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Model of inhomogeneous impurity distribution in Fermi superfluids

R. Hanninert and E. V. Thunebertf
1Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 2200, FIN-02015 HUT, Finland
2Department of Physical Sciences, P.O. Box 3000, FIN-90014 University of Oulu, Finland
(Received 14 January 2003; published 9 June 2003

The standard treatment of impurities in metals assumes a homogeneous distribution of impurities. In this
paper we study distributions that are inhomogeneous. We discuss in detail the “isotropic inhomogeneous
scattering model” which takes into account the spatially varying scattering on the scale of the superfluid
coherence length. On a large scale the model reduces to a homogeneous medium with renormalized parameter
values. We apply the model to superfluitie, where porous aerogel acts as the impurity. We calculate the
transition temperaturd;, the order parameter, and the superfluid density. Both A- and B-like phases are
considered. Two different types of behavior are identified for the temperature dependence of the order param-
eter. We compare the calculations with experiments’ide in aerogel. We find that most of the differences
between experiments and the homogeneous theory can be explained by the inhomogeneous model. All our
calculations are based on the quasiclassical theory of Fermi liquids. The parameters of this theory for superfluid
3He in aerogel are discussed.
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[. INTRODUCTION Similar results have been reached in calculations on uncon-
ventional superconductot$.

The standard treatment of impurities in a metal is based Preliminary results of the 1ISM have been reported in
on averaging over the locations of the impuritteShis  Refs. 2 and 18. In this paper we present the 1ISM in detail.
means that the probability of a quasiparticle being scattere@ur studies are based on the quasiclassical theory of Fermi
is independent of its location. To be definite, we call this theliquids. We discuss the assumptions of this the@gc. ),
homogeneous scattering modeiSM). The purpose of this and how these are satisfied féide in aerogelSec. ll). The

paper is to study the case where the impurity distributiof"homogeneous scattering model is introduced in Sec. IV.

varies in space. We define a model of inhomogeneous sca®" the case op-wave pairing we introduce the order pa-

tering, which is as simple as possible and represents a mé2meters of A- and B-type phas¢Sec. \J. We calculate

dium that is uniform and isotropic on a large scale. We call pSeveral quantities including the criical temperaiure, order
the isotropic inhomogeneous scattering mo@SM).2 The parameter, and superfluid dens{yec. V). The results are

model is motivated by experiments on superfldide in a compared with experiments ofHe in aerogel(Sec. VI

; . The equations of quasiclassical theory and the details of cal-
porous aerogel, and all our numerical computations conce

"Eulations are discussed in the Appendix.
trate on this case. However, the model is independent of the PP

pairing symmetry and therefore can equally be applied, for
example, tos- or d-wave superconductors.

Liquid *He is an ideal example of unconventional super-  On a microscopic scale a pure system is described in
fluid because it is naturally pure, it has a spherical Fermterms of particlegconduction electrons ofHe atom$ and
surface, and itsp-wave pairing state is well understood. their interaction. Because the interactions are strong, this
Therefore it is of interest to study impurity effects in this leads to a complicated many-body problem.
superfluid. The addition of impurities to helium can be done The characteristic length in superconductivity or superflu-
by using porous aerogel so that typically 98% of the volumeidity is the coherence length. We define this quantity as
is occupied by3He. It was found experimentally that the
superfluid transition temperature in aerogel is reduced but hug
remains sharp.Also other superfluid properties such as the fozﬁ’ @

7Kl co
superfluid density and the NMR shifts were found to be
modified by aerogel. Many experiments studying this systenwherev is the Fermi velocity. To be precise, we have used
have been made during the last seven yars. the superfluid transition temperatuiigy of a pure system.

The HSM is an attractive model fotHe in aerogel be- The coherence length is typically much larger than the Fermi
cause of its simplicity. Essentially all theoretical calculationswave lengti\g=27/kg. In 3He ¢, depends on pressure and
for this system are based on?it-*® However, already the changes from 16 nm at the solidification pressure to 77 nm at
first comparisons to experiment showed that the HSM is inthe vapor pressure whereag~0.7 nm.
sufficient quantitatively. In particular, it was found that the  The theory that is designed to work on the scgfe A\ is
order parameter is more suppressed than the superfluid trathe quasiclassical theot.lt treats the system as a dilute gas
sition temperaturd ;. A natural explanation for this comes of weakly interacting quasiparticles. In quasiclassical theory
from the fact that the scattering in aerogel is not homogeall the many-body physics that takes place on the micro-
neous, as has already been demonstrated using the2lISMscopic scale\ is eliminated. It only appears through phe-

II. QUASICLASSICAL THEORY
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nomenological parameters like the Fermi-surface, Landawvolume ~¢&3. Above the individual scattering centers were

Fermi-liquid parameters and transition temperafligg required to be smallg<¢Z. This implies that the energy
Let us consider any external objects in the system. Thesg,__ ¢, associated with a single impurfyis small in com-

objects are characterized by a strong potential, on the Ord?farison. The typical number of impurities in vqungé is

of the Fermi energy. As a consequence the state of the SySteL_ 2/ which for random impurities implies a fluctuation

is modified in the vicinity of the object. A theoretical analysis SN~ N. The corresponding fluctuation in energy is by fac-

of these atomic scale changes is again difficult because of tt}gr Jol&, smaller thanf, £3. This has to be neglected
0 conds0-

strong interactions between particles. X N
. . . .since there are other neglected contributions that are on the
In the quasiclassical theory the effect of external objects is . . . L
ame order of magnitude. Thus impurity averaging in the

twofold ?° First, the phenomenological parameters discusseauasiclassical abbroximation implies a scattering medium
above are changed. These parameters are determined by p PP P 9

