron-hole pairs is accompanied with real super
rents flowing in opposite directions. Therefore, we will c
these systems the condenser superconductors.

A pairing of a conduction-band electron from one lay
with a valence-band hole from the other layer was cons
ered in Refs. 5 and 6. Then in a number of theoreti
papers,2,3,7–10a possibility of superfluidity of pairs compose
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from spatially separated electrons and holes belonging to
conducting band is shown. This possibility is realized
double-layer electron systems in a magnetic field norma
the layers for the case of the total filling factornT5n11n2

51. During almost ten years there were many efforts
observe the condenser superconductivity experimentally.11–15

Now it seems that these effort have been crowned w
success.16,17

Let us consider a bilayer system, where in one conduc
layer the carriers are electrons and in the other one the
riers are holes. The case of equal electronne and holenh

densities (ne5nh5n) is specified and it is assume the ele
tron effective massme is much smaller than the hole effec
tive mass mh ~in semiconductor heterostructuresme

50.067m0 , mh'0.4m0, where m0 is the bare electron
mass!. We are interested in behavior of the system subjec
by a strong, perpendicular to the layer, magnetic fieldB in
case when the inequalityaB

e@,B is satisfied. Here,aB
e

5\2«/mee
2 is the effective Bohr radius of the electron an

,B5(c\/eB)1/2 is the magnetic length. The similar inequa
ity for the effective Bohr radius of the hole (aB

h

5\2«/mhe2) is not required. The study is restricted to th
case of low densityn, when the filling factorn52p,B

2n
!1. In this case, electrons and holes are paired in the c
dinate space. Consequently, at low temperatures, the sy
behaves as a condensate of electron-hole pairs with the
of the pairs much smaller than the average distance betw
the pairs.

The properties of the condensate are principally dep
dent on the spectrum of the pairs. For the three-dimensio
case the spectrum of the electron-hole pair in a strong m
netic field was found many years ago by Gor’kov and Dz
aloshinskii in their seminal paper.18 For the 2D case, the
same problem was considered for the first time in Ref.
While the consideration18,19does not contain any assumptio
about the ratio between the massesme andmh , it is assumed
in these papers that two inequalitiesaB

e@,B andaB
h@,B are

satisfied. But the results of Refs. 18 and 19 become inap
cable for the case when at least one of these two inequal
is violated.20

We begin the consideration from the study of the eige
value problem for a single electron-hole pair and find t
effective mass of the pairM* as well as its electric polariz
ability a ~Sec. II!. Then, using the equation for the ord
©2003 The American Physical Society15-1
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parameter, the superfluid velocity of a gas of the pairs in
low-density limit and its dipole momentum as a function
electric and magnetic fields~Sec. III! is computed. Finally,
taking into account the dependence of the dipole momen
on the superfluid velocity, the value of the electric charge
a vortex is found~Sec. IV!.

II. ELECTRON-HOLE PAIR IN A MAGNETIC FIELD

The Schro¨edinger equation for the electron-hole pair h
the form

F 1

2me
S 2 i\“e1

e

c
AeD 2

1
1

2mh
S 2 i\“h2

e

c
AhD 2

1eE•~re2rh!2
e2

«Aure2rhu21d2GC~re ,rh!

5EC~re ,rh!, ~1!

whered is the interlayer distance. Equation~1! describes the
case when a perpendicular to the layer magnetic fieldB
5rotA and an electric fieldE, directed parallel to the layers
are applied to the system.

It was shown by Gor’kov and Dzyaloshinskii18 that the
operator

p̂52 i\“e2 i\“h1
e

c
~Ae2Ah!2

e

c
B3~re2rh! ~2!

plays the role of the operator of the momentum of t
electron-hole pair in a magnetic field. This operator co
mutes with Hamiltonian~1! and all its components commut
with each other. It allows to parameterize the solutions of
~1! by a c-number parameterp. The parameterp is the
eigenvalue of the operatorp̂. Based on this observation th
dependence of the energyE on the momentump can be
found.

