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Effects of columnar disorder on flux-lattice melting in high-temperature superconductors
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The effect of columnar pins on the flux-lines melting transition in high-temperature superconductors is
studied using path-integral Monte Carlo simulations. We highlight the similarities and differences in the effects
of columnar disorder on the melting transition in YBa2Cu3O72d ~YBCO! and the highly anisotropic
Bi2Sr2CaCu2O81d ~BSCCO! at magnetic fields such that the mean separation between flux lines is comparable
to the penetration depth. For pure systems, a first-order transition from a flux-line solid to a liquid phase is seen
as the temperature is increased. When adding columnar defects to the system, the transition temperature is not
affected in both materials as long as the strength of an individual columnar defect~expressed as a flux-line
defect interaction! is less than a certain threshold for a given density of randomly distributed columnar pins.
This threshold strength is lower for YBCO than for BSCCO. For higher strengths, the transition line is shifted
for both materials towards higher temperatures, and the sharp jump in energy, characteristic of a first-order
transition, gives way to a smoother and gradual rise of the energy, characteristic of a second-order transition.
Also, when columnar defects are present, the vortex solid phase is replaced by a pinned Bose glass phase and
this is manifested by a marked decrease in translational order and orientational order as measured by the
appropriate structure factors. For BSCCO, we report an unusual rise of the translational order and the hexatic
order just before the melting transition. No such rise is observed in YBCO.

DOI: 10.1103/PhysRevB.67.214501 PACS number~s!: 05.30.Jp, 74.25.Qt
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I. INTRODUCTION

Type-II superconductors1–3 allow for a partial penetration
of magnetic field into the bulk of the superconducting~SC!
material when the applied fieldH satisfiesHc1,H,Hc2. In
a seminal work Abrikosov4 showed that when the ratiol/j,
wherel is the magnetic-field penetration depth andj is the
coherence length, is greater than 1/A2, the magnetic-field
penetrates the SC material in the form of flux lines~FL’s!.
These FL’s are also called vortices, since they are surroun
by circular currents. Each FL carries a quantized unit of fl
f05hc/2e called the fluxoid. The FL’s have cylindrica
shape of radius'l ~the radius is not sharp since th
magnetic-field decays exponentially like exp(2r/l), wherer
is the distance from the axis! and a non-SC core of radiu
'j. Due to a repulsive interaction among the FL’s, th
arrange themselves in a triangular lattice referred to as
vortex solid ~VS!. This result follows from mean-field
theory.

After high-temperature superconductors were discove
in the 1980’s, it became apparent that thermal fluctuatio
not included in the mean-field theory,5 play an important role
at relatively high temperatures and fields, still belowTc and
Hc2. These fluctuations can cause the Abrikosov lattice
melt into a disordered liquid via a first-order transitio
~FOT!, which can be roughly estimated using the Lindema
criterion known from solid-state physics.6–8 Technologically,
the melting of the FL lattice is important since the vort
liquid ~VL ! is not actually SC due to the dissipation caus
by the FL motion when an electric current passes through
system. Pinning of FL’s by naturally occurring defects in t
form of vacancies, interstitials, twin and grain boundari
etc., is effective to impede the FL motion in the VS pha
where the FL’s form a rigid correlated network. The effe
tiveness of the pinning manifests itself by leading to hi
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ed
x

e

d
s,

o

n

d
e

,
,

-

critical currents. In the VL phase, pinning of a few vortic
does not inhibit others from moving when a current is a
plied. Thus, for practical purposes the sudden increase
resistivity occurs at the melting transition rather than wh
H5Hc2(T) for any reasonably nonvanishing currents.

The existence of the melting transition in high-Tc pristine
materials has been established through numer
experimental9–13 and numerical14–20 studies. As was men
tioned above, disorder in the form of points defects a
sometimes more extended defects can and does occur
rally in laboratory samples. In addition, artificial point d
fects can be induced by bombarding the sample with e
trons originating from particle accelerators. Extend
columnar defects in the form of linear damaged tracks pie
ing through the sample can be induced by heavy-ion irrad
tion. Both naturally occurring and artificially induced defec
are situated at random positions in the sample and their
fective pinning strength~i.e., their interaction with FL’s! can
also vary from defect to defect. Thus, defects play the role
quenched disorder. The adjective ‘‘quenched’’ refers to
immobility of these defects during experimental time scal
Introduction of disorder in terms of point defects or colum
nar pins affects both the properties of the solid and liq
phases and might also shift the location of the melting tr
sition in theH-T plane.2,3 In the case of point pins, the VS
phase is replaced with a Bragg-glass phase,21,22characterized
by quasi-long-range order. The melting transition is predic
to shift towards lower temperatures.23–25 In the case of co-
lumnar pins, the VS phase is replaced with a so-cal
pinned Bose glass,26 where FL’s are trapped by the column
defects and the whole lattice becomes immobile. The B
glass phase is similar to the localized phase of a tw
dimensional repulsive Bose gas in the presence of quenc
disorder, as will be explained in more detail in the followin
section.
©2003 The American Physical Society01-1
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The effect of both kinds of disorders on the FL’s meltin
has been studied experimentally in various high-tempera
superconductors. Two common materials that have been
tensively investigated are YBa2Cu3O72d ~YBCO! and
Bi2Sr2CaCu2O81d ~BSCCO!, both having critical tempera
tures ranging between 90–120 K atH50. The main differ-
ence between these materials is their anisotropy param
g25mz /m'.1, where mz and m' denote the effective
masses of electrons moving along thec axis and theab
plane, respectively. BSCCO is much more anisotropic:
anisotropy parameterg lies in the range of 50–200 com
pared to the range of 5–7 for YBCO.2 This fact causes the
FL’s to be much ‘‘softer’’ or elastic. Thus, in the case
BSCCO the FL’s are sometimes described as a collectio
loosely connected ‘‘two-dimensional droplets’’ residing
adjacent Cu-O planes. Experimental studies on YBCO h
shown a marked shift in the irreversibility line in the pre
ence of the columnar disorder.27–31The irreversibility line in
the H-T plane marks the onset of hysteresis effects and
located close to the melting transition on the solid phase s
For BSCCO, many experimental studies have be
conducted.32–39 The more recent ones have shown36–39 that
the melting line is not shifted when the density of column
defects is relatively low,Bf!B, but for Bf'B, a shift in
the position of the melting transition is observed. Here,
matching fieldBf is defined asBf5ndf0, wherend is the
density of the columnar defects andf0 is the flux quantum.

