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Temperature-doping phase diagram of layered superconductors
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The superconducting properties of a layered system are analyzed for the cases of zero and nonzero angular
momenta of the pairs. The effective thermodynamic potential for the quasi-two-dimensigmabdel for the
gradients of the phase of the order parameter is derived from the microscopic superconducting Hamiltonian.
The dependence of the superconducting critical temperdigren doping, or carrier density, is studied at
different values of coupling and interlayer hopping. It is shown that the critical tempefBiwkthe layered
system can be lower than the critical temperature of the two-dimensional Berezinskii-Kosterlitz-Thouless
transitionTgkt at some values of the model parameters, contrary to the case in which the paramete¥sYof the
model do not depend on the microscopic Hamiltonian parameters.
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[. INTRODUCTION in 1D and 2D systems with an order parameter that has a
continuous symmetryTherefore, to obtain a real phase tran-
Theoretical description of the doping dependence of th&ition with long-range order and a homogeneous order pa-
superconducting properties of high-temperature supercof@meter one needs to take into account the interlayer cou-
ductors (HTSCS is one of the most difficult problems of Pling t,. Layered superconductivity is much more

modern condensed-mater physics. Generlly speaking, tfETPI1Ed Since e possiilty of meraye fon and .
complicated crystal structure of these materials, low- y P P 9

dimensional (quasi-two-dimensional transport properties, temperaturesTy and T, must be analyzed. It was already

h rconducting order-tarameter amisofr ron showrf*~*that there is only one phase transition in such a
€ superconducting order-parameter anisotropy, Song Cokygiey with the critical temperatur®, and T,<T.<T;

relations, and other properties result in the fact that manyogr  The critical temperaturd, is equal toT, , or, what
(2 C v 1

yngaSrsélaf.ter t?e 3ISCCt)Ve;y ﬂ:e microscopic mechanism Ofs equivalent, to the temperatufgy of the 2D BKT phase
S IS not understood yet. transition att,=0. Then, this temperature value increases to

During the last years many models which take into aCyp o valueT; with interlayer hoppingt, growth. In Refs,

count some of the cuprate properties have _been prop_oseg —25 the phase order-parameter effective Hamiltonian was
The doping dependence of the superconducting properties died in the presence of an external magnetic field and this
T=0 in thes-wave pairing channel was studied for the three—moolel was mapped on the quasi-2BY model. The

d{:212E;'Bncﬂfg:g?fﬁe'gDRi;SS'elt_rﬁsang’b?:;:'Sajéirzug;gh:txY—model parameterd andJ, were considered as phenom-
q ' prot S enological constants. It was shown thB§x= /2, and
T=0 (when a long-range superconducting order is still pos-

sible in a 2D systefy), for the case of local attraction, in Tr=8Tgxr.

: In this paper we derive the effectivEY Hamiltonian
Refs. 1,2, and 5, and for the phonon-medlateo_l _nYo((ﬂei a from the initial Hamiltonian for the layered system of attract-
review, see Ref. 8, for exampleThe d-wave pairing along

with the swave one aff=0 for the case of the extended "9 fermions. In this case the parameté_ﬁsand Jl_depend .
Hubbard model with next-nearest-neighbor attraction was n_the bare parameters of charge-carrier den_sny, coupling,
air angular momentum, temperature, and the interlayer hop-

studied in Refs. 9 and 10 and for a 2D continuum model withpin As is shown below. this leads to the nontrivial depen-
short-range attraction and electron correlations, in Ref. 11P'"9- ' b

The properties of a model with doping-dependent correlationdence of the superconduc_tmg C”.t'cal tempera_fljgeon the
. . model parameters. In particular, in general, this temperature
length were studied recently in Ref. 12.

g - is different from the critical temperature of the 2D BKT tran-
The 2D swave pairing at finite temperatures, when thesition andT.<T at some values of the model parameters
Berezinskii-Kosterlitz-Thoules¢BKT) transition can take ¢~ BKT P '

place in a superconducting system, was considered in Refgpntrary to the results for the case in which paramedgrs

