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Effects of columnar disorder on flux-lattice melting in high-temperature superconductors

Sandeep Tyagi and Yadin Y. Goldschmidt
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
(Received 8 November 2002; revised manuscript received 5 February 2003; published 3 Jyne 2003

The effect of columnar pins on the flux-lines melting transition in high-temperature superconductors is
studied using path-integral Monte Carlo simulations. We highlight the similarities and differences in the effects
of columnar disorder on the melting transition in Yf&ap0,;_ s (YBCO) and the highly anisotropic
Bi,SrL,CaCy0g, s (BSCCO at magnetic fields such that the mean separation between flux lines is comparable
to the penetration depth. For pure systems, a first-order transition from a flux-line solid to a liquid phase is seen
as the temperature is increased. When adding columnar defects to the system, the transition temperature is not
affected in both materials as long as the strength of an individual columnar defgxessed as a flux-line
defect interactionis less than a certain threshold for a given density of randomly distributed columnar pins.
This threshold strength is lower for YBCO than for BSCCO. For higher strengths, the transition line is shifted
for both materials towards higher temperatures, and the sharp jump in energy, characteristic of a first-order
transition, gives way to a smoother and gradual rise of the energy, characteristic of a second-order transition.
Also, when columnar defects are present, the vortex solid phase is replaced by a pinned Bose glass phase and
this is manifested by a marked decrease in translational order and orientational order as measured by the
appropriate structure factors. For BSCCO, we report an unusual rise of the translational order and the hexatic
order just before the melting transition. No such rise is observed in YBCO.
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[. INTRODUCTION critical currents. In the VL phase, pinning of a few vortices
does not inhibit others from moving when a current is ap-
Type-II superconductots® allow for a partial penetration plied. Thus, for practical purposes the sudden increase in
of magnetic field into the bulk of the superconducti®C)  resistivity occurs at the melting transition rather than when
material when the applied field satisfiesH ;<H<Hg,. In' H=H_,(T) for any reasonably nonvanishing currents.
a seminal work Abrikosdlshowed that when the ratio/ £, The existence of the melting transition in high-pristine
where\ is the magnetic-field penetration depth @t the  materials has been established through numerous
coherence length, is greater than/2/ the magnetic-field experimenta® and numericaf~?° studies. As was men-
penetrates the SC material in the form of flux lin&4L’s). tioned above, disorder in the form of points defects and
These FL's are also called vortices, since they are surroundesbmetimes more extended defects can and does occur natu-
by circular currents. Each FL carries a quantized unit of fluxrally in laboratory samples. In addition, artificial point de-
¢o=hcl2e called the fluxoid. The FL's have cylindrical fects can be induced by bombarding the sample with elec-
shape of radius~\ (the radius is not sharp since the trons originating from particle accelerators. Extended
magnetic-field decays exponentially like exp(\), wherer columnar defects in the form of linear damaged tracks pierc-
is the distance from the aji@nd a non-SC core of radius ing through the sample can be induced by heavy-ion irradia-
~¢. Due to a repulsive interaction among the FL's, theytion. Both naturally occurring and artificially induced defects
arrange themselves in a triangular lattice referred to as thare situated at random positions in the sample and their ef-
vortex solid (VS). This result follows from mean-field fective pinning strengtlfi.e., their interaction with FL)scan
theory. also vary from defect to defect. Thus, defects play the role of
After high-temperature superconductors were discoveredquenched disorder. The adjective “quenched” refers to the
in the 1980's, it became apparent that thermal fluctuationgmmobility of these defects during experimental time scales.
not included in the mean-field theatylay an important role  Introduction of disorder in terms of point defects or colum-
at relatively high temperatures and fields, still beldwand nar pins affects both the properties of the solid and liquid
H.,. These fluctuations can cause the Abrikosov lattice tgohases and might also shift the location of the melting tran-
melt into a disordered liquid via a first-order transition sition in theH-T plane?® In the case of point pins, the VS
(FOT), which can be roughly estimated using the Lindemanrphase is replaced with a Bragg-glass pHag8characterized
criterion known from solid-state physi€s® Technologically, by quasi-long-range order. The melting transition is predicted
the melting of the FL lattice is important since the vortexto shift towards lower temperaturés.> In the case of co-
liquid (VL) is not actually SC due to the dissipation causedlumnar pins, the VS phase is replaced with a so-called
by the FL motion when an electric current passes through thpinned Bose glas® where FL's are trapped by the columnar
system. Pinning of FL's by naturally occurring defects in thedefects and the whole lattice becomes immobile. The Bose
form of vacancies, interstitials, twin and grain boundariesglass phase is similar to the localized phase of a two-
etc., is effective to impede the FL motion in the VS phasedimensional repulsive Bose gas in the presence of quenched
where the FL's form a rigid correlated network. The effec-disorder, as will be explained in more detail in the following
tiveness of the pinning manifests itself by leading to highsection.
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The effect of both kinds of disorders on the FL's melting integral Monte CarldPIMC) simulation on this system. The
has been studied experimentally in various high-temperaturpartition function ofN vortices can be expressed as
superconductors. Two common materials that have been ex-
tensively investigated are YB@u;0;_ s (YBCO) and _ _ _
Bi,Sr,CaCy0g. 5 (BSCCO, both having critical tempera- ~ =~(T:Lz:N)=@ P M= mf .1:[1 DRi(z)e” 7T,
tures ranging between 90-120 Ktat=0. The main differ- (2.1
ence between these materials is their anisotropy parameter ] ] -
y2=m,/m,>1, wherem, and m, denote the effective whereRi(;) denotes the twq—dlmensmn@lD) position vec-
masses of electrons moving along theaxis and theab  tOr of theith vortex at. a heighr along theq axis, F is the
plane, respectively. BSCCO is much more anisotropic: itdrée energy as a function of temperatiid., is the length of
anisotropy parametey lies in the range of 50—200 com- the s.ample.alo_ng the direction. The London free-energy
pared to the range of 5—7 for YBCOThis fact causes the functionalJ is given by
FL's to be much “softer” or elastic. Thus, in the case of 5 1L e [dR.\2
BSCCO the FLs are sometimes described as a collection of = _ _f z {E _'(_')
loosely connected “two-dimensional droplets” residing in kKT kTJo T 2\dz
adjacent Cu-O planes. Experimental studies on YBCO have (2.2
shown a marked shift in the irreversibility line in the pres- where 80:(1)(2)/(4777\)2 is the vortex line energy per unit

