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Temperature-doping phase diagram of layered superconductors
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The superconducting properties of a layered system are analyzed for the cases of zero and nonzero angular
momenta of the pairs. The effective thermodynamic potential for the quasi-two-dimensionalXY model for the
gradients of the phase of the order parameter is derived from the microscopic superconducting Hamiltonian.
The dependence of the superconducting critical temperatureTc on doping, or carrier density, is studied at
different values of coupling and interlayer hopping. It is shown that the critical temperatureTc of the layered
system can be lower than the critical temperature of the two-dimensional Berezinskii-Kosterlitz-Thouless
transitionTBKT at some values of the model parameters, contrary to the case in which the parameters of theXY
model do not depend on the microscopic Hamiltonian parameters.
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I. INTRODUCTION

Theoretical description of the doping dependence of
superconducting properties of high-temperature superc
ductors ~HTSCs! is one of the most difficult problems o
modern condensed-matter physics. Generally speaking
complicated crystal structure of these materials, lo
dimensional ~quasi-two-dimensional! transport properties
the superconducting order-parameter anisotropy, strong
relations, and other properties result in the fact that m
years after the discovery the microscopic mechanism
HTSC’s is not understood yet.

During the last years many models which take into
count some of the cuprate properties have been propo
The doping dependence of the superconducting propertie
T50 in thes-wave pairing channel was studied for the thre
dimensional~3D! case in Refs. 1–3 and, particularly, for th
quasi-2D case.4 For the 2D case this problem was studied
T50 ~when a long-range superconducting order is still p
sible in a 2D system6!, for the case of local attraction, i
Refs. 1, 2, and 5, and for the phonon-mediated model7 ~for a
review, see Ref. 8, for example!. The d-wave pairing along
with the s-wave one atT50 for the case of the extende
Hubbard model with next-nearest-neighbor attraction w
studied in Refs. 9 and 10 and for a 2D continuum model w
short-range attraction and electron correlations, in Ref.
The properties of a model with doping-dependent correla
length were studied recently in Ref. 12.

The 2D s-wave pairing at finite temperatures, when t
Berezinskii-Kosterlitz-Thouless~BKT! transition can take
place in a superconducting system, was considered in R
13 and 14 for the case of the model with local attraction a
in Refs. 15 and 16 for the case of electron-phonon pair
The problem ofs-wave superconductivity with a fluctuatin
order-parameter phase in the 3D case was analyzed in R
14 and 17. The effective action for a slowly fluctuatin
d-wave superconducting order parameter for the 2D case
also analyzed in Refs. 18,19,21,20.

However, it is known that long-range order is impossib
0163-1829/2003/67~21!/214510~7!/$20.00 67 2145
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in 1D and 2D systems with an order parameter that ha
continuous symmetry.6 Therefore, to obtain a real phase tra
sition with long-range order and a homogeneous order
rameter one needs to take into account the interlayer c
pling tz . Layered superconductivity is much mor
complicated since the possibility of interlayer fluxon and
tralayer vortex phase transitions with corresponding criti
temperaturesTf and Tv must be analyzed. It was alread
shown22–25 that there is only one phase transition in such
system with the critical temperatureTc and Tv,Tc,Tf
.8Tv . The critical temperatureTc is equal toTv , or, what
is equivalent, to the temperatureTBKT of the 2D BKT phase
transition attz50. Then, this temperature value increases
the valueTf with interlayer hoppingtz growth. In Refs.
22–25 the phase order-parameter effective Hamiltonian
studied in the presence of an external magnetic field and
model was mapped on the quasi-2DXY model. The
XY-model parametersJi andJ' were considered as phenom
enological constants. It was shown thatTBKT5p/2Ji and
Tf.8TBKT .

In this paper we derive the effectiveXY Hamiltonian
from the initial Hamiltonian for the layered system of attrac
ing fermions. In this case the parametersJi and J' depend
on the bare parameters of charge-carrier density, coup
pair angular momentum, temperature, and the interlayer h
ping. As is shown below, this leads to the nontrivial depe
dence of the superconducting critical temperatureTc on the
model parameters. In particular, in general, this tempera
is different from the critical temperature of the 2D BKT tra
sition andTc,TBKT at some values of the model paramete
contrary to the results for the case in which parametersJi
and J' don’t depend on the parameters of the microsco
Hamiltonian, and when the relationTc,TBKT always holds
at J'.0.22–25

II. THE MODEL AND THE THERMODYNAMIC
POTENTIAL

The model Hamiltonian for a layered superconducti
system can be written as
©2003 The American Physical Society10-1
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H~t!5(
s, j

E d2rc j s
† ~t,r !F2

¹W 2

2m
12tz2mGc j s~t,r !

