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Model of inhomogeneous impurity distribution in Fermi superfluids
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The standard treatment of impurities in metals assumes a homogeneous distribution of impurities. In this
paper we study distributions that are inhomogeneous. We discuss in detail the ‘‘isotropic inhomogeneous
scattering model’’ which takes into account the spatially varying scattering on the scale of the superfluid
coherence length. On a large scale the model reduces to a homogeneous medium with renormalized parameter
values. We apply the model to superfluid3He, where porous aerogel acts as the impurity. We calculate the
transition temperatureTc , the order parameter, and the superfluid density. Both A- and B-like phases are
considered. Two different types of behavior are identified for the temperature dependence of the order param-
eter. We compare the calculations with experiments on3He in aerogel. We find that most of the differences
between experiments and the homogeneous theory can be explained by the inhomogeneous model. All our
calculations are based on the quasiclassical theory of Fermi liquids. The parameters of this theory for superfluid
3He in aerogel are discussed.

DOI: 10.1103/PhysRevB.67.214507 PACS number~s!: 67.57.Pq, 74.20.Fg
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I. INTRODUCTION

The standard treatment of impurities in a metal is ba
on averaging over the locations of the impurities.1 This
means that the probability of a quasiparticle being scatte
is independent of its location. To be definite, we call this
homogeneous scattering model~HSM!. The purpose of this
paper is to study the case where the impurity distribut
varies in space. We define a model of inhomogeneous s
tering, which is as simple as possible and represents a
dium that is uniform and isotropic on a large scale. We ca
the isotropic inhomogeneous scattering model~IISM!.2 The
model is motivated by experiments on superfluid3He in a
porous aerogel, and all our numerical computations conc
trate on this case. However, the model is independent of
pairing symmetry and therefore can equally be applied,
example, tos- or d-wave superconductors.

Liquid 3He is an ideal example of unconventional sup
fluid because it is naturally pure, it has a spherical Fe
surface, and itsp-wave pairing state is well understoo
Therefore it is of interest to study impurity effects in th
superfluid. The addition of impurities to helium can be do
by using porous aerogel so that typically 98% of the volu
is occupied by3He. It was found experimentally that th
superfluid transition temperature in aerogel is reduced
remains sharp.3 Also other superfluid properties such as t
superfluid density and the NMR shifts were found to
modified by aerogel. Many experiments studying this syst
have been made during the last seven years.4

The HSM is an attractive model for3He in aerogel be-
cause of its simplicity. Essentially all theoretical calculatio
for this system are based on it.2,5–16 However, already the
first comparisons to experiment showed that the HSM is
sufficient quantitatively. In particular, it was found that th
order parameter is more suppressed than the superfluid
sition temperatureTc . A natural explanation for this come
from the fact that the scattering in aerogel is not homo
neous, as has already been demonstrated using the II2
0163-1829/2003/67~21!/214507~11!/$20.00 67 2145
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Similar results have been reached in calculations on unc
ventional superconductors.17

Preliminary results of the IISM have been reported
Refs. 2 and 18. In this paper we present the IISM in det
Our studies are based on the quasiclassical theory of F
liquids. We discuss the assumptions of this theory~Sec. II!,
and how these are satisfied for3He in aerogel~Sec. III!. The
inhomogeneous scattering model is introduced in Sec.
For the case ofp-wave pairing we introduce the order pa
rameters of A- and B-type phases~Sec. V!. We calculate
several quantities including the critical temperature, or
parameter, and superfluid density~Sec. VI!. The results are
compared with experiments on3He in aerogel~Sec. VII!.
The equations of quasiclassical theory and the details of
culations are discussed in the Appendix.

II. QUASICLASSICAL THEORY

On a microscopic scale a pure system is described
terms of particles~conduction electrons or3He atoms! and
their interaction. Because the interactions are strong,
leads to a complicated many-body problem.

The characteristic length in superconductivity or superfl
idity is the coherence length. We define this quantity as

j05
\vF

2pkBTc0
, ~1!

wherevF is the Fermi velocity. To be precise, we have us
the superfluid transition temperatureTc0 of a pure system.
The coherence length is typically much larger than the Fe
wave lengthlF52p/kF . In 3He j0 depends on pressure an
changes from 16 nm at the solidification pressure to 77 nm
the vapor pressure whereaslF'0.7 nm.

The theory that is designed to work on the scalej0@lF is
the quasiclassical theory.19 It treats the system as a dilute ga
of weakly interacting quasiparticles. In quasiclassical the
all the many-body physics that takes place on the mic
scopic scalelF is eliminated. It only appears through ph
©2003 The American Physical Society07-1
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nomenological parameters like the Fermi-surface, Lan
Fermi-liquid parameters and transition temperatureTc0.

Let us consider any external objects in the system. Th
objects are characterized by a strong potential, on the o
of the Fermi energy. As a consequence the state of the sy
is modified in the vicinity of the object. A theoretical analys
of these atomic scale changes is again difficult because o
strong interactions between particles.

In the quasiclassical theory the effect of external object
twofold.20 First, the phenomenological parameters discus
above are changed. These parameters are determined by
cesses on the Fermi-energy scale and are therefore of
range. Assuming that the surface area of the external ob
times the atomic length scale (lF) is a small fraction of the
total volume, this effect is small and is neglected in the f
lowing. Second, the objects affect the low energy proces
~energy;kBTc0) directly via a scattering of quasiparticle
The range of this effect is long, on the order of the cohere
length@Eq. ~1!#. Therefore it leads to substantial modificatio
of the superfluid properties.