cesses on the Fermi-energy scale and are therefore of shdvpere the fluctuations in the impurity density are neglected.
range. Assuming that the surface area of the external objects
times the atomic length scala §) is a small fraction of the . AEROGEL
total volume, this effect is small and is neglected in the fol-
lowing. Second, the objects affect the low energy processes The structure of aerogel, as relevant firte experiments,
(energy~kgT.o directly via a scattering of quasiparticles. is discussed in Ref. 23. Here we repeat some main points.
The range of this effect is long, on the order of the coherencéerogel consists of small SiO particles of diameter
length[Eq. (1)]. Therefore it leads to substantial modification ~3 nm, which are coalesced together to form a self-
of the superfluid properties. supporting structure. Experiments wittHe typically use
An important length characterizing the scattering is theaerogels with open volume fraction 98% or more. According
mean free patif. The simplest case is to consider the limit to small-angle x-ray scattering measurements, there is a
Ne/€—0. This is the quasiclassical limit where the Fermi “fractal” range in the particle cluster up to a “correlation
wave length effectively disappears from the theory. First ordength” £,~100 nm. Above this scale the structure looks
der corrections ing/¢ lead to effects like weak localization, homogeneous. Computer simulations give a picture of
which are neglected here. In quasiclassical theory, the scatvidely spaced aerogel strands implying a long mean free
tering is represented by a collection of “scattering centers.”path>100 nm.
The main assumption is that the quantum interference be- It seems reasonable that the quasiclassical description
tween two scattering centers is neglected. Technically thigbove can be applied to liquitHe in aerogel. The atomic
can be achieved considering an ensemble average where tlager on the SiQ surfaces occupies only one per cent of the
locationsr; of the scattering centers are uncertain by a disvolume and can be neglected for many purpofésgnetic
tance on the order of or more. The size of one scattering properties make an exception because the susceptibility in
center is limited by the condition that it has to be localizedthis layer is much larger than in pure ligLit). Since a major
on the scale of,. The scattering properties of a center canpart of the liquid is within a coherence length from $j&
be parametrized by scattering phase shiftd, which are the scattering effect leads to a substantial modification of the
taken at the Fermi energy in the normal stékar simplicity ~ superfluid properties. It also seems that the scattering from
we label the different partial waves by a single indekut  aerogel can be represented by incoherent scattering centers
there is no need to restrict to spherically symmetric scatterwhose size is small compared £ because random varia-
ing centers. The scattering could also be spin-dependent, btibns on the order ok are likely to develop already at much
it is also neglected here for simplicityThus a complete smaller distances.
description of the scattering needed in the quasiclassical The smallest reasonable choice for a scattering center is a
theory consists of distribution functiomg(r) and scattering single SiQ particle (diameter R,~3 nm). This is large in
phase shifts5") of the scattering centeis=1,2, . .. . comparison toAg: kgR,~10. According to hard sphere
Within each scattering center an exact quantum treatmenghase shifts this means that only 1% of the scattering takes
is allowed in principle. However, because of uncertaintyplace in the s-wave channel, and 99% is left to higher partial
about the microscopic processes at surfaces, the phase shiftaves in Eq.(2). This dominant contribution of higher par-
5" cannot be calculated from first principles. Instead, ondial waves has several important consequences.

has to use some models, for example hard spHéiassome Firstly, the phase shifts{) are random numbersThis is
quantities the phase shifts only appear in certain combinabecause even the phase shiftsodulo =) of a hard sphere
tions, for example, the transport cross section with a fixed R, are pseudorandom numbers figR >1.

Adding to this the varying particle size, the surface rough-

4o = ness and varying orientations of touching neighbor particles,

o=— > (14 1)sir?(s0 D — 50y, (2) itis simply impossible that the result would be anything else

kg =0 but random.(The randomness, of course, is valid only for

partial waved that contribute essentially to scattering, i.e.,

Let us try to clarify some consequences of the assumpfor | <k(R,.)

tions made above. The energy one usually is trying to calcu- A consequence of the random phase shifts is that only the
late is on the order of .onéa. Heref onq~ksTc/NEE is the  number of scattering phase shifts, or equivalently, the cross

superfluid condensation energy per volume, and a typicadectiono [Eg. (2)] is important in describing a scattering
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center. Thus a sufficient description of the scattering is obmisguided, and random or intermediate phase shifts should
tained by specifying onlyr; andn;(r). be used instead. The observed differences can more naturally
A second important consequence of the large particle sizbe explained by inhomogeneous scattering as will be shown
is that botho; andn;(r) are independent of pressure. This is below, at least for some quantities.
crucial for comparison with experiments, because when fit- Real aerogel has voids where scattering is negligible. This
ting is needed, it can be done at one pressure only, and tl@an be modelled by an impurity densityr) which depends
predictions of the model get fixed at all pressures. We arguen the locatiorr. It is in principle possible to use a realistic
as follows. It is reasonable to assume that the aerogel is(r) for aerogel. This has the drawback that the computa-
independent of the hydrostatic pressure, implying thét) tional volume should be large in order to get a representative
is also. The Fermi wave vector changes by 10% over theample, and this implies heavy numerical effort. Here we
pressure range from the vapor pressure to the solidificatioprefer the opposite limit of a simple mode(r). The sim-
pressure. This could induce some pressure dependence in thkest possibility would be a plane-wave variatinfr) =n,
cross sectiotr; . For example, hard-sphesedepends essen- +n, cos@-r). A stronger version of this would be equally
tially on kg in the regionkeR,~ 1.2° However, in the physi- spaced scattering planes. In the limit of very strong scatter-
cal regionkgR,= 10 the dependence ofonkgis very weak. ing in the planes this leads to isolated sl&i&he problem
Thus we conclude that boil andn;(r) are independent of with all these models is that they are anisotropic. For ex-
pressure. ample, the superfluid density would depend on the direction
The largekgR, is potentially bad news for theory because of the superfluid velocitys. In comparison to experiments
calculations that take higher partial waves into account arene should use some average over the directions, but this
very complicated; see Ref. 8. The promising conclusion ofheglects the process how the averaging really takes place by
these calculations is that, at least in some cases, the resuisnonuniform current distribution.
including higher partial waves are almost identical to those The purpose of thesotropic inhomogeneous scattering
including only s-waveaunder the following conditiongi) one  model(IISM) (Ref. 2 is to incorporate a non-constamgr)
uses the same transport mean free gatind (i) one uses with spherical symmetry. We take a spherical volume of ra-
either random phase shifi® or fixed sifé®?~1 in the diusRand use an impurity density(r) that depends only on
s-wave calculation. Here we assume that this correspondendiee radial coordinate. We assume that these spheres fill all
holds more generally. Thus we calculate only s-wave andhe space. This last point is not strictly possible, but repre-
present results for stA®=1. Finally, the randomness of the sents an approximation that is similar to using spherical ap-
phase shifts also simplifies the numerical calculations since jproximation for a Wigner-Seitz unit ceif. The calculation in
implies that some components of the propagator vafise  a single unit cell can represent states where the superfluid