13 and 14 for the case of the model with local attraction an hd J.i d(_)nt depend on the pargmeters of the microscopic
in Refs. 15 and 16 for the case of electron-phonon pairing. amlltonlzggz,sand when the relation,<Tgkr always holds
The problem ofsswave superconductivity with a fluctuating atJ, >0.

order-parameter phase in the 3D case was analyzed in Refs.
14 and 17. The effective action for a slowly fluctuating
d-wave superconducting order parameter for the 2D case was
also analyzed in Refs. 18,19,21,20. The model Hamiltonian for a layered superconducting

However, it is known that long-range order is impossiblesystem can be written as

Il. THE MODEL AND THE THERMODYNAMIC
POTENTIAL
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\Y
- %4'2'[2—# bi(T,1)

H(7)=2>, szrwf‘,(f,r)
7
_011J2 fdzr';bj T Tr)ltbjzo'(Tr)
1
—EUZJ_ dzrldzrzszTU(r,rz)zp;r;(r,rl)V(rl,rz)
XY AT ) P6(7,72), N

where i;,(7,r) is a Fermi field with massn and spino

=1 and|, 7is an imaginary time, ang,r are layer number

and intralayer  coordinate, correspondingly;tjlj2

=tz(5]-2'j1+1+ 5,—2,1-1,1) corresponds to the nearest inter-
plane hopping. The free fermion dispersion relation in mo-

mentum space has the following form:

2

f(krkz):2k_m+2tz_2tzcoiakz)_,u: 2

wherek is a 2D wave vector with a bandwidilV, andk, is

the momentum in the interlayér) direction (it changes in

the interval[ 0,27/a], wherea is the interlayer spacing u

is the chemical potential of the system. In E). interaction
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where

§(¢*,w,¢*,¢>=J dr >, dzrlf d?r,

1.2

|¢jl(T:rlar2)|2
7 Ol V(ry,ra)

>

1
— Ty %4—21:2_,&

jlqu, (7, rl)|:
XWj (,r)8(r1—r3)
Jlquf (7, r1)7'2 j (Tar2)5(rl_r2)

1112¢11(Tr1ar2)‘1’ (rr) Wy (7.r2)

51112\I,n(7 r1)7+“P]1(T r2)¢]l(7 rlvrz)]

)
wherer, =3 (7,* 7y) are the Pauli matrices.

In order to study the fluctuations of the order-parameter
phase and to map the corresponding superconducting effec-

V(rq,r,) describes a nonretarded in-plane fermion attractiontive action on the quasi-2IXY model, it is convenient to

The partition function of the system is

zzf Dy'Dye S ©)

with the action

B
:j dr
0 a,)

> | dryl(nn)a g (n ) +H(D) | (@)

To study the superconducting properties of the system
the Hubbard-

with an arbitrary pairing symmetry
Stratonovich transformation with bilocal fields;(7,rq,r>)
and ¢/(7,r4,r,) can be applied®

eXFil//m(Tarz)'l’jl(T,rl)V(rlarz)'/fjl(Tarl)%/fn(T:rz)]

=f D¢TD¢exp{—foﬁdT; fdzrldzrz

¢( e )2
AL s o

_l//jTT(T,F1)¢F¢(T,r2)¢j(7',rl,rZ)H, (5)
Let us introduce the Nambu spinor:

ij(Tlr)
i (7.r)

In this case the partition function can be written as

\I,j(’T,r):

:|1 \IrJT(’T,r):[lﬂJTT(T,r),lﬂjl(T,r)].

z=f Dy DyD @D pe S ws"0), 6)

make decomposition af,, ;(7,r) z,/;,, j(7,r) on their modulus
Xo,j(7,r) and phased;(r,r), which as is shown below is
proportional to the order—parameter phase:

Yo j(T1) =X (7,1)E 402,

lp;j(’r!r):x;j(ﬂr)e

In this case the Nambu operators are

—iej(T,r)/Zl
\I,J( T,r) — ei 72‘91(”)/2Yj(7,r),
Vi(rr)=Y](rre 0, ®

whereY(7,r) andeT(r,r) are “neutral” Nambu spinor op-
erators:

XjT(Tir)
X} (7.1)

The order parameter can be expressed as

Yj(T,r):

:|1 YJT(T,I'):[XJTT(T,r),X”(T,r)].