2 (
s, j 1 , j 2

tmnE d2rc j 1s
† ~t,r !c j 2s~t,r !

2
1

2 (
s, j

E d2r 1d2r 2c j s
† ~t,r2!c j s̄

†
~t,r1!V~r1 ,r2!

3c j s̄~t,r1!c j s~t,r2!, ~1!

where c j s(t,r ) is a Fermi field with massm and spins
5↑ and↓, t is an imaginary time, andj ,r are layer number
and intralayer coordinate, correspondingly;t j 1 j 2

5tz(d j 2 , j 1111d j 2 , j 121) corresponds to the nearest inte
plane hopping. The free fermion dispersion relation in m
mentum space has the following form:

j~k,kz!5
k2

2m
12tz22tz cos~akz!2m, ~2!

wherek is a 2D wave vector with a bandwidthW, andkz is
the momentum in the interlayer~z! direction ~it changes in
the interval@0,2p/a#, wherea is the interlayer spacing!; m
is the chemical potential of the system. In Eq.~1! interaction
V(r1 ,r2) describes a nonretarded in-plane fermion attracti

The partition function of the system is

Z5E Dc†Dce2S ~3!

with the action

S5E
0

b

dtF(
s, j

E d2rc j s
† ~t,r !]tc j s~t,r !1H~t!G . ~4!

To study the superconducting properties of the sys
with an arbitrary pairing symmetry the Hubbar
Stratonovich transformation with bilocal fieldsf j (t,r1 ,r2)
andf j

†(t,r1 ,r2) can be applied:26

exp@c j↑
† ~t,r2!c j↓

† ~t,r1!V~r1 ,r2!c j↓~t,r1!c j↑~t,r2!#

5E Df†Df expH 2E
0

b

dt(
j
E d2r 1d2r 2

3F uf j~t,r1 ,r2!u2

V~r1 ,r2!
2f j

†~t,r1 ,r2!c j↓~t,r1!c j↑~t,r2!

2c j↑
† ~t,r1!c j↓

† ~t,r2!f j~t,r1 ,r2!G J . ~5!

Let us introduce the Nambu spinor:

C j~t,r !5Fc j↑~t,r !

c j↓
† ~t,r !

G , C j
†~t,r !5@c j↑

† ~t,r !,c j↓~t,r !#.

In this case the partition function can be written as

Z5E Dc†DcDf†Dfe2S̄(c†,c,f†,f), ~6!
21451
-

.

m

where

S̄~c†,c,f†,f!5E
0

b

dt (
j 1 , j 2

E d2r 1E d2r 2

3H d j 1 j 2

uf j 1
~t,r1 ,r2!u2

V~r1 ,r2!

2d j 1 j 2
C j 1

† ~t,r1!F2]t2tzS ¹W r1

2

2m
12tz2mDG

3Cj1
~t,r2!d~r12r2!

1t j 1 j 2
C j 1

† ~t,r1!tzC j 2
~t,r2!d~r12r2!

2d j 1 j 2
f j 1

† ~t,r1 ,r2!C j 1

† ~t,r1!t2C j 1
~t,r2!

2d j 1 j 2
Cn

†~t,r1!t1C j 1
~t,r2!f j 1

~t,r1 ,r2!J ,

~7!

wheret65 1
2 (tx6ty) are the Pauli matrices.

In order to study the fluctuations of the order-parame
phase and to map the corresponding superconducting e
tive action on the quasi-2DXY model, it is convenient to
make decomposition ofcs, j (t,r ) cs, j

† (t,r ) on their modulus
xs, j (t,r ) and phaseu j (t,r ), which as is shown below is
proportional to the order-parameter phase:

cs, j~t,r !5xs, j~t,r !eiu j (t,r )/2,

cs, j
† ~t,r !5xs, j

† ~t,r !e2 iu j (t,r )/2.

In this case the Nambu operators are

C j~t,r !5ei tzu j (t,r )/2Y j~t,r !,

C j
†~t,r !5Y j

†~t,r !e2 i tzu j (t,r )/2, ~8!

whereY j (t,r ) andY j
†(t,r ) are ‘‘neutral’’ Nambu spinor op-

erators:

Y j~t,r !5Fx j↑~t,r !

x j↓
† ~t,r !

