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Comparison of s and d-wave gap symmetry in nonequilibrium superconductivity
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Recent application of ultrafast pump/probe optical techniques to superconductors has renewed interest in
nonequilibrium superconductivity and the predictions that would be available for novel superconductors, such
as the hight; cuprates. We have reexamined two of the classical models which have been used in the past to
interpret nonequilibrium experiments with some successythenodel of Owen and Scalapino and th&
model of Parker. Predictions depend on pairing symmetry. For instance, the gap suppression due to the excess
quasiparticle density in the u* model, varies a®n®? in d wave as opposed to for s wave. Finally, we
consider these models in the context$f-N tunneling and optical excitation experiments. While we confirm
that recent pump/probe experiments in YBCO, as presently interpreted, are in conflidtwate pairing, we
refute the further claim that they agree witwave.
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[. INTRODUCTION mission spectroscopy. As the system of electrons relaxes, the
transient reflectivity or transmissivity decays with time over
The field of nonequilibrium superconductivity was very a scale of picoseconds or less allowing this experiment to
active throughout the late 1970’s to mid-1980’s when it wasprobe carrier dynamics in a time-resolved fashion. A theory
realized that novel effects in the superconducting state couldias proposed by Allétfor the relaxation of quasiparticles in
be induced by converting the electron distribution functionthe normal state, which could be measured in these experi-
into a nonequilibrium oné. Different experimental tech- ments, resulting in the extraction of the electron-phonon
niques were used to prepare such a nonequilibrium state, feenormalization parametex (as the quasiparticles relax
example, tunnel injection and optical irradiation, and a bodythrough interactions with the system of phonpnExperi-
of work arose from both experimental and theoretical effortanents were performed which measured this parameter using
in this area. A useful summary of this work near the end ofAllen’s theory and excellent agreement was found with other
this period of time can be found in a book edited by Langen-values in the literature for both ordinary metals and super-
berg and Larkih and other broad-based texts have also apeonductors in the normal statdndeed, this parameter was
peared more recentfy’ measured for the first time in Cr by this techniqu&his
The advent of highF, cuprate superconductivity in 1986 extraordinary success has led experimentalists to use the
interrupted work in this and other areas as the communitfemtosecond laser as a probe of high temperature
turned its attention to this new challenge and, consequentlguperconductivity'° and in general several groups have
extensive work in the area of nonequilibrium superconduchbeen developing ultrafast techniques of similar sort for mea-
tivity has languished until more recently. However, duringsuring nonequilibrium phenomena in superconductbts.
the period following the original burst of activity, new state- Here, we are interested in the state that arises when the
of-the-art experimental probes have been developed whichonequilibrium excitations, created by a laser pulse or by
provide excellent opportunities for renewed interest in thistunneling injection, have fallen to the gap edge but have not
field, not to mention the potential for new insights providedyet recombined into the condensébettleneck effedt In the
by the new generation of materials exhibiting novel super{irst case, there is some debate amongst experimentalists as
conductivity, such as the cuprates. Some of these probde whether the high energy laser used for pumping and prob-
which can be turned to this problem are STM, ultrafast la-ing can truly measure the distribution of quasiparticles at low
sers, spin-polarized tunneling injection, terahertz spectrosenergy and several groups are developing techniques to
copy, etc. probe at lower energy of order of the gap to address this
As early as the mid-1980’s, the pump/probe femtosecondssue.
spectroscopy was exhibiting its potential as a technique for The main thrust of our work has involved the use of two
investigating nonequilibrium phenomena in metals and sumodels employed in the past to describe a nonequilibrium
perconductors. In these experiments, an ultrafast laser pulsistribution of quasiparticles: thd* model of Parker
(~100 f9 incident on a sample as a high energy “pump” which uses an equilibrium distribution function at an effec-
quickly excites the electrons out of equilibrium which thentive temperaturel* relative to the bath temperatuiieand
relax back to thermal equilibrium with the lattice via the the u* model, originally proposed by Owen and Scalapifio,
electron-phonon interaction. Another laser pulse delayed invhere the system is described in terms of a new chemical
time “probes” the system of electrons by reflection or trans-potential for the excited quasiparticles. The former approach
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has been used by Kabanet al.” to analyze their optical 1 o de,
data, whereas the latter approach has been used for systems —:J’ —————tanij B(E,—u*)/2], (2)
where excess particles are injected into tunnel junctidns. NOV  Jo e+Aa%(n)

While th models ar mewh implifi h - . . . . :

pehr 10 have been affocive in capturing some of the expertihereV s the pairing potentiall(0) i the electronic den-

mental results on lowT, superconductors. sity of states at th_e Fermi ;u_rfac_e in the normal state, and the
In Sec. Il, we calculate how the superconductivity jg EXCESS quasiparticle densityis given as

modified as a function of the nonequilibrium excess quasi- 1 (=

particle number densityg. This leads to modifications in the n= _j [f(E—p*)—f(EQ)]dey, 3)

gap which we calculate numerically for various values of A(0) Jo

temperaturd characterizing the sample before irradiation as )

a function ofn in both x* and T* models and fors- and ~ Where 8=1/(kgT), Ex=\/e;+A%(n), andkg is the Boltz-

d-wave. ForT=0 and in the limit ofn—0, we also obtain Mann constant. Hene is measured in units of M(0)A(0).

ana]ytic results for the gap reduction Verwgor the chemi- The 4 is introduced for Spin and for partiCIe-hOle parts of the

cal potential in theu* model and for the nonequilibrium €Xcitation spectrumA(0)=A(n=0) is the superconducting

effective temperature for th&* model, as well as for the 9ap in the equilibrium state, finite and isotropic over the

free energy difference between the nonequilibrium supercorentire Fermi surface fos-wave gap symmetry.This model

ducting state and the corresponding equilibrium normal state¥ill be applied later to discuss tunneling.