An important length characterizing the scattering is
mean free path,. The simplest case is to consider the lim
lF /,→0. This is the quasiclassical limit where the Fer
wave length effectively disappears from the theory. First
der corrections inlF /, lead to effects like weak localization
which are neglected here. In quasiclassical theory, the s
tering is represented by a collection of ‘‘scattering center
The main assumption is that the quantum interference
tween two scattering centers is neglected. Technically
can be achieved considering an ensemble average wher
locationsr i of the scattering centers are uncertain by a d
tance on the order oflF or more. The size of one scatterin
center is limited by the condition that it has to be localiz
on the scale ofj0. The scattering properties of a center c
be parametrized by scattering phase shiftsd ( l ), which are
taken at the Fermi energy in the normal state.~For simplicity
we label the different partial waves by a single indexl, but
there is no need to restrict to spherically symmetric scat
ing centers. The scattering could also be spin-dependent
it is also neglected here for simplicity.! Thus a complete
description of the scattering needed in the quasiclass
theory consists of distribution functionsni(r ) and scattering
phase shiftsd i

( l ) of the scattering centersi 51,2, . . . .
Within each scattering center an exact quantum treatm

is allowed in principle. However, because of uncertain
about the microscopic processes at surfaces, the phase
d i

( l ) cannot be calculated from first principles. Instead, o
has to use some models, for example hard spheres.21 In some
quantities the phase shifts only appear in certain comb
tions, for example, the transport cross section

s5
4p

kF
2 (

l 50

`

~ l 11!sin2~d ( l 11)2d ( l )!. ~2!

Let us try to clarify some consequences of the assu
tions made above. The energy one usually is trying to ca
late is on the order off condj0

3. Here f cond;kBTc /lF
2j0 is the

superfluid condensation energy per volume, and a typ
21450
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volume ;j0
3. Above the individual scattering centers we

required to be small,s!j0
2. This implies that the energy

f condsj0 associated with a single impurity22 is small in com-
parison. The typical number of impurities in volumej0

3 is
N;j0

2/s, which for random impurities implies a fluctuatio
dN;AN. The corresponding fluctuation in energy is by fa
tor As/j0 smaller thanf condj0

3. This has to be neglecte
since there are other neglected contributions that are on
same order of magnitude. Thus impurity averaging in
quasiclassical approximation implies a scattering medi
where the fluctuations in the impurity density are neglect

III. AEROGEL

The structure of aerogel, as relevant for3He experiments,
is discussed in Ref. 23. Here we repeat some main po
Aerogel consists of small SiO2 particles of diameter
;3 nm, which are coalesced together to form a se
supporting structure. Experiments with3He typically use
aerogels with open volume fraction 98% or more. Accordi
to small-angle x-ray scattering measurements, there
‘‘fractal’’ range in the particle cluster up to a ‘‘correlatio
length’’ ja;100 nm. Above this scale the structure loo
homogeneous. Computer simulations give a picture
widely spaced aerogel strands implying a long mean f
path.100 nm.

It seems reasonable that the quasiclassical descrip
above can be applied to liquid3He in aerogel. The atomic
layer on the SiO2 surfaces occupies only one per cent of t
volume and can be neglected for many purposes.~Magnetic
properties make an exception because the susceptibilit
this layer is much larger than in pure liquid.24! Since a major
part of the liquid is within a coherence length from SiO2,23

the scattering effect leads to a substantial modification of
superfluid properties. It also seems that the scattering f
aerogel can be represented by incoherent scattering ce
whose size is small compared toj0 because random varia
tions on the order oflF are likely to develop already at muc
smaller distances.

The smallest reasonable choice for a scattering center
single SiO2 particle ~diameter 2Ra;3 nm). This is large in
comparison tolF : kFRa;10. According to hard sphere
phase shifts this means that only 1% of the scattering ta
place in the s-wave channel, and 99% is left to higher par
waves in Eq.~2!. This dominant contribution of higher par
tial waves has several important consequences.

Firstly, the phase shiftsd i
( l ) are random numbers. This is

because even the phase shifts~modulo p) of a hard sphere
with a fixed Ra are pseudorandom numbers forkFRa@1.
Adding to this the varying particle size, the surface roug
ness and varying orientations of touching neighbor partic
it is simply impossible that the result would be anything e
but random.~The randomness, of course, is valid only f
partial wavesl that contribute essentially to scattering, i.e
for l ,kFRa .)

A consequence of the random phase shifts is that only
number of scattering phase shifts, or equivalently, the cr
sections @Eq. ~2!# is important in describing a scatterin
7-2
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center. Thus a sufficient description of the scattering is
tained by specifying onlys i andni(r ).

A second important consequence of the large particle
is that boths i andni(r ) are independent of pressure. This
crucial for comparison with experiments, because when
ting is needed, it can be done at one pressure only, and
predictions of the model get fixed at all pressures. We ar
as follows. It is reasonable to assume that the aeroge
independent of the hydrostatic pressure, implying thatni(r )
is also. The Fermi wave vector changes by 10% over
pressure range from the vapor pressure to the solidifica
pressure. This could induce some pressure dependence
cross sections i . For example, hard-spheres depends essen
tially on kF in the regionkFRa;1.25 However, in the physi-
cal regionkFRa*10 the dependence ofs on kF is very weak.
Thus we conclude that boths i andni(r ) are independent o
pressure.

The largekFRa is potentially bad news for theory becau
calculations that take higher partial waves into account
very complicated; see Ref. 8. The promising conclusion
these calculations is that, at least in some cases, the re
including higher partial waves are almost identical to tho
including only s-waveunder the following conditions: ~i! one
uses the same transport mean free path, and ~ii ! one uses
either random phase shiftd (0) or fixed sin2d(0)'1

2 in the
s-wave calculation. Here we assume that this correspond
holds more generally. Thus we calculate only s-wave a
present results for sin2d(0)51

2. Finally, the randomness of th
phase shifts also simplifies the numerical calculations sinc
implies that some components of the propagator vanish~see
the Appendix!.

The use of several impurity species is important in stu
ing anisotropic scattering where the preferred direction v
ies in space. In this paper we limit to isotropic scattering.
order to simplify the notation we select all scattering cent
to have equal cross section, so that the only scattering
rameters ares and the total impurity densityn(r ).