G , Y j
†~t,r !5@x j↑

† ~t,r !,x j↓~t,r !#.

The order parameter can be expressed as

f j~t,r1 ,r2!5D~t,r1 ,r2!eiu j (t,r1 ,r2)

f j
†~t,r1 ,r2!5D~t,r1 ,r2!e2 iu j (t,r1 ,r2),

where we assume that the modulus of the order param
D(t,r1 ,r2) does not depend on the layer index. It is al
natural to assume that

f j~t,r1 ,r2!.D~t,r !eiu j (t,R), ~9!

where r5r12r2 and R5(r11r2)/2 are the relative and
center-of-mass coordinates, correspondingly.27,21 The rela-
tion ~9! means that the dynamics of the Cooper pairs is
scribed by the order-parameter modulus, the symmetry
0-2
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which depends, generally speaking, on the relative pair
ordinate. The motion of the superconducting condensat
described by the order-parameter phase, which chan
slowly with the distance and can be described by the cen
of-mass coordinate. In this case it is easy to obtain

f j
†~t,r1 ,r2!C j

†~t,r1!t2C j~t,r2!

1C j
†~t,r1!t1C j~t,r2!f j~t,r1 ,r2!

.D~t,r !Y j
†~t,r1!txY j~t,r2!. ~10!

Substituting Eqs.~8!–~10! into the expression for the part
tion function ~6! it is easy to get

Z5E DDDDue2bV(D,u),

where the thermodynamic potential is

bV~D,u!5E
0

b

dtE d2r
ND~t,r !2

V~r !
2Tr ln G21,

whereN is number of the layers. The Nambu spinor Gre
function G can be expressed as

G215G 212S,

whereG 21 is a part of the inverse Green’s function whic
does not depend on the order-parameter phase:

Gj 1 j 2

21 ~t1 ,t2 ,r1 ,r2!5^t1 ,r1 , j 1uG 21ut2 ,r2 , j 2&

5d j 1 j 2
d~r12r2!d~t12t2!

3F2]t1
2tzS 2

“ r1

2

2m
12t2m D G

2d j 2 , j 161d~r12r2!d~t12t2!tztz

1d j 1 j 2
txD~t12t2 ,r12r2!.

The self-energyS is the sum of the parts which come fro
the in-plane and interplane order-parameter phase inte
tions S i andS', respectively,

S5S i1S',

where

S j 1 j 2

i ~t1 ,t2 ,r1 ,r2!

5^t1 ,r1 , j 1uS iut2 ,r2 , j 2&

5d j 1 j 2
d~r12r2!d~t12t2!

3H i tz

2
]t1

u j 1
~t1 ,r1!2

i

4m
“ r1

2 u j 1~t1 ,r1!

1
tz

8m
@“ r1

u j 1
~t1 ,r1!#22

i

2m
“ r1

u j 1
~t1 ,r1!“ r1J

and
21451
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S j 1 j 2

' ~t1 ,t2 ,r1 ,r2!

5^t1 ,r1 , j 1uS'ut2 ,r2 , j 2&

52d j 2 , j 161d~r12r2!d~t12t2!

3tztz„12exp$2 i tz@u j 1
~t1 ,r1!2u j 2

~t2 ,r2!.#%….

The potential term of the thermodynamic potential is

bVpot~D!5E
0

b

dtE d2r
ND~t,r !2

V~r !
2Tr ln G 21

and the kinetic term can be expanded in powers of the s
energyS:

bVkin~D,u!5Tr (
n51

`
1

n
~GS!n. ~11!

III. THE BKT TRANSITION IN THE 2D CASE

Let us begin with the case in which there is no interpla
coupling: tz50. In this case the behavior in each plane
independent and the system undergoes the BKT transit
Let us assume that the order-parameter phase fluctuation
small. In this case to get the thermodynamic potential up
the second order in“u we neglect all the terms in Eq.~20!,
exceptn51,2. Also we neglect the time dependence ofu
and the second derivative“2u. The effective potential in this
case has the following structure~see, for example Ref. 8!:

V~D,u!5Vpot~D!1
Ji

2 E d2r ~“u!2, ~12!

where

Ji5E d2kdkz

~2p!3 H nf~k!

4m

2
1

16m2

1

T

k2

cosh2@Aj~k!21D~k!2/2T#
J , ~13!

and the momentum distribution functionnf(k) is

nf~k!512tanhFAj~k!21D~k!2

2T G j~k!

Aj~k!21D~k!2
.

~14!

