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Successive valence-bond-state transitions in quantum mixed spin chains
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We study quantum mixed-spin chains consisting of two integer sptnand two half integer spin§?
arrayed ass’-S*-S%-S? in a unit cell with antiferromagnetic nearest-neighbor couplifg$J,) between the
spins of equaldiffereny magnitudes. By varying the ratio of two competing couplings,J,/J,, the systems
undergo successive quantum phase transitions between different valence-boidB&s)idtates accompanied

by the vanishing of the energy gap. By a quantum Monte Carlo simulation with an improved loop cluster

algorithm, we find one critical pointe,=0.762(1) in a 1-1%-% chain and two critical pointsag,

=0.479(1) anda,=1.318(1) in a 1-1%-% chain, respectively. The calculated expectation values of the
Lieb-Shultz-Mattis twist operator show the characteristic features of the single VBS transition in ﬂ%e%l-l-
chain and two successive VBS transitions in the $-$-chain at these critical points.
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Quantum spin chains have been continuously attractingralized later by Affleck and LieB® and Oshikawa, Ya-
research interest in both theoretical and experimentamanaka, and Affleck? In the simplest case, each unit cell
condensed-matter physics. The interplay of local spin coninvolves two spins, denoted b$'-S?. For integerS* and
figurations and one-dimensionélD) quantum fluctuations half integerS?, this mixed chain is a quantum ferrimagnet
leads to a rich variety of exotic magnetic phenomena. One o&nd its ground state is gapless and magniétit’In order to
the most famous results is the Haldane conjecture whickxplore the mixed chain with a nonmagnetic ground state,
states that at zero temperature the half-odd-integer antiferréne considers the case with 18 and twoS? spins arrayed
magnetic Heisenberg chains should have gapless specﬁger?atlveiy, |2.e., each unit cell _mvo!ves_ four spins denoted
with algebraic decay of correlations, and the integer spirPy S -S-S°-S°. The model Hamiltonian is
ones should be gapped with an exponential decay of
correlations: For S=1, this conjecture was confirmed by
many numericdl and experimental studiésThe similar
gapped phases exist also in @~1 antiferromagnetic
Heisenberg chain with biquadratic interactfbas well as in +3:S5 -1 S5+ 0S5 Shi ) (1)

a variety of spin chains or spin ladders with bond alternation -

and other competing interactiofs, Though the gapped &S represented in F'lg_' 1. . ,
phases fall into a catalog of a generic valence-bond-solig " the case with5"=1, S°=1/2, the mogel was studied
(VBS) picture, they are basically separated by some massledy duantum Monte Carllgj%MC) Slm_ulatlorJr and the non-
boundaries. Theoretically, it is quite interesting to distinguishlinéar o model (NLSM),™"respectively. The ground state

the different VBS states and to demonstrate the phase tra®f the system is nonmagnetic with gapped excitations. The
sitions among them. gap varies as a function of the parameterJ,/J,, and

In last two decades, many quasi-1D mixed_spinvanis.h.es at a critical poir;tc. This signals a quantum phase
material$™° such as ACu(pba)(H,0);-n(H,0) and transltlon_betyveen two different VBS states, as shown sche-
ACu(pbaOH)(H,0)s- nH,O (wherepba= 1,3-propylenebis matically in Fig. 2. The VBS states of Figsia? and Zb)_ are
(oxamat9, pbaOH= 2-hydroxo-1,3-propylenebis, and\ exact in the I|m_|t|ng casesr—0 and a¢— oo, respgctlvely,_
—Ni, Fe, Co, Mn, Zn, have been synthesized. These mate2nd are approximately correct in the corres_pondmg regions
rials are quasi-1D bimetallic molecular magnets containingséParated byrc. The masosles§ point; predicted analyti-
two different transition-metal ions per unit cell alternatingly Cally by the NLSM is 0-5 Whge itis 0.77 calculated nu-
distributed on the lattickt The model Hamiltonians describ- Merically by QMC simulations? In general, the NLSM es-

ing these systems are the antiferromagnetic mixed chaifiénates quantitatively deviate from the actual valtiespt ,
with a periodic array of the unit cells involving two different further numerical studies are needed to confirm the previous
spinsSt and 2. The periodic chains with complicated local numerical results. Moreover, the numerical investigations for