ence of the columnar disord&r-3! The irreversibility line in : S 5
the H-T plane marks the onset of hysteresis effects and ilﬁ:‘ngth,_ the line tension ise =eoln(ag/2ym¢)/v*, and
ij(2)=|Ri(2) —Rj(2)|. Here,

located close to the melting transition on the solid phase side."
For BSCCO, many experimental studies have been

conducted®3° The more recent ones have shdfni® that an= /% 2.3
the melting line is not shifted when the density of columnar 0 J3B '
defects is relatively lowB ,<B, but for B,~B, a shift in

the position of the melting transition is observed. Here, th

matching fieldB, is defined a3 ,=ny¢o, whereny is the the in-ol int " tential betw wo FL's a dist
density of the columnar defects aig is the flux quantum. € In-plane interaction potential between two LS a distance

Theoretical work on columnar disorder includes BoseRii @PartKo denotes the modified Bessel function of the first

glass theor§® RadzihovskgP® considered the possibility of <INd: This expression for the London free-energy is an ap-
two kinds of Bose glass phaséstrongly or weakly pinned proximation that neglects the nonlocal interaction of real vor-
depending on whetheé8<B, or B>B,. More recently, co- tices a_nd rgplages it by in-plane intergctions only, which is
lumnar as well as point disorder were investigated b);eally justified if the FL's do not deviate too much from

Goldschmid® using replica field theory. He showed that the straight lines along the axis:™ With this approximation, the

melting line shifts to lower temperature in the case of pointSyStem ofN interacting FL's is equivalent to a system Nf

disorder and to higher temperature in the case of columnzi?Osons ind =2 dimension interacting with a pairwise poten-
disorder. tial Ko(Rjj/\).

Due to the complexity of the problem, especially in the The path-integral representation of a systeniNdiosons

presence of disorder, simulations have been very useful ifif ma;slm eafh 2in two dimgﬁsiong, intﬁracting tprough a
studying the FL system. There have been many simulatiofPtentialV(r)=gKo(r/x), with g being the strength and
studies of the vortex system in the presence of disordef€ind the range of the repulsive interaction, is given at finite
However, most simulation work has been confined to thd€MPeraturél in terms of the imaginary time action

addition of point disorder only. In particular, there is little /KT 2 3

work done on the effects of columnar disorder on the FL §: Ef BdT‘E T(ﬁ) + S 92K0< R.J(T)”'

melting. Recent work by Wengel and dlzef* concentrated hlo To2\dr) 5 A

on the case of high defect density regidp~B. In contrast, (2.4

a recent simulation study by Sef a.I.42 uses a small density Here, 7 is the imaginary time andg is the temperature of

of columnar defects, each of infinite strength, but considerg,e gose system. We see that there is a one to one parameter

et al*® also investigate the case of a very small magnetic

field. In this paper, we consider columnar defects of a finite r—z, #—kT, ¢2—2g,, #/kTg—L,, m—g,
strengthn with a relatively low defect densityg,/B=0.2,
and with realistic magnetic fields as used in the experiments. n=N/A=2/( \/§ag)= B/ ¢y,

N

+> ZsoKo(%)],

i<j

é's the lattice spacingB is the magnetic field along the
direction, andy is the anisotropy parametéefy(R;;/\) is

wheren is the average density of bosofesd FL'9 andA is
Il. THE MODEL the area of the sample. We can write the London free-energy
functional in a dimensionless form as follows:

dR;\? Rii
E) +i2<j KO<T')} (2.5

We first discuss the method implemented for YBCO.
Following Nelsorf* we map the system o vortices -
(FL's) in a high-T. superconductor ontN interacting bosons J = f’ng i
in two-space+ one-time dimensions. Then, we do a path- kT Jo T 2A?
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where dgp? 1+In(£)H|Ri'm_Ri'm+l|_2}!
h kT 9> 2el, -~ A 9
- = . BE = . A= —. (2.10
aog\/a ao\/28|80 kTB KT Qo
(2.6)  for |Ri m—Rim+1/>2rg, whered is the interlayer spacing
andr is the healing length defined by = yd. For the in-
plane(IP) coupling, we use

A

All lengths are measured in units af and energies in units
of g2 for bosons andt,a, for FL's. We next discretize the
integral along the axis by dividing it intoM segments A2
0
8m\2

Jip(Rijm)= 0 (2.1

N

Rij,m)
B(B,A,T) '

1 1 Mo 5 3[R /KT In principle, one should add to the above interaction an elec-
=N m ; f ml_:[1 .Hl d°R; me™ 7 tromagrlleg‘tic interaction among t_he two—_dimensional droplt_at
vortices:” The electromagnetic interaction becomes domi-
(2.7 nant in the limit of infinite anisotropy¥—=). Ryu et al1®
argue,(see also Ref. §0that for the valuegy=50- 100 for

wherer=§/M, mlabels the planes and BSCCO the Josephson coupling still dominates over the

IR m] (Ri ms1—Ri m)? B electromagnetic coupling. Their argument goes as follows:
k'lr’m =2 — T+ > Ko(Rjm/N). Clenf® shows that if one has a straight array of two-
tm 2A°T <] dimension droplet vortices along theaxis and one two-

(2.9 dimensional droplet is displaced by a distariReén the x
direction than the magnetic energy of the configuration in-