the Appendix. order parameteA(r) has the Bloch form

The use of several impurity species is important in study-
ing anisotropic scattering where the preferred direction var- X(r)zﬁ(o)(r)exp(iq- r), 3
ies in space. In this paper we limit to isotropic scattering. In -

order to simplify the notation we select all scattering centersvhere AC°)(r) is a strictly periodic order parameter. In the
to have equal cross section, so that the only scattering pgresent case the wave vectpis the imposed phase gradient
rameters arer and the total impurity densitp(r). that is related to the superfluid velocity= (%/2m)q defined
on a scale larger thaR.
At the surface of the IISM sphere we impose the bound-
IV. SETTING THE MODEL ary condition that an exiting quasiparticle is effectively re-

The simplest possible impurity profile(r) is a constant. turned to the sphere at the diametrically opposite point; see
It implies a location independefitransport mean free path Fig- 1. In th_e case of current-carrying states, there has_ to be
¢=(no) . This homogenous scattering modéISM) has @ phase shl_ft which corresponds to th_e phase factor in Eq.
successfully been used to model the impurities in(3)- Otherwise the state of the quasiparticlaomentum,
superconductors?® For impure p-wave superfluidide) it spin) is unchangeq. The boundary condmo_n can be ex-
has been used to calculate the critical temperdtutiee or- ~ Pressed mathematically for the Green’s function as
der parameter and superfluid dendity’!! properties near . . . - e -
the superfluid transitiofi! properties in magnetic 9(K,Rr,en)=expiq-Rr3)g(k, —Rr,eqn)exp( —ig-Rrr3),
field,>19121318density of state$>*® thermal conductivity’ 4

and estimatg gtrong—coupling effeéts. . see the Appendix for notation. The model reduces to the
The predictions of the HSM are compared to experiment$ sm in the limit thatn(r) is independent of.

in Refs. Zd’ 7,9, 1(91_13’ ﬁs’ 23, 28, and h29, .Sie alsg below. gecayse of the spherical approximation, it is worth while
Compared to pure'He, the HSM gives the right tendency properly define all large-scale>(R) quantities. We define

and can yvork even quantitatively in SOME Cases, but th.erﬁ]acroscopic guantities as averages of the corresponding lo-
can be differences up to a factor of 5 in the suppression quantities over the sphere

factors(see beloy In some papers the experiments are com-
pared with data that is calculated in the unitary limit of 3
s-wave scattering, which seems to give better agreement than (A=

other phase shifts. As explained above, we believe this is 47R3

j d3rA(r). (5)
r<R
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FIG. 1. The sphere used in the IISM to approximate a unit cell
of a periodic lattice. The drawing illustrates the boundary condition 00 012 0'4 I6

0.8 1

. 0.
that a quasiparticle exiting the sphere is returned back at the dia- r/R
metrically opposite point. The shading depicts the spherically sym- .
metric impurity densityn(r). FIG. 2. The B-phase order paramef&q. (8)] in the 11ISM for

vs=0 at the temperature OI'yy. The solid lines are fosteep void

In particular, corresponding to the local mass current densit{{"p”my profile [Eq. (6) with j=8], R=2{ay, andéo/{aye=0.2.
of the superfluid,j,, we have the macroscopigs). The e dashed lines are fgentle voidprofile [Eq. (6) with j=2], R

. ST . . SUNSE =4 ave, @aNd&y /€ 4= 0.1. The dash-dotted lines are fdusterpro-
superfluid densityps is then defined by(js)= psvs+ O(vs)

: . file [Eq. (7) with j =3, b=0.1], R=¢ ., and &/¢,,=0.1. The
with vs= (fi/2m)q as defined above. The average mean freg,cot shows the corresponding impu?i\@ profileos. ave
path €, is defined byf L= o(n(r)).