Gi(T.11,12)=A(T,rq,r5)eli(mr1r2)

¢}L(Tlr1!r2):A(T!rlrrZ)e_iaj(T’rl'rz)y

where we assume that the modulus of the order parameter
A(r,rq,r,) does not depend on the layer index. It is also
natural to assume that

¢i(7,r1,12)=A(7,r)e%i("R), 9

where r=r,;—r, and R=(r,+r,)/2 are the relative and
center-of-mass coordinates, correspondifgh. The rela-
tion (9) means that the dynamics of the Cooper pairs is de-
scribed by the order-parameter modulus, the symmetry of
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which depends, generally speaking, on the relative pair co- gjij (74,72,F1,F5)
ordinate. The motion of the superconducting condensate is vz

described by the order-parameter phase, which changes ={711,r1,j1|2F]72,12,]2)
slowly with the distance and can be described by the center-
of-mass coordinate. In this case it is easy to obtain == 0j,,j,+10(r1=r3) 6(71— 72)
Gl (7,11, 1)V (7r) 7 i(7,1) X1t (L—expy{—i7 0] (71,r1) = 0,(72,12).1}).
+W (7 ) T W (1) (711, T5) The potential term of the thermodynamic potential is
=A(TD)Y](1,r) 7Y (7.12). (10

B NA(7,r)?
ont(A):J’O dTJ dzl’—v((:)r) —Tring 1t

and the kinetic term can be expanded in powers of the self-

Substituting Eqs(8)—(10) into the expression for the parti-
tion function (6) it is easy to get

z=f ADAD geFHA.0), energy>
o1
where the thermodynamic potential is BQyin(A,0)=Tr nzl H(QE)”. (11
B NA(7,r)? B
BQ(A,&)zI de dr——————Tr InG™1,
0 V(r) Ill. THE BKT TRANSITION IN THE 2D CASE

whereN is number of the layers. The Nambu spinor Green Let us begin with the case in which there is no interplane

function G can be expressed as coupling: t,=0. In this case the behavior in each plane is
independent and the system undergoes the BKT transition.
G =g 1-3, Let us assume that the order-parameter phase fluctuations are

small. In this case to get the thermodynamic potential up to
the second order iV 6 we neglect all the terms in EQGR0),
exceptn=1,2. Also we neglect the time dependencedof
and the second derivatize?d. The effective potential in this
case has the following structutsee, for example Ref.)8

whereG ! is a part of the inverse Green’s function which
does not depend on the order-parameter phase:

,1,2(7'1,7'2'r1ar2 =(71.71,01lG 2.1 2.02)

=6j,j,0(r1=r2) (71— 72)