The analytic limits are tested against the numerical work and Alternatively, Parker® considered &* model where in-

found to be close to the exact results evennaisicreases Stead of gu* in the Fermi function, &* is used:

towards its critical value where superconductivity is de-

stroyed. Results fod wave are compared withwaves and f(Ex, T*)=[1+expEc/keT*)]~* 4

important differences are established. In Sec. Ill, as an eX\?Vith the other equations modified accordingly. This model is

plicit example of an application of our results, we consider 7 : :
S-1-N tunneling junction with a nonequilibrium state on theathe one used by Kabanostal in their analysis of the
ump/probe data.

superconducting side which we assume can be described lg)y We consider first, thes* model for answave BCS su-

a ©* model. We show that the current voltage characteristics X
are modified in two major ways. First the amplitude of theperconductor. At zero temperature the existence of the excess

gap is reduced because of the presence of a none(;1uilibriuf;hu"?ISipartiCIeS pertu_rb the co_ndensate by blocking states
number of excess quasiparticlesand secondly the entire which would otherwise be available to form the condensate

o . . in a variational sense, and this lowers the value of the gap.
characteristic is shifted upward by a factorroin appropri- ; . : .
. . . The exact gap equation and relationship between chemical
ate units. Also the voltage at which the current is zero can be . X
' . potential andh are, respectively,
used to measure the chemical potenjidl. Separate mea-
surements of the gap reduction, the chemical potential, and A(n)
the upward shift in-V characteristic would allow a consis- - =
tency test of the model. In Sec. IV, we consider the specific ~ A(0)
case of pump/probe experiments and agree with previo
theoretical work that the existing data, as currently inter-
preted, is not consistent wittrwave gap symmetry, but dis-
agree that it is consistent withwave. In Sec. V, we draw
conclusions and give a summary of our results.

2

and nA(0)=u*?2—A?%(n). (5)

LL?‘he first expression in Eq5) comes directly from the gap
equation(2) evaluated at zero temperature with reference
made to the equilibrium case which allows us to eliminate
the pairing potential in favor ofA(0). The second follows
from Eq. (3). The grand potentiaf2S(n) [the familiar for-
mula is given later for the anisotropic case in EtB)] in the

ll. THEORY isotropic casdat T=0) is

We consider two models used in the past for the treatment
of nonequilibrium superconductivity. For awave BCS su-

*

M
A(0)

+n

AQ(n) _ QS(n)—QN0)

perconductor, Owen and Scalapino considered a state in N(0) N(0)
which there exists a finite distribution of excess quasiparti- 1
cles at the gap energy in addition to a condensate. In ttfeir =— EAZ(n) —2u* Ju*2—A%(n), (6)

model* thermal equilibrium is assumed although chemical
equilibrium is not for the paired and unpaired electrons. Thi§N
'S*m'm'Cked thfough _the mt_roductlon of a chemical _potentlal erconducting state and its normal equilibrium counterpart
p* in the Fermi function which represents a constraint on th

quasiparticle excitation number. With this chemical potential."e" with no excess qua5|part|c]e§'he; difference normal-_
the Eermi function is ized to the equilibrium superconducting state condensation

here this is the difference between the nonequilibrium su-

energy is
f(Ek_/J’*)z[1+eXpB(Ek_M*)]7l (1) ZAQ(n) Z[Qs(n)—QN(HIO)]
= ~—1+8n (7
with the BCS gap equation modified to be N(0)A?(0) N(0)A2(0) téns @)
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TABLE I. Analytical forms forn—0 atT=0 in the x* model. o~ L0 L e s B s e
Note n is in units of 4N(0)A(0), whereN(0) is the single spin 3 -~ . .
density states and(0) is theT=0 andn=0 gap(maximum ind 08 Ssg.. Mmodel ]
wave. = i ]

3 06| .
w* model s wave d wave ~ r ]
Eoal .
A(n)/A(0) 1-2n L2 = E
3 0.2 [ -
1 16y2 e ]
2AF(n)/N(0)A%(0 —1+8n _T IONE e L ]
(M/N(0)AT(O) 2t 3 " 0.0 =t F
o I ]
1 IA(0) 1-2n V2n?? ¥ 00
=2 - ]
e i >
to lowest order im. To obtain Eq(7) we have used expres- 5 i // ]
sions forA(n)/A(0) and foru*/A(0) valid to second order ~ _o5 kL % |
in n. They areA(n)/A(0)=1—2n—2n? and u*/A(0)=1 G L s T=0 -
—2n—23n2/2 (entered in Table | to lowest ordeif we add % - s—wave 4
to the grand potentialh (2(n), the number of excess quasi- N [ |
particles multiplied by the chemical potential, i..*n, g
wheren is the first term of Eq(3), normalized in the same 0.00 0.05 0.10 0.15 0.20
way as Eq(7), we get the normalized free energy difference n

at zero temperature which we denote by

- FIG. 1. Top f A(n)/A(O , at T=0 for the u*
2AF(n)/N(0)A?(0). This is evaluated to be op frame:A(n)/A(0) versusn, & or nex

model with ans-wave gap. The solid curve is physical, the dotted
curve is not. This latter curve represents the case where the free
2AF(n) energy of the normal state is lower than that of the superconducting

mz —1+8n ®) statt_e as shown in the bottom frame. The presence of excess guasi-
particles suppresses the gap and eventually leads to a first order

transition to the normal state at=0.15. Bottom frameAF=F

—Fg, the free energy difference, versuas In both frames, the

dashed curve is the smalllimit (see Table)L

(entered in Table)l

In the top frame of Fig. 1, we present our numerical re-
sults for the ratioA(n)/A(0) as a function of excess quasi-
particlesn (solid curve and compare with the approximate the gapA(¢) at any points (the polar angle for momentum
resultA(n)/A(0)=1-2n (dashed curye We see excellent on the two-dimensional Fermi circle in the Cu®rillouin
agreement at smafl. As nis increased, the continuation of zone isA(d)):A(n)Cos(Zﬁ) with zeros in thd’ﬂ, 77-) direc-
the solid curve is denoted by the dots. It is terminated at thgion and other symmetry related points. The snmalimit
point where the free energy for the nonequilibrium state be'gives w*IA(0)=12nY2 which differs radically from the
comes equal to its normal state value and a first order transyave case and reflects the gap symmetry with nddes
sition occurs. This can be seen more clearly in the bottomrgple ). Numerical results fop*/A(0) versusn are given in
frame which shows the normalized free energy difference Of:ig. 2. The top frame applies to treewave case and is for
the nonequilibrium #0) state, 2F(n)/N(0)A*(0) as @  comparison with the bottom frame farwave. The dashed
function of n. The solid curve applies to the exact result atcyryes in both frames are our approximate analytical results
T=0 while the dashed is the approximate reg&q. (7)]  which are seen to match well the exact restiislid curve
which fits the exact result at smaillwell and is semiquanti- ¢4, T=0) in the smalln limit. The remaining curves are at
tative in the entire physical region. The first order phasginite temperatureT as indicated in the caption, namely,
transition to the normal state occursmi~0.15. The con-  1/T_=0.3, 0.5, 0.7, and 0.9. Several features are worth not-
tinuation of the solid line for the free energy difference 0ing. Forswave, the zero temperature behavior of the chemi-
values of excess quasiparticleeyond the critical value is g potential as a function of is qualitatively different from
indicated by a dotted curve just as in the top frame for thepe case for finite temperature. In the limitrof-0, i.e., very
gap. We note that both the gap(n) and the free energy few excess quasiparticles, the chemical potential must clearly
differenceAF(n) as a function oh fold back on themselves g equal taA(n=0) atT=0. In this case the lowest energy
beyond a certain value of, but that the free energy remains yajlable quasiparticle states are0) where there is an
positive for the entire dotted region, i.e., the nonequilibrium;yerse square root singularity in the density of states and
state has higher free energy than does the normal stafgnce all the excess quasiparticles can be accommodated at
[AF(n)>0] in this region. _ _ the gap energy. As increases out of zero, the ga{n) in