Theoretical work on columnar disorder includes Bo
glass theory.26 Radzihovsky40 considered the possibility o
two kinds of Bose glass phases~strongly or weakly pinned!
depending on whetherB,Bf or B.Bf . More recently, co-
lumnar as well as point disorder were investigated
Goldschmidt25 using replica field theory. He showed that th
melting line shifts to lower temperature in the case of po
disorder and to higher temperature in the case of colum
disorder.

Due to the complexity of the problem, especially in t
presence of disorder, simulations have been very usefu
studying the FL system. There have been many simula
studies of the vortex system in the presence of disor
However, most simulation work has been confined to
addition of point disorder only. In particular, there is litt
work done on the effects of columnar disorder on the
melting. Recent work by Wengel and Ta¨uber41 concentrated
on the case of high defect density regionBf'B. In contrast,
a recent simulation study by Senet al.42 uses a small density
of columnar defects, each of infinite strength, but consid
an extremely small magnetic field. Similarly, Nandgaonk
et al.43 also investigate the case of a very small magne
field. In this paper, we consider columnar defects of a fin
strengthh with a relatively low defect density,Bf /B50.2,
and with realistic magnetic fields as used in the experime

II. THE MODEL

We first discuss the method implemented for YBCO.
Following Nelson,44 we map the system ofN vortices

~FL’s! in a high-Tc superconductor ontoN interacting bosons
in two-space1 one-time dimensions. Then, we do a pa
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integral Monte Carlo~PIMC! simulation on this system. The
partition function ofN vortices can be expressed as

J~T,Lz ,N!5e2F(T,Lz ,N)/kT5
1

N! E )
i 51

N

DRi~z!e2I/kT,

~2.1!

whereRi(z) denotes the two-dimensional~2D! position vec-
tor of the i th vortex at a heightz along thec axis, F is the
free energy as a function of temperatureT, Lz is the length of
the sample along thez direction. The London free-energ
functionalI is given by

I

kT
5

1

kTE0

Lz
dzH(

i

« l

2 S dRi

dz D 2

1(
i , j

2«0K0S Ri j

l D J ,

~2.2!

where «05f0
2/(4pl)2 is the vortex line energy per uni

length, the line tension is« l5«0ln(a0/2Apj)/g2, and
Ri j (z)5uRi(z)2Rj (z)u. Here,

a05A2f0

A3B
~2.3!

is the lattice spacing,B is the magnetic field along thez
direction, andg is the anisotropy parameter.K0(Ri j /l) is
the in-plane interaction potential between two FL’s a distan
Ri j apart.K0 denotes the modified Bessel function of the fi
kind. This expression for the London free-energy is an
proximation that neglects the nonlocal interaction of real v
tices and replaces it by in-plane interactions only, which
really justified if the FL’s do not deviate too much from
straight lines along thez axis.19 With this approximation, the
system ofN interacting FL’s is equivalent to a system ofN
bosons ind52 dimension interacting with a pairwise pote
tial K0(Ri j /l).

The path-integral representation of a system ofN bosons
of massm each in two dimensions, interacting through
potentialV(r )5g2K0(r /l), with g being the strength andl
being the range of the repulsive interaction, is given at fin
temperatureTB in terms of the imaginary time action

S

\
5

1

\E0

\/kTB
dtH(

i

m

2 S dRi

dt D 2

1(
i , j

g2K0S Ri j ~t!

l D J .

~2.4!

Here,t is the imaginary time andTB is the temperature o
the Bose system. We see that there is a one to one param
mapping between the boson system and the vortex syste19

t→z, \→kT, g2→2«0 , \/kTB→Lz , m→« l ,

n5N/A52/~A3a0
2!5B/f0 ,

wheren is the average density of bosons~and FL’s! andA is
the area of the sample. We can write the London free-ene
functional in a dimensionless form as follows:

I

kT
5E

0

b

dtH (
i

1

2L2 S dRi

dt D 2

1(
i , j

K0S Ri j

l̃
D J , ~2.5!
1-2



D
t

o

-
t

-
ha
n

in

.
on
, w
u

f

lec-
let
i-

the
ws:
o-

in-

the
-
son

s

Jo-

l-

rac-
ays
der
le
u-
ht
m

rti-
nce

e.
n

EFFECTS OF COLUMNAR DISORDER ON FLUX- . . . PHYSICAL REVIEW B 67, 214501 ~2003!
where

L5
\

a0gAm
5

kT

a0A2« l«0

, b5
g2

kTB
5

2«0Lz

kT
, l̃5

l

a0
.

~2.6!

All lengths are measured in units ofa0 and energies in units
of g2 for bosons and«0a0 for FL’s. We next discretize the
integral along thez axis by dividing it intoM segments

J~b,L,T!

5
1

N! S 1

2pL2t
D(

P
E )

m51

M

)
i 51

N

d2Ri ,me2I[Ri ,m]/kT,

~2.7!

wheret5b/M , m labels the planes and

I@Ri ,m#

kT
5(

i ,m

~Ri ,m112Ri ,m!2

2L2t
1(

i , j
tK0~Ri j ,m /l̃ !.

~2.8!

We work only in the limit whereb is large, which
amounts to takingLz very large and in the mapping onto 2
bosons corresponds to the ground state of the bosons a
absolute zero temperature (TB50). We usedb5375 and
discretized thez axis intoM575 planes.

We used the matrix-squaring method45,46 to calculate the
right action so that we can work with a small number
planes along thez direction. Working with the primitive ac-
tion requires the use of a large number of slicing of thez
direction and is very time consuming.46 The boundary con-
ditions in thez direction for a system of bosons areRi(b)
5Rj (0), with all permutationsj 5P( i ) of the indices being
allowed. This is what is meant by the summation overP in
Eq. ~2.7!. For smallg ~a small repulsive interaction!, which
corresponds to largeL, we expect a Bose-Einstein con
densed phase where permutations are important. This is
superfluid phase. For smallL, repulsion is large and permu
tations are rare as the Bose system is in its classical p
which is a Wigner crystal. These two phases correspo
respectively, to the FL liquid and solid phases. The melt
line represented byL5Lm is given approximately by the
expressionBm5const/T2. Near Tc this behavior is more
complicated~see below!.