It is convenient to formulate the problem using the rep
sentation for the wave functionC̃5UC with

U5expS ieA~R!•r

\c D . ~3!

Here,R5(mere1mhrh)/(me1mh) is the center-of-mass co
ordinate andr5re2rh is the relative coordinate. The adva
tage of this representation becomes clear under the obs
tion that the momentum operator in representation~3! has a
simple form21

p̂̃5Up̂U2152 i
]

]R
. ~4!

It follows from Eq. ~4! that in this representation the wav
function of the pair with the momentump reads as

C̃~R,r !5expS i p•R

\ D F̃p~r !. ~5!
21451
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Substituting Eq.~5! into the equationH̃C̃5EC̃, one obtains
the equation for the functionF̃p(r ). At p50 andE50, this
equation has the form

@Ĥ0~r !1Ĥ1~r !#F̃~r !5EF̃~r !. ~6!

Here, Ĥ0(r ) is the Hamiltonian for a free electron. In th
symmetric gaugeA5 1

2 B3r it equals to

Ĥ0~r !5
1

2me
S 2 i\“1

e

2c
B3r D 2

. ~7!

The HamiltonianH1(r ) reads as

H15
1

2mh
S 2 i\“2

e

2c
B3r D 2

2
e2

«Ar 21d2
. ~8!

The eigenfunctions of the operatorH0 are numbered by
the radialnr and the azimuthalm quantum numbers. For th
electron frozen in the lowest Landau levelnr50 andm>0
and the eigenfunctions have the form

F̃m5S 1

2m11pm!
D 1/2

e2 imw

,B
S r

,B
D m

expS 2
r 2

4,B
2 D . ~9!

In the case considered, the inequalities\ve@\vh and\ve

@e2/«,B ~equivalent tomh@me and aB
e@,B , correspond-

ingly! are satisfied. It allows to take into account the Ham
toniamH1(r ) as a perturbation. Atd!,B , the spectrum of
the pair obtained in the first order of the perturbation the
is

Em5
1

2
\ve1\vhS m1

1

2D2
e2

A2«,B

GS m1
1

2D
G~m11!

. ~10!

Result~10! is valid for an arbitrary ratio between\vh and
e2/«,B .

If the momentum of the pairp and the electric fieldE are
nonzero, the HamiltonianH̃ contains the additional term

H̃p,E5
e

Mc
~p3B!•r1eE•r1

upu2

2M
, ~11!

whereM5me1mh'mh is the mass of the pair. The terms
Eq. ~11! linear inr do not contribute to the energy of the pa
in the first order of the perturbation theory. In the seco
order of the perturbation theory, these terms yield the corr
tion to the energy that depends on the momentum of the
p and the electric fieldE

DE5
upu2

2mh
2

U^F̃1ueS p3B

mhc
1ED •r uF̃0&U2

E12E0

5
upu2

2M*
1

MB

M*
p•u2

1

2

MB

M*
mhu2. ~12!
5-2
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Here,u5c(E3B)/B2 is the drift velocity of the pair in the
crossed electric~parallel to the layers! and magnetic~perpen-
dicular to the layers! fields. The mass

MB5
4

A2p

«\2

e2,B

5
4

A2p
mh

aB
h

,B
, ~13!

the effective mass of the pair is

M* 5MB1mh . ~14!

I emphasize that the valueMB depends on the magnetic fie
and does not depend on the massesme andmh .

It is useful to compare the expression for the effect
massM* ~14! with Lerner and Lozovik expression19 for the
massM

*
LL5MB obtained by the Gor’kov and Dzyaloshinsk

method.18 When mh@me , the Gor’kov and Dzyaloshinski
method is applicable ifaB

h@,B and just the first-order cor
rection in the perturbation theory using the parameter,B /aB

h

yields M* 5M
*
LL ~see Appendix A!. The second-order cor

rection yieldsM* 5MB1mh . But in the perturbation theory
mh /MB;,B /aB

h!1 and the second-order correction can
neglected. It is not the case in my approach, where the r
,B /aB

h is assumed to be arbitrary one and, as a conseque
the ratiomh /MB is arbitrary one as well. More arguments o
the validity of Eq. ~14! at arbitraryMB and mh are given
below.