Now we treat thed-wave case. The equation relatipd  the nonequilibrium state decreases from its valuaa0.
to n is nA(0)=[§*N(E)dE where for smallE, N(E)  The inverse square root singularity shifts to lower energy and
=E/A(n). Here,A(n) is the maximumd-wave gap where there are now many states at and arow{a) and it turns
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FIG. 2. The parameter* versusn for several temperatures
shown for thes-wave (top frame andd-wave (bottom frame gaps.
The dashed curve is the smalllimit (see Table ). From top to
bottom, the solid curves are far T.=t=0, 0.3, 0.5, 0.7, 0.9. Here
only the physical part of the curves are shown.
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as the temperature is increasetl decreases as expected. In
thed-wave case shown in the lower frame of Fig2, starts
from zero atn=0 even at zero temperature because, as we
have already indicated, there are states available at any en-
ergy abovew=0. Comparing top and bottom frame we note
that the chemical potential far=0.3 (to be specifi¢ rises
more rapidly in thesswave case and becomes bigger than for
d wave. This can be traced to the fact thatdowave the part

of the density of states that is occupied by the excess quasi-
particles is in the range 0 t@* while in theswave case it is

the region just about the gay(n) which is relevant. As the
temperature is increased towar@lg, the differences in the
quasiparticle density of states betweeandd wave become
smaller and the chemical potentials start to become very
similar. A second feature to be noticed is that at fifitthe
curves foru* extend to higher values of for the swave
case than they do in thetwave case although the reverse is
true at zero temperature. In all cases the curves terminate
when the free energy difference between normal and non-
equilibrium superconducting state becomes zero or there are
two solutions and the one with the lowest free energy is
chosen. This occurs at smaller valuesrofor the d-wave
case as compared withwave for the given temperature

#0 shown. We will return to this issue later on in our dis-
cussion of Fig. 4.

The gap equation with a pairing potential of the form
Vi =V cos(2p')cos(2p), where k is momentum on the
Fermi surface, with a distribution of excess quasiparticles
included through the introduction of a chemical potential
takes the form

out that all the excess quasiparticles can be accommodated in 1 e cog(2¢)de

a small energy range around the new gap value. We have NOWV J’ >

already noted that to second order rin A(n)/A(0) and © 0 \/6k+A (n)cos(2¢)

w*IA(0) differ by a factor ofn?/2, specifically, u*/A(0)

=[A(n)/A(0)]+n?/2 which implies thaj.* falls a few per- XtanH B(E,— u* )/2]> 9)
cent above the nonequilibrium value of the gap in units of

A(0). Note that the inequalitA (n)/A(0)<u*/A(0) (at T

=0 only), found to hold to second order m was also veri-
fied in the numerical work, which shows that the difference
betweenA(n) and u* are always small even outside the
validity of our expansion. That this difference should be

with E,=\ei+A%(n)cog(2¢). The bracket---) indicates
the angular average arg} is energy integrated in a rim of
width . about the Fermi energy. With reference to the
=0 case(i.e., u*=0) we can rewrite Eq(2) to read atT

small is a reflection of the square root singularity in the den-

sity of states.
The situation is very different in thé-wave case and ia

wave at finite temperature. In these two cases the chemical

potential becomes small as—~0. For thed-wave case this is
easily understood because there is a small but finite densi
of states at any nonzero value of enekgy0. The excess
guasiparticles can occupy these states and hafice0 as
n—0. For theswave case at finitd a different argument
holds. In this case the thermal factb(E;— u*) gives the
probability that the statde; is occupied at finiteT. This
probability can be increased over its value f6r=0 simply

by having u* take on a small finite value to accommodate
the excess quasiparticles. At low temperature, however, th

In

ﬂ)—_4 we  coS(2¢)de
AO)] o V&t AZ(n)co2(20) Ekéﬂ*'

(10

Where the integration over energy agdmust duly take ac-

count of the restrictiolE< u*. For smalln—0 the leading
order givegd A(n)=A(0)+ sA(n)]

SA(n) 8fw/2 ey
=—— co
A(0) T J cos™ Y u* IA(nY) ¢'dé
xf“* dE (12)
e 1
|A(mcos¢’ | \JE2— A?(n)cos ¢’

thermal tails of the occupation factor are small in the region
of the gap ang* must increase fairly rapidly asincreases. where we have changed frog to ¢'=2¢. But the lower
This is seen most clearly in the second highest curve in thémit in the ¢’ integration in Eq(11) restricts the integration
top frame of Fig. 2 which correspondsTéT.=t=0.3. Also  to the nodal region which corresponds ¢6=/2. We find
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1.0 o LA N S B B B S To establish where this first order transition occurs, we
- S==s.  g'-model | need the free energy. The formula for the grand potential for

0.8 - = the superconducting state withexcess quasiparticles is

§ i ' ]

J08F ’ Qs(n)=2kBT; In[1—f(E,— u*)]

Eoal . ,

< 5 +> |e&—E +i[1—2f(E— “)]| (13
0.2 I . 7 k k 2E, k— M

and for the normal state with=0 it is

° o
[ -]

S o8k ]
DA ‘ . ONO)=2kgT 2, I[1-F(led)]+ 2 (e—led).
523 0.0 [ ] (14)
™~ C ] The sum ovek can be converted to energy and the constant
o] - - two dimensional electron density of states fadtg0) taken
= 05 T=0 7] out of the integration. In the limih—0
g 3 d—wave h
i | ] AQ(n) Q3(n)—aNoo)
%0 0.2 0.3 N(O) —  N(0)