We now discuss the method of simulations of BSCCO
Because of the high anisotropy of the BSCCO system

cannot use the simple picture given above. Here, instead
follow a different model that can be cast in a form analogo
to YBCO. We take the Lawrence-Doniach model47 as our
starting point for BSCCO. It leads to the following form o
the London free-energy for interlayer~IL ! Josephson
coupling:16,48

IIL~Ri ,m!5
df0

2

8p3l2 F11 lnS l

dD GF ~ uRi ,m2Ri ,m11u!2

4r g
2

21G ,

~2.9!

for uRi ,m2Ri ,m11u,2r g and
21450
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IIL~Ri ,m!5
df0

2

8p3l2 F11 lnS l

dD GF uRi ,m2Ri ,m11u
r g

22G ,
~2.10!

for uRi ,m2Ri ,m11u.2r g , whered is the interlayer spacing
and r g is the healing length defined byr g5gd. For the in-
plane~IP! coupling, we use

IIP~Ri j ,m!5
df0

2

8p2l2
K0S Ri j ,m

l D . ~2.11!

In principle, one should add to the above interaction an e
tromagnetic interaction among the two-dimensional drop
vortices.49 The electromagnetic interaction becomes dom
nant in the limit of infinite anisotropy (g→`). Ryu et al.16

argue,~see also Ref. 50! that for the valuesg5502100 for
BSCCO the Josephson coupling still dominates over
electromagnetic coupling. Their argument goes as follo
Clem49 shows that if one has a straight array of tw
dimension droplet vortices along thez axis and one two-
dimensional droplet is displaced by a distanceR in the x
direction than the magnetic energy of the configuration
creases by an amount

DE~R!5
df0

2

8p2l2 FC1 lnS R

2l D1K0S R

l D G , ~2.12!

whereC is Euler’s constant (50.5772 . . . ). For largeR (R
@l), the modified Bessel functionK0 decays exponentially
and thus the energy increases like ln(R/l). For smallR, the
Bessel function can be expanded in a power series inR/l

K0~R/l!52 ln~R/2l!~11R2/4l21••• !

2C1R2~12C!/4l21•••, ~2.13!

and thus the magnetic energy behaves likeR2 to a leading
order inR which is the same as the quadratic behavior of
Josephson energy in Eq.~2.9! above. The ratio of the coef
ficients of the quadratic terms in the magnetic and Joseph
energies goes roughly likeg2(d/l)2 ~whered/l;1/100 for
BSCCO atT50 and even smaller at higher temperature!.
Thus for anisotropyg550, we get a factor of 0.25 or less~a
somewhat more precise estimate16 gives a ratio of about 0.1!.
Thus, the magnetic interaction is small compared to the
sephson interaction for anisotropies in the range ofg550
2100. For samples withg5200 these interactions are a
ready comparable. For large values ofR, the magnetic inter-
action increases logarithmically and the Josephson inte
tion increases linearly so the magnetic interaction is alw
negligible. The key to the estimate given above is to consi
not just two two-dimensional droplet vortices but a who
line with one displaced two-dimensional droplet. This arg
ment is valid if the deviations of the vortices from straig
lines are not too large. As for the in-plane interaction Cle
showed that a linear array of two-dimensional droplet vo
ces gives rise to exactly the same magnetic field at a dista
R away from it as produced by an Abrikosov vortex lin
Thus, Eq.~2.11! is consistent with the magnetic interactio
1-3
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of two-dimensional droplet vortices, again when the FL’s
not deviate too much from straight lines.

Equations~2.9!–~2.11! for BSCCO can be cast in a form
similar to that for the YBCO with the following substitu
tions:

L5
kT

«0a0

r g

dA p

2F11 lnS l

d
D G , t5

2«0d

kT
.

~2.14!

With these changes the London free-energy functio
would look like

IIL~Ri ,m!

kT
5F ~ uRi ,m2Ri ,m11u!22r g

2

2L2t
G , ~2.15!

for (uRi ,m2Ri ,m11u),2r g and

IIL~Ri ,m!

kT
5F ~Ri ,m2Ri ,m11!22r g

2

2L2t
G

2
@2r g2~ uRi ,m2Ri ,m11u!#2

2L2t
, ~2.16!

for (uRi ,m2Ri ,m11u).2r g , when now again all lengths ar
measured in units ofa0. While doing simulations at a fixed
magnetic fieldB and temperatureT, the termr g

2/2L2t will
remain constant and would drop out ofDE term in the Bolt-
zmann factor. It, however, need to be considered during
measurement of the energy. The second term in Eq.~2.16!
can be easily handled at the last stage of the bisec
method ~see the following section for a discussion of t
bisection method!.

We can make use of a reduced temperature variabl
make some expressions look simpler. First, using the
that the temperature dependence ofL arises mainly through
«0 and neglecting the logarithmic corrections, one gets2,16,15

l5
l0

A12T/Tc

, «0}
1

l2
}S 12

T

Tc
D , ~2.17!

and hence

L}
TAB

12T/Tc
. ~2.18!

Defining reduced temperature as

Tr5
T

12T/Tc
, ~2.19!

we obtain

L}TrAB. ~2.20!

This shows that the equation for the melting line is appro
mately

Bm5const~12T/Tc!
2/T2.
21450
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Note that some authors51 use a temperature dependence
1/A12T2/Tc

2 in l, or even1 1/A12T4/Tc
4. All these choices

coincide nearTc . The choice of temperature dependence
l is not expected to have a significant effect on the resu

III. NOTES ON THE SIMULATIONS

The technique that we use to simulate our system is ca
multilevel Monte Carlo simulation~MMC!.46 There are sev-
eral advantages in using this technique for the simulation
the FL’s over the usual metropolis Monte Carlo~MC!
method. In the discrete model, we work withN FL’s with the
z axis discretized intoM planes, thus resulting inN beads in
each of theM planes. In the usual MC method, one wou
displace a few of these beads in a plane by small rand
displacements inside a two-dimensional box and then wo
accept or reject the move based on a probability given by
Boltzmann factor.