Introducing the pair polarizability

a~B!5MB

c2

B2
5

4«

A2p
,B

3 , ~15!

one can rewrite the correctionDE in the form

DE5
1

2M*
S p1a~B!

E3B

c D 2

2
a~B!

2
E2. ~16!

Analogous expression was obtained in Ref. 22 for an elec
cally neutral atom in crossed fields for the case of sm
magnetic fields. In that case, Eq.~16! contains the zero
magnetic-field polarizability of the atoma(0) instead of
a(B) and the mass of the atomM instead of the mass of th
pair M* .

III. THE CONDENSATE OF THE ELECTRON-HOLE
PAIRS IN CROSSED FIELDS

Replacing the momentump with the operator2 i\“, one
obtains from Eq.~16! the Hamiltonian for the electron-hol
pairs. In the low-density limit, when the size of the pair
much smaller than the distance between the pairs and
exchange effects are inessential, the pairs can be consid
as true bosons. At low temperatures, the rarefied Bose
should form a superfluid state. The superfluid phase can
described by the order parameterC. It satisfies the equation

i\
]C

]t
5

1

2M*
S 2 i\“1a~B!

E3B

c D 2

C2
a~B!

2
E2C

1guCu2C. ~17!
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The last term on the right-hand side of Eq.~17! describes the
interaction between the pairs. One can show that in the li
d!,B , the interaction constant is equal tog
5(p/2)3/2e2d2/«,B . The vanishing of the interaction con
stant atd50 is a consequence of the exact compensation
the Coulomb forces between the pairs~compare with Ref.
23!. Presenting the order parameter in the formC
5uCueiw(r ), one obtains from Eq.~17! the velocity of the
superfluid component

vs5
1

M*
S \“w1a~B!

E3B

c D . ~18!

To obtain the dipole momentum of the unit areaP one
takes into account that the r.h.s. of Eq.~17! is the variational
derivative overC* (r ) of the Ginzburg-Landau-type func
tional of the energy of a superconductor. The derivative
that functional over the electric fieldE taken with the oppo-
site sign isP,

P5a~B!F mh

M*
E1

\

M* c
“w3BG uCu2. ~19!

Expression~19! can be rewritten in the form

P5a~B!S E1
1

c
vs3BD uCu2. ~20!

This result means that not only the electric fieldE, but
also the Lorentz force polarizes the pair, acting in oppos
directions on the positive and negative charges of the p
One should note that the expression forP ~20! is valid within
a linear accuracy invs /c.

Let us give the proof of the mutual consistence of Eq.~14!
for the effective mass of the pairM* and Eq.~15! for the
polarizability of the paira(B). It follows from Eqs.~1! and
~2! that

p̂5M v̂2
e

c
B3~re2rh! ~21!

~for the first time expression~21! was given by Gor’kov
Dzyaloshinskii18!. Here, v̂5(mev̂e1mhv̂h)/(me1mh)—the
operator of the average velocity of the pair. Using Eq.~21!
one can find the density of the momentum of the superfl
medium of the electron-hole pairs

P5Mnvs1B3P/c, ~22!

wheren is the density of the medium andP5ne(rh2re) is
density the dipole momentum of the medium. The same
sult was obtained in Ref. 24 using the laws of transformat
of the energy and the momentum of the medium under tr
sition from one inertial system of reference into another o

Let the electric fieldE50. Then, it follows from Eqs.
~18! and~20! that vsn5P/M* andP5an(vs3B)/c, corre-
spondingly. Substituting these expressions into Eq.~22! one
can easily find that atPÞ0 Eq. ~22! is valid if
5-3
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M* 5M1a~B!
B2

c2
. ~23!