1 *__ 1
__ A2 # " _ A2
FIG. 3. Theu* model atT=0 for ad-wave gap with the curves - 4A (n)+4f0 N(E)(E—u")dE 2IA (n),

labelled in the same manner as for Fig. 1. The gap is suppressed less
rapidly in d wave. The presence of excess quasiparticles, which (19

normally weaken the condensate by blocking states, are less eﬁe\?\?herel is the same intearal as appears on the right-hand side
tive in interfering with the formation of the superconducting wave- 9 PP 9

function in d-wave as they accumulate at the nodes, in the firstOf Eq. (12). The first term in Eq(15) is the usual expression

instance, which is a region where the gap is close to zero. for the condensation energy ofdawave superconductor but
with A(n)=A(0)(1—4+2n%%3) replacing the gap ampli-
5 5 tude A(0) which applies ton=0. In AQ(n=0)/N(0) only
Jlxzdxln 1+31=x7 4\/§n3,2 A?(0)/4 enters. The two extra terms in E¢L5) can be
0 X 3 worked out analytically as—0 and lead to

O

sA(n) 8 M*)
(A(n)

12

*

AQ(n) 1 2 w3 1 wp* )3
- ) v

Ny~ a2 W33 3

(entered in Table)lwhere we have used the relationship
w*IA(n)=2n"? to lowest order. In Fig. 3 we show exact (16
numerical results for the normalized ga{(n)/A(0) as a only in the first term on the right-hand side of the equation
function ofn for the d-wave casdsolid curve and compare must we retain the dependence i (n). The difference in

with our approximate resultdashed curvewhich applies  grand potentiah 2 (n) normalized toAZ(0)N(0)/4 is easily
only at smalln. The agreement is excellent even up to theworked out to be

point where the first order transition to the normal state oc-

curs. This is where th_e solid curve i_s extended into the d_otted 4AQ(n) 16\/5
curve. The gap function as a function mfs reduced less in — = 312 (17)
d wave(Fig. 3) as compared te wave(Fig. 1) all the way to N(0)A<(0) 3

n=n;. The free energy differencAF(n) becomes zero at
n=n.=0.17 which is to be compared witk0.15 in the
s-wave case. At the critical, A(n)/A(0) is almost 0.6 fos
wave while in thed-wave case it has not yet reached 0.8. The

blocking of states by the excess quasiparticles has much less 4AF(n) - 14 ﬂzng/z (18)
effect on the condensate wave function as reflected in the N(0)A%(0) 3

change in the value of the gap thwave than ins wave

because now the excess quasiparticles accumulate in théhich is entered in Table I. Numerical results at any value of
nodal region. Since the gap is zero or near zero in that rea are shown in the bottom frame of Fig. 3. The solid line is
gion, it is clear that these states do not contribute much tour numerical result for AF(n)/N(0)A%(0) at T=0 and
the lowering of energy brought about by the formation ofthe dashed curve our approximate re§kl. (18)]. The ana-
Cooper pairs. Iytic result agrees well with the full numerical solution at

The normalized free energyF is obtained by adding.*n’
to Eqg.(13) and after normalization we get
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0.8 P~ S TR p'—model el AN s—wave .
L T T T ] 0.15 | AN 7]
L ~ >~ N ] r IN \ ]
~ \
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: ’ ’ : ’ 0.0 0.2 04 0.6 0.8 1.0

n
T/T,
FIG. 4. The ratio ofA(n,T)/A(0,0) versus for finite tempera-
ture in theu* model. The top frame is for the case of awave gap FIG. 5. The phase diagrams calculated in the gfiemodel for
and the bottom frame is fod wave. Curves are shown far/T, the sswave (top) and d-wave (bottom gaps. Based on the slope of
=t=0 (solid curve, 0.3 (dotted, 0.5 (short-dashed 0.7 (long- u* versusn one can determine the region of the phase diagram
dasheg 0.9 (dot-dashefl Only the physical part of the curves are where there is a homogeneo(®C) and an inhomogeneous super-
shown. conducting statéIiN). The transition from the superconducting state
to the normal statéNS) is always first order and is represented by

smalln and differs slightly near the critical value of=n, "¢ dashed line.

where the first order transition to the normal state occurs at
n.~0.17. wave get less pronounced as the differences between the two
In Fig. 4 we show our numerical results for the gap as equasiparticle density of states become small and also more
function ofn at various temperatures. Both frames are for thestates are involved.
w* model. The temperatures aféT.=t=0 (solid curve, The nonthermal quasiparticle distribution used in tife
0.3 (dotted, 0.5 (short dashed 0.7 (long dashef and 0.9 model has an interesting aspect in that it allows for the sys-
(dot dashed The top frame is fos wave and is for compari- tem to become unstable to quasiparticle density fluctua-
son with the bottom frame which is new and appliesdto tions®1” Essentially, if the quasiparticles are injected uni-
wave. Note that fors wave, theT=0 curve is below the formly in the sample, the density fluctuations will act to draw
dotted curve fot=0.3. This agrees with findings of Owen off quasiparticles from some regions thereby increasing the
and Scalapino and has its origin in the blocking process resuperconducting gap locally and flowing those quasiparticles
ferred to previously. At zero temperature the excess quasipate other regions, causing an accumulation which lowers the
ticles block important states which cannot be used in théocal gap, possibly even driving the local region normal. This
coherent superposition of states which form the Cooper paiphase separation could be either a static or a temporal struc-
condensate. At finite temperature the blocking is less effecture. Such a state has been studied initially by Chang and
tive because it is the states closest to zero energy that are tSealapind® and Scalapino and Hubermidrfor the swave
most effective in forming the condensed pairs while the thersuperconductor and experimental verification of a density in-
mal factor depopulates these states. By contrasl fwave, stability leading to an inhomogeneous multigap state has
theT=0 curve is above the=0.3 (dotted curvéas we have been done by several grodpsising tunnel injection in thin
already noted. In this instance the blockingTat O is much  film nonequilibrium superconductors. The theoretical signa-
less effective and consequently temperature is not as impoture of such an inhomogeneous state in g#ffemodel is that
tant an effect. We note again that,Tat 0, thed-wave gap is  du*/dn|+<0.1%1 From Fig. 2, we find that the variation of
reduced less than isswave for the same value ofand that  x* with n differs in s and d wave and by examining the
the critical value ofn, at which a first order transition to the slopes of these curves, in particular, the point where the
normal state takes place, is larger. At the higher temperaturedope goes negative, we can reproducestave phase dia-
shown, however, the reverse holds. Also, note that as thgram of Chang and Scalapifdshown in the upper frame of
temperature rises towards the difference betweesandd Fig. 5, and provide the equivalent prediction fbwave in
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the bottom frame. The dashed curve in these phase diagrams TABLE Il. Analytical forms forn—0 atT=0 in theT* model.

marks the boundary between the normal st&g) and the Noten is in units of 4N(0)A(0), whereN(0) is the single spin
superconducting statéeither homogeneous or inhomoge- density states and(0) is theT=0 andn=0 gap(maximum ind

neous. This boundary is entirely a first-order transition. The wave.