We work only in the limit whereg is large, which creases by an amount

amounts to taking., very large and in the mapping onto 2D
bosons corresponds to the ground state of the bosons at the 2
absolute zero temperaturd{=0). We usedB=375 and AE(R)z_O
discretized the axis intoM =75 planes. 2
We used the matrix-squaring metloéf to calculate the _
right action so that we can work with a small number of WhereC is Euler's constant0.577 . ..). For largeR (R
planes along the direction. Working with the primitive ac- >M\). the modified Bessel functiok, decays exponentially
tion requires the use of a large number of slicing of the and thus the energy increases likeRiX). For smallR, the
direction and is very time consumifi§j The boundary con- Bessel function can be expanded in a power seri¢&/n
ditions in thez direction for a system of bosons are(3) 5o
=R;(0), with all permutationg = P(i) of the indices being Ko(R/N)==In(R/2M) (1+RY4N"+ - )
allowed. This is what is meant by the s_ummatl_on oP_eln —C+RA(1—C)Ia\2+ - - -, (2.13
Eqg. (2.7). For smallg (a small repulsive interactionwhich
corresponds to large\, we expect a Bose-Einstein con- and thus the magnetic energy behaves Reto a leading
densed phase where permutations are important. This is tleeder inR which is the same as the quadratic behavior of the
superfluid phase. For small, repulsion is large and permu- Josephson energy in E(R.9) above. The ratio of the coef-
tations are rare as the Bose system is in its classical phageients of the quadratic terms in the magnetic and Josephson
which is a Wigner crystal. These two phases corresponcenergies goes roughly like?(d/\)? (whered/\~1/100 for
respectively, to the FL liquid and solid phases. The meltingBSCCO atT=0 and even smaller at higher temperatlres
line represented by =A,, is given approximately by the Thus for anisotropyy=50, we get a factor of 0.25 or lega
expressionB,,=const/T?. Near T, this behavior is more somewhat more precise estimatgives a ratio of about 0)1
complicated(see below. Thus, the magnetic interaction is small compared to the Jo-
We now discuss the method of simulations of BSCCO. sephson interaction for anisotropies in the rangeyef50
Because of the high anisotropy of the BSCCO system one-100. For samples withy=200 these interactions are al-
cannot use the simple picture given above. Here, instead, weady comparable. For large valuesRyfthe magnetic inter-
follow a different model that can be cast in a form analogousaction increases logarithmically and the Josephson interac-
to YBCO. We take the Lawrence-Doniach mdehs our tion increases linearly so the magnetic interaction is always
starting point for BSCCO. It leads to the following form of negligible. The key to the estimate given above is to consider

the Loncéor; free-energy for interlayeflL) Josephson not just two two-dimensional droplet vortices but a whole
16,4

C+In

+
2\ Ko

0
ik (2.12

dh
J|L(Ri,m)=m

1+In ar2 -1y showed that a linear array of two-dimensional droplet vorti-

coupling: line with one displaced two-dimensional droplet. This argu-
ment is valid if the deviations of the vortices from straight
A
il
9 2.9 ces gives rise to exactly the same magnetic field at a distance
' R away from it as produced by an Abrikosov vortex line.

(|Rim—Ri m+1))? lines are not too large. As for the in-plane interaction Clem
for |[Rj m—Rj m+1/<2rgy and Thus, Eq.(2.1)) is consistent with the magnetic interaction

214501-3



S. TYAGI AND Y. Y. GOLDSCHMIDT PHYSICAL REVIEW B 67, 214501 (2003

of two-dimensional droplet vortices, again when the FL's doNote that some authotsuse a temperature dependence of
not deviate too much from straight lines. . 1/J1-T%TZin \, or evert 1//1—T#T2. All these choices
Equations(2.9)—(2.11) for BSCCO can be cast in a form coincide neafT.. The choice of temperature dependence of

similar to that for the YBCO with the following substitu- )\ is not expected to have a significant effect on the results.
tions:

I1ll. NOTES ON THE SIMULATIONS

The technique that we use to simulate our system is called
multilevel Monte Carlo simulatiotMMC).*¢ There are sev-
eral advantages in using this technique for the simulation of

(2.19 the FL's over the usual metropolis Monte CarlC)
With these changes the London free-energy functionain€thod. In the discrete model, we work withFL's with the

would look like z axis discretized intdM planes, thus resulting iN beads in

each of theM planes. In the usual MC method, one would

IR (R m—R; m+1|)2_rzl displace a few of these beads in a plane by small random

— = : ’ 9, (2.15  displacements inside a two-dimensional box and then would

kT 2?7 accept or reject the move based on a probability given by the

for (|R; m— R m+l|)<2rg and Boltzmann_ factor. _ _ _ _ o

' ' A big disadvantage of using this technique is that it is
IR (R m—R; m+1)2—f5 djfficult to move beads appreciably from their origingl _posi—

kT’ = ’ ’2 tions over a number of MC steps. The reason for this is that
2A°T a bead in a plane belonging to a FL finds itself in a local

[2r,— (IR m—R, NE harmonic potential generated by the kinetic-energy term in-

=9 m _mellll (2.1  volving this bead and the beads belonging to the same FL on

2A%7 either side of the plane. This harmonic potential becomes

stronger and stronger at lower temperatures and magnetic
fields. As a result, in the usual MC simulations beads keep
moving around inside these local harmonic cages and end up
sampling only a small part of the phase space. The other
roblem with the usual MC method is that there is no natural
asy way of implementing FL cutting. If there are two FL's
twisted around each other and if it is energetically favorable
method (see the following section for a discussion of the for _them to reconnect eaph other in such a way as to_lower
bisection method their free energy then this step should k_)e p_erm!tted in the
MC method without regard to the question if this process

We can make use of a reduced temperature variable égccurs in reality. This is so because in the MC simulations

tmha!;(tahsc;me exptre55|gns Io(;)k sg{]pelle'r. F'rSt'.UIS'TE thehfa hase space is sampled according to the probability distribu-
atthe lemperature dependencelonnses mainly roudh tion and all one needs is to generate configurations weighted

. . . . 5
£o and neglecting the logarithmic corrections, one et by the Boltzmann factor, and the path followed in configu-

N 1 . ration space has nothing to do with any real dynamics.
-0 sooc—oc( 1— _)1 (2.17) These two main drawbacks of the usual MC method are

for (|R; m—Rim+1|)>2r4, when now again all lengths are
measured in units ody. While doing simulations at a fixed
magnetic fieldB and temperaturd, the termrS/ZAzr will
remain constant and would drop out®E term in the Bolt-
zmann factor. It, however, need to be considered during th
measurement of the energy. The second term in(E4.6
can be easily handled at the last stage of the bisectio