The free fermion spectrumj(k) in Eqs. ~13! and ~14! is
defined by Eq.~2! at tz50, in this case.

The minimization of the effective potential~12! at “u
50 with respect to the superconducting order parame
D(k) leads to the standard gap equation

D~p!5E d2kdkz

~2p!3

D~k!

2Aj~k!21D~k!2
tanhFAj~k!21D~k!2

2T G
3V~p,k!. ~15!
0-3
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The minimization of the effective potential at“u50 with
respect to the chemical potentialdVpot /dm52ynf (y is the
volume of the system! gives the equation which connectsm
and the particle densitynf in the system, or the 2D Ferm
energyeF5pnf /m:

nf5E d2kdkz

~2p!3
nf~k!, ~16!

where the momentum distribution functionnf(k) is defined
in Eq. ~14!.

To search for the solutions with different angular m
mental of the pairs, we assume that the interaction poten
has the following form:

V~p,k!5V cos~ lwp!cos~ lwk!. ~17!

Below we use the dimensionless coupling parameterG
5mV/(2p) for the numerical calculations.

In the case of the interaction~17! the gap depends only o
the momentum direction

D~p!5D l cos~ lwp!,

whereD l is the amplitude of the superconducting gap in t
case of the pair angular momentum equal tol. The solution
of the gap equation together with that of the number equa
at D l50 give the critical temperature of the mean-field s
perconducting transitionTD[Tc

MF on the charge-carrier den
sity nf . The solution of the equation

T5
p

2
Ji~D l ,m,T! ~18!

together with those of the gap equation and the number e
tion give the dependence of the critical temperature of
BKT transition on the charge-carrier densitynf . Equation
~18! is obtained by mapping Eq.~12! on the corresponding
thermodynamic potential of the 2D spinXY model.

As it follows from the system of Eqs.~15!, ~16!, and~18!,
the solution forTD and TBKT do not depend onl when l
Þ0 for the case of the simple interaction potential~17!. This

FIG. 1. Phase diagram of the 2D system in different pair
channels for the coupling parameterG51. The solid lines areTD

~the upper curve! and TBKT for the s-wave pairing channel. The
dashed lines are the corresponding curves for the caselÞ0. Here
and below all quantities are normalized on the 2D free-elect
bandwidthW.
21451
l

n
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follows from the fact that thel dependence of the integral i
only as cos2(lw) and from the identity

E
0

2p dw

~2p!
F@cos2~ lw!#5E

0

2p dw

~2p!
F@cos2~w!#,

whereF@cos2(lw)# is an arbitrary function without singulari
ties, andl is an arbitrary nonzero integer number. Therefo
it is necessary to analyze the solutions withl 50 andl 51.

The phase diagram of the system in the 2D case is
sented in Fig. 1. The temperatureTD is much higher in thes
channel. However,TBKT.eF/8 in both channels at a sma
carrier density. This result can be easily obtained analytic
from Eqs.~13! and ~18!.

The doping dependence ofTBKT in the cases ofl 50 and
lÞ0 is presented in Figs. 2 and 3, correspondingly. The
lation TBKT.eF/8 holds up to higher values of the carrie
density in thes channel at a fixed value of coupling. Th
means that the local pairs are bound tighter in this case.

IV. TRANSITION IN THE CASE OF COUPLED LAYERS

Let us consider a system of coupled layers. The s
energy, proportional to the interlayer coupling, can be writ
as

S'5tztzS1
'1tzS2

' ,

where

n

FIG. 2. The doping dependence ofTBKT at lÞ0 and different
coupling parameters:G50.5 ~dash-dotted line!, G51.0 ~dotted
line!, and G52.0 ~dashed line!. The solid line is the function
TBKT5eF/8.

FIG. 3. The same as in Fig. 2 for the casel 50. The lines for
G51.0 and forG52.0 practically coincide withTBKT5eF/8.
0-4
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S1 j 1 j 2

' ~t1 ,t2 ,r1 ,r2!5^t1 ,r1 , j 1uS1
'ut2 ,r2 , j 2&

52d j 2 , j 161d~r12r2!d~t12t2!

3cos@u j 1
~t1 ,r1!2u j 2

~t2 ,r2!#,

S2 j 1 j 2

' ~t1 ,t2 ,r1 ,r2!5^t1 ,r1 , j 1uS2
'ut2 ,r2 , j 2&

5d j 2 , j 161d~r12r2!d~t12t2!

3sin@u j 1
~t1 ,r1!2u j 2

~t2 ,r2!#.