area labeled IN, is the region afand T, where the slope of

the chemical potential curve is negative and an inhomogeI* model s wave d wave
neous state is predicted to exist. The solid line marks the

boundary between it and .the. hom.ogeneous superconductiryn)m(o) 1-2n 1_2(%)3,2
state(SC). There are qualitative differences between she ]
andd-wave cases. The region of the inhomogeneous phase {s ¢ , N=0.94/T*T.e 176c/™  T*/T =2.3m"2

quite large in thesswave case and almost nonexistentdin
wave and at low temperature treewave superconductor
would likely be phase separated whereas, dhsave one A(n) 8 [ dx e
would not be. While the inhomogeneous state may be ofIn —):——J dy yze‘A(”)V’kBT*j _—
interest to study in itself, in the-wave case it may be en- A(0) mJo 0 VX[Xx+2A(n)y]
couraging to note that attempts at experimental verification (22
of our predictions for power law dependences, and other refrom which we get

sults presented in this paper, are unlikely to be hampered by

x/kgT*

the presence of an inhomogeneous phase. oA(n) [ T* 3 23
Next we consider briefly the case of tfi& model which A0) A(0)) ° (

is just a simple heating model if only the electronic system is o . .

considered. Similar approximate analytic calculations can b@lso from the definition ofn we get immediately

done to get various relationships in the limit-0 for the a2 T* \2

case when the sample before irradiation is assumed to be n= E(m) . (24

zero. These analytic derivations are supplemented with full
numerical work in which we also consider the case when th&xact numerical results agree well with these approximate
sample is initially at finite temperature n—0 expressions which we summarize in Table II.

We begin with thesswave case and return to the gap equa- In Fig. 6 we show numerical results far(n,T)/A(0,0)
tion shown in Eq.(2), now modified according to Eq4)

rather than Eq(1). In the limit of T—0, the result for the 1.0 .'\' rrrerTr T T e e T
lowest order correction to the gap is well knowh: [ T~ T"—model ]
0.8 P XX -
L~ N s—wave 4
— C . ]
oa(n) =- \IZWkBT e A0)keT™ (19 0.8 |- -
A(0) A(0) K. ]
The relation between and T* can be trivially obtained as 0.4 - ]
* fomy L i
n= 7 T*/2A(0)e 2(OkeT" and sosA(n)/A(0)=—2n. ) C 1
The d-wave case is not as well known and we include the © 02 [ 7]
critical steps here < C ]
>~ 0.0
’ = & ]
A(n) m22d ¢ . = ]
In| —|=-4 ! o C B
y J‘wc dE efE/kBT* 0.6 - —:
A(nycose’ EZ—A2(n)coLe’ o4 . ]
(20 C ) ]
which can be manipulated into 0.2 -  \ Y \ ) E
C \ ! | ]
A(n) 8 71_/2 O-oo-ol 1 1 Io\lll 1 1 I0|‘2I 1 I\ I0|:3I 1 1 I()I4
- r a—A(n)cose’ IkgT* . . . . .
In _A(O)> Wjo docose’e n
° dx e ¥/keT* FIG. 6. The ratio ofA(n,T)/A(0,0) versus for finite tempera-
¢ . (21) ture in theT* model. The top frame is for aswave gap and the
o X[x+2A(n)cose'] bottom frame is ford wave. Curves are shown fa/T,=t=0.01

_ _ _ (solid curveg, 0.3 (dotted, 0.5 (long-dashey 0.7 (dot-short-
The integral overp’ is peaked around c@s =0, i.e.,¢’ near  dashed 0.9 (dot-long-dashed The short-dashed curve is approxi-
7/2 which allows us to approximate it by mate analytic form for lown given in Table II.
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versus n where we have normalized the maximum gap = o e e IS B o o s e s e s e e e
A(n,T) to the zero temperature equilibrium case. The top
frame is fors wave while the bottom igl wave. In each

frame the short dashed curve is the approximate resdit at

=0 derived above. We see that it compares well with the
exact result(solid curve. The other curves apply to/T,

=1t=0.3 (dotted, 0.5 (short dasheg 0.7 (long dashey and

0.9 (dot dashed In this case thé\(n,T)/A(0,0) curves do

not cross and are all constructed from BCS curves for the
temperature dependence of the gap. The temperatieters o
to the sample temperature before the injection of excess qua- <
siparticlesn. The intersection of the various curves with the ¢, ’ ' ' ' I
vertical axis simply gives the temperature variation of the

This reflects the fact that in a thermal distribution, blocking T —model

gap in BCS. At finiten, the extra quasiparticles are accom- 10 L T — ]
modated into the system by assuming a higher temperature 08 F .~ T d-wave ]
thermal distributionT*, with T* made sufficiently larger L
thanT to haven extra thermal quasiparticles. 0.6 = g .

Note that in contrast to the* model, the differences £ ]
betweens and d wave are much less pronouncedTat 0. 0.4 -

effects are not an important consideration. In fact now the 02

gap in thed wave case terminates at a valuerofvhich is oL v v U v v b by
smaller than in thes wave case. This is opposite to what is 0.0 0.1 0.2 0.3 0.4
found for thex™ model. Also the curves show no first order n

transition to the normal state which now occurs only when

the gap is zero.
. . . shown for thes-wave (top frame andd-wave (bottom frame gaps.
In Fig. 7 we show the value of* as a function of ¢ yes are shown for/T,=t=0.01(solid curvg, 0.3 (dotted, 0.5

the nonequilibrium distributiom for various values ofT. (long-dashey 0.7 (dot-short-dashed 0.9 (dot-long-dashed The
The temperatures used aféT.=0.01, 0.3, 0.5, 0.7, 0.9.  gnort.dashed curve is the smallimit (see Table . T*/T; goes to

Note that the curve with the lowest sample temperatureyt_asn—0, which forms the lower limit on the curves with the
(solid curve at smalln agrees well with our analytic ex- ypper limit beingT*/T,=1 at which pointA(T*) would be zero.
pressions for the same quantity shown as the dashed lines.