One should note that no assumptions about the value o
magnetic field was done under the derivation of result~23!.
At strong magnetic field (aB

e@,B) the polarizabilitya(B)
5MBc2/B2 and, as it follows from Eq.~23!, M* 5M1MB
.mh1MB , which is consistent with Eq.~14!.

IV. THE CHARGE OF THE VORTEX

The polarization chargerpol can be found by taking the
two-dimensional divergence of both sides of Eq.~19!. To
calculate the derivatives on the r.h.s. of Eq.~19!, one takes
into account that

curlz“w52p(
i

d~r2r i !ni , ~24!

whereni561 and the upper~low! sign corresponds to th
vortices rotating in the counter-clockwise~clockwise! direc-
tion, and the summation is over the vertex centers. Be
this one omits the terms containing the quantity“uCu. We
are not interested here in the structure of the vortex core~It
was considered as the mathematical point!. At small fieldsE,
the terms containing“uCu are small out of the core. It al
lows to replaceuCu2 with the pair densityn. Finally, one
obtains

rpol~r !52a~B!nF mh

M*
div2E1(

i
2p

\B

M* c
nid~r2r i !G .

~25!

Thus, in a superfluid system subjected by a magnetic fi
the polarization charge emerges when the medium is po
ized by the electric field with a nonzero divergence or
quantized vortices exist in the system. It also follows fro
Eq. ~25! that the charge of thei th vortex is equal to the
coefficient ofd(r2r i), namely,

q562p
\B

M* c
a~B!n. ~26!

Equation~26! yields the vortex charge for the electron-ho
bilayer systems in an arbitrary magnetic fields. The sa
result is valid for the electron-electron double-layer syst
with the substitutionM* 5MB12me .

In weak magnetic fields (,B@aB
e), the polarizabilitya

5g(aB
e)3 with g;1 and the effective massM* .mh1me

.mh . Then the vortex charge is equal to

q56
2pg

« S aB
e

,B
D 2

aB
eaB

hne. ~27!

In high magnetic fields (aB
e@,B*aB

h) using Eq. ~15! for
a(B), one obtains

q562p,B
2n

MB

M*
e56

MB

M*
ne. ~28!
21451
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Finally, in ultrahigh fields (aB
h@,B) the effective massM*

5MB(11A2p,B/4aB
h)→MB and the vortex charge obey

the universal relationq56ne.
Let us present here some estimates. In the magnetic

B510 T, the magnetic length,B'80 Å. In GaAs heteros-
tuctures with the dielectric constant«513, the magnetic
mass is very small (MB'10228 g). Due to the smallness o
this quantity, the vortex charge can be the of order of
electron charge only in superfluid systems with the bos
mass of the order of the electron massm0. For the electron-
hole bilayer system atmh50.4m0 and me50.067m0, one
obtains MB /M* '0.2 and the vortex charge isq'0.2ne.
For the electron-electron double-layer system with the sa
me , one finds MB /M* '0.5 and the vortex chargeq
'0.5ne. The derivation ofq from the universal value is
connected with the ratio,B /aB

e'0.8 and the strong inequal
ity ,B!aB

E does not satisfy in this case.
The number of the vortices and their spatial distributi

depends on the electric fieldE. Integrating both sides of Eq
~18! along a certain contour, one finds

M* R vsdl52p\Nv2
a~B!

c
B•R E3dl. ~29!

Here,Nv is the number of the vortices inside the contour~the
vortices of the same vorticity were considered!. It follows
from Eq. ~29! that the velocityvs decreases when the vort
ces emerge—it yields a gain in the kinetic energy of t
system. When the vortex distribution is considered as a c
tinuous one, the vortex densitynv(r ) can be introduced and

Nv5E nv~r !dr . ~30!

Putting the r.h.s. of Eq.~29! to zero, one finds from Eqs.~29!
and ~30! the relation

nv~r !5
a~B!B

2p\c
div2E. ~31!