IV. SETTING THE MODEL

The simplest possible impurity profilen(r ) is a constant.
It implies a location independent~transport! mean free path
,5(ns)21. This homogenous scattering model~HSM! has
successfully been used to model the impurities
superconductors.1,26 For impure p-wave superfluid (3He) it
has been used to calculate the critical temperature,27 the or-
der parameter and superfluid density,2,8,9,11 properties near
the superfluid transition,6,7 properties in magnetic
field,5,10,12,13,16density of states,12,13 thermal conductivity15

and estimate strong-coupling effects.14

The predictions of the HSM are compared to experime
in Refs. 2, 7, 9, 11–13, 15, 23, 28, and 29, see also be
Compared to pure3He, the HSM gives the right tendenc
and can work even quantitatively in some cases, but th
can be differences up to a factor of 5 in the suppress
factors~see below!. In some papers the experiments are co
pared with data that is calculated in the unitary limit
s-wave scattering, which seems to give better agreement
other phase shifts. As explained above, we believe thi
21450
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misguided, and random or intermediate phase shifts sho
be used instead. The observed differences can more natu
be explained by inhomogeneous scattering as will be sho
below, at least for some quantities.

Real aerogel has voids where scattering is negligible. T
can be modelled by an impurity densityn(r ) which depends
on the locationr . It is in principle possible to use a realisti
n(r ) for aerogel. This has the drawback that the compu
tional volume should be large in order to get a representa
sample, and this implies heavy numerical effort. Here
prefer the opposite limit of a simple modeln(r ). The sim-
plest possibility would be a plane-wave variationn(r )5n0
1n1 cos(q•r ). A stronger version of this would be equall
spaced scattering planes. In the limit of very strong scat
ing in the planes this leads to isolated slabs.2 The problem
with all these models is that they are anisotropic. For
ample, the superfluid density would depend on the direct
of the superfluid velocityvs . In comparison to experiment
one should use some average over the directions, but
neglects the process how the averaging really takes plac
a nonuniform current distribution.

The purpose of theisotropic inhomogeneous scatterin
model~IISM! ~Ref. 2! is to incorporate a non-constantn(r )
with spherical symmetry. We take a spherical volume of
diusR and use an impurity densityn(r ) that depends only on
the radial coordinater. We assume that these spheres fill
the space. This last point is not strictly possible, but rep
sents an approximation that is similar to using spherical
proximation for a Wigner-Seitz unit cell.30 The calculation in
a single unit cell can represent states where the super
order parameterAJ (r ) has the Bloch form

AJ~r !5AJ (0)~r !exp~ iq•r !, ~3!

whereAJ (0)(r ) is a strictly periodic order parameter. In th
present case the wave vectorq is the imposed phase gradie
that is related to the superfluid velocityvs5(\/2m)q defined
on a scale larger thanR.

At the surface of the IISM sphere we impose the boun
ary condition that an exiting quasiparticle is effectively r
turned to the sphere at the diametrically opposite point;
Fig. 1. In the case of current-carrying states, there has to
a phase shift which corresponds to the phase factor in
~3!. Otherwise the state of the quasiparticle~momentum,
spin! is unchanged. The boundary condition can be
pressed mathematically for the Green’s function as

ğ~ k̂,Rr̂ ,em!5exp~ iq•Rr̂ t̆3!ğ~ k̂,2Rr̂ ,em!exp~2 iq•Rr̂ t̆3!,
~4!

see the Appendix for notation. The model reduces to
HSM in the limit thatn(r ) is independent ofr.

Because of the spherical approximation, it is worth wh
to properly define all large-scale (@R) quantities. We define
macroscopic quantities as averages of the correspondin
cal quantities over the sphere,

^A&[
3

4pR3Er ,R
d3rA~r !. ~5!
7-3
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R. HÄNNINEN AND E. V. THUNEBERG PHYSICAL REVIEW B67, 214507 ~2003!
In particular, corresponding to the local mass current den
of the superfluid,j s , we have the macroscopiĉj s&. The
superfluid densityrJs is then defined bŷ j s&5rJsvs1O(vs

2)
with vs5(\/2m)q as defined above. The average mean f
path,ave is defined by,ave

215s^n(r )&.
The parameters specifying the scattering are the radiu

the sphereR, the average mean free path,ave, and the shape
of the impurity densityn(r ). For n(r ) we use two different
analytic forms

n~r !5cF S r

RD j

2
j

j 12 S r

RD j 12G , ~6!

n~r !5c8Fcosj S pr

2RD1bG , j >2. ~7!

with parametersj and b. Here the prefactorsc and c8 are
determined by the parameters,ave and s (c, c8.0). The
functions in Eqs.~6! and~7! are shown in the inset of Fig. 2
We call themvoid andclusterprofiles, respectively, becaus
the former has strongest scattering at the boundary and
latter at the center of the sphere. Both profiles have z
derivative atr 5R in order to have a smooth impurity densi
everywhere.

An attractive feature of the IISM is that the symmetries
a homogeneous system are preserved on a large scale@R.
Thus one can apply phenomenological large-scale theo
such as Ginzburg-Landau and hydrodynamic theories as
homogeneous medium.7,31,32The only change is that the pa
rameters of these theories are modified by the inhomog
ity. Some of these parameters are calculated below.

V. ORDER PARAMETER

We apply the IISM for superfluid3He. The main assump
tion in addition to those already mentioned is the use of
weak-coupling approximation. The dipole-dipole interacti
is neglected because it is unimportant on the scale of a
j0, which we study here. The equations and some detail
the numerical implementation are discussed in the Appen

Even with all simplifications, the computational effort

FIG. 1. The sphere used in the IISM to approximate a unit c
of a periodic lattice. The drawing illustrates the boundary condit
that a quasiparticle exiting the sphere is returned back at the
metrically opposite point. The shading depicts the spherically s
metric impurity densityn(r ).
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the IISM is quite substantial. For example, the compu
code has five nested loops in addition to the one needed
the iteration of the order parameter, and there are sev
stages of initialization, interpolation, and data collection.