N G T easily overcome in the MMC technique. First, one moves
bigger chunks of FL's encompassing beads in several planes.
and hence . . - Co
This way one can avoid local harmonic trajgghis is like
TVB taking an aerial route to a destination rather than going
Aot ———. (2.19  through the zigzag maze of road$his is much in the spirit
1-TIT, of Fourier space Monte Carlo where one first samples modes
Defining reduced temperature as with smaller wave numbers and then move onto higher
modes.
T The method of creating new FL configurations is based on
Trzl_—-r/-,—c’ (2.19 the concept of the conditional probabilities. It is called the
) bisection methotf because one starts sampling beads by it-
we obtain eratively bisecting the FL's. At each stage of the division, the
beads belonging to that stage are moved with some condi-
AT, VB. (220 tional probability factorP; . It is important to make sure that
This shows that the equation for the melting line is approxi-the probabilities are chosen in such a way that detailed bal-
mately ance is satisfied at each stage of the division. One notes that
the P;’s may not be the actual Boltzmann factors for the
Bn=const1—T/T.)%/T?. beads to be moved at different levels. But what is required is
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that when allP;’s are multiplied together, they cancel in such The decay of the structure factors at the transition tempera-
a way so as to leave the correct Boltzmann factor for théure becomes sharper when one uses a larger number of FL's.
whole move. Thus, inherent in this algorithm is the fact thatHowever, no appreciable shift in the transition temperature is
a move would finally be accepted only if it has been acceptegeen, while working with the smalleN(= 36) or the larger
at each stage of the bisection method. The power of thisystem N=64). We did not run our simulations for even
method lies in choosing the appropridgs. If these condi- larger systems as it becomes computationally very time con-
tional probability factors are chosen judiciously, most of thesuming. Typical simulation times were3.5x 10° MC steps.
rejections would take place at the initial stages of the bisecEach MC step involved moving three to four lines in five
tion process when not too much computational effort haglanes simultaneously. We usually averaged over 10—-15 re-
been spent yet. alizations of the columnar disorders, though some results
The cutting and reconnection of FL's is implementedhave an average over as many as 20 realizations of the dis-
naturally in a MMC method: permutation among the three ororder.
four lines chosen to be moved becomes the first among the Columnar disorder is modeled as an array of straight cy-
many hierarchical steps one goes through before a move lindrical wells of typical radiusr4=25-35 A placed ran-
finally accepted and the position of the beads updated aglomly throughout the cross-sectional region of the sample
cordingly. We typically moved a total of 15—20 beads dis-and oriented along the direction? Each columnar defect is
tributed over five planes. Permutations were sampled by af lengthL,. The density of the columnar pins can be varied
random-walk algorithm through the space of permutafibns by changing their number for a given cross-sectional area,
(see Appendix B and the strength is controlled by a positive dimensionless
In the case of YBCO, we worked with a field & parameter. If a bead happens to wander inside a columnar
=4000 G. Working in the primitive approximation of the well, we include an extra free energy ef7(d¢$3/8m?\?).
action would require the use of a smaller value of the dimenThe defect concentration was taken to be a 20% ratio of
sionless parameter, which would require slicing of the  defects to FL's which meanB,/B=0.2. The strength of
direction into a large number of planes. To avoid this, thedisorder was set ay<0.5 for BSCCO. For YBCO#=0.5
matrix-squaring methdd*® has been used to get the effec- was found to be too large in the sense that the transition
tive action for bigger values of. For example, Nordborg became too broad and useful information could not be ex-
and Blattet® use a value of=3.0 and they work with 100 tracted. Thus, for YBCO, we kepj<0.3.
planes. In this simulation, a value @&=5.0 has been used Other parameters used for YBCO are=5, \g
and thez axis has been sliced into 75 planes. Choosing a= 1500 A, £,,(0)=15 A, d=12 A. Parameters for BSCCO
bigger value ofr by utilizing the matrix-squaring method are as follows: y=125, \q=1700 A, &,,(0)=20 A, d
makes it easier to equilibrate the system as compared te 15 A.
working with the primitive approximation.
For BSCCO, we dic_i not use the matrix-squaring method IV. MEASURED QUANTITIES
because of the complications involved due to the few extra
terms in free energy which contribute depending on whether In this section, we describe many different physical quan-
R;; is smaller or bigger than,. Here, we used the natural tities that were monitored during the simulation. From the
interlayer spacingl to calculate the parameterat different  variation of these quantities with the temperature we can
temperatures and then used the MMC technique to efficientlgxtract important conclusions about the different phases of
sample the configurational space. the system.
As mentioned previously, in the present simulations we
included only the Josephson coupling. This approximation A. Energy
works well with YBCO but it could be less satisfactory for
BSCCO because of its high anisotropy. For very anisotropic
materials, the electromagnetic coupling becomes
important?®>!As discussed in Sec. II, Ryet al® estimated E=T2iln[=(A B.N)] 4.2)
that for anisotropy of magnitudg=50— 100 the Josephson oT tT '
interaction still dominates over the electromagnetic interac-
tion, but this will not be the case fop=200 which may can be simply written a¥’
characterize some samples. Olsaral > discuss how to in-
clude the electromagnetic interaction in a MC simulation, but E=T,(5:+S,), 4.2
they only consider the opposite limit where the Josephson
coupling is totally neglected. To our knowledge, there is nowhere(for BSCCO
satisfactory treatment of both couplings included on equal
footings. We carried out preliminary simulations which show

In terms of the reduced temperature, the energy

(|Ri,m_Ri,m+ll)2_rg

that the inclusion of the electromagnetic coupling does not $= ; o2
shift the position of the transition line much at a field of 125 ’ T
G, thus supporting our current conclusions. These results will for (|R; m— R m+1|)<2rg 4.3

be reported elsewherd.
Simulations were usually carried out for 36 and 64 FL's.and
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(R m—Ri me1)2—12 wherez; ., denotes the number of the nearest neighbors of a
Si=( > l "rg g bead at positiori, m and it is six for a perfect hexagonal
m,i 2A°T lattice, 6;; , stands for the bond angle, that is the angle that