J
v Q(A,&)zﬂpot(A)+§Hf d2r(V )2, (12)
X|—d, —7| — =242
In) TZ( om AT where
_5jzvj1t15(r1_r2)5(7-1_TZ)TZtZ ] _f dzkdkz nf(k)
+5j1j27xA(Tl_7'2yrl_r2)- H (27)% | 4m
The self-energy. is the sum of the parts which come from 1 1 k2 13
the in-plane and interplane order-parameter phase interac- - 2T JEK 2+ A (K)2 '
tlonSEFandEL, respectively, 16m* T cosH[ V&(k)*+A(k)*/2T]
soslist and the momentum distribution function(k) is
VEK)?+A(k)? k
where nf(k)=1—tan}‘{ E(k)=+A(k) &(k) .
2T Ek)*+A (k)
1112(71172 ri,rp) (14)
=<1-1,r1,j1|2”|7-2,r2,j2) The free fermion spectrung(k) in Egs. (13) and (14) is
defined by Eq(2) att,=0, in this case.
0j1i, (11— r2) 8(11 = 72) The minimization of the effective potentidl2) at V¢
i =0 with respect to the superconducting order parameter
> 371911(71-&) V gjl(q-l,rl) A(k) leads to the standard gap equation
7 , i A ‘J d*kdk, Ak r{mk)%m)z}
+%[Vrl Jl(Tlvrl)] rl Jl(Tlvrl)V } (p)_ 2 )3 2 g(k)2+A(k)2 2T
and XV(p,k). (15
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FIG. 1. Phase diagram of the 2D system in different pairing FIG. 2. The doping dependence Bfxt at|#0 and different
channels for the coupling parametgr=1. The solid lines arf , coupling parametersG=0.5 (dash-dotted ling G=1.0 (dotted
(the upper curveand Tgyt for the sswave pairing channel. The line), and G=2.0 (dashed ling The solid line is the function
dashed lines are the corresponding curves for the ca€e Here  Tgxr=¢/8.
and below all quantities are normalized on the 2D free-electron
bandwidthW. follows from the fact that thé dependence of the integral is

only as co¥l¢) and from the identity

The minimization of the effective potential ¥t¢=0 with

respect to the chemical potentiél) ./ Su= —vn; (vis the 27 do 2 (7 de 2
volume of the systeingives the equation which connegis fo (Z_W)F[CO (o)1= o EF[CO (@],
and the particle density; in the system, or the 2D Fermi
energyeg= mn;/m: whereF[cog(l¢)] is an arbitrary function without singulari-
ties, andl is an arbitrary nonzero integer number. Therefore
d?kdk, it is necessary to analyze the solutions withO andl=1.
f:f T);;nf(k)’ (16) The phase diagram of the system in the 2D case is pre-

sented in Fig. 1. The temperatufg is much higher in the

where the momentum distribution function(k) is defined channel. HoweverTgyr=¢er/8 in both channels at a small

in Eq. (14). carrier density. This result can be easily obtained analytically
To search for the solutions with different angular mo-from Eqgs.(13) and (18).

mental of the pairs, we assume that the interaction potential The doping dependence @t in the cases of=0 and

has the following form: I #0 is presented in Figs. 2 and 3, correspondingly. The re-
lation Tgxt=er/8 holds up to higher values of the carrier
V(p,k) =V cogl ¢p)cogl ¢y). (170 density in thes channel at a fixed value of coupling. This

Below we use the dimensionless coupling parameger means that the local pairs are bound tighter in this case.

=mV/(2) for the numerical calculations.
In the case of the interactiqii7) the gap depends only on V. TRANSITION IN THE CASE OF COUPLED LAYERS

the momentum direction Let us consider a system of coupled layers. The self-

A(p)=A, coglg.) energy, proportional to the interlayer coupling, can be written
P as
whereA, is the amplitude of the superconducting gap in the
case of the pair angular momentum equal.t®he solution St=tr, 33y,

of the gap equation together with that of the number equation h
at A,=0 give the critical temperature of the mean-field su-"/"€r¢
perconducting transitio‘rﬁAETQ"F on the charge-carrier den-

sity n;. The solution of the equation 0.04 g=(1>-g -------------
- 0.0 { [G=20
T= EJ”(A|,M,T) (18 c
= 0.02
together with those of the gap equation and the number equa-
tion give the dependence of the critical temperature of the 0.01
BKT transition on the charge-carrier density. Equation
(18) is obtained by mapping Eq12) on the corresponding 0 . .
thermodynamic potential of the 2D sp¥lY model. 0 ot 02 0.3
As it follows from the system of Eq$15), (16), and(18), F
the solution forT, and Tgkt do not depend o whenl| FIG. 3. The same as in Fig. 2 for the cdse0. The lines for