A macroscopic number of the vortices with equal vort
ites can also emerge in the absence of the electric field.
realized when besides the uniform fieldBz there is an extra
field Bt with div2BtÞ0 (Bt is parallel to the plane of the
structure!. Indeed, one can show~compare with Ref. 21! that
in the field Bt the energy of the pair of spatially separat
electron and hole is equal to

DE5
1

2M*
S p1

ed

c
ẑ3BtD 2

. ~32!

One can see that energy~32! differs from the expressions
~16! only by that the induced dipole momentuma(B)E is
replaced with the spontaneous momentumedẑ. Therefore,
the dipole momentum of the unit area can be obtained fr
Eq. ~20! replacing the induced momentum with the spon
neous one. Then, taking the divergence ofP, one finds
5-4
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rpol~r !52
a~B!Bn

M* c Fed

c
div2Bt1(

i
2p\nid~r2r i !G .

~33!

It follows from this expression that in this case the vort
charge is equal to the value found above and in the cont
ous limit the vortex density isnv(r )5(ed/2p\c)div2Bt .

At nonzero temperatures, the charged vortices will eme
in condenser superconductors in a fluctuation way, in si
larity with the same phenomena in a thin He-II film. Th
circumstance that the vortices are charged does not influ
in the first approximation on the thermodynamic features
the system. It is connected with that the Coulomb correct
to the interaction between the vortices falls down mu
faster~by the power law! than the bare logarithmic interac
tion between them. The last one, as is well known, result
a Kosterlitz-Thouless transition. Since the sign of the vor
charge is in one to one correspondence with the sign of
vorticity, at temperatures below the Kosterlitz-Thouless te
perature the vortex-antivortex pairs should be electrica
neutral. At temperature above the Kosterlitz-Thouless
vortices and antivortices decouple, and free electrical cha
appear. It reveals itself in a principal change of the condu
ing properties of the system under the phase transition.
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APPENDIX

Let us show how Eq.~1! can be solved by the Gor’kov
and Dzyaloshinskii method.18 In this method, the wave func
tion C(r1 ,r2) is sought in the form

C~r1 ,r2!5expF i

\
RS p1

e

c
B3r D GexpS igrp

2\ DF~r2r0!,

~A1!

whereg5(mh2me)/(mh1me),

r05S B

B
3pD ,B

2 1

\
. ~A2!

Substituting Eq.~A1! into the Schro¨edinger equation~1!
taken in the symmetric gauge, one arrives to the follow
equation for the function of relative motionF(r ):

F2
\2

2m
n r1

ie\

2mc
g~B3r !“ r1

e2

8mc2
B2r 2

2
e2

«~ ur2r0u2u1d2!1/2GF~r !5EF~r !, ~A3!

wherem5memh /(me1mh) is the reduced mass.
In zero-order approximation with respect to the intera

tion the wave function~A3! coincides with the functionF̃m
~9! and the energy is equal to19
21451
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E nm
(0)5\

eB

mc Fn1
1

2
~11umu2gm!G . ~A4!

In the casemh@me considered here the electron cyclotro
frequencyve5eB/mec considerably exceeds the hole cycl
tron frequencyvh5eB/mhc. Therefore, we will further con-
sider then50 andm.0 case when the zero-order energy
equal to

E m
(0)5

\ve

2
1\vhS m1

1

2D . ~A5!

The distance between the unperturbed energy levels is\vh ,
while the Coulomb energy~at small momentap) is of the
order of e2/«,B . Therefore, if \vh@e2/«,B ~which is
equivalent toaB

h@,B) the Coulomb interaction term in Eq
~A3! can be treated as a perturbation. The first-order cor
tion to the energy of the pair in the ground statem50 is

E 0
(1)52^F̃0u

e2

«~ ur2r0u21d2!1/2
uF̃0&

52
e2

2p,B
2E d2r

e2r 2/2,B
2

Aur2r0u21d2
. ~A6!