2
_ [ng_(|Ri,m_Ri,m+1|)] (4.4) S(Qq), this quantity too has a large value in an ordered

> vector Rj; , makes with an arbitrary axis. Just like the

2A%r p_hase and saturates at a finite value for a system of finite
for (|Ri m— Ri.m+1/)>2rq, whereas Size.
IRi m— Rj,m| D. Line entanglement
S2= < m%j TKO(# > (4.5 As we allow permutations of FL's, we can define a num-

. _ _ . o berN./N as that fraction of the total number of FL's which
Any discontinuous jump irE would indicate a FOT. From pelong to loops that are bigger than the size of a “simple”
this discontinuous jump in energyE, we can also calculate |oop. A simple loop is defined as a setMfbeads connected

the jump in entropyAs, end to endM being the total number of planes. Loops of size
2M, 3M, ... start proliferating at and above the transition
As— E 4.6) temperature and in the corresponding 2D boson system this
T ' proliferation is related to the onset of the superfluidity.
B. Translational structure factor E. Line wandering
The translational structure fact&Q, ,) is defined as The transverse FL fluctuations are measured by
u?(2)=([R(zo+2)—R(z0)1%)/a3, (4.12

1 .
S(Q )= 2 eliQ 1, Rim=Ryml ) 4.7 . iti
Wl MIN which is independent ok,. At the transition temperature

u?(z) undergoes a large increase for lamge
) ) ) We want to emphasize one important aspect of measuring
reciprocal-lattice vector and is of the form the translational structure factor. The usual way of measuring
Q|l,|2=|1b1+|zbz, 4.9 tBhls guantity |_s by c_hoosm@,lJ2 corrgspo_ndmg to the first
ragg peak, i.e.Q, in Eqg. (4.7). Now, it might happen that
andl, andl, are some integerd, , represent the basis vec- the configuration of the FL's comes close to making an al-
tors of the reciprocal lattice most perfect hexagonal lattice but its basis vectors are not
aligned along the usual major axes of the rhombically shaped
. cell encompassing the system. If we use the reciprocal-lattice
D1 ,=————(€1,—&,1c0s0), (4.9  vectorQ, to measure the structure factor of such a configu-
apsin’g ration, we would end up getting a very small value $6),)

where 6= /3, a, is the nearest-neighbor distance, aag ~ and might wrongly conclude that the system is in a very

are the unit vectors along the hexagonal unit cell such thatdisordered state. This happened many times in our simula-
tions; we got a very low value of the translational structure

€, €= C0sHh. (4.10 factor, while the hexatic order was indicating a high degree
of orderliness in the FL lattice. To remedy this situation, the
In the simulations|, andl, in Eq. (4.7) are chosen to be translational structure factor is measured at 60 different
1 and 0 or 0 and 1. These choices correspond to the firgingles, 1° apart, and choose that number which gives the
Bragg peak. We will normally writeS(Q, ) as simply largest possible value of th&(Q;(a)) corresponding to
S(Q1). This quantity gives important information about the some anglex. After implementing this technique, we find
phase of the system. In an ordered phase where FL's sit onthat S(Q,) and ¢, which differ so much initially, almost
triangular lattice,S(Q,) is of the order ofN. In the disor- follow each other.
dered phase, it saturates to almost zero as the system size
in_creases. Ir_1 the simulation_s, ho_wever, there is a pr_oblem V. RESULTS
with measuringS(Q), especially in the presence of disor-
der. We will return to this point at the end of the section. (1) For YBCO, simulations were carried out at a magnetic
field of B=4000 G. At this field, we have&@~X\,. By the
C. Hexatic structure factor argument given in Ref. 19, we conclude that our results
. . . _should hold qualitatively for anyB such thatag<<i. We
We use Delaunay triangulation to measure the hexatic Ofzpecyed our simulation results against those by Nordborg
der parametegss, which is defined as and Blatter'® First, we verified that our code was working
MON gz fine by comparing our results against those given in Ref. 19.
Ye= 2 2 el eli80ijm ) (4.10) Working in the limit of L,—, we keptr fixed asA was
m=1i=1Zimj=1 increased. We got a sharp transitionfat 0.0605. A jump

where (---) stands for the MC averageQ ,, is a
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FIG. 1. YBCO: Structure factor at the first
Bragg peak as a function df at various disorder
strengthsz’s for N=236. A clear shift in transi-
tion point towards higherA’s is seen for gy
i =0.2.
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A

was also seen in the energy as defined in the preceding sec- Next, we look at the FL entanglemeriil, denotes the
tion and was found to be 0.0B3again the same as in Ref. number of FL's which do not form a simple loop. By looking
19. at theN./N vs A graph in Fig. 3, it is clear that the entangle-
The effect of introducing columnar disorder on the struc-ment is suppressed by as much as almost one order of mag-
ture factor at the first Bragg peak is shown in Fig. 1. In Fig.nitude just after and in the vicinity of the original transition
2, we depict the jump in the energy for a pure as well as foline at A=0.0605. This result is expected, as it is well
a disordered system. known that point disorder helps in line wandering and en-
We note that at lower strengths of the disorder, the melttanglement, while the columnar disorder has just the opposite
ing line is almost unaffected and the transition takes place affect® since a nearby FL is induced to align along the co-
A~0.0605. However, as we increase the strength of the didumnar defect, and thus its transverse fluctuations are re-
order, the melting transition shifts towards higher values ofduced. Unfortunately, there have been few studies on colum-
A which means that the melting line shifts towards highernar disorder in YBCO. Sewt al*?> work with vanishingly
temperatures and/or higher magnetic fields. karp to 0.1  small magnetic field and infinite pinning strengths, in the
no change is seen in the melting curve or in the jump in thevicinity of the lower branch of the melting line.
free-energy functional. However, gtequal to 0.2 the struc- Figure 4 shows the effect of columnar disorder on a sys-
ture factor comes down at around 0.0625 and the jump in theem of 64 FL's in YBCO. This graph shows a transition at
energy becomes gradual. This finding is in agreement witlmost the sameé. as in Fig. 1. This is a confirmation that
several experimental studies where a change in the irrever§nite-size effects are not important in our simulations.
ibility line is seen with the introduction of columnar (2) For the BSCCO system, tiievs T graphs for different