The parameters specifying the scattering are the radius @he 1ISM is quite substantial. For example, the computer
the sphere, the average mean free pdthe, and the shape code has five nested loops in addition to the one needed for
of the impurity densityn(r). Forn(r) we use two different the iteration of the order parameter, and there are several
analytic forms stages of initialization, interpolation, and data collection.
Based on calculations with the HSM, no new superfluid

n(r)=c (L)J_J_ L)Hz ©) phases of°He are expected in the presence of scattefing.
R/ j+2\R ’ However, the order parameters of the A and B phases are
modified by inhomogeneous scattering. The general forms
A ar can be deduced using symmetry arguments. The B phase
n(r)=c’ COS*(ﬁ +b|,j=2. (7)  order parameter fovg=0 has the form
with parameterg and b. Here the prefactors andc’ are A(r,¢,0)=eXRIA(NIT+A4(r)(00+ )],  (8)

determined by the parametefg,. and o (c, ¢'>0). The

functions in Eqs(6) and(7) are shown in the inset of Fig. 2. . . )
: . . and the rotation matriR are arbitrary constants. The calcu-
We call themvoid and clusterprofiles, respectively, because . ) .
lation determines the real-valued radi®j(r) and angular

the former has strongest scattering at the boundary and th (r) functions. These functions are shown in Fig. 2 for
latter at the center of the sphere. Both profiles have zeréa ' 9.

derivative atr =R in order to have a smooth impurity density ree d|ffere_nt_scatter|ng profilegr). We see that the order .
everywhere. parameter is mhomogene.ous: and is mostly suppresse(_j in
An attractive feature of the [ISM is that the symmetries off€g1ons where the scattering is strong. For the void prqﬂle
a homogeneous system are preserved on a large sdale [Eq. (6)] the order parameter components have maxima

Thus one can apply phenomenological large-scale theorieémax:Af(o):Aa(o) at the center and minima at the sur-

such as Ginzburg-Landau and hydrodynamic theories as for ce. The 'absolute .m|n|mummin IS given byAa(R). .
homogeneous mediufit-32The only change is that the pa- We define two different averages of the spatially varying

rameters of these theories are modified by the inhomogené)—rder parameter. The usual average is given by
ity. Some of these parameters are calculated below. 1
Ade=3

where spherical coordinates, ¢, ) are used. The phase

ave_3<Ar2+2Aezi>' (9)

V. ORDER PARAMETER

, . An “NMR average” is defined by
We apply the 1ISM for superfluidHe. The main assump-

tion in addition to those already mentioned is the use of the 1

weak-coupling approximation. The dipole-dipole interaction ARwr= 1—5<2Ar2+ BA A, +T7AZ). (10

is neglected because it is unimportant on the scale of a few

&0, Which we study here. The equations and some details ofhis form can be justified as follows. The frequency shifts of

the numerical implementation are discussed in the Appendixauclear magnetic resonance in superfltiite are determined
Even with all simplifications, the computational effort in by the dipole-dipole interaction enertjy
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fe=0d | TrA|2+ Tr(A* A)]. (11 1=

The coefficientgy is a phenomenological parameter that de- 0.8 ; ; ; ; : : N i
pends on a cut-off energy, which is on the order of the Fermi Vot b, .
energy** According to the principles of Sec. Il we assume it o6ttt s,
is not changed by the impurity. We calculate the dipole- zr |[1Hrr
dipole energy Eq. (11)] for the B-phase order paramet®) 0.4 I % ; ; ; rs
and find 't : '
0.2 bty
f4=404A2yr COSH(1+ 2 cosd), (12 1 % % I 'y

- 0 tot .

whered is the rotation angle dR. This has exactly the same 0 02 04 06 08 1

form as in pure*He-B, the only change being that the energy p/R

gapA is replace byAyyr - Thus the NMR properties within
[ISM are the same as in bulk liquid except for this renormal-
ization.

We point out that the order parameter in E—(17) is '33%8’8: 50, T=0.6Tco, Fi=10 (pressure 15.6 barand q¢,
defined using the off-diagonal part of the mean-field self en- ™ =
ergy (A4). It should be noted that the order parameter is not )
simply related to the energy gap in the excitation spectrumNOW A ,; are complex and depend gnandz They satisfy
Only in pure, homogeneous superfluid the energy gap equagymmetry relationsA ,(p,—2)=—A%(p,2), A, (p,—2)
A= Anvr . The excitation spectrum in the HSM has been=—A73,(p,2) and A;i(p,—2)=A%(p,2), wherei=p,é,z.
studied in Refs. 12 and 13, but there are no studies yet for thehe mass supercurrenf4(r) has non-zero p and
[ISM. z-components inside the sphere. One case is illustrated in

The A-phase order parameter is more complicated since Fig. 3. It can be seen that the current density is smallest in
is anisotropic. We select the cylindrical coordinatgsd, z) regions of strong scattering. Naturally, the current is con-

so thatz is along the anisotropy axis The order parameter Served.V-j(r)=0. In the void profile, the current has to go

FIG. 3. The local superflovy(p, ¢,z) in the 1ISM unit cell. The
parameters are the steep void impurity profiy. (6) with j=8],

for ve=0 can be written as through the scattering regions at the cell boundary, whereas
in the cluster profile(not shown the transport current can
Alp,b,2) =ei¢a[Ap(p,z)f)+ iA¢,(p,z)€b+AZ(p,z)2], flow past the scattering region situated at the center. Regard-

(13) less of the profile, the averaged current is parallefdand
independent of the direction. Thus the superfluid density ten-
whered is an arbitrary constant unit vector. The functiahs sor p reduces to a scalars.
are real but now they depend on two coordingieand z
They satisfy symmetry relationsA ,(p,—2)=4,(p,2),
Ay(p,—2)=A4(p,2) andA,(p,—2)=—A,(p,2z). For the A
phase we define We start by studying the critical temperatufg. We cal-
culate the quantityl ./ T, the critical temperature relative
to the critical temperature in the absence of scattering. In the
HSM this depends only on the paramefgr€¢. The depen-
dence turns out to be the same as calculated by Abrikosov
1 and Gorkov for s-wave superconductors in the presence of
AﬁMR=§<A,§+Ai—2A§>- (15  magnetic impuritieS® This result was generalized to the
nonmagneticp-wave case in Ref. 27. In the IISM /T
In pure homogeneous superfluitl,,=Aywr equals the depends only on the ratigy/{ e and the impurity profile
maximum energy gap in the A phase. The dipole-dipole enn(r). In particular, it is independent of the phageor B)