# 0 for the case of the simple interaction potenief). This  G=1.0 and forG=2.0 practically coincide witil g1=€e¢/8.
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gij j (71, 72,0 1,F2) =(71, 1 1.} 1|25 72,72, 2) More precisely, the_following expression for the effective
vz free energy was considered:

==0j,,j,210(r1=r2)6(11—73) 1
F= —f dzrdz| (VXA)?

xcog 6 (71,r1) = 0; (72,12)], 8w
EJ_ _ H |2L| H 1 d)o 2
2j1j2(7'117'21r11r2)_<Tlarlel 2l72,r2,]2) +)\—2 EVaj(r)—A(r,z) 8(z—jd)
e |
=0j,,j,+10(r1—r2)6(11— 1) ] S
z an
i o, _p — —[d? cos6;(r)—6,_ r——J A,(r,z)dZ
Xs|r{0J1(Tl,rl) 0]2(1'2,r2):|. gSJ { J( ) j l( ) d)O (i-1)d Z( )
Similarly to the 2D case, we assume that the phase of the
order parameter changes slowly in the interlayer direction. —E.>, sz(f), (22
j.r

Therefore, the thermodynamic potential can be calculated up

to second order iné;— 6;-1): whereA(r,z) is the vector potentialg,=hc/2e is the flux

2 guantum,E. is the loss of the condensation energy in a vol-
O =t,T Tr(gTzzi)ﬂLEZT TrH(GS5G35). (19  ume &d, &, is the in-plane correlqtion Ie_ngthjo is th_e
thickness of each layer, ard{>d,) is the interlayer dis-
tance. The fields;(r) describes vorticity of the lattice,
sj(r)=1 if the vortex is present at the point, as(r)=0,
otherwise. The length scale, is connected with the London
in-plane penetration length, as )\e:)\f/do. It was shown
by a renormalization-group stutfy’° that in a physical case
Ji \eS>dg the self-consistent equation that describes the depen-
Qin=7 > f d?r(V 6;)2+3,> [1—cog 6;— 6;_1)]. dence of the critical temperatufig, on the free-energy pa-
! J rameters22) has the form

The terms proportional t&/3* and>13; are zero due to
reflection symmetry in the direction.

To map the system on the quasi-2OY model with
nearest-neighbor interaction we need to obtain

(20
This dependence comes from the first term in B). The T Ect(7/8)In(Tc/J;)] 23
second term in Eq.(19) is proportional to sing € EgtrIn(T /I,

— 6;+1)Sin(6,— 6;+1), which is equivalent to theXY model ) 5 . _ N
with next-nearest-neighbor and next-next-nearest-neighbd¥here 7= ¢o/4me” is connected with the BKT transition
interactions. Therefore we neglect this term since it is of demperature as=8Tgr. . _

higher order (-t2) on the interlayer hopping with respect to ~ 1he comparison of expressioii82) and (20), gives the
the first term(which is ~t,). However, if the coupling, is next self-consistent equation for the critical temperaiiye
not small this term can lead to important physical conseWhich follows from Eq.(23):

quences(see, for example, an analysis for the 2D éise Eo+ (m)/2)In(To13,)

Thus, the parametel, is ~
i T AT e X amd)in(T.i3,) @9
2
—t f d°kdk, ni(k)cogak,). (22) where the in-plane correlation leng#y is absorbed in the
‘o 3 ‘ parameted, [i.e., t,(a/&)%—t,]. The parameteE, actually

should be renormalized by including the influence of the

Now we have obtained the kinetic part of the thermody-interlayer coupling on the vortex systeémlt is considered
namic potential(),;, in the case of the slowly fluctuating here as a model parameter, which should be found experi-
phase of the order parameter. This function is given by Egmentally, in particular, its doping dependence should be
(20), where the parameteds andJ, are given by Eqs(13)  taken into account. For calculation we use the valie
and(21). Similarly to Eq.(21), an additional integration over =0.01W (for estimation of E. based on an amplitude-
k, must be performed in Eq13). dependent Ginzburg-Landau theory, see, for example, Ref.