Puttingr 050 in Eq.~A6!, one finds the bound energy of th
pair as a function of,B andd ~see Ref. 25!

E 0
(1)~d!52S p

2 D 1/2 e2

«,B
expS d2

2,B
2 D F12FS d2

2,B
2 D G ,

~A7!

where

F~x!5
2

Ap
E

0

x

exp~2t2!dt.

One should note that the bound energy does not depen
the electron and hole masses. Further on, we will be int
ested in the case ofd!,B . Putting in Eq.~A6! d50, one
finds19

E 0
(1)~p!52S p

2 D 1/2 e2

«,B
I0S upu2,B

2

4\2 D expS 2
upu2,B

2

4\2 D .

~A8!

It follows from Eq. ~A8! that at small momenta
(upu!\/,B)

E 0
(1)~p!5E 0

(1)~0!1
upu2

2MB
[e01

upu2

2MB
, ~A9!

wheree052(p/2)1/2e2/«,B and MB is determined by Eq.
~13!. Thus, in that approximation the effective mass of t
pair does not depend onme andmh . The situation is changed
if one takes into account the higher-orders correction ter
In the second order of the perturbation theory the correc
to the energy is equal to
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E 0
(2)~p!5

uV10u2

E 0
(0)2E 1

(0)
, ~A10!

where the matrix elementV10 at d50 reads as

V1052
1

2A2p

e2

,B
3E d2r

e2 iw

«ur2r0u
r expS 2

r 2

2,B
2 D .

~A11!

At small momenta the integral in Eq.~A11! can be easily
evaluated and

V1052
Ape2

4

upu
\

.

Substituting this expression into Eq.~A10!, one obtains pro-
portional toupu2 correction to the energy:

E 0
(2)~p!52

upu2

\vh

pe4

16\2
. ~A12!

This correction results in a renormalization of the effect
mass of the pair. Collecting theupu2 depending terms inE 0

(1)

~A9! andE 0
(2) ~A12!, one obtains

upu2

2MB
2

pe2

16\2\vh

upu2[
upu2

2M*
. ~A13!

It follows from Eq. ~A13! that

M* 5MBS 12
1

2
Ap

2

,B

aB
h D 21

. ~A14!

Expanding Eq.~A14! in series with respect to the paramet
,B /aB

h!1 and taking into account the linear in,B /aB
h terms,

one finds the following expression for the effective mass
the pair:
.

.

e

21451
f

M* 5MB1mh . ~A15!

This result coincides with Eq.~14!. It seems that in the
Gor’kov and Dzyaloshinskii method, Eq.~A15! is valid only
with a linear in,B /aB

h accuracy, because, as it follows fro
Eq. ~A14!, the higher order in,B /aB

h terms may modify the
result obtained. Nevertheless, one can show that an acc
accounting of all terms of the order of (,B /aB

h)2 leaves re-
lation ~A15! unchanged.

The third-order correction to the energy is equal to:26

E 0
(3)5

V01V11V10

\2v10
2

2V00

uV10u2

\2v10
2

, ~A16!

where \v105E 1
(0)2E 0

(0)5\vh . One can easily find tha
V115V00/25e0/2. Therefore, the third-order correction ter
is reduced to

E 0
(3)52

e0

2

uV10u2

\2v10
2

. ~A17!

Using the expression foruV10u2 found above and adding en
ergy ~A17! to expression~A13!, one can find the renormal
ized value ofM* . To do this one can expand Eq.~A14! up
to the terms of the order of (,B /aB

h)2 and takes into accoun
the same order terms emerged from correction~A17!. One
can see that in this expansion the terms of the order
(,B /aB

h)2 compensate each other exactly and relation~A15!
survives. Based on this result and taking into account t
relation ~A15! can be obtained by another method witho
implying the smallness ofuS jB /aB

h ~see the body of the pa
per! one can conclude that in the Gor’kov and Dzyalosh
skii method expression~A15! should be valid in all orders o
the perturbation theory.
nd
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