A big disadvantage of using this technique is that it
difficult to move beads appreciably from their original pos
tions over a number of MC steps. The reason for this is t
a bead in a plane belonging to a FL finds itself in a loc
harmonic potential generated by the kinetic-energy term
volving this bead and the beads belonging to the same FL
either side of the plane. This harmonic potential becom
stronger and stronger at lower temperatures and magn
fields. As a result, in the usual MC simulations beads ke
moving around inside these local harmonic cages and en
sampling only a small part of the phase space. The o
problem with the usual MC method is that there is no natu
easy way of implementing FL cutting. If there are two FL
twisted around each other and if it is energetically favora
for them to reconnect each other in such a way as to lo
their free energy then this step should be permitted in
MC method without regard to the question if this proce
occurs in reality. This is so because in the MC simulatio
phase space is sampled according to the probability distr
tion and all one needs is to generate configurations weigh
by the Boltzmann factor, and the path followed in config
ration space has nothing to do with any real dynamics.

These two main drawbacks of the usual MC method
easily overcome in the MMC technique. First, one mov
bigger chunks of FL’s encompassing beads in several pla
This way one can avoid local harmonic traps.~This is like
taking an aerial route to a destination rather than go
through the zigzag maze of roads.! This is much in the spirit
of Fourier space Monte Carlo where one first samples mo
with smaller wave numbers and then move onto hig
modes.

The method of creating new FL configurations is based
the concept of the conditional probabilities. It is called t
bisection method46 because one starts sampling beads by
eratively bisecting the FL’s. At each stage of the division, t
beads belonging to that stage are moved with some co
tional probability factorPi . It is important to make sure tha
the probabilities are chosen in such a way that detailed
ance is satisfied at each stage of the division. One notes
the Pi ’s may not be the actual Boltzmann factors for t
beads to be moved at different levels. But what is require
1-4
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that when allPi ’s are multiplied together, they cancel in suc
a way so as to leave the correct Boltzmann factor for
whole move. Thus, inherent in this algorithm is the fact th
a move would finally be accepted only if it has been accep
at each stage of the bisection method. The power of
method lies in choosing the appropriatePi ’s. If these condi-
tional probability factors are chosen judiciously, most of t
rejections would take place at the initial stages of the bis
tion process when not too much computational effort h
been spent yet.

The cutting and reconnection of FL’s is implement
naturally in a MMC method: permutation among the three
four lines chosen to be moved becomes the first among
many hierarchical steps one goes through before a mov
finally accepted and the position of the beads updated
cordingly. We typically moved a total of 15–20 beads d
tributed over five planes. Permutations were sampled b
random-walk algorithm through the space of permutation19

~see Appendix B!.
In the case of YBCO, we worked with a field ofB

54000 G. Working in the primitive approximation of th
action would require the use of a smaller value of the dim
sionless parametert, which would require slicing of thez
direction into a large number of planes. To avoid this,
matrix-squaring method45,46 has been used to get the effe
tive action for bigger values oft. For example, Nordborg
and Blatter19 use a value oft53.0 and they work with 100
planes. In this simulation, a value oft55.0 has been use
and thez axis has been sliced into 75 planes. Choosin
bigger value oft by utilizing the matrix-squaring metho
makes it easier to equilibrate the system as compare
working with the primitive approximation.

For BSCCO, we did not use the matrix-squaring meth
because of the complications involved due to the few ex
terms in free energy which contribute depending on whet
Ri j is smaller or bigger thanr g . Here, we used the natura
interlayer spacingd to calculate the parametert at different
temperatures and then used the MMC technique to efficie
sample the configurational space.

As mentioned previously, in the present simulations
included only the Josephson coupling. This approximat
works well with YBCO but it could be less satisfactory fo
BSCCO because of its high anisotropy. For very anisotro
materials, the electromagnetic coupling becom
important.49,51As discussed in Sec. II, Ryuet al.16 estimated
that for anisotropy of magnitudeg5502100 the Josephso
interaction still dominates over the electromagnetic inter
tion, but this will not be the case forg5200 which may
characterize some samples. Olsonet al.52 discuss how to in-
clude the electromagnetic interaction in a MC simulation,
they only consider the opposite limit where the Joseph
coupling is totally neglected. To our knowledge, there is
satisfactory treatment of both couplings included on eq
footings. We carried out preliminary simulations which sho
that the inclusion of the electromagnetic coupling does
shift the position of the transition line much at a field of 1
G, thus supporting our current conclusions. These results
be reported elsewhere.53

Simulations were usually carried out for 36 and 64 FL
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The decay of the structure factors at the transition temp
ture becomes sharper when one uses a larger number of
However, no appreciable shift in the transition temperatur
seen, while working with the smaller (N536) or the larger
system (N564). We did not run our simulations for eve
larger systems as it becomes computationally very time c
suming. Typical simulation times were;3.53106 MC steps.
Each MC step involved moving three to four lines in fiv
planes simultaneously. We usually averaged over 10–15
alizations of the columnar disorders, though some res
have an average over as many as 20 realizations of the
order.

Columnar disorder is modeled as an array of straight
lindrical wells of typical radiusr d525–35 Å placed ran-
domly throughout the cross-sectional region of the sam
and oriented along thez direction.2 Each columnar defect is
of lengthLz . The density of the columnar pins can be vari
by changing their number for a given cross-sectional ar
and the strength is controlled by a positive dimensionl
parameterh. If a bead happens to wander inside a column
well, we include an extra free energy of2h(df0

2/8p2l2).
The defect concentration was taken to be a 20% ratio
defects to FL’s which meansBf /B50.2. The strength of
disorder was set ath<0.5 for BSCCO. For YBCO,h50.5
was found to be too large in the sense that the transi
became too broad and useful information could not be
tracted. Thus, for YBCO, we kepth<0.3.

Other parameters used for YBCO areg55, l0
51500 Å, jab(0)515 Å, d512 Å. Parameters for BSCCO
are as follows: g5125, l051700 Å, jab(0)520 Å, d
515 Å.