Based on calculations with the HSM, no new superflu
phases of3He are expected in the presence of scatterin2

However, the order parameters of the A and B phases
modified by inhomogeneous scattering. The general fo
can be deduced using symmetry arguments. The B ph
order parameter forvs50 has the form

AJ~r ,f,u!5eixRJ@D r~r ! r̂ r̂1Da~r !~ ûû1f̂f̂!#, ~8!

where spherical coordinates (r ,f,u) are used. The phasex
and the rotation matrixRJ are arbitrary constants. The calcu
lation determines the real-valued radialD r(r ) and angular
Da(r ) functions. These functions are shown in Fig. 2 f
three different scattering profilesn(r ). We see that the orde
parameter is inhomogeneous, and is mostly suppresse
regions where the scattering is strong. For the void pro
@Eq. ~6!# the order parameter components have maxi
Dmax5D r(0)5Da(0) at the center and minima at the su
face. The absolute minimumDmin is given byDa(R).

We define two different averages of the spatially varyi
order parameter. The usual average is given by

Dave
2 5

1

3
^D r

212Da
2&. ~9!

An ‘‘NMR average’’ is defined by

DNMR
2 5

1

15
^2D r

216D rDa17Da
2&. ~10!

This form can be justified as follows. The frequency shifts
nuclear magnetic resonance in superfluid3He are determined
by the dipole-dipole interaction energy33

ll
n
ia-
-

FIG. 2. The B-phase order parameter@Eq. ~8!# in the IISM for
vs50 at the temperature 0.5Tc0. The solid lines are forsteep void
impurity profile @Eq. ~6! with j 58], R52,ave, andj0 /,ave50.2.
The dashed lines are forgentle voidprofile @Eq. ~6! with j 52], R
5,ave, andj0 /,ave50.1. The dash-dotted lines are forclusterpro-
file @Eq. ~7! with j 53, b50.1], R5,ave, and j0 /,ave50.1. The
inset shows the corresponding impurity profiles.
7-4
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MODEL OF INHOMOGENEOUS IMPURITY . . . PHYSICAL REVIEW B67, 214507 ~2003!
f d5gd@ uTrAJ u21Tr~AJ* AJ !#. ~11!

The coefficientgd is a phenomenological parameter that d
pends on a cut-off energy, which is on the order of the Fe
energy.34 According to the principles of Sec. II we assume
is not changed by the impurity. We calculate the dipo
dipole energy@Eq. ~11!# for the B-phase order parameter~8!
and find

f d54gdDNMR
2 cosq~112 cosq!, ~12!

whereq is the rotation angle ofRJ . This has exactly the sam
form as in pure3He-B, the only change being that the ener
gapD is replace byDNMR . Thus the NMR properties within
IISM are the same as in bulk liquid except for this renorm
ization.

We point out that the order parameter in Eqs.~8!–~17! is
defined using the off-diagonal part of the mean-field self
ergy ~A4!. It should be noted that the order parameter is
simply related to the energy gap in the excitation spectru
Only in pure, homogeneous superfluid the energy gap eq
Dave5DNMR . The excitation spectrum in the HSM has be
studied in Refs. 12 and 13, but there are no studies yet for
IISM.

The A-phase order parameter is more complicated sinc
is anisotropic. We select the cylindrical coordinates (r,f,z)
so thatz is along the anisotropy axisl̂ . The order paramete
for vs50 can be written as

AJ~r,f,z!5eifd̂@Dr~r,z!r̂1 iDf~r,z!f̂1Dz~r,z!ẑ#,
~13!

whered̂ is an arbitrary constant unit vector. The functionsD i
are real but now they depend on two coordinatesr and z.
They satisfy symmetry relationsDr(r,2z)5Dr(r,z),
Df(r,2z)5Df(r,z) andDz(r,2z)52Dz(r,z). For the A
phase we define

Dave
2 5

1

2
^Dr

21Df
2 1Dz

2&, ~14!

DNMR
2 5

1

2
^Dr

21Df
2 22Dz

2&. ~15!

In pure homogeneous superfluidDave5DNMR equals the
maximum energy gap in the A phase. The dipole-dipole
ergy @Eq. ~11!# in the A phase~13! is given by

f d522gdDNMR
2 ~ d̂• l̂ !2, ~16!

and the justification forDNMR ~15! is completely analogous
to the case of the B phase.

In the case of a finite superfluid velocity~taken to be in
the z direction! we limit our calculations to the B phas
where the order parameter takes the form

AJ~r,f,z!5eixRJ@Drrr̂r̂1Dfff̂f̂1Dzzẑẑ1Drzr̂ẑ

1Dzrẑr̂#. ~17!
21450
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Now Dm i are complex and depend onr andz. They satisfy
symmetry relationsDrz(r,2z)52Drz* (r,z), Dzr(r,2z)
52Dzr* (r,z) and D i i (r,2z)5D i i* (r,z), where i 5r,f,z.
The mass supercurrentj s(r ) has non-zero r and
z-components inside the sphere. One case is illustrate
Fig. 3. It can be seen that the current density is smalles
regions of strong scattering. Naturally, the current is co
served,¹• j s(r )50. In the void profile, the current has to g
through the scattering regions at the cell boundary, wher
in the cluster profile~not shown! the transport current can
flow past the scattering region situated at the center. Reg
less of the profile, the averaged current is parallel tovs and
independent of the direction. Thus the superfluid density t
sor rJs reduces to a scalarrs .