The effective action19) was studied in Refs. 22-25 in 29).
the case in which the parametéysandJ, where considered It is interesting to note that in the limit of very small
independent of the fermion Hamiltonian parameters. It wagarrier densities, whedy=ex— 0, the analytical solution for
showrf® that there is only one phase transition in such aT, can be obtained to b =4mJj=eg. This is different
system atT., which is bigger than the temperature of the from the one-layer case wheh,=Tgcr=€(/8, indepen-
BKT transition in the case of noncoupled layefgxr — dently of the pair angular momentumHowever, the region
=(m/2)J;. In the case of small coupling.=Tgkr and  of extremely low carrier densities is not interesting from a
whent, is increasing to the interplane hopping vallg,is  physical point of view.
approaching the valu€Tgkr=4mJ=8Tgxr=T; of the To find the critical temperatur€, one needs to solve the
fluxon transition, when interlayer order starts to take place.system of Egs.(15), (16), and (24) with functions
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FIG. 4. The doping dependence Bf of the layered system in

: ] ; FIG. 5. The same as in Fig. 4 for the cdse0.
the casel+#0 at different values of interlayer hopping ar@l

=1.0E.=0.01. The solid line is the corresponding 2D temperature V. CONCLUSIONS
Tgkt. The inset is the interlayer hopping dependencd ofit G . .
=BlKTandeF=0.05. Y pping dep o To summarize, the doping dependence of the supercon-

ducting critical temperature of layered superconductors on

3)(1,T,A(T)) and J,(u,T,A(T)) defined in Eqs(13) and the charge-carrier density has been studied in cases of differ-
(21). The numerical solutions show that<Tgxr at small ent a_ngular momenta of the pair,scoup_li_ng, and interla_yer
carrier densities in the case of large values of interlayer hop?©PPINg. It has been shown that the critical temperalyres
ping t, and not very strong couplinG (Fig. 4). This means smaller then the 2D critical temperatufgy at some values
that the dependence of the parameggrandJ, on coupling, of_ the model parameters, contrary to that of ¥ model
carrier density, and temperature leads to the nontrivial relaith the parameters; andJ, which do not depend on car-
tion betweenT, and the 2D critical temperaturgy at €' densityn;, interparticle coupling/, and the temperature
some values of model parameters, different frof of the systemT. In particular, at small carrier densitifs
>Tgxr, as was predicted for the case of fixad and #eg/8, contrary to the dependence Bix+ in the 2D case.
J, .22 The critical temperatur@; grows witht,, except in the case

In general,T, grows with interlayer coupling, (Figs. 4 of nonzero angular momentum of the pairs at small carrier
and 9. However, in the case of small carrier density thedensities. _ _ _
critical temperature decreases withgrowth whenl 0 (in A_t the same time some questions remalned_ unresolved. In
Fig. 4, in thel=0 case, this effect takes place at Sma”erpartlcular, the behavior of the system when interlayer cou-
couplingG). This can be explained as a consequence of th8lNJ tz is not very small has to be studied and the doping
fact that the density of states on the Fermi lep¢ér) at depen_dence of the vortex condensation energy should be
small carrier densities decreases when system tends to b@-g?n |rt11to faccount. These problems are scheduled to be stud-
come three dimensional with growth [ p(eg)= /e in the '€ In the future.
3D case andv(eg) =const in the 2D cade On the other
hand, the role of the term t> must be studied, in addition, at
rather large values df,, when interlayer hopping becomes  V.M.L. acknowledges partial support from the SCOPES
of order of intralayer hopping, i.et,=0.1W (see Ref. 28 Project No. 7UKPJ062150.00/1 of the Swiss National Sci-
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