VI. RESULTS

AZE

ave: 2

<A§+Ai+ A2y, (14)

ergy[Eq. (11)] in the A phase(13) is given by and the phase shifi&"). The relativeT, is plotted as a func-
tion of &,/€ 4, 1N Fig. 4 for different scattering profiles. One
fy= _ngAﬁlMR(a'T)zv (16) sees that in all cases the HSM gives the lowest This is

natural since the inhomogeneity implies existence of regions
and the justification for\ yyg (15) is completely analogous Wwhere the scattering is less than the average, and in these
to the case of the B phase. regions the order parameter nucleates at a higher tempera-
In the case of a finite superfluid velociftaken to be in  ture. For example, for the steep void profile WA 5,.=2
the z direction we limit our calculations to the B phase we find T.=0.8T at the average impurity where superflu-

where the order parameter takes the form idity in the HSM is completely suppressedéy(€ e
=0.28). Generally one concludes that the larger the inhomo-
X(p,¢,z)=eiX§[Appi)ﬁ+A¢¢t}S(}b+ A, 22+ Apzlﬁ geneity (in amplitude and in length scalethe largerT, is
. obtained at a giver£y/{ .. One notices that the cluster
+A4,,2p]. a7 profile with no background scattering € 0) differs qualita-
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N~ ' ' ' ' with sir?6®=3.
o9 .} ‘ ~ ] In the IISM the parametef, /¢ is replaced by, /€ 5 .and
08 N N ] n(r). The order parameter depends on the locati@8). In
o7l NG ] order to describe its temperature dependence we use param-
o 0'67 - T etersA pa and A, and A, (9). The temperature depen-
o RN ) dence of the three characteristic numbers is shown by solid
:O 051 SO\ 1 lines in Fig. 5. We see that there can be strong variation since
0.4 NG ] AZ. andAZ, are quite different. The averag€,, is con-
03l ] siderably below the HSM curve that gives the same
0l EERAN | ThereforeA?2 ,is more suppressed than the critical tempera-
' S0 NN ture T..
o1r Sy NS | The temperature dependence &f,, varies. Let us first
% o1 02 03, o2 o5 06 consider the case in the right-hand panel of Fig. 5, where the
‘S;O/Zave shape ongve(T) is concave neafll;. This is typical for a

small inhomogeneity amplitude. In our case it also means

FIG. 4. The transition temperature as a function of average scay, 4t the average scattering is small since the minimum scat-
tering rate&, /¢ 5. The dotted line is from the HSM. Solid lines are

for the steep void impurity profileEq. (6) with j=8], and corre- tering vanlshes. We see that at low tgmperatvhré;é agrees
1 ) . very well with the HSM curve that is calculated with the
spond toR/€ =3, 1, and 2, from left to right. The dashed lines . .
are for the gentle void profilEEq. (6) with j=2] and from left to sameaveragescgtterlng rate. At h.IghPTr temperaturé.ﬁ\,e
right R/ €= 1 and 2. The dash-dotted lines are for clusterimpurityd_evIates from this since the.tru'E‘c is higher than the one
profile Eq.(7) with j=3 andR= ¢ . The lower curve is witth ~ 9iven by the average scattering rate.
=0.1 and the upper one with=0. In the case of the left hand panel of Fig. 5, the tempera-
ture dependence a2 . is quite linear neafl;. In fact, the
tively from the other curves in Fig. 4. This profile is excep- linear range is wide(relative toT.) than in the pure case or
tional because it has long quasiparticle trajectories where thdSM. This happens when the amplitude of the inhomogene-
scattering is negligible. ity is large. Large inhomogeneity means large average scat-
Let us now turn to the amplitud& of the order param- tering, thus the HSM results based on the average scattering
eter. In the HSMA/kgT, depends mostly on the relative rate are more suppressed than in the case of concave
temperatureT/T, but also on the scattering ratig/¢, the AadT). In the particular case of Fig(#), the HSM result is
phase shiftsS"), and the phas@A or B).® The dotted lines in  quite small since,/¢=0.275 is near the critical value of
Fig. 5 represent four different values g§/¢ for B-phase complete suppression. In this cadd, is nowhere nearly
approximated by the HSM result. However, the linear
A2 {T) can also appear in cases where the HSM with aver-
age scattering rate is not that suppressed, and provides a
good approximation foﬁgve at low temperatures. This takes
- place at smalR/¢,, where the proximity coupling between
N different regions tends to average out the inhomogeneity. In
NS this limit the range of scattering rate§§/€a\,ewhereA§\,e(T)
Y is concave neaf . seems to vanish.
N The concave shape & (T) in Fig. 5(b) can be under-
stood so that the different regions of an inhomogeneous
EA sample have transitions more or less independently of each
N ; "-»,__ other: At T. only A(r=0)= A, Starts to grow butA 4(r
o6 o8 1 =R)=A,andA(R) (not shown remain negligible until
o0 they start to grow at a lower temperature. In spite of the

inhomogeneity, the onset of superfluidity indicated Ay,
FIG. 5. Temperature dependence of the squared order paramet@fyery sharp giving a well defined..