VI. RESULTS

We start by studying the critical temperatureTc . We cal-
culate the quantityTc /Tc0, the critical temperature relative
to the critical temperature in the absence of scattering. In
HSM this depends only on the parameterj0 /,. The depen-
dence turns out to be the same as calculated by Abriko
and Gorkov for s-wave superconductors in the presenc
magnetic impurities.35 This result was generalized to th
nonmagneticp-wave case in Ref. 27. In the IISMTc /Tc0
depends only on the ratioj0 /,ave and the impurity profile
n(r ). In particular, it is independent of the phase~A or B!
and the phase shiftsd ( l ). The relativeTc is plotted as a func-
tion of j0 /,ave in Fig. 4 for different scattering profiles. On
sees that in all cases the HSM gives the lowestTc . This is
natural since the inhomogeneity implies existence of regi
where the scattering is less than the average, and in t
regions the order parameter nucleates at a higher temp
ture. For example, for the steep void profile withR/,ave52
we find Tc50.8Tc0 at the average impurity where superfl
idity in the HSM is completely suppressed (j0 /,ave
50.28). Generally one concludes that the larger the inhom
geneity ~in amplitude and in length scale!, the largerTc is
obtained at a givenj0 /,ave. One notices that the cluste
profile with no background scattering (b50) differs qualita-

FIG. 3. The local superflowj s(r,f,z) in the IISM unit cell. The
parameters are the steep void impurity profile@Eq. ~6! with j 58],
R5,ave55j0 , T50.6Tc0, F1

s510 ~pressure 15.6 bar!, and qj0

50.001.
7-5
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tively from the other curves in Fig. 4. This profile is exce
tional because it has long quasiparticle trajectories where
scattering is negligible.

Let us now turn to the amplitudeD of the order param-
eter. In the HSMD/kBTc depends mostly on the relativ
temperatureT/Tc but also on the scattering ratej0 /,, the
phase shiftsd ( l ), and the phase~A or B!.8 The dotted lines in
Fig. 5 represent four different values ofj0 /, for B-phase

FIG. 4. The transition temperature as a function of average s
tering ratej0 /,ave. The dotted line is from the HSM. Solid lines ar
for the steep void impurity profile@Eq. ~6! with j 58], and corre-
spond toR/,ave5

1
2 , 1, and 2, from left to right. The dashed line

are for the gentle void profile@Eq. ~6! with j 52] and from left to
right R/,ave51 and 2. The dash-dotted lines are for cluster impur
profile Eq. ~7! with j 53 andR5,ave. The lower curve is withb
50.1 and the upper one withb50.

FIG. 5. Temperature dependence of the squared order param
in the B phase. The solid lines give the minimum (Dmin

2 ), the maxi-
mum (Dmax

2 ), and the average value@Dave
2 , Eq. ~9!#. They are cal-

culated in IISM for void impurity profile@Eq. ~6!# with R52,ave.
The left panel uses the steep profile (j 58) andj0 /,ave50.275 and
the right the gentle profile (j 52) andj0 /,ave50.16. Both cases
have the same transition temperature (Tc50.81Tc0). The three
dashed lines in both panels are calculated with the HSM. F
larger to smaller they correspond to the pure limit (j0 /,50), the
HSM with the sameTc (j0 /,50.076) and HSM with the same
average scattering rate as in the IISM (j0 /,50.275 in the left panel
and 0.16 in the right panel!.
21450
he

with sin2d(0)51
2.

In the IISM the parameterj0 /, is replaced byj0 /,aveand
n(r ). The order parameter depends on the locationr ~8!. In
order to describe its temperature dependence we use pa
etersDmax and Dmin , andDave ~9!. The temperature depen
dence of the three characteristic numbers is shown by s
lines in Fig. 5. We see that there can be strong variation s
Dmin

2 and Dmax
2 are quite different. The averageDave

2 is con-
siderably below the HSM curve that gives the sameTc .
ThereforeDave

2 is more suppressed than the critical tempe
ture Tc .

The temperature dependence ofDave
2 varies. Let us first

consider the case in the right-hand panel of Fig. 5, where
shape ofDave

2 (T) is concave nearTc . This is typical for a
small inhomogeneity amplitude. In our case it also mea
that the average scattering is small since the minimum s
tering vanishes. We see that at low temperaturesDave

2 agrees
very well with the HSM curve that is calculated with th
sameaveragescattering rate. At higher temperaturesDave

2

deviates from this since the trueTc is higher than the one
given by the average scattering rate.

In the case of the left hand panel of Fig. 5, the tempe
ture dependence ofDave

2 is quite linear nearTc . In fact, the
linear range is wider~relative toTc) than in the pure case o
HSM. This happens when the amplitude of the inhomoge
ity is large. Large inhomogeneity means large average s
tering, thus the HSM results based on the average scatte
rate are more suppressed than in the case of con
Dave

2 (T). In the particular case of Fig. 5~a!, the HSM result is
quite small sincej0 /,50.275 is near the critical value o
complete suppression. In this caseDave

2 is nowhere nearly
approximated by the HSM result. However, the line
Dave

2 (T) can also appear in cases where the HSM with av
age scattering rate is not that suppressed, and provid
good approximation forDave

2 at low temperatures. This take
place at smallR/j0, where the proximity coupling betwee
different regions tends to average out the inhomogeneity
this limit the range of scattering ratesj0 /,ave whereDave

2 (T)
is concave nearTc seems to vanish.

The concave shape ofDave
2 (T) in Fig. 5~b! can be under-

stood so that the different regions of an inhomogene
sample have transitions more or less independently of e
other: At Tc only D(r 50)5Dmax starts to grow butDa(r
5R)5Dmin and D r(R) ~not shown! remain negligible until
they start to grow at a lower temperature. In spite of t
inhomogeneity, the onset of superfluidity indicated byDmax
is very sharp giving a well definedTc .

The superfluid densityrs is conveniently expressed rela
tive to the density of the liquid,rs/r tot . In addition to pa-
rameters discussed above, this depends on the Fermi-li
parameterF1

s in both the HSM and IISM.~In the IISM also
other parameters could contribute, but they are neglec
here.! SinceF1

s;10 is quite big, it has a strong effect on th
results. The HSM results forrJs in both the A and B phase
have been calculated in Refs. 8 and 11.