disorder’ 3! 7 values are depicted in Fig.(36 FL's) and Fig. 6(64 FL’s).
0.405 T T T
n=0.0 —x—
04} n=01 B i
n=02 ---&-
N=0.3 sl
& A
0395 | L J
o FIG. 2. YBCO: Energy as a function &f for
. & N=36. A jump in the energy is seen up tp
050 L - | =0.1. For »=0.2, the rise in the energy is
: G, o soothed out.
.vA ”
0385 | A’ .
D
038 1 1 1 1 1 1 1
0.057 0.058 0.059 0.06 0.061 0.062 0.063 0.064 0.065
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FIG. 3. YBCO: Fraction of entangled FL's as
a function of A. For »<0.1, a sharp jump in the
FL entanglement is seen. Fg=0.2, the rise of
Ne/N with A becomes gradual as compared with
i the clean system.
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For the pure systemz(=0), we see a sharp jump in the system and the one in the presence of low disorder strength
energy at exactly the point where the translational as well aé»=0.2) fall on top of each other, except in the transition
hexatic structure factors sharply decline. This jump in energyegion where the jump in case of the system with columnar
is a clear signature of a first-order transition. From the enpins is more gradual. Also, from Figs. 7 and 8, we see that
ergy jump we can compute the jump in entropy. The  theS(Q,) is not much affected in the presence of the colum-
jump in energy at the transition is arouAdc=12.Ck K per  nar disorder of strengtly=0.2. The same is true for the
vortex per layer, which giveAs=AE/T,,=0.1%, which is  hexatic order depicted in Fig. 9. This means that for the
small compared to the experimental valueA$=0.4G at  lower strengths of the disorder, the vortex-vortex interaction
B~125 G. However, these values fas, T,,, andB are in  is dominant in the range of the temperature where we carried
qualitative agreement with the same system studied using eut simulations. As a result the first-order vortex-lattice melt-
different modef® ing transition line is almost not affected.

Introduction of the columnar defects of a finite strength The nature of FL melting changes, however, when the
shows some interesting effects. We put columnar pins at rarstrength of the disorder is increased #0=0.5 as seen in
dom positions with a concentration fixed at 20% of the FL's.Figs. 7 and 8. We see that at the lower temperatures the order
We study the BSCCO system for pins of low strength ( parameter is suppressed. As we increase the temperature, the
=0.2) as well as for a higher strengtly€0.5). Columnar order parameter starts to rise and joins the melting curve of
disorder of strength up tg¢=0.2 appear to have little effect the pure system and then falls along it at even higher tem-
on the system. This can be seen from the energy vs temperperatures. Figure 9 indicates that the hexagonal structure fac-
ture graph in Figs. 5 and 6, where the curve for the pureor also shows a similar behavior. This clearly shows that the

FIG. 4. YBCO: Structure factor at the first

~ Bragg peak vsA for N=64. Smooth lines are
g provided as a visual aid. Transition foy=0.0
6 and »=0.2 are seen almost at the sar& as
with N=36.
4 -
2 - -
0 1 1 1 1
0.056 0.058 0.08 0.062 0.064 0.066
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FIG. 5. BSCCO: Energy as a function of the
reduced temperature fayj=0,0.2,0.5 aB=125
G for N=36. Lines were added to help visualize
the energy jumps. A discontinuous change in en-
ergy is seen at T,=250, 260K (T
~66.2, 66.9 K) forp=0, 0.2, respectively. For
7n=0.5, only a change in slope can be seen at
T,~268 K (T=~67.4 K) instead of a discontinu-
ous jump.

26
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200 220 240 260 280 300

T/(1-T/Te) (K)

FL's start to disengage from the pinning centers as thekept at as many as 20% of the total number of lines used in
wiggle more. At higher temperatures, columnar pins with thethe simulations as long as we keep the strength of the disor-
strength chosen here are not effective in pinning the vortexier less or equal tgy=0.2. For»=0.5, the rise of energy
system. This becomes clear from the fact that the meltingvith temperature becomes much more gradual and we do not
curve for the pure system and the one with columnar disorsee any discontinuous jump in energy at any temperature. On
der join each other at a temperature below the FOT. Furthethe other hand, an abrupt change in slope of the energy vs
interpretation and a possible explanation of this phenomenotemperature graph is observed, suggesting a discontinuity in
will be discussed in more detail in the Conclusions sectiorthe specific heat characterizing a second-order transition.
below. This convergence of the curves for the pure and dis- In Figs. 10 and 11, the snapshots of FL's, projected on a
ordered cases is also borne out in thes T graphs in Figs. plane, at temperatures less than the transition temperature
5 and 6. Initially at low temperatures, there is a big differ-and at a temperature bigger than the transition temperature
ence in energies of the systems with no disorde+(0.0)  are shown. From Fig. 10, it is easily seen that at low tem-
and high disorder £=0.5). However, as the temperature is peratures most columnar defects have captured FLs. Also,
increased, the two curves come closer and finally merge tathe FL's make simple loops and have cleverly set themselves
gether in the liquid phase. The jump in energy in the presso as to make a hexagonal lattice and yet occupy as many
ence of columnar defects can still be seen inEhes T graph  defects as possible. The transverse fluctuations of the trapped
for a disorder strength of=0.2. This tends to suggest that FL's are greatly suppressed at low temperatures. At higher
the FOT in a BSCCO system is not affected by disordersgemperature beyond the transition point, we see that colum-

3.2

28 |

26
FIG. 6. BSCCO: Energy as a function of the
§ reduced temperature fop=0, 0.2, 0.5 atB
=125 G for N=64. A jump in energy can be
7 seen atT,~238, 242 K (T~65.3, 65.6 K) for
7=0,0.2, respectively. Again no discontinuity is
observed forp=0.5, but only a change in slope
atT,~255 K (T=66.5 K).