. . . . . . 2 .
in the B phase. The solid lines give the minimuit,), the maxi- The superfluid density, is conveniently expressed rela-
m‘fm (dAmaxl)Iéi‘A”? the ;(ljv_erage_vall[af_alveiEEq.Es(g)]._Thhzy_azrg cal- e to the density of the liquidps/py. In addition to pa-
culated in or void Impurity prme[ a- (6)] with R=2{ 4. rameters discussed above, this depends on the Fermi-liquid
The left panel uses the steep profije=8) and&y /€ ,,=0.275 and s -

) L " parametelF; in both the HSM and IISM(In the [ISM also
the right the gentle profilej&2) and &,/€,,~=0.16. Both cases h Id ib b h | d
have the same transition temperatufg.€0.81T ). The three other p_aramtzters (_;OU ) Conm _Ute’ ut they are neglecte
dashed lines in both panels are calculated with the HSM. Fronfi€re) SinceF;~10 is quite big, it has a strong effect on the
larger to smaller they correspond to the pure lingig (¢ =0), the ~ results. The HSM results fqus in both the A and B phases
HSM with the sameT, (&/¢=0.076) and HSM with the same have been calculated in Refs. 8 and 11.
average scattering rate as in the 1Sk} (€ =0.275 in the left panel In the 1ISM we calculate for the B phase. Some curves

and 0.16 in the right pangel are plotted in Fig. 6. As above, we compare the 1ISM with

(b)
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FIG. 7. Suppression factor for the squared order parameter in

FIG. 6. Superfluid density in the B phase B=10 (corre-  different cases: B phas&Z, (solid line9, B phaseA2,,s (dotted
sponding to*He at 1.56 MPa The uppermost dashed line is for lines), A phaseA? , (dashed lines and A phase\2,,; (dash-dotted
pure superfluid. The dash-dotted lines are for the HSM gith¢ lines). The five sets of curves correspond to reduced temperatures
=0.05, 0.10, 0.15, 0.20, and 0.25 in order of decrea3ipgThe t=0.2, 0.5, 0.7, 0.8 and 0.9, from top to bottom. Other parameters
solid lines are the [ISM results corresponding ®/¢,.  are steep void profil€Eq. (6) with j=8] and R={,,. The inset
=0.05, 0.10...,0.40 andR={,,,.. On the left we have used the shows double magnification of the part indicated by the rectangle.
steep void scattering profi[&qg. (6) with j =8] and on the right the

cluster profile(7) with j =3 andb=0.1. Here p%, is the bare superfluid density add the order pa-

the HSM calculated with the same average scattering ratreameter, bOth.'n pure superflglq. The parameterthe tem-
erature relative to the transition temperature. Additionally,

&o!€ ave- The results of both models are close to each other & : . L -
low temperatures when the scattering rate is small. At highe\fve wish to eliminate the parametégye, which is not di

; . o rectly measurable. This is achieved in plotting the suppres-
temperat_ure$s n ISM is larger because of its highd. sion factors as a function ofT¢/T.5)2. One such plot is
Thus pg is relatively more suppressed thdn. At larger shown in Fig. 7
scattering rategs in the HSM becomes smaller and is com- . L . . . i
pletely suppressed &/¢ =0.28, whilep, in the IISM stays The important conclusion from Fig. 7 is that the suppres

finite much beyond that. All these results are qualitativel sion factors for the A and B phases are almost identical,
I ey ' . N yalthough there is a clear difference in the valuesAQfe.
similar as discussed above fa?, .. The discussion of con-

_ ave : This generalizes the result found previously within the
cave or linear temperature dependence in the case rzh‘itge HSM& Also, the difference S, between . andA yyr is
cannot directly be applied {; since this behavior is largely smga|l. The differences increase with increasing inhomogene-
masked by the effect dF;. The superfluid density, is also ity, so that the suppression factors f,, and A2, differ
different from Aive because of current conservation, which by ~5% in our extreme casR=2(,,.. All these differ-
forces quite different current pattern in the void and Clusterences are rather small and, in order to S|mp||fy the pk)ts7 we
impurity profiles. present belows,2 only for the B phase\ 4.

In order to reduce the effect d¥}, we define a bare Suppression factors for both? and p® as functions of
superfluid density by (T./Teo)? are plotted in Fig. 8. The HSM results are shown
for comparison. They are all above the diagonal. It is clearly
visible that the effect of inhomogeneity is to bend these
curves down. This means thaf and A2 are more strongly
suppressed thah,. With a steep profile and a lard®/ € e
In the case of the HSM this is independent/gf and in the  one obtains a strong suppression and a wide flat region in the
case of IISM the dependence is small, only a few percensuppression curve. Superfluid density is clearly more sensi-
over the whole pressure range 0. 3.4 MPa. We calculate tive to the inhomogeneity than the order parameter.
pl at an intermediate pressure of 1.56 MPa wHefe: 10.

The order parameter and superfluid density can be ex-
pressed compactly by defining suppression factors

P_ks)_(l"' %Fi)(pslptot) (18
Pot 1+ 3 F5(ps/pror) .

VIl. COMPARISON WITH EXPERIMENTS

A comparison of the calculated transition temperatures

Spa(t) = ﬂ with experimental results is given in Fig. 9. The pressure-
' A3(tTco) independent . is determined so that the theoretical curves
and the experimental data intersect at the point where
pE(tTC) T./To=0.7. For the samples measured in Manchedtay.
Spp(t) = ———- (199  9(b)] the HSM gives a fairly good fit but a better correspon-
* psdtTeo) dence is obtained with 1ISM by using= ¢,,.. For samples
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1 1

1 2
pressure (MPa) pressure (MPa)

FIG. 9. Comparison of the calculated transition temperatures
with experiments. The solid and dashed lines are calculated using
the void impurity profile(6) with steep {=8) and gentle [=2)

0.8 e) t=08 , slopes, respectively. The dotted lines are from the HSM. In panel
) R (a) the experimental points are from Refs.@ (Cornell sample A

0-6 - A 23 (W), 38 (A, Cornell sample § and 24 and 36((). Here¢

041 o Tl =213 (314) nm for the HSM,R= 2¢ .= 140 (206) nm for j =8,

0.2[ g5~ —~7 andR=2¢,,~=234 (342 nm for j=2. The values in the brackets

0 0 denote the upper curves. In paitl] the measured points are from
0 0'2(;)-"}7-0;3)20'8 1o 0'2(%‘}7-0':)20'8 1 Ref. 28 (¢ ,¥) and we have used=251 (324 nm for HSM, R

c ¢ c ¢ ={ =132 (170 nm for j=8 andR={,,=195 (252 nm for j
=2. All experimental points are for aerogel with nominally 98%
open volume excep® , which are for 99%. Small-angle x-ray scat-
tering gives the aerogel correlation lengths=84 and 130 nm for
samples denoted bk and®, respectively(Ref. 23.