In the IISM we calculaters for the B phase. Some curve
are plotted in Fig. 6. As above, we compare the IISM w

t-

ter

m

7-6



ra
r
h

-

el
-

ch
te

e

e

lly,

es-

s-
al,

he

ne-

we

n
rly
se

the
nsi-

res
re-
es
ere

n-

r

e

r in

ures
ters

le.
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the HSM calculated with the same average scattering
j0 /,ave. The results of both models are close to each othe
low temperatures when the scattering rate is small. At hig
temperaturesrs in IISM is larger because of its higherTc .
Thus rs is relatively more suppressed thanTc . At larger
scattering rates,rs in the HSM becomes smaller and is com
pletely suppressed atj0 /,50.28, whilers in the IISM stays
finite much beyond that. All these results are qualitativ
similar as discussed above forDave

2 . The discussion of con
cave or linear temperature dependence in the case of theDave

2

cannot directly be applied tors since this behavior is largely
masked by the effect ofF1

s . The superfluid densityrs is also
different from Dave

2 because of current conservation, whi
forces quite different current pattern in the void and clus
impurity profiles.

In order to reduce the effect ofF1
s , we define a bare

superfluid densityrs
b by

rs
b

r tot
5

~11 1
3 F1

s!~rs/r tot!

11 1
3 F1

s~rs/r tot!
. ~18!

In the case of the HSM this is independent ofF1
s and in the

case of IISM the dependence is small, only a few perc
over the whole pressure range 0. . . 3.4 MPa. We calculate
rs

b at an intermediate pressure of 1.56 MPa whereF1
s510.

The order parameter and superfluid density can be
pressed compactly by defining suppression factors

SD2~ t !5
D2~ tTc!

D0
2~ tTc0!

Sr
s
b~ t !5

rs
b~ tTc!

rs0
b ~ tTc0!

. ~19!

FIG. 6. Superfluid density in the B phase atF1
s510 ~corre-

sponding to3He at 1.56 MPa!. The uppermost dashed line is fo
pure superfluid. The dash-dotted lines are for the HSM withj0 /,
50.05, 0.10, 0.15, 0.20, and 0.25 in order of decreasingTc . The
solid lines are the IISM results corresponding toj0 /,ave

50.05, 0.10, . . . ,0.40 andR5,ave. On the left we have used th
steep void scattering profile@Eq. ~6! with j 58] and on the right the
cluster profile~7! with j 53 andb50.1.
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Herers0
b is the bare superfluid density andD0

2 the order pa-
rameter, both in pure superfluid. The parametert is the tem-
perature relative to the transition temperature. Additiona
we wish to eliminate the parameter,ave, which is not di-
rectly measurable. This is achieved in plotting the suppr
sion factors as a function of (Tc /Tc0)

2. One such plot is
shown in Fig. 7.

The important conclusion from Fig. 7 is that the suppre
sion factors for the A and B phases are almost identic
although there is a clear difference in the values ofDave.
This generalizes the result found previously within t
HSM.8 Also, the difference inSD2 betweenDave andDNMR is
small. The differences increase with increasing inhomoge
ity, so that the suppression factors forDave

2 andDNMR
2 differ

by '5% in our extreme caseR52,ave. All these differ-
ences are rather small and, in order to simplify the plots,
present belowSD2 only for the B phaseDave.

Suppression factors for bothD2 and rs
b as functions of

(Tc /Tc0)
2 are plotted in Fig. 8. The HSM results are show

for comparison. They are all above the diagonal. It is clea
visible that the effect of inhomogeneity is to bend the
curves down. This means thatrs

b andD2 are more strongly
suppressed thanTc . With a steep profile and a largeR/,ave
one obtains a strong suppression and a wide flat region in
suppression curve. Superfluid density is clearly more se
tive to the inhomogeneity than the order parameter.

VII. COMPARISON WITH EXPERIMENTS

A comparison of the calculated transition temperatu
with experimental results is given in Fig. 9. The pressu
independent,ave is determined so that the theoretical curv
and the experimental data intersect at the point wh
Tc /Tc050.7. For the samples measured in Manchester@Fig.
9~b!# the HSM gives a fairly good fit but a better correspo
dence is obtained with IISM by usingR5,ave. For samples

FIG. 7. Suppression factor for the squared order paramete
different cases: B phaseDave

2 ~solid lines!, B phaseDNMR
2 ~dotted

lines!, A phaseDave
2 ~dashed lines!, and A phaseDNMR

2 ~dash-dotted
lines!. The five sets of curves correspond to reduced temperat
t50.2, 0.5, 0.7, 0.8 and 0.9, from top to bottom. Other parame
are steep void profile@Eq. ~6! with j 58] and R5,ave. The inset
shows double magnification of the part indicated by the rectang
7-7
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measured in Cornell and Northwestern@Fig. 9~a!# the closest
curve is the IISM withR52,ave and j 58 in Eq. ~6!. This
represents roughly the best fit obtained by the IISM.

Particularly interesting are the samples A and C measu
in Cornell @Fig. 9~a!#, which also have been studied usin
small-angle x-ray scattering. The values measured for
aerogel correlation scaleja are 130 and 84 nm.23 These are
slightly smaller but on the same order of magnitude as
closest curve valuesR5210 and 140 nm, respectively. Th
supports the view that the better fit obtained by the IISM
compared to the HSM is not only due to more fitting para
eters, but a more realistic modelling of the structure of
aerogel.