These follow from the transcendental equation  in Eq.(25) although the new gap amplitude is reduced by a
=0.94/T*/T.e 17%/T" for s wave and the explicit equa- factor of (1-2n) and (1-4+2n%%3) for s and d wave,
tion T*/T.=2.3"? for d wave. These results are also en-respectively, at zero temperature amgmall. In addition to

FIG. 7. The parametef* /T, versusn for several temperatures

tered in the final line of Table II. the change iM(€) just described, one of the thermal factors
in Eq. (25) is also displaced by the new chemical potential
lll. S-1-N TUNNELING JUNCTION w*. The structure of Eq(25) makes it useful to separate

Now we consider a specific application of our results tothese two factors, and it is convenient to rewmié‘(V) in

the case of a superconducting-insulator-normal metal tunnefh® form

ing junction. Denote the current in &1-N junction with "

nonequilibrium distribution on the superconducting side, de- |St‘(v):f deNg(e)[f(e—pu*)—f(e)]

scribed by theu* model, bylif(V) whereV is the voltage g o

across the junction. It is given by a straightforward modifi- w

cation of the usual tunneling formdfa +j deNg(e)[f(e)—f(e+V)]. (27)

ISN(V): fw deN. (O[f(e—pu*)—f(e+\V)], (25 The second term in Eq27) has the identical form that ap-
w —w s ' plies to an ordinanyS-1-N junction in equilibrium at tem-

— ) . . . peratureT. We denote the current in this case B{V)
whereNg(€) is the normalized density of states given by

— €
Ns(e)= Re< —L_|A2> (26)
€ K where the gap amplitude definingg(e) is that appropriate
with (---) the average over angles as before. to the nonequilibrium superconductor. The first term in Eq.
We have seen in the previous section that the introductio27) is simply a number, independent of voltage. Reference
of a nonequilibriumu* modifies the gap but does not changeto the defining Eq(3) for n shows that this number is equal
its symmetry and Eq26) still holds for the density of states to nA(0). Thus we find

I(V)Efj;deﬁs(e)[f(e)—f(eJrV)], (28)
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15M(V) =Z(V) +nA(0). (29 BO T

u’ —model

We see from EQq(29) that the current voltage characteristics
are modified in two ways by the nonequilibrium distribution.
The entire equivalent equilibrium distribution is shifted up
by an amounhA(0). This allows one to measureonce the 0.0
gap is known. Secondly, the “equivalent equilibrium” cur-

rent voltage characteristics are those of an equilibrium junc-

tion with the smaller nonequilibrium gap used instead of its -1.0
equilibrium value. This knowledge allows one to fully char- I(V)
acterize the nonequilibrium current voltage characteristic and

1.0

-2.0 Fh 4+

gap but otherwise it is the same as for an equilibrium distri-

to apply checks to see how well thé® model works. For L v
example, the derivative dﬁf(V) with V at zero temperature L ]
simply gives 10 [ .
SN [ ]

— L _N® 0.0 S ]

IV, N>(V), (30 : ]

the quasiparticle density of states with the nonequilibrium 10 _ _

bution. Fors wave it will have an inverse square root singu- L Z/Zv(&(l)‘;io,g .
larity at A(n) and ford wave it will go as Ifi8A(n)/|A(n) ool vt L L ]
— w|]/7 instead(see Abanov and Chubuk®¥. In both cases, -2.0 -1.0 0.0 1.0 2.0
A(n) can be determined from these singularities. Compari- V/A(0)

son with its equilibrium value gives a measurendh boths

and d wave. Next it should be possible to check if this is  FIG. 8. S-I-N tunnelingl-V characteristics fol =0 shown for
consistent with the value of the chemical potential related tdhe «* model withs-wave gap symmetriupper frame¢ andd-wave

nby x*/A(0)=1—2n andx*/A(0)= \/Enllz, respectively, (lower frameg. The currentl is normalized byN(0) and by the

for s andd wave, atT=0 and in the limit of smalhn. The maximum zero-temperature gap in the standard way and the voltage

; ol ; ; ; V is normalized to the maximum gap &t 0. An excess quasipar-
chemical potential is measured directly by noting that in Eq.. _ e
(27) for V=— u*, first and second terms on the right-handt'de densityn leads to a reduction in the gap By(n)/A(0) and a

- . . . vertical shift byn in the -V characteristicl =0 atV=—u*. The
side are equal but of opposite sign, giving a sum of zero. In

. . ?N dotted curve is the normal state=0, the solid curve is supercon-
Fig. 8, we show numerical results fo]. (V) versusV ata  gcting state witm=0 and the dashed curve is for a reduced gap

low temperaturél/T,=0.1. The top frame applies Bowave  A(n)/A(0)=0.8 in theswave case and 0.9 in trbwave case.
while the bottom frame is fod wave. It is verified that these

curves obey the expected rules mentioned above. For the 1 o

swave caseA(n)/A(0) is set equal to 0.8 while for the n(T)=m<J [f(Ef ,T*)—f(Ey,T)]dec), (31)
d-wave case we have usédn)/A(0)=0.9 instead. Refer- 0

ence to Fig. 1 foswave and to Fig. 3 fod wave shows that  \yhere E¥ = \[e2+ AZ(T*) (the asterisk always referring to

these choices correspond to an excess quasiparticle ”“mt{ﬁﬁantities depending ofi* instead ofT) and an average
of approximately 0.09 and 0.12, respectively. The excesg,qr the anglep is done in the case af wave.

guasiparticle number is greater in tHevave case than is To evaluaten(T) at a temperaturd, it is necessary to

wave even though the gap is only reduced by 10% as confp oy T+ andA (T*) and this is determined from the amount
pared with 20% fors wave. of laser energyE, deposited in the system. In this work, the

laser energy will be assumed to go into both electron and
IV. PUMP/PROBE OPTICAL MEASUREMENTS OF n(T) phonon systems

In the following, we v_vish to dispuss recent experimen_tal E, = AEieationt A Ephonon (32)
pump/probe laser experiments which have been used to infer
information about the excess quasiparticle density. In parfo begin with, however, we examine the case where the en-
ticular, we wish to address a claim that these experimentergy is assumed to go only into the electronic system: the
provide evidence fos-wave pairing in the high-, cuprates. quasiparticles and a modification of the superconducting
To address this issue, following Kabaneval,” we use the condensate due to&(T*). The energy going into the qua-
T* model. While we do not report explicitly on this here, we siparticles relative to the reference nonequilibrium state at
have also examined these properties withinglfienodel and  temperatureT is
have found similar results.