IV. MEASURED QUANTITIES

In this section, we describe many different physical qua
tities that were monitored during the simulation. From t
variation of these quantities with the temperature we c
extract important conclusions about the different phases
the system.

A. Energy

In terms of the reduced temperature, the energy

E5T2
]

]T
ln@J~L,b,N!# ~4.1!

can be simply written as:19

E5Tr~S11S2!, ~4.2!

where~for BSCCO!

S15K (
m,i

~ uRi ,m2Ri ,m11u!22r g
2

2L2t
L

for ~ uRi ,m2Ri ,m11u!,2r g ~4.3!

and
1-5
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S15K (
m,i

F ~Ri ,m2Ri ,m11!22r g
2

2L2t
G

2
@2r g2~ uRi ,m2Ri ,m11u!#2

2L2t
L , ~4.4!

for (uRi ,m2Ri ,m11u).2r g , whereas

S25K (
m,i . j

tK0S uRi ,m2Rj ,mu
l D L . ~4.5!

Any discontinuous jump inE would indicate a FOT. From
this discontinuous jump in energy,DE, we can also calculate
the jump in entropyDs,

Ds5
DE

T
. ~4.6!

B. Translational structure factor

The translational structure factorS(Ql 1 ,l 2
) is defined as

S~Ql 1 ,l 2
!5

1

MN K (
i j ,m

e[ iQl 1 ,l 2
•(Ri ,m2Rj ,m)] L , ~4.7!

where ^•••& stands for the MC average,Ql 1 ,l 2
is a

reciprocal-lattice vector and is of the form

Ql 1 ,l 2
5 l 1b11 l 2b2 , ~4.8!

and l 1 and l 2 are some integers.b1,2 represent the basis vec
tors of the reciprocal lattice

b1,25
2p

a0sin2u
~e1,22e2,1cosu!, ~4.9!

whereu5p/3, a0 is the nearest-neighbor distance, ande1,2
are the unit vectors along the hexagonal unit cell such th

e1•e25cosu. ~4.10!

In the simulations,l 1 and l 2 in Eq. ~4.7! are chosen to be
1 and 0 or 0 and 1. These choices correspond to the
Bragg peak. We will normally writeS(Q1,0) as simply
S(Q1). This quantity gives important information about th
phase of the system. In an ordered phase where FL’s sit
triangular lattice,S(Q1) is of the order ofN. In the disor-
dered phase, it saturates to almost zero as the system
increases. In the simulations, however, there is a prob
with measuringS(Q1), especially in the presence of diso
der. We will return to this point at the end of the section.

C. Hexatic structure factor

We use Delaunay triangulation to measure the hexatic
der parameterc6, which is defined as

c65K (
m51

M

(
i 51

N
1

zi ,m
(
j 51

zi ,m

e( i6u i j ,m)L , ~4.11!
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wherezi ,m denotes the number of the nearest neighbors o
bead at positioni, m and it is six for a perfect hexagona
lattice,u i j ,m stands for the bond angle, that is the angle t
vector Ri j ,m makes with an arbitrary axis. Just like th
S(Q1), this quantity too has a large value in an order
phase and saturates at a finite value for a system of fi
size.

D. Line entanglement

As we allow permutations of FL’s, we can define a num
ber Ne /N as that fraction of the total number of FL’s whic
belong to loops that are bigger than the size of a ‘‘simp
loop. A simple loop is defined as a set ofM beads connected
end to end,M being the total number of planes. Loops of si
2M , 3M , . . . start proliferating at and above the transiti
temperature and in the corresponding 2D boson system
proliferation is related to the onset of the superfluidity.

E. Line wandering

The transverse FL fluctuations are measured by

u2~z!5^@R~z01z!2R~z0!#2&/a0
2 , ~4.12!

which is independent ofz0. At the transition temperature
u2(z) undergoes a large increase for largez.

We want to emphasize one important aspect of measu
the translational structure factor. The usual way of measu
this quantity is by choosingQl 1 ,l 2

corresponding to the firs

Bragg peak, i.e.,Q1 in Eq. ~4.7!. Now, it might happen that
the configuration of the FL’s comes close to making an
most perfect hexagonal lattice but its basis vectors are
aligned along the usual major axes of the rhombically sha
cell encompassing the system. If we use the reciprocal-lat
vectorQ1 to measure the structure factor of such a config
ration, we would end up getting a very small value forS(Q1)
and might wrongly conclude that the system is in a ve
disordered state. This happened many times in our sim
tions; we got a very low value of the translational structu
factor, while the hexatic order was indicating a high deg
of orderliness in the FL lattice. To remedy this situation, t
translational structure factor is measured at 60 differ
angles, 1° apart, and choose that number which gives
largest possible value of theS„Q1(a)… corresponding to
some anglea. After implementing this technique, we fin
that S(Q1) and c6, which differ so much initially, almost
follow each other.

V. RESULTS

~1! For YBCO, simulations were carried out at a magne
field of B54000 G. At this field, we have 2a0'l0. By the
argument given in Ref. 19, we conclude that our resu
should hold qualitatively for anyB such thata0,l. We
checked our simulation results against those by Nordb
and Blatter.19 First, we verified that our code was workin
fine by comparing our results against those given in Ref.
Working in the limit of Lz→`, we keptt fixed asL was
increased. We got a sharp transition atL50.0605. A jump
1-6
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EFFECTS OF COLUMNAR DISORDER ON FLUX- . . . PHYSICAL REVIEW B 67, 214501 ~2003!
FIG. 1. YBCO: Structure factor at the firs
Bragg peak as a function ofL at various disorder
strengthsh ’s for N536. A clear shift in transi-
tion point towards higherL ’s is seen for h
>0.2.
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was also seen in the energy as defined in the preceding
tion and was found to be 0.013k, again the same as in Re
19.

The effect of introducing columnar disorder on the stru
ture factor at the first Bragg peak is shown in Fig. 1. In F
2, we depict the jump in the energy for a pure as well as
a disordered system.