Some experimental points for both the order parame
and superfluid density are shown in Fig. 8. Each marker (,,
n, * etc.! identifies a data set that corresponds to one a
gel sample at a fixed reduced temperaturet. The different
points in each data set are obtained from measuremen
different pressures. The superfluid density is measured

FIG. 8. Suppression factors~19! for the squared order paramet
@Eq. ~9!# ~left! and for the bare superfluid density~18! ~right!. The
solid and dashed lines are for void impurity profile~6! with steep
( j 58) and gentle (j 52) slopes, respectively. The dash-dotted lin
are for the cluster profile~7! with j 53 andb50.1. The dotted lines
are calculate using the HSM. For subplotsa–d the temperatures
from top to bottom aret50.2, 0.5, 0.7, 0.8, and 0.9 for the IISM
For HSM the upper line is fort→0 and the lower one fort→1. The
subplotse andf compare the different profiles att50.8. The radius
of the unit cell is mainlyR5,ave except for subplotsc andd where
the solid lines are forR52,ave and for subplots e and f where th
uppermost solid line is forR50.5,ave and the lowest solid and
dashed lines are forR52,ave. Experimental points for the orde
parameter are from Refs. 24 and 36 witht50.9 (h) and t50.5
(1) and 37 (m, t50.65), see discussion in the main text. T
measured superfluid densities are from Manchester~Ref. 28! with
t50.5 (3), t50.8 (s), andt50.9 (L) and from Cornell sample
A ~Ref. 23, witht50.5 (,), t50.8 (n), andt50.9 (*).
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torsional oscillator and the interpretation of the experime
is rather straightforward. The order parameter is measure
NMR. This is possible because the frequency shift depe
on the dipole-dipole energy, Eqs.~12! or ~16!. For interpre-
tation one has to know whether the phase is A or B. T
Stanford point (m) is based on seeing similar suppression
both phases.37 The Northwestern data is drawn here by a
suming A phase andd̂ and l̂ perpendicular to magnetic field
as they are in bulk3He-A.24,36However, it is not clear if this
original assumption is correct.4 In case of the B phase th
analysis would be more complicated because it would
quire an analysis of the texture.34,37,39

One can notice that the experimental data for the or
parameter and superfluid density are qualitatively simi
They all fall clearly below the diagonal, and appear to e
trapolate toS50 already at a finiteTc /Tc0. This is in clear
disagreement with the HSM results that are all above
diagonal. It can be seen that much better agreemen
achieved with the IISM. Ideally each experimental data
should fall on some of the theoretical lines. As one can s
this is not quite the case in the IISM. A reasonable over-al
to suppression factors and critical temperatures is achie
with the void impurity profile ~6! with j 52 and R
'1.5,ave, but the choice depends on the properties o
wishes to emphasize. The agreement could be improved
allowing for a pressure-dependent mean free path,. How-
ever, the most obvious reason for the remaining differen
is that the scattering profile in the IISM has only one leng
scale whereas real aerogel has a wide distribution of len
scales.

VIII. CONCLUSIONS

We have presented the isotropic inhomogeneous sca
ing model. We claim it is the simplest model of inhomog

FIG. 9. Comparison of the calculated transition temperatu
with experiments. The solid and dashed lines are calculated u
the void impurity profile~6! with steep (j 58) and gentle (j 52)
slopes, respectively. The dotted lines are from the HSM. In pa
~a! the experimental points are from Refs. 3 (d, Cornell sample A!,
23 (j), 38 (m, Cornell sample C!, and 24 and 36 (h). Here ,
5213 ~314! nm for the HSM,R52,ave5140 ~206! nm for j 58,
andR52,ave5234 ~342! nm for j 52. The values in the bracket
denote the upper curves. In panel~b! the measured points are from
Ref. 28 (l,.) and we have used,5251 ~324! nm for HSM, R
5,ave5132 ~170! nm for j 58 andR5,ave5195 ~252! nm for j
52. All experimental points are for aerogel with nominally 98
open volume exceptl, which are for 99%. Small-angle x-ray sca
tering gives the aerogel correlation lengthsja584 and 130 nm for
samples denoted bym andd, respectively~Ref. 23!.
7-8
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MODEL OF INHOMOGENEOUS IMPURITY . . . PHYSICAL REVIEW B67, 214507 ~2003!
neous scattering that is consistent with large-scale isotr
Unfortunately, the computations needed are much more
manding than in the homogeneous scattering model.
model itself is independent of the pairing symmetry and th
could be used to study the effect of inhomogeneous impu
distributions in superconductors.

When applied to3He in aerogel, the IISM gives bette
agreement with experiments than the HSM. We empha
that this is not solely due to the IISM having more fr
parameters than the HSM. On the contrary, the inhomoge
ity of aerogel is the most natural if not the only way
explain the differences between measurements and the H
The fitted parameters of IISM are in reasonable agreem
with measurements and simulations on the structure of a
gel. The fit given by IISM is not perfect, though. The ma
problem with the IISM is that it contains only one leng
scale whereas real aerogel must have voids of various s
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APPENDIX

Here we present the relevant equations of the quasicla
cal theory and discuss their numerical solution. The cen
quantity is the quasiclassical propagatorğ.19 It is a 434
matrix, whose components can be represented using
Pauli spin matricessI i as

ğ5S g1g•sO ~ f 1f•sO !isI 2

isI 2~ f̃ 1 f̃•sO ! g̃2sI 2g̃•sO sI 2
D . ~A1!

In equilibrium the propagatorğ( k̂,r ,em) depends on the di
rection of momentumk̂, on the locationr , and on the Mat-
subara energyem5pkBT(2m21), wherem is an integer.
The propagator is determined by the Eilenberger equatio

@ iemt̆32s̆,ğ#1 i\vFk̂•¹rğ50, ~A2!

ğğ521. ~A3!

Here @A,B#5AB2BA denotes a commutator andt̆ i denote
Pauli matrices in the Nambu space;t̆ i5sI i ^ 1. The self en-
ergy matrixs̆5s̆mf1s̆ imp consists of mean field and impu
rity contributions. For spin-triplet pairing the former part h
the form

s̆mf~ k̂,r !

5S n~ k̂,r !1n~ k̂,r !•sO D~ k̂,r !•sO isI 2

isI 2D* ~ k̂,r !•sO n~2 k̂,r !2sI 2n~2 k̂,r !•sO sI 2
D .