24

22 |

E(102kK)

200 220 240 260 280 300

T/(1-T/Te ) (K)
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FIG. 7. BSCCO: Structure factor at the first
Bragg peak vs temperature B=125 G for N
=36. No shift in transition point is seen foy
=0.2. In the presence of columnar pins with
=0.5, the transition temperature increases from
66 K to 68 K. Also, we can see th&Q,) starts
to rise close to 60 K.

8(Qy)

0 1 1 1 1 1 1 1 1
56 58 60 62 64 86 68 70
TK)

nar defects are not occupied any more and a lot of FL's aragreement with the findings in Ref. 25. Also the big gap in
entangled. u?(z) occurring at the melting transition has moved towards
Inspection of snapshots like Fig. 10 gives support to thea higher temperature signaling a shift in the position of the
assertion of Seet al. that the Bose glass consists of patchesmelting transition in the presence of columnar defects.
of ordered regions with only short-range positional and ori-
entational order. This phase is different from the Bragg glass
in systems with point pins which is characterized by quasi- VI. CONCLUSIONS
long-range order.
Figure 12 shows the mean-squared displacements of the For lower strengths of disorderp&0.1 for YBCO and
FL's in the z direction at different temperatures for a pure »<0.2 for BSCCQ no appreciable shift in the melting line
system. At lower temperatureg(z) saturates for largebut  was seen. For these strengths, a sharp drop in the transla-
in the liquid state it grows linear/ A large gap inu?(z) for  tional and hexatic structure factors takes place at the transi-
large values of seen at the transition temperature signals theion. Also, the jump in energy at the transition is not affected
onset of the entanglement of the FL's. much as compared with the case when there is no disorder
In the presence of the columnar disorder of the strengtipresent. This suggests that for smaller concentrations of the
7=0.5, we see from Fig. 13 that’(z) at temperatures less columnar defects the transition still remains first order. This
than the transition temperature is suppressed compared to thesult is in agreement with Ref. 36, where even with the
correspondingu?(z) in the pure system. This result is in introduction of the columnar disorder no shift in transition

FIG. 8. BSCCO: Structure factor at the first
Bragg peak vs temperature Bt=125 G for N
=64. For =0.2, no significant change in the
structure factor is observed. In the presence of
columnar pins with»p=0.5, transition tempera-
ture increasing from 65 K to 67 K. Also, we can
see thatS(Q;) starts to rise close to 61 K.

8(Qy)

56 58 60 62 64 86 68 70
TK)
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FIG. 9. BSCCO: Hexatic order vs temperature
at B=125 G for N=64. When compared with
the previous figure, it can be seen thjgtalmost

follows S(Q,).

56 58 60 62 64 66 68 70
T(K)

temperatures is seen as long as the concentration of columnaf the FL's are reduced and thus the melting transition, as
disorder introduced is small. determined from the Lindemann criterion, takes place at at a
It is found that for YBCO as well as BSCCO, the melting higher temperature.
transition shifts towards higher values of temperature and At %=0.5, the jump in energy is not discernible any
magnetic field when random disorder is introduced providednore. Instead, a change of slope corresponding to a specific-
its strength exceeds a threshold which is different for YBCOheat discontinuity is observed. This means that the transition
and BSCCO. The size of the shift, for a given concentratioris probably not of first order in the presence of columnar
of defects, depends on the strength of the disorder. Fadisorder of higher strengths, but it is rather a continuous
YBCO, a considerable shift in the melting line towards (second-ordértransition.
higher temperatures and magnetic fields was seenpfor ~ The most dramatic outcome of this study for BSCCO is
=0.2 and»=0.3. This shift was bigger fo=0.3 than for  that for some values of the applied field and defect strength
7=0.2. Similarly, for BSCCO, a large shift in the melting both the translational and hexatic structure factors start to
line towards a higher temperature was found #p+0.5. rise at a certain temperature as the transition is approached
These results are in tune with numerous experimentdirom the lower-temperature side. This is an unusual result,
findings"28:30%3s well as theoretical predictiGhwhere the  that to our knowledge, has not been seen in previous simu-
irreversibility line is seen to shift towards higher temperaturelations. This fact can be explained as follows. At low tem-
and magnetic fields in the presence of columnar defects. Theeratures, the free energy is dominated by energy effects
gualitative reason for this effect is that due to the interactiorrather than entropy considerations, and pinning effects are
with the columnar defects the transverse thermal fluctuationdominant. As a result most columnar defects capture a FL,
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' ¥ g Y e
“oor g * 3 ® N4 ¢ 1 FIG. 10. BSCCO: A typical configuration in
> e A - "if L5 the solid phasélow temperaturgfor N=64 FL's
soo r R T &« ¥ A T andB,/B=0.2. FL's have been projected onto
e s & &, 4 one plane.
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FIG. 11. BSCCO: A typical configuration of
400 [ - FL's in the liquid phase(thigh temperatunefor
N=64 andB,/B=0.2. FL's have been projected
> S0k : 7 onto a single plane. Columnar defects are not
200 SN drawn to scale. Some FL's on the boundary do
’ R not seem to make loops. That is only because
100 1 % < | virtual images of FL's outside the cell are not
S ) A a ¢ shown.
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while the rest of the FL's adjust themselves in positions suclBSCCO occurs further below the melting temperature than
as to minimize the free energy. However, as the temperaturi@ YBCO. This allows the structure factor to increase above
is increased, FL's start to decouple from the defect sitesthe depinning temperature before its ultimate decline at the
which allow the vortices pinned at interstitial positions to melting transition. For YBCO, the depinning takes place
move themselves into a more ordered arrangement, thus ilose to the melting temperature, and it is difficult to detect
creasing the structure factors compared to the situation atny rise in the structure factors, especially for small systems,
lower temperatures. As was mentioned before, due to its highecause it is masked by the decrease in order due to the
anisotropy, FL's in BSCCO behave more like a collection ofstronger thermal fluctuations.