We note that at lower strengths of the disorder, the m
ing line is almost unaffected and the transition takes plac
L'0.0605. However, as we increase the strength of the
order, the melting transition shifts towards higher values
L which means that the melting line shifts towards high
temperatures and/or higher magnetic fields. Forh up to 0.1
no change is seen in the melting curve or in the jump in
free-energy functional. However, ath equal to 0.2 the struc
ture factor comes down at around 0.0625 and the jump in
energy becomes gradual. This finding is in agreement w
several experimental studies where a change in the irrev
ibility line is seen with the introduction of columna
disorder.27–31
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Next, we look at the FL entanglement.Ne denotes the
number of FL’s which do not form a simple loop. By lookin
at theNe /N vs L graph in Fig. 3, it is clear that the entangl
ment is suppressed by as much as almost one order of m
nitude just after and in the vicinity of the original transitio
line at L50.0605. This result is expected, as it is we
known that point disorder helps in line wandering and e
tanglement, while the columnar disorder has just the oppo
effect25 since a nearby FL is induced to align along the c
lumnar defect, and thus its transverse fluctuations are
duced. Unfortunately, there have been few studies on col
nar disorder in YBCO. Senet al.42 work with vanishingly
small magnetic field and infinite pinning strengths, in t
vicinity of the lower branch of the melting line.

Figure 4 shows the effect of columnar disorder on a s
tem of 64 FL’s in YBCO. This graph shows a transition
almost the sameL as in Fig. 1. This is a confirmation tha
finite-size effects are not important in our simulations.

~2! For the BSCCO system, theE vs T graphs for different
h values are depicted in Fig. 5~36 FL’s! and Fig. 6~64 FL’s!.
FIG. 2. YBCO: Energy as a function ofL for
N536. A jump in the energy is seen up toh
50.1. For h>0.2, the rise in the energy is
soothed out.
1-7
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S. TYAGI AND Y. Y. GOLDSCHMIDT PHYSICAL REVIEW B 67, 214501 ~2003!
FIG. 3. YBCO: Fraction of entangled FL’s a
a function ofL. For h<0.1, a sharp jump in the
FL entanglement is seen. Forh>0.2, the rise of
Ne /N with L becomes gradual as compared wi
the clean system.
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For the pure system (h50), we see a sharp jump in th
energy at exactly the point where the translational as wel
hexatic structure factors sharply decline. This jump in ene
is a clear signature of a first-order transition. From the
ergy jump we can compute the jump in entropyDs. The
jump in energy at the transition is aroundDE512.0k K per
vortex per layer, which givesDs5DE/Tm50.19k, which is
small compared to the experimental value ofDs50.40k at
B'125 G. However, these values forDs, Tm , andB are in
qualitative agreement with the same system studied usin
different model.18

Introduction of the columnar defects of a finite streng
shows some interesting effects. We put columnar pins at
dom positions with a concentration fixed at 20% of the FL
We study the BSCCO system for pins of low strengthh
50.2) as well as for a higher strength (h50.5). Columnar
disorder of strength up toh50.2 appear to have little effec
on the system. This can be seen from the energy vs temp
ture graph in Figs. 5 and 6, where the curve for the p
21450
s
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n-
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e

system and the one in the presence of low disorder stre
(h50.2) fall on top of each other, except in the transiti
region where the jump in case of the system with colum
pins is more gradual. Also, from Figs. 7 and 8, we see t
theS(Q1) is not much affected in the presence of the colu
nar disorder of strengthh50.2. The same is true for th
hexatic order depicted in Fig. 9. This means that for
lower strengths of the disorder, the vortex-vortex interact
is dominant in the range of the temperature where we car
out simulations. As a result the first-order vortex-lattice me
ing transition line is almost not affected.

The nature of FL melting changes, however, when
strength of the disorder is increased toh50.5 as seen in
Figs. 7 and 8. We see that at the lower temperatures the o
parameter is suppressed. As we increase the temperatur
order parameter starts to rise and joins the melting curve
the pure system and then falls along it at even higher te
peratures. Figure 9 indicates that the hexagonal structure
tor also shows a similar behavior. This clearly shows that
t
FIG. 4. YBCO: Structure factor at the firs
Bragg peak vsL for N564. Smooth lines are
provided as a visual aid. Transition forh50.0
and h50.2 are seen almost at the sameL ’s as
with N536.
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EFFECTS OF COLUMNAR DISORDER ON FLUX- . . . PHYSICAL REVIEW B 67, 214501 ~2003!
FIG. 5. BSCCO: Energy as a function of th
reduced temperature forh50,0.2,0.5 atB5125
G for N536. Lines were added to help visualiz
the energy jumps. A discontinuous change in e
ergy is seen at Tr5250, 260 K (T
'66.2, 66.9 K) forh50, 0.2, respectively. For
h50.5, only a change in slope can be seen
Tr'268 K (T'67.4 K) instead of a discontinu
ous jump.
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FL’s start to disengage from the pinning centers as t
wiggle more. At higher temperatures, columnar pins with
strength chosen here are not effective in pinning the vo
system. This becomes clear from the fact that the mel
curve for the pure system and the one with columnar dis
der join each other at a temperature below the FOT. Fur
interpretation and a possible explanation of this phenome
will be discussed in more detail in the Conclusions sect
below. This convergence of the curves for the pure and
ordered cases is also borne out in theE vs T graphs in Figs.
5 and 6. Initially at low temperatures, there is a big diffe
ence in energies of the systems with no disorder (h50.0)
and high disorder (h50.5). However, as the temperature
increased, the two curves come closer and finally merge
gether in the liquid phase. The jump in energy in the pr
ence of columnar defects can still be seen in theE vs T graph
for a disorder strength ofh50.2. This tends to suggest th
the FOT in a BSCCO system is not affected by disord
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kept at as many as 20% of the total number of lines use
the simulations as long as we keep the strength of the di
der less or equal toh50.2. Forh50.5, the rise of energy
with temperature becomes much more gradual and we do
see any discontinuous jump in energy at any temperature
the other hand, an abrupt change in slope of the energ
temperature graph is observed, suggesting a discontinuit
the specific heat characterizing a second-order transition