FIG. 8. Suppression facto(&9) for the squared order parameter
[Eq. (9)] (left) and for the bare superfluid densit¥8) (right). The
solid and dashed lines are for void impurity profi® with steep
(j=8) and gentle (=2) slopes, respectively. The dash-dotted lines
are for the cluster profil€7) with j=3 andb=0.1. The dotted lines  torsional oscillator and the interpretation of the experiments
are calculate using the HSM. For subplatsd the temperatures s rather straightforward. The order parameter is measured by
from top to bottom ar¢=0.2, 0.5, 0.7, 0.8, and 0.9 for the IISM. NMR. This is possible because the frequency shift depends
For HSM the upper line is far— 0 and the lower one far—1. The  on the dipole-dipole energy, Eg&l2) or (16). For interpre-
subplotse andf compare the different profiles &t 0.8. The radius tation one has to know whether the phase is A or B. The
of the unit cell is mainlyR= ¢ ,,. except for subplots andd where  Stanford point &) is based on seeing similar suppression in
the solid lines are foR=2¢ ., and for subplots e and f where the poth phaseg? The Northwestern data is drawn here by as-
uppermost solid line is foR=0.5¢,, and the lowest solid and suming A phase and andi erpendicular to magnetic field,
dashed lines are fdrR=2¢,,.. Experimental points for the order as they are in bullBHe-A 24 GHowever, it is not clear if this
parameter are from Refs. 24 and 36 witn0.9 (1) andt=0.5  qjginal assumption is correétin case of the B phase the
(+) and 37 &, t1=0.65), see discussion in the main text. The 55y sis would be more complicated because it would re-
measured superfluid densities are from Manche®ef. 28 with quire an analysis of the textupd37:39
t=0.5 (x), 1=0.8 (O), andt=0.9 (¢) and from Cornell sample One can notice that the experimental data for the order
A (Ref. 23, witht=0.5 (V), t=0.8 (A), andt=0.9 (*). parameter and superfluid density are qualitatively similar.

] ] They all fall clearly below the diagonal, and appear to ex-
measured in Cornell and Northwestéfig. (a)] the closest  trapolate toS=0 already at a finitd ./T. This is in clear
curve is the lISM withR=2¢,,. andj=8 in Eq.(6). This  disagreement with the HSM results that are all above the
represents roughly the best fit obtained by the IISM. diagonal. It can be seen that much better agreement is

Particularly interesting are the samples A and C measuredchieved with the 1ISM. Ideally each experimental data set
in Cornell [Fig. 9a)], which also have been studied using should fall on some of the theoretical lines. As one can see,
small-angle x-ray scattering. The values measured for thehis is not quite the case in the IISM. A reasonable over-all fit
aerogel correlation scalg, are 130 and 84 niff These are to suppression factors and critical temperatures is achieved
slightly smaller but on the same order of magnitude as ouwith the void impurity profile (6) with j=2 and R
closest curve valueR=210 and 140 nm, respectively. This =~1.5€a, but the choice depends on the properties one
supports the view that the better fit obtained by the 11ISM agvishes to emphasize. The agreement could be improved by
compared to the HSM is not only due to more fitting param-allowing for a pressure-dependent mean free gathiow-
eters, but a more realistic modelling of the structure of theEVer, the most obvious reason for the remaining differences
aerogel. is that the scattering profile in the IISM hgs c_)nly_ one length

Some experimental points for both the order paramete?cale whereas real aerogel has a wide distribution of length

and superfluid density are shown in Fig. 8. Each markey ( SCales-
A, * etc.) identifies a data set that corresponds to one aero-

gel sample at a fixed reduced temperaturé@he different

points in each data set are obtained from measurements at We have presented the isotropic inhomogeneous scatter-
different pressures. The superfluid density is measured bing model. We claim it is the simplest model of inhomoge-

VIIl. CONCLUSIONS
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neous scattering that is consistent with large-scale isotropylhe real-valued functions and » depend on the Fermi lig-
Unfortunately, the computations needed are much more dasid parameterd=}®. Omitting F3, F§ and higher coeffi-
manding than in the homogeneous scattering model. Theients we haver=0 and
model itself is independent of the pairing symmetry and thus
could be used to study the effect of inhomogeneous impurity A kg TFS o A
distributions in superconductors. v(k,r)= > ((k-kHg(K',rem)ir,  (AB)

When applied to®He in aerogel, the 1ISM gives better 1+ 3F] en
agreement with experiments than the HSM. We emphasize )
that this is not solely due to the IISM having more free Where(: - -); denotes angular average. The off-diagonal part
parameters than the HSM. On the contrary, the inhomogenef o defines the order parameter, which fewave pairing
ity of aerogel is the most natural if not the only way tois A=A-k. It is determined by the weak-coupling self-
explain the differences between measurements and the HSMonsistency equation
The fitted parameters of IISM are in reasonable agreement
with measurements and simulations on the structure of aero- T A(R,r) o
gel. The fit given by IISM is not perfect, though. The main A(k,r)InT—+7TkBT2 ————3((k-k")f(k",r,em))i