Similarly to the 2D case, we assume that the phase of
order parameter changes slowly in the interlayer directi
Therefore, the thermodynamic potential can be calculated
to second order in (u j2u j 61):

Vkin
' 5tzT Tr~GtzS1

'!1
tz
2

2
T Tr~GS2

'GS2
'!. ~19!

The terms proportional toS iS' andS1
'S2

' are zero due to
reflection symmetry in thez direction.

To map the system on the quasi-2DXY model with
nearest-neighbor interaction we need to obtain

Vkin5
Ji

2 (
j
E d2r ~“u j !

21Jz(
j

@12cos~u j2u j 21!#.

~20!

This dependence comes from the first term in Eq.~19!. The
second term in Eq. ~19! is proportional to sin(uj
2uj61)sin(uj2uj61), which is equivalent to theXY model
with next-nearest-neighbor and next-next-nearest-neigh
interactions. Therefore we neglect this term since it is o
higher order (;tz

2) on the interlayer hopping with respect
the first term~which is ;tz). However, if the couplingtz is
not small this term can lead to important physical con
quences~see, for example, an analysis for the 2D case28!.
Thus, the parameterJz is

Jz5tzE d2kdkz

~2p!3
nf~k!cos~akz!. ~21!

Now we have obtained the kinetic part of the thermod
namic potentialVkin in the case of the slowly fluctuatin
phase of the order parameter. This function is given by
~20!, where the parametersJi andJz are given by Eqs.~13!
and~21!. Similarly to Eq.~21!, an additional integration ove
kz must be performed in Eq.~13!.

The effective action~19! was studied in Refs. 22–25 i
the case in which the parametersJi andJz where considered
independent of the fermion Hamiltonian parameters. It w
shown23 that there is only one phase transition in such
system atTc , which is bigger than the temperature of th
BKT transition in the case of noncoupled layersTBKT
5(p/2)Ji . In the case of small couplingTc.TBKT and
when tz is increasing to the interplane hopping value,Tc is
approaching the valueTBKT54pJi.8TBKT5Tf of the
fluxon transition, when interlayer order starts to take plac
21451
e
.
p

or
a

-

-

.

s
a

.

More precisely, the following expression for the effectiv
free energy was considered:

F5
1

8pE d2rdzH ~“3A!2

1
1

le
(

j
F f0

2p
“u j~r !2A~r ,z!G2

d~z2 jd !J
2

Jz

j0
2Ed2r cosFu j~r !2u j 21~r !2

2p

f0
E

( j 21)d

jd

Az~r ,z8!dz8G
2Ec(

j ,r
sj

2~r !, ~22!

whereA(r ,z) is the vector potential,f05hc/2e is the flux
quantum,Ec is the loss of the condensation energy in a v
ume j0

2d, j0 is the in-plane correlation length,d0 is the
thickness of each layer, andd(.d0) is the interlayer dis-
tance. The fieldsj (r ) describes vorticity of the lattice
sj (r )51 if the vortex is present at the point, andsj (r )50,
otherwise. The length scalele is connected with the London
in-plane penetration lengthlL as le5lL

2/d0. It was shown
by a renormalization-group study24,25 that in a physical case
le@d0 the self-consistent equation that describes the dep
dence of the critical temperatureTc on the free-energy pa
rameters~22! has the form

Tc.
t@Ec1~t/8!ln~Tc /Jz!#

Ec1t ln~Tc /Jz!
, ~23!

where t5f0
2/4pe2 is connected with the BKT transition

temperature ast58TBKT .
The comparison of expressions~22! and ~20!, gives the

next self-consistent equation for the critical temperatureTc ,
which follows from Eq.~23!:

Tc.4pJi
Ec1~pJi/2!ln~Tc /Jz!

Ec1~4pJi!ln~Tc /Jz!
, ~24!

where the in-plane correlation lengthj0 is absorbed in the
parameterJz @i.e., tz(a/j0)2→tz]. The parameterEc actually
should be renormalized by including the influence of t
interlayer coupling on the vortex system.25 It is considered
here as a model parameter, which should be found exp
mentally, in particular, its doping dependence should
taken into account. For calculation we use the valueEc
50.01W ~for estimation of Ec based on an amplitude
dependent Ginzburg-Landau theory, see, for example,
29!.

It is interesting to note that in the limit of very sma
carrier densities, whenJi.eF→0, the analytical solution for
Tc can be obtained to beTc.4pJi.eF . This is different
from the one-layer case whenTc5TBKT.eF/8, indepen-
dently of the pair angular momentuml. However, the region
of extremely low carrier densities is not interesting from
physical point of view.