In Figs. 10 and 11, the snapshots of FL’s, projected o
plane, at temperatures less than the transition tempera
and at a temperature bigger than the transition tempera
are shown. From Fig. 10, it is easily seen that at low te
peratures most columnar defects have captured FL’s. A
the FL’s make simple loops and have cleverly set themse
so as to make a hexagonal lattice and yet occupy as m
defects as possible. The transverse fluctuations of the trap
FL’s are greatly suppressed at low temperatures. At hig
temperature beyond the transition point, we see that col
e

s
e

FIG. 6. BSCCO: Energy as a function of th
reduced temperature forh50, 0.2, 0.5 at B
5125 G for N564. A jump in energy can be
seen atTr'238, 242 K (T'65.3, 65.6 K) for
h50,0.2, respectively. Again no discontinuity i
observed forh50.5, but only a change in slop
at Tr'255 K (T'66.5 K).
1-9
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FIG. 7. BSCCO: Structure factor at the firs
Bragg peak vs temperature atB5125 G for N
536. No shift in transition point is seen forh
50.2. In the presence of columnar pins withh
50.5, the transition temperature increases fro
66 K to 68 K. Also, we can see thatS(Q1) starts
to rise close to 60 K.
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nar defects are not occupied any more and a lot of FL’s
entangled.

Inspection of snapshots like Fig. 10 gives support to
assertion of Senet al. that the Bose glass consists of patch
of ordered regions with only short-range positional and o
entational order. This phase is different from the Bragg gl
in systems with point pins which is characterized by qua
long-range order.

Figure 12 shows the mean-squared displacements o
FL’s in the z direction at different temperatures for a pu
system. At lower temperaturesu2(z) saturates for largez but
in the liquid state it grows linearly.17 A large gap inu2(z) for
large values ofz seen at the transition temperature signals
onset of the entanglement of the FL’s.

In the presence of the columnar disorder of the stren
h50.5, we see from Fig. 13 thatu2(z) at temperatures les
than the transition temperature is suppressed compared t
correspondingu2(z) in the pure system. This result is i
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agreement with the findings in Ref. 25. Also the big gap
u2(z) occurring at the melting transition has moved towar
a higher temperature signaling a shift in the position of
melting transition in the presence of columnar defects.

VI. CONCLUSIONS

For lower strengths of disorder (h<0.1 for YBCO and
h<0.2 for BSCCO! no appreciable shift in the melting lin
was seen. For these strengths, a sharp drop in the tra
tional and hexatic structure factors takes place at the tra
tion. Also, the jump in energy at the transition is not affect
much as compared with the case when there is no diso
present. This suggests that for smaller concentrations of
columnar defects the transition still remains first order. T
result is in agreement with Ref. 36, where even with t
introduction of the columnar disorder no shift in transitio
t

e
of

n

FIG. 8. BSCCO: Structure factor at the firs
Bragg peak vs temperature atB5125 G for N
564. For h50.2, no significant change in th
structure factor is observed. In the presence
columnar pins withh50.5, transition tempera-
ture increasing from 65 K to 67 K. Also, we ca
see thatS(Q1) starts to rise close to 61 K.
1-10
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FIG. 9. BSCCO: Hexatic order vs temperatu
at B5125 G for N564. When compared with
the previous figure, it can be seen thatc6 almost
follows S(Q1).
m

g
an
e
O

io
F
ds
r

g

nt

r
T
io
ion

as
at a

y
ific-

tion
ar
us

is
gth
t to
hed
ult,
mu-

-
ects
are
FL,
temperatures is seen as long as the concentration of colu
disorder introduced is small.

It is found that for YBCO as well as BSCCO, the meltin
transition shifts towards higher values of temperature
magnetic field when random disorder is introduced provid
its strength exceeds a threshold which is different for YBC
and BSCCO. The size of the shift, for a given concentrat
of defects, depends on the strength of the disorder.
YBCO, a considerable shift in the melting line towar
higher temperatures and magnetic fields was seen foh
50.2 andh50.3. This shift was bigger forh50.3 than for
h50.2. Similarly, for BSCCO, a large shift in the meltin
line towards a higher temperature was found forh50.5.
These results are in tune with numerous experime
findings27,28,30,36as well as theoretical prediction25 where the
irreversibility line is seen to shift towards higher temperatu
and magnetic fields in the presence of columnar defects.
qualitative reason for this effect is that due to the interact
with the columnar defects the transverse thermal fluctuat
21450
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of the FL’s are reduced and thus the melting transition,
determined from the Lindemann criterion, takes place at
higher temperature.

At h50.5, the jump in energy is not discernible an
more. Instead, a change of slope corresponding to a spec
heat discontinuity is observed. This means that the transi
is probably not of first order in the presence of column
disorder of higher strengths, but it is rather a continuo
~second-order! transition.

The most dramatic outcome of this study for BSCCO
that for some values of the applied field and defect stren
both the translational and hexatic structure factors star
rise at a certain temperature as the transition is approac
from the lower-temperature side. This is an unusual res
that to our knowledge, has not been seen in previous si
lations. This fact can be explained as follows. At low tem
peratures, the free energy is dominated by energy eff
rather than entropy considerations, and pinning effects
dominant. As a result most columnar defects capture a
o

FIG. 10. BSCCO: A typical configuration in
the solid phase~low temperature! for N564 FL’s
and Bf /B50.2. FL’s have been projected ont
one plane.
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FIG. 11. BSCCO: A typical configuration o
FL’s in the liquid phase~high temperature! for
N564 andBf /B50.2. FL’s have been projecte
onto a single plane. Columnar defects are n
drawn to scale. Some FL’s on the boundary
not seem to make loops. That is only becau
virtual images of FL’s outside the cell are no
shown.
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while the rest of the FL’s adjust themselves in positions s
as to minimize the free energy. However, as the tempera
is increased, FL’s start to decouple from the defect si
which allow the vortices pinned at interstitial positions
move themselves into a more ordered arrangement, thu
creasing the structure factors compared to the situatio
lower temperatures. As was mentioned before, due to its h
anisotropy, FL’s in BSCCO behave more like a collection
two-dimensional droplets rather than rigid rods. These tw
dimensional droplet are comparatively more difficult to g
pinned all at once by a columnar defect. On the other ha
FL’s are much stiffer in YBCO and it is easier for a column
defect to capture a FL all along its length. It can be sho
@Eq. ~9.49! in Ref. 2# that the depinning temperature for FL’
Tdp , is inversely proportional to the anisotropy parameterg.
Thus, we expect FL depinning to occur at comparativ
smaller temperatures in BSCCO than in YBCO. Since
melting temperatures are not that different between these
terials at the fields we consider, the depinning process
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BSCCO occurs further below the melting temperature th
in YBCO. This allows the structure factor to increase abo
the depinning temperature before its ultimate decline at
melting transition. For YBCO, the depinning takes pla
close to the melting temperature, and it is difficult to dete
any rise in the structure factors, especially for small syste
because it is masked by the decrease in order due to
stronger thermal fluctuations.