(0] €m

problem with the IISM is that it contains only one length | €nl
scale whereas real aerogel must have voids of various sizes. —-0 (A6)
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puter resources wheren(r) is the impurity density. The usual derivation of

this formula assumes a uniform impurity density: const!
However, it is valid for an arbitrary function(r) as long as
APPENDIX it allows the impurity positions to be uncertain on the scale

Here we present the relevant equations of the quasiclasspf the Fermi wave length . We assume that onlgwave
cal theory and discuss their numerical solution. The centra$cattering is important. This allows us to write thenatrix

quantity is the quasiclassical propagatpt® It is a 4x4  €duation directly for the impurity self-energy:
matrix, whose components can be represented using the _ . . A .
Pauli spin matricesr; as TimplT €m)=n(r)vl+ 7'FNFU<9(|<J,Em)>|2<7imp(f,fm)(-

+g- f+f-o)i . .
- 9vg o ( ?)ie, ‘ (A1) Here Ng=m* ke/m?h? is the total density of states at

ic,(f+f-0) 9—0.0-0 o, the Fermi surface. The effective masg is related to the
A atomic massms by m*=(1+3F3j)ms. The scattering
In equilibrium the propagatag(k,r,en) depends on the di- potential v is related to the scattering phase shiff) by
rection of momentunk, on the locatiorr, and on the Mat- v =— (1/7Ng)tans©.
subara energy,,= mkgT(2m—1), wherem is an integer. In the calculation we use the following symmetry of the
The propagator is determined by the Eilenberger equationspropagator and self energy

[iems— 0,g]+ifvek-Vig=0, (A2) [UCR,F ) ]T= = 7oU(K, 1 €) 7. (A9)

gg=—1. (A3)  This limits the nonzero components gfto 10, and allows
. one to solve the Eilenberger equation with the “multiplica-
Here[A,B]=AB—BA denotes a commutator angldenote  tion trick” of Ref. 40 using only five components. In the
Pauli matrices in the Nambu space:=g;®1. The self en- Cl_Jrrent-free case a_II equations are immediately compatible
ergy matrixo= o+ aimp consists of mean field and impu- with the symmetry in Eq(A9). In the case of nonzero cur-
rity contributions. For spin-triplet pairing the former part has rent a possible problem could arise from the tact vthat n
the form iterating the impurity equatioriA8) the product{g)i{9)k
might not be proportional to a unit matrix. The inconve-
mef(R,r) nient terms always appear with odd powersyofConsider-
ing that the phase shifts in aerogel are random, such terms
vk +pk,r) - o AR, - gig, average out and we can use the symmetry of (B§) also
— ’ T T _ for nonzero current.
) oo, By taking into account all the symmetries the impurity
(A4) self energy in the 1ISM has the form

igA* (kr)-a v(—k,r)—gom(—
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i5+io o R-gio, . cal propagator was obtained as a commutator of these two

+wl, unphysical solutions as explained in Ref. 40. The solution of
the Eilenberger equation was repeated for all Matsubara fre-

(A10) quencied | <ey. This was repeated for all trajectories. In

whereR, &, andé can be expressed analytically as functionsthe general case it represents loops for coordinatésand

of the propagato(gv;)i; 41 The termw is of no interest since it the anglea betwee_n the trajectory dlrect|on and thaxis.

drops out in the Eilenberger equati¢A2). In cylindrical For.the B phase without a current only the impact parameter

coordinates g, &, z) the only ¢ dependence appears in the b with respect to the center of the sphere was actually needed

. s _ because of symmetry.
vectorR in the A phase, wher®R=R(p,z)e'?z and R, is

In the next step better estimates ﬂgr &imp, andv were
real. The terms and & are always real. In the A phasi calculated. For that the propagator was converted from tra-

coo(fem) = . . )
imp( T €m) —ig,R* @ —i6+0yid o oy

=0 and in theB phased= S4¢ andR=R,p+R,z. jectory coordinates back to cylindrical/spherical coordinates
From the propagatay (A1) one can calculate the super- and the required angular averages were calculated. The con-
current density s using tribution from higher Matsubara frequencips,|> ey was

approximated by a Ginzburg-Landau fdrmith Matsubara
) A sums evaluated using the Euler-MacLaurin formula. Using
Js(r)=2mmgv FNFkBTEE (kg(k;r,em))i- (ALD he updated values of the fields, the process was started from
" the beginning. The boundary conditiof) was used to cal-
The superfluid densitys is obtained by calculating the av- cylate the value of the exponential propagator at the initial
eraged current at small values \of. point of the trajectory from the value at the final point stored
The first step in the calculation is to give initial values for on the previous round. This loop was repeated until the fields
the fieldsA, aiy,, andv. Normally we used values obtained converged'’
from the HSM. The iteration of these fields was started by In the numerical algorithm the number of discretized
transforming the data from the cylindrical/spherical coordi-points in cylindrical coordinateg; andz; was approximately
nates to “trajectory coordinates.” These are Cartesian coor40 for both in the range from 0 tB. The discretization step
dinates with one coordinate, along the trajectory and two in the Cartesian trajectory coordinates was approximately the
others p andt) specifying the position of the trajectory in same. Simple interpolation formulas were used for the trans-
the unit cell. Next the Eilenberger equation was solved alondormations between coordinate systems. The angleas
the trajectories. This was done by first calculating an uniypically discretized by eight Gaussian points in the range
physical exponentially growing propagator along each trajecO<a<w/2. The number of positive Matsubara frequencies
tory using the fourth order Runge-Kutta method. The ende,, used was typically less than 20 for temperatures above
values at the cell boundary were saved to be used as starti@ylT.,. We made also more accurate test calculations. The
values for next step in iteration. An exponentially decreasingjualitative behavior remains the same, but there are inaccu-
solution was deduced using symmetries. The bounded physiacies on the order of 2% in the results presented here.
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