To calculate the excess quasiparticle densiyf), we _ C e * TRy _
have used Eq(3) modified for theT* model via Eq(4) such ABq 4N(0)< fo (Bt (B T~ Bl (B, T]deq)
that (33
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1.5 T T T l T T T l T T T l T T T l T T T 2.0 | T T T I T T T I T T T I T T T I T T T
: : L T*—model
| ) 15 s—wave
— eeemTTTTTTTS S~ ] E
S 10 N 1.0
S’ B N -
<] L AN r
 — B 7 05 U RURUURPTTE Ly
\n. " \ ' i - ’?
& g e — -
= 05 - 7 ~ C ]
[ ' e
I ] =
o‘o } 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 ]
0.0 0.2 0.4 0.6 0.8 1.0
T/T,
FIG. 9. The average quasiparticle energy per particle normalized
to the maximum zero temperature equilibrium gég,/NA(0),
versusT/T, for s wave (dashed curyeand d wave (solid curve.
The T=0 value is set by the lowest available energy state in the
quasiparticle density of states, whereas riearthe energy scale is
set bykgT.
Kabanovet al.” treated this piece aa(T*)—n(T)](A(T) FIG. 10. The excess quasiparticle fractior§T)/n, as a func-
+kgT/2) which is not completely correct neay. . tion of T/T, . These curves are calculated in ffie model for fixed
We find that the average quasiparticle energy per particléaser energy, where the energy is assumed to go only into the qua-
calculated as siparticles. The upper frame is for a BGSvave gap and the bot-

tom frame is ford wave. Curves are shown for fixed laser enefgy

* (in units of the condensation enejgyf 0.2 (solid), 0.1 (dotted, and
E fo Exf(Ex, T)deg 0.05 (dashedl Heren, is n(T=0) for the case of,=0.2.
N 34
f f(Ex,T)deg - x2
0 A 2NO)| [ BB+ S a-2rEr T
0
gives a constant equal to(0) at zero temperature f@awave, :
since excitations can only exist at the gap edge because the Aﬁ
density of states is zero below this energy. This behavior is - f[l—Zf(Ek,T)] dey ). (35
seen in Fig. 9 for the dashed curve which gives E3)) K

normalized toA(0). As T increases, the energy per particle

increases slightly and then decreases rieato a value of  This term reflects the fact that the presence of excess quasi-
m?kgT/12 IN(2)A(0)=1.19kgT./A(0)]=0.67 as now the particles causes a readjustment to the superconducting con-
gap in the quasiparticle density of states has shrunk to zerdensate through a change in the gep=A(T*). This term

and the energy of the quasiparticles is controlledkayf ~ was not included by Park€rand neither was it included in
which is less thamA(0). Similar physics is found for a the work of Kabanowt al.’

d-wave order parameter with the essential difference that ex- Our procedure was to fix the laser enefgy and deter-
citations can now occur at zero energy and therefore thenine the T* and A(T*) which gaveE,=AEq+AEgng.
average quasiparticle energy per particle starts from zero &or our purposes, we used the BCS temperature dependence
T=0 and rises linearly reflecting the linear increase in en-of the gap, calculated numerically, for bai{{T*) versusT*

ergy of the density of states. It can be shown analytically thagndA (T) versusT with no approximate form. Our results for
Eqp/NA(0)=1.03T/T, for T<A(0), the regime where a boths-wave andd-wave gap symmetry are shown in Fig. 10
nodal approximation is valid. AT, the quasiparticle energy for a variety ofE, , which is normalized to the zero tempera-
per particle is once again controlled kYT and so the lim- ture condensation energy in the equilibrium state. Note that
iting number is given by the same formula as above but wittthe curves shown here are normalizedntz=n(T=0) for

the BCSd-wave gap ratio ofA(0)/kgT.=2.14 instead of the E;=0.2 case, rather than th&0) associated with each
1.76 for s wave. The number &t is approximately 0.55 E;, in order to show the overall relative reduction Bsis

These results are shown in Fig.($olid curve and we will ~ reduced. Fos wave, the curves are relatively flat albeit with
refer back to them at a later point. some small depression followed by a sharp upturn flear
The reaction of the condensate is simply given as and then by a drop. The peak occurs whENWT.=1, at
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which point we assume that the nonequilibrium state has | o N s B B S s A B B
been forced to become a normal metal at an effective tem- r ]
peratureT* and it is measured relative to the equilibrium i B?S sTwave 1
. . - L with phonons |
superconducting state which would exist at temperaiure
Therefore, AEgectror= AEeecron A* =0,T*,A(T),T] with
T* being fixed by E,. Likewise, n(T)=n[A*
=0,T*,A(T),T]. The behavior of theswave curve largely
mimics the inverse of the curve for the energy per quasipar-
ticle. At low temperature, the number of excess quasiparti-
cles is relatively constant with a slight decrease as the tem-
perature is raised, reflecting the fact that the energy per
quasiparticle is increasing slightly and so fewer quasiparti-
cles can be created at fixed energy. At high temperature near

n(T)/n(0)

T., the energy per quasiparticle is decreasing and so more - MOy T

quasiparticles can be created for fixed energy and one finds 0.0~ '0'2' : '0'4' ' '0'6' ' '0'8' 1o
that n(T)/n(0) shows an upturn in response to this. Like- ’ ’ ’ ’ ’ ’

wise, thed-wave curve forn(T)/n(0) can be understood T/Tc

from the behavior of thé&,,/N curve, with then(T)/n(0) o ) .
FIG. 11. The excess quasiparticle fractiniT)/n(0) using a

decaying dramatically aBincreases reflecting that it is cost- __ model inswave including phonons for parameters appropriate

ing on average more energy to create a quasiparticle. We can o
easily show for thel-wave case that to YBCO. For Pb parameters the curves are very sinfdad not

shown). The curves are for fixed laser ener@y units of the con-
2.g3\ 23 densation energyof 0.3 (long-dashey 0.2 (solid), 0.1 (dotted, and
) (36 0.05(short-dashed The Pb data of Caet al, (Ref. 11) reproduced

E, here as the black dots, shows a suppression with incredsing
keeping with ours-wave results with phonons. The YBCO data of
for small reduced temperatute=T/T. with T<A(0). For  Kabanovet al. (Ref. 7) are shown as the solid squares and disagree
t<E,, n(T)/n(0)=1—(2.9E,)%3%2. Fort>E, butstillwith  with the theory.
T<A(0), n(T)/n(0)=(2/3t)(E,/2.9)* (inverset law). Our
numerical results 2(/:30m°orm to these Iimits._AIso note thatperatureT*. It is in this way that a bottleneck atA2is
n(0)=0.18(,/2.9)™ so thatn(T) unnormalized ton(0)  jhyoquced into the model, which then deviates from pure

will go asE, in the region where the Llaw applies. Once  peating. Such was the same consideration of Kababa.