two-dimensional droplets rather than rigid rods. These two- In principle, the rise of the order parameters in the pres-
dimensional droplet are comparatively more difficult to getence of low amount of columnar defects as the melting tran-
pinned all at once by a columnar defect. On the other handsition temperature is approached could be observed experi-
FL's are much stiffer in YBCO and it is easier for a columnar mentally, if the appropriate parameters are tuned correctly. In
defect to capture a FL all along its length. It can be showrsmall-angle neutron scatterif§ANS)**" one can measure
[Eq.(9.49 in Ref. 2] that the depinning temperature for FL's, the integrated intensity over a Bragg peak of wave ve@pr
Tap. is inversely proportional to the anisotropy parameter which is proportional to the translational structure factor
Thus, we expect FL depinning to occur at comparativelyS(Q;) measured in the simulation. Another commonly used
smaller temperatures in BSCCO than in YBCO. Since theechnique is muon spin rotatishwhich gives information
melting temperatures are not that different between these mabout the width of the magnetic-field distribution in the
terials at the fields we consider, the depinning process fosample. This is not directly proportional to the structure fac-
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n=0.0 ——
06| 7K g
70K
05 | 89 K N
68 K
- o4 67K | FIG. 12. BSCCO: Line wandering along the
o 65 K direction atB=125 G forN=64. Here,d is the
03 | - distance between adjacent planes. A large in-
crease in line wandering occurs Bt=65 K.
02 -
—+ 65K
Ny e —————_11
y == ! F 50K
¢ ‘4 + +
=
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- FIG. 13. BSCCO: Line wandering along the
5 67 K direction atB=125 G forN=64 in the presence
03| - of disorder of strengthy=0.5. The big jump in
u?(z) has moved tar=66 K now.
0.2 6K
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0
0
tor at a givenQ;, but is rather given by APPENDIX A: ENERGY SUM OVER THE IMAGES

Consider a rhombically shaped region with sideand
exp( — Q%(u?)/2) angled, unit vectors aree;, e,, with e;-e,=cosé. In prac-
(6.1 tice, we took#=60° but we leave the discussion here more

general. The Green’s functio®, which describe the 2D

where (u?) is the mean-square deviation of vortices from Coulomb interaction between one vortex and another includ-
q ing all its images, as is implied by the periodic boundary

fcheir avgrage_position. lt. is possible to measure this quantit%onditions is given by the solution to London’s equation
in the simulations but this was not done in the present work

This quantity might not show the unusual rise describe abovésee’ e.g., Ref.)l
since it is dominated byu?) which is very likely monotoni- e )
cally increasing with temperature yielding a monotonically (1-NV9)Go(R,N) =27N"5(R), (A1)
decreasing linewidth. Thus, in order to look for the effect
observed in this paper, we suggest using the SANS techniqueith the parametei setting the scale for the range of the
to look at a BSCCO sample with columnar pins described bynteraction. The solution is given by
a matching field of about 25 G and an applied field of about
125 G. It is not clear to us what is the corresponding 2 A
parameter describing the pinning strength of the experimen- Go(R\)= 27 eXpiQ-R) ,
tal defects. According to Blattegt al? 7 lies in the range L%sing @  1+\%Q?
0.1-1.

Note added After this paper has been submitted we with
learned of two recent experimental studies of BSCCO by S.
S. Banerjeest ql.55 and M. Menghiniet _al.56 who study the R=R,e,+Ry€,,  Q=nybi+n,b, (A3)
melting transition forB>B,. Our findings, especially our ’

Fig. 10, are consistent with their “crystallites in the pores” whereQ runs over all reciprocal-lattice vectors spanned b
picture of the ordered phase in the presence of columnar P P y

2 _R2
G BQZ#) [1+2%(T)Q%)*

(A2)

defects.

b= 6) (A4)

= —€cosh),
ACKNOWLEDGMENTS i L siro &—¢§
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ergy (DOE), Grant No. DE-FG02-98ER45686. for (i,j)=(1,2),(2,1). Substituting in EA2), we obtain
2
o exp{l T(an1+ n,R5)

siné
Go(R\)= Tr (A5)

= ny=—= L2sir?A/(2\)%+n2—2n,n,cos6+n3
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We are now going to carry out the summation owgrana- integration is a square with sides parallel to the real and
lytically. This can be done by using the formula imaginary axes with the origin in the middle, in the limit that
its size goes to infinity. In our case

Z_ f(n)= —2 [residues of rf(z)(cotmz—1i)

ei><z
f(z)=

6 @ BNz By’ A7

at poles of f(2)].

We have subtracted the constarfitom cotwz to ensure that with appropriate values g8, y, andx. This function has two
|zf(z)(cotmz—i)|—0 on the contour of integration when simple poles, and the residues can be easily evaluated. The
has a large negative imaginary component. The contour dinal answer becomegelabelingn, asn)

iné cogt,n—2mB,)sin t,) +cogt,n)sin 27—t
Go(R\)= E gt Br)sinh(yyty) - gton)sint yu( 1)]’ (AB)
2 2o Ynlcosh27y,) —cod27B,)]
|
where involving a large number of lines, accepted at the first stage
of the algorithm, it would be very likely to get rejected at the
1:27TR1' t2=2—7T(R1COSH+ R,), B,=ncosé, follo_vv_ing stages. So we worl_< with _only three to five lines.
L L Sufficiently long segment&ypically five planes of a num-

_ —— 5 ber of lines were cut. Care should be taken to make sure that
Yn=sinOyn“+L/(2m\)*. (A9)  chosen FL's are the nearest neighbors in the plane where the

This expression is simpler than the one used by Nordbor%ecf’nneCtion of FL's is going to take place. These points can
and Blatter since it does not have different expressions foP€ implemented easily with the concept of linked lists and

. i . H 54 H
even and oda. It also converges faster in certain regions. POINters:” Also, care is to be taken that even though a FL
may be far away from some other FL in the rhombically

shaped unit cell, it can still permute with it through one of
the images of the latter. These few simple points are very

Essentially the same method is used for permutation sanimportant to implement the whole procedure correctly. Just
pling as was used in Ref. 19. The only difference is that weor a check, we tried with the sampling procedure given in
use permutation space of only the neighboring lines. This ifRef. 46. This gave results in good agreement with the sam-
so because even if we were able to get a permutation stepling procedure given above.
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