To find the critical temperatureTc one needs to solve th
system of Eqs. ~15!, ~16!, and ~24! with functions
0-5
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Ji(m,T,D(T)) and Jz(m,T,D(T)) defined in Eqs.~13! and
~21!. The numerical solutions show thatTc,TBKT at small
carrier densities in the case of large values of interlayer h
ping tz and not very strong couplingG ~Fig. 4!. This means
that the dependence of the parametersJi andJ' on coupling,
carrier density, and temperature leads to the nontrivial r
tion betweenTc and the 2D critical temperatureTBKT at
some values of model parameters, different fromTc
.TBKT , as was predicted for the case of fixedJi and
J' .22–25

In general,Tc grows with interlayer couplingtz ~Figs. 4
and 5!. However, in the case of small carrier density t
critical temperature decreases withtz growth whenlÞ0 ~in
Fig. 4, in the l 50 case, this effect takes place at smal
couplingG). This can be explained as a consequence of
fact that the density of states on the Fermi levelr(eF) at
small carrier densities decreases when system tends to
come three dimensional withtz growth @r(eF).AeF in the
3D case andr(eF)5const in the 2D case#. On the other
hand, the role of the term;tz

2 must be studied, in addition, a
rather large values oftz , when interlayer hopping become
of order of intralayer hopping, i.e.,tz.0.1W ~see Ref. 28
again!.
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V. CONCLUSIONS

To summarize, the doping dependence of the superc
ducting critical temperature of layered superconductors
the charge-carrier density has been studied in cases of d
ent angular momenta of the pairsl, coupling, and interlayer
hopping. It has been shown that the critical temperatureTc is
smaller then the 2D critical temperatureTBKT at some values
of the model parameters, contrary to that of theXY model
with the parametersJi andJ' which do not depend on car
rier densitynf , interparticle couplingV, and the temperature
of the systemT. In particular, at small carrier densitiesTc
ÞeF/8, contrary to the dependence ofTBKT in the 2D case.
The critical temperatureTc grows withtz , except in the case
of nonzero angular momentum of the pairs at small car
densities.

At the same time some questions remained unresolved
particular, the behavior of the system when interlayer c
pling tz is not very small has to be studied and the dop
dependence of the vortex condensation energy should
taken into account. These problems are scheduled to be s
ied in the future.
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Éksp. Teor. Fiz.65, 170 ~1997! @JETP Lett.65, 182 ~1997!#.
14E. Babaev and H. Kleinert, Phys. Rev. B59, 12 083~1999!.
15V. M. Loktev, S. G. Sharapov, and V. M. Turkowski, Physica

84, 296 ~1998!.
16V. M. Loktev and V. M. Turkowski, Zh. E´ksp. Teor. Fiz.114, 605

~1998! @Sov. Phys. JETP87, 329 ~1998!#.
17T. K. Kopec, Phys. Rev. B65, 054509~2002!.
18A. Paramekanti, M. Randeria, T. V. Ramakrishnan, and S.

e

FIG. 5. The same as in Fig. 4 for the casel 50.
0-6



M

TEMPERATURE-DOPING PHASE DIAGRAM OF LAYERED . . . PHYSICAL REVIEW B 67, 214510 ~2003!
Mandal, Phys. Rev. B62, 6786~2000!.
19L. Benfatto, S. Caprara, C. Castellani, A. Paramekanti, and

Randeria, Phys. Rev. B63, 174513~2001!.
20A. Paramekanti, Phys. Rev. B65, 104521~2002!.
21S. G. Sharapov, H. Beck, and V. M. Loktev, Phys. Rev. B64,

134519~2001!.
22S. Hikami and T. Tsuneto, Prog. Theor. Phys.63, 387 ~1980!.
23S. E. Korshunov, Europhys. Lett.11, 757 ~1990!.
21451
.

24B. Horovitz, Phys. Rev. Lett.67, 378 ~1991!.
25B. Horovitz, Phys. Rev. B47, 5947~1993!.
26H. Kleinert, Fortschr. Phys.26, 565 ~1978!.
27P. Ao, D. J. Thouless, and X.-M. Zhu, Mod. Phys. Lett. B9, 755

~1995!.
28W. Kim and J. P. Carbotte, Europhys. Lett.59, 761 ~2002!.
29P. Minnhagen, Rev. Mod. Phys.59, 1001~1987!.
0-7