again as the energy scale revertskgd nearT, the slight  Aq such we calculate the amount of energy going into the
upturn inn(T)/n(0) is reflecting the smaller energy required phonon system as

to create the quasiparticles. Kabaretval.” do not find this
result due to their approximations and the details of their
curve would differ as they have only included an approxi-
mate linear form of thel-wave quasiparticle density of states AEphonor= f 5
rather than the full form with temperature dependence as is
done here. In fact, if their data did not go so low in tempera-
ture and given than(0) is not known experimentally, the Where the usual Bose-Einstein factorn(w,T)
flatness of thed-wave curve with a slight upturn ned, = l[exp(iw/kgT)—1] andF(w) is the phonon frequency
placed on an arbitrary scale, would probably make as viabl@istribution function measured by Renletr al®* from neu-
a comparison with their data as tsevave case. However, tron scattering experiments on YBCO. In our calculation, we
we note that they do show data at lower temperature and seffectively fix N(0) to get the correct ratio of phononic spe-
this interpretation does not hold, also the 2/3 dependence dtific heat atT relative to the electronic part via comparison
E, at T=0 is not verified. On the face of things, it may With the specific heat data of Loraet alZThis is to ensure
appear that their data agree best vgtlvave. However, we that, the phononic and electronic portions are balanced in
argue, as they did, that it is necessary to include phonons iiccordance with experiment. As the phonon energy increases
this picture. typically asT#, one sees that this term, as long&s>T,

In their analysis, to obtain agreement with their data, Ka-Wwill take more and more of the fixed laser energy away from
banovet al.” did include the fact that some of the laser en-the electronic system and hence, there are fewer excess qua-
ergy would be distributed to phonons in the system. In thissiparticles that can be created at higher temperature and the

case, we partition the laser energy with the phonons as welturve forn(T)/n(0) must go down. This is illustrated in Fig.
11, where curves decay rapidly @sncreases and are further

Ei=AEqgp+ AEcond™ AEpnonon (37 reduced for loweE, . Also shown on the same figure are the
experimental results of Kabanat al.” (solid squares We
The phonon piece is calculated assuming that only phononsonclude that their data does not support an interpretation of
with energyfw above A can be considered to be out of swave gap symmetry in the high; cuprates. Nor does it
thermal equilibrium with the lattice and therefore at a tem-agree withd-wave (Fig. 10, bottom framp

n(T)_( 2.9[3)2’3
no TR

[

AwF(w)[n(w,T*)—n(W,T)]dw, (38
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We have also done this calculation with the Pb phonorissue of order parameter symmetry, a re-examination of these
spectrurd® (adjusted to the specific heat in Pb and using amodels allows for the prediction of different power law de-
BCS gap ratip and we find similar curves to those shown pendences on excess quasiparticle density expected between
here. The excess quasiparticle density in Pb has been meg-andd-wave gaps. Tables | and Il summarize such predic-
sured by Carretal* and compared successfully to rate tions. These predictions are grounded in interesting physics
equation calculatior8 used for determining the nonequilib- sych as the blocking of states and how the condensate read-
rium distribution. We show the Pb datsolid circleg on our jysts and as such, they should remain relevant even within
curves to emphasize that Pb, assawave superconductor, more complicated models. It is hoped that the simplicity of
does follow the trend of showing a suppressed excess quasyy, results may inspire further experimental and theoretical

particle density as the temperature increases and agrees Wetto s 5 examine nonequilibrium phenomena in the pres-
with our calculations. This comparison also serves to Shov&nce of an order parameter with nodes

that our simple procedure of introducing the bottleneck at In addition, we remind the reader of the past discussions

2A and sharing the laser energy between phonons and elegf an inhomogeneous state in thé model and provide the

trons agrees qualitatively and even semiquantitatively with L )
the more sophisticated and accurate rate equation calculB—redICtlon that thal-wave state will not be unstable to such
tions used by Caret al*! and validates our simpler method. & State for the most part. In fact, tdewave state may form

Here, we have done the calculation using a BCS gap rati@ more stablg .an.d intuitively interggting state in which to
of 3.53. A full strong coupling Eliashberg calculatfén Probe nonequilibrium superconductivity. _
would have to be done to include a larger ratio, as from our [N our work we have specifically addressed two experi-
experience, simply inserting a larger ratio in a BCS calculaments.S-1-N tunneling has always been a powerful probe of
tion can give incorrect, and therefore misleading, resultsswave superconductors and with our work within the
Aside from the inherent complexity of such a calculation, wemodel, we show how one may use this experiment to mea-
would need to commit to some specific mechanism sinceure the model parameters @f, n andA(n) in order to test
phonons are not believed to be the source of the iighBut  the predictions of the theory, both fer and d-wave cases.
there is no consensus on mechanism. To fit experiment, howrhe modern use of STM may provide a more attractive av-
ever, Kabano\et al.” phenomenologically increase the value enue for investigating this issue in the face of inhomogeneity
of the ratio 2A(0)/kgT. to about 9. There is, however, no where the local density of states may vary with position
rigorous justification for such a procedure and this is oufwithin the same material.
main objection to such a fit. To increase the gap ratio, it is  Finally, recent pump/probe experiments in YBCO which
necessary to increase the ratio ®f/wy, in Eliashberg have been interpreted as providing support $avave gap
theory:® where w|, is a particular moment of the electron- symmetry are reconsidered. Within a BCS description of the
phonon spectral function which gives the appropriate meagyperconducting state and model for the nonequilibrium

sure of the average phonon energy involved. When this igjstribution, our calculations, including phonons, do not pro-

done, damping effects, entirely left out of BCS, becomeyce an excess quasiparticle distributiafT) which is
dominant anq s_uperco_nductlng properties acquire b(':'hav'orr?early constant in temperature with a peak nearRather a
that are qualitatively different from straightforward extrapo-

i . : .~ quick decay with increasing is found as more of the laser
lations of BCS behaviofsee, for instance, many properties enerav is taken up by the phonon svstem. When the exolicit
calculated in Ref. 26 in the limit of larg€./w), ratio). For ay b by b y i P

YBCO, the gap ratio is closer to @ef. 27 and is certainly case of Pb is considered rather than YBCO, the same rapidly
not 9. i:urther, for a gap ratio ratio of 9-10, the cutoff df 2 decaying characteristic is found and thl'ls 'is in' good agree-
applied to the phonons falls at 70—80 meV which is at thegMent with the recent data O_f Cast al. n th's classic
very top of the measured phonon spectfinThis large ~SWave superconductor. Our final conclusion is that present
value of the cutoff has the effect of greatly reducing thePUmp/probe experiments in YBCO cannot be accounted for
ability of the phonons to share in the laser energy and thi®Y €ithers- or d-wave gap symmetry and it may be necessary
partially accounts for why their curve for(T) in this case !0 reexamine the interpretation of the data in terms of the
stays flat to much higher temperature than for the BCS curveexcess quasiparticle density. In this regard, a next step might
be to calculate the optical conductivity itself in the nonequi-
librium state so as to make a more direct contact with what is
measured.

In summary, we have examined the differences between
ans-wave order parameter versuslavave in a nonequilib-
rium superconductor using two prominent models in the lit- ACKNOWLEDGMENTS
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