In principle, the rise of the order parameters in the pr
ence of low amount of columnar defects as the melting tr
sition temperature is approached could be observed exp
mentally, if the appropriate parameters are tuned correctly
small-angle neutron scattering~SANS!11,37 one can measure
the integrated intensity over a Bragg peak of wave vectorQ1
which is proportional to the translational structure fac
S(Q1) measured in the simulation. Another commonly us
technique is muon spin rotation37 which gives information
about the width of the magnetic-field distribution in th
sample. This is not directly proportional to the structure fa
in-
FIG. 12. BSCCO: Line wandering along thez
direction atB5125 G forN564. Here,d is the
distance between adjacent planes. A large
crease in line wandering occurs atT'65 K.
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FIG. 13. BSCCO: Line wandering along thez
direction atB5125 G forN564 in the presence
of disorder of strengthh50.5. The big jump in
u2(z) has moved toT566 K now.
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tor at a givenQ1, but is rather given by

^DB2&~T!5B2 (
QÞ0

exp~2Q2^u2&/2!

@11l2~T!Q2#2
, ~6.1!

where ^u2& is the mean-square deviation of vortices fro
their average position. It is possible to measure this quan
in the simulations but this was not done in the present wo
This quantity might not show the unusual rise describe ab
since it is dominated bŷu2& which is very likely monotoni-
cally increasing with temperature yielding a monotonica
decreasing linewidth. Thus, in order to look for the effe
observed in this paper, we suggest using the SANS techn
to look at a BSCCO sample with columnar pins described
a matching field of about 25 G and an applied field of ab
125 G. It is not clear to us what is the correspondingh
parameter describing the pinning strength of the experim
tal defects. According to Blatteret al.2 h lies in the range
0.1–1.

Note added. After this paper has been submitted w
learned of two recent experimental studies of BSCCO by
S. Banerjeeet al.55 and M. Menghiniet al.56 who study the
melting transition forB.Bf . Our findings, especially ou
Fig. 10, are consistent with their ‘‘crystallites in the pore
picture of the ordered phase in the presence of colum
defects.
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APPENDIX A: ENERGY SUM OVER THE IMAGES

Consider a rhombically shaped region with sideL and
angleu, unit vectors aree1 , e2, with e1•e25cosu. In prac-
tice, we tooku560° but we leave the discussion here mo
general. The Green’s functionG0 which describe the 2D
Coulomb interaction between one vortex and another incl
ing all its images, as is implied by the periodic bounda
conditions is given by the solution to London’s equati
~see, e.g., Ref. 1!

~12l2¹2!G0~R,l!52pl2d~R!, ~A1!

with the parameterl setting the scale for the range of th
interaction. The solution is given by

G0~R,l!5
2pl2

L2sinu
(
Q

exp~ iQ•R!

11l2Q2
, ~A2!

with

R5R1e11R2e2 , Q5n1b11n2b2, ~A3!

whereQ runs over all reciprocal-lattice vectors spanned b

bi5
2p

L sin2u
~ei2ejcosu!, ~A4!

for ( i , j )5(1,2),(2,1). Substituting in Eq.~A2!, we obtain
G0~R,l!5
sinu

2p (
n152`

`

(
n252`

` expF i
2p

L
~n1R11n2R2!G

L2sin2u/~2pl!21n1
222n1n2cosu1n2

2
. ~A5!
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We are now going to carry out the summation overn1 ana-
lytically. This can be done by using the formula

(
n52`

`

f ~n!52( @residues ofp f ~z!~cotpz2 i !

at poles of f ~z!#. ~A6!

We have subtracted the constanti from cotpz to ensure that
uz f(z)(cotpz2i)u→0 on the contour of integration whenz
has a large negative imaginary component. The contou
o
fo
.

am
w
s
te

d

an

,

21450
of

integration is a square with sides parallel to the real a
imaginary axes with the origin in the middle, in the limit th
its size goes to infinity. In our case

f ~z!5
eixz

~z2b2 ig!~z2b1 ig!
, ~A7!

with appropriate values ofb, g, andx. This function has two
simple poles, and the residues can be easily evaluated.
final answer becomes~relabelingn2 asn)
G0~R,l!5
sinu

2 (
n52`

1`
cos~ t2n22pbn!sinh~gnt1!1cos~ t2n!sinh@gn~2p2t1!#

gn@cosh~2pgn!2cos~2pbn!#
, ~A8!
ge
e

s.

that
the

can
nd
FL
lly
of
ery
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am-
where

t15
2pR1

L
, t25

2p

L
~R1cosu1R2!, bn5n cosu,

gn5sinuAn21L2/~2pl!2. ~A9!

This expression is simpler than the one used by Nordb
and Blatter since it does not have different expressions
even and oddn. It also converges faster in certain regions

APPENDIX B: PERMUTATION SAMPLING

Essentially the same method is used for permutation s
pling as was used in Ref. 19. The only difference is that
use permutation space of only the neighboring lines. Thi
so because even if we were able to get a permutation s
rg
r

-
e
is
p,

involving a large number of lines, accepted at the first sta
of the algorithm, it would be very likely to get rejected at th
following stages. So we work with only three to five line
Sufficiently long segments~typically five planes! of a num-
ber of lines were cut. Care should be taken to make sure
chosen FL’s are the nearest neighbors in the plane where
reconnection of FL’s is going to take place. These points
be implemented easily with the concept of linked lists a
pointers.54 Also, care is to be taken that even though a
may be far away from some other FL in the rhombica
shaped unit cell, it can still permute with it through one
the images of the latter. These few simple points are v
important to implement the whole procedure correctly. J
for a check, we tried with the sampling procedure given
Ref. 46. This gave results in good agreement with the s
pling procedure given above.
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