~A4!
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The real-valued functionsn andn depend on the Fermi liq-
uid parametersFl

s,a . Omitting F3
s , F1

a and higher coeffi-
cients we haven50 and

n~ k̂,r !5
pkBTF1

s

11 1
3 F1

s (
em

^~ k̂• k̂8!g~ k̂8,r ,em!& k̂8 , ~A5!

where^•••& k̂ denotes angular average. The off-diagonal p
of s̆mf defines the order parameter, which forp-wave pairing
is D5AJ• k̂. It is determined by the weak-coupling sel
consistency equation

D~ k̂,r !ln
T

Tc0
1pkBT(

em

FD~ k̂,r !

uemu
23^~ k̂• k̂8!f~ k̂8,r ,em!& k̂8G

50. ~A6!

The impurity self energys̆ imp is related to the forward-
scatteringt matrix via

s̆ imp~ k̂,r ,em!5n~r ! t̆~ k̂,k̂,r ,em!, ~A7!

wheren(r ) is the impurity density. The usual derivation o
this formula assumes a uniform impurity densityn5const.1

However, it is valid for an arbitrary functionn(r ) as long as
it allows the impurity positions to be uncertain on the sc
of the Fermi wave lengthlF . We assume that onlys-wave
scattering is important. This allows us to write thet-matrix
equation directly for the impurity self-energy:

s̆ imp~r ,em!5n~r !v1̆1pNFv^ğ~ k̂,r ,em!& k̂s̆ imp~r ,em!.
~A8!

Here 2NF5m* kF /p2\2 is the total density of states a
the Fermi surface. The effective massm* is related to the
atomic massm3 by m* 5(11 1

3 F1
s)m3. The scattering

potential v is related to the scattering phase shiftd (0) by
v52(1/pNF)tand (0).

In the calculation we use the following symmetry of th
propagator and self energy

@ ŭ~ k̂,r ,em!#T52 t̆2ŭ~ k̂,r ,em!t̆2 . ~A9!

This limits the nonzero components ofğ to 10, and allows
one to solve the Eilenberger equation with the ‘‘multiplic
tion trick’’ of Ref. 40 using only five components. In th
current-free case all equations are immediately compat
with the symmetry in Eq.~A9!. In the case of nonzero cur
rent a possible problem could arise from the fact that
iterating the impurity equation~A8! the product^ğ& k̂^ğ& k̂

might not be proportional to a unit matrix 1˘ . The inconve-
nient terms always appear with odd powers ofv. Consider-
ing that the phase shifts in aerogel are random, such te
average out and we can use the symmetry of Eq.~A9! also
for nonzero current.

By taking into account all the symmetries the impuri
self energy in the IISM has the form
7-9
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R. HÄNNINEN AND E. V. THUNEBERG PHYSICAL REVIEW B67, 214507 ~2003!
s̆ imp~r ,em!5S id1 id•sO R•sO isI 2

2 isI 2R* •sO 2 id1sI 2id•sO sI 2
D 1w1̆,

~A10!

whereR, d, andd can be expressed analytically as functio
of the propagator̂ğ& k̂ .41 The termw is of no interest since it
drops out in the Eilenberger equation~A2!. In cylindrical
coordinates (r, f, z) the onlyf dependence appears in th
vector R in the A phase, whereR5R0(r,z)eifẑ and R0 is
real. The termsd and d are always real. In the A phased
50 and in theB phased5dff̂ andR5Rrr̂1Rzẑ.

From the propagatorğ ~A1! one can calculate the supe
current densityj s using

j s~r !52pm3vFNFkBT(
em

^k̂g~ k̂,r ,em!& k̂ . ~A11!

The superfluid densityrs is obtained by calculating the av
eraged current at small values ofvs.

The first step in the calculation is to give initial values f
the fieldsAJ , s̆ imp , andn. Normally we used values obtaine
from the HSM. The iteration of these fields was started
transforming the data from the cylindrical/spherical coor
nates to ‘‘trajectory coordinates.’’ These are Cartesian co
dinates with one coordinate,u, along the trajectory and two
others (b and t) specifying the position of the trajectory i
the unit cell. Next the Eilenberger equation was solved alo
the trajectories. This was done by first calculating an
physical exponentially growing propagator along each tra
tory using the fourth order Runge-Kutta method. The e
values at the cell boundary were saved to be used as sta
values for next step in iteration. An exponentially decreas
solution was deduced using symmetries. The bounded ph
.

ic

ity
ls
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cal propagator was obtained as a commutator of these
unphysical solutions as explained in Ref. 40. The solution
the Eilenberger equation was repeated for all Matsubara
quenciesuemu<eN . This was repeated for all trajectories.
the general case it represents loops for coordinatesb, t and
the anglea between the trajectory direction and thez-axis.
For the B phase without a current only the impact parame
b with respect to the center of the sphere was actually nee
because of symmetry.

In the next step better estimates forAJ , s̆ imp , andn were
calculated. For that the propagator was converted from
jectory coordinates back to cylindrical/spherical coordina
and the required angular averages were calculated. The
tribution from higher Matsubara frequenciesuemu.eN was
approximated by a Ginzburg-Landau form7 with Matsubara
sums evaluated using the Euler-MacLaurin formula. Us
the updated values of the fields, the process was started
the beginning. The boundary condition~4! was used to cal-
culate the value of the exponential propagator at the ini
point of the trajectory from the value at the final point stor
on the previous round. This loop was repeated until the fie
converged.41

In the numerical algorithm the number of discretiz
points in cylindrical coordinatesr i andzj was approximately
40 for both in the range from 0 toR. The discretization step
in the Cartesian trajectory coordinates was approximately
same. Simple interpolation formulas were used for the tra
formations between coordinate systems. The anglea was
typically discretized by eight Gaussian points in the ran
0,a,p/2. The number of positive Matsubara frequenc
em used was typically less than 20 for temperatures ab
0.1Tc0. We made also more accurate test calculations.
qualitative behavior remains the same, but there are ina
racies on the order of 2% in the results presented here.
v.
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