spin configurations in a unit cell will in general result in
variations of energy gaps and magnetizations. Owing to the D2 12 1 2 01 93 g2
translational invariance of the systems with respect to each : — — :
unit cell, a necessary condition for the gap formation in zero L S L
field is obtained so that the magnetization per unit cell

should be integers. This can be shown by applying a twist
operator on the ground StatPJEeXF{i(zﬂT/N)EN=1ijZ], as FIG. 1. Graphical representation of the Hamiltonian, EY.
was first proposed by Lieb, Schultz, and Maf’ésand gen-  The black and white circles represent spBisandS?, respectively.
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FIG. 2. The valence-bond-solid picture of the 1%1% model
ground statgla) for a<a. and (b) for a>a.. The solid circles
represent th6=% spin, and twoS=% spins connected by the solid ()
line form a singlet pair. Each open ellipse surrounding ﬂm%
spins represents an operation of constructi®gd spin from these
S=1 spins by symmetrizing them. FIG. 3. The valence-bond-solid picture of te2-1-1 model
ground statga) for a<a.j, (b) for ag<a<ag,, and(c) for a

.. . . . 1 . 1
characterizing the different VBS states as well as the phas& ®c2- The solid circles represent tig=3 spin, and twoS=;

transitions in nonmagnetic mixed-spin systems are still lackSPins connected by the solid line form a singlet pair. Each open

ing ellipse surrounding two or threﬁ=% spin represents an operation
. . 3 . 1 :
In this paper, we consider the model Hamiltonian, @, ~ ©f constructing aS=1 or S=3 spin from theseS=3 spins by

in the cases o8!=1, S?=1/2 andS!=1, S?=3/2, respec- Symmetrizing them.

tively. The former enables us to check our numerical scheme N . .

and the latter is the minimal model for successive transition&S Shown in Fig. 3. Moreoveg, varies continuously as a

in mixed-spin chains. To determine the massless points wiuinction of a between* 1, vanishing only at the two mass-
first calculate the energy gaps and low-temperature susceptSS POINtS. _

bilities. Then, in order to determine the phase transitions and, QU numerical results are determined as accurately as pos-

characterize the different VBS states in a more precise way°l€ by employing the QMC method based on the loop clus-

1 . 24'25 . . . .
we calculate the expectation value of the Lieb-Schultz-Mattid€" &lgorithm™=> This algorithm is fully ergordic and dras-
twist operator on the ground state,

[ X X
[ X X

tically reduces the autocorrelation time, especially at low
temperatures. Furthermore, by using the continuous-time
om N version of the algorithm and the improved estimatSri,
E<ex;{ — 2 JSJZD 2 can be used to study rather large systems and estimate the
N =1 physical quantities within satisfactory accuracy. More re-
cently, Haradaet al?” and Todo and Kaf§ have developed
fhis algorithm for the quantum spin systems with an arbitrary
spin size, while the Haldane-type gap is directly related to
the correlation lengtl, o in the imaginary time direction and
can be precisely estimated by

Here,z serves as an order parameter equivalent to the strin
order parameter in the usual Haldane pHaskccording to
the theorem of Lieb-Schultz-Mattig,vanishes in the gapless
phase as system sidé—~. On the other hand, in a given
gapped phase, one expects thataries between-1, butz
#0. In exact VBS stateg= *1, the sign depends on the
number of valence bonds at the boundary. Recently, Naka- A= lim ——
mura and Todo have shown thatis more direct than the N—wErolL)

string order parameter in detecting VBS states of the gapped. _ . .
phases as well as their boundaries in the bond-alternatinfithout further extrapolation proceduréSTheir strategy is

Heisenberg spin chains an®=1/2 two-leg frustrated ' proved in our QMC study of the mixed chains. We first
ladder®® We find that this new order parameter can be a|sd:)erform 18 Monte Carlo steps for thermalization, and then

' . . Monte Carlo averages 1@imes. To test the efficiency of our
used to detect the two different VBS states in the -}-

. , . o ) , program, we calculate several physical quantities of different
chain. Extending the investigations to other higher spins, we,,qels including a pure spin-1 chain and the mixed-spin

find that the 1-13-3 chain is more interesting, since it Pro- chains 13 and 13, respectively. A comparison of our nu-
vides a minimal model system to study the successive VB$erical results with previous ones obtained by the QMC or
transitions in mixed-spin chains. Our results are briefly State@iensity-matrix renormalization-groufDMRG) method is
below. For the 1-13-3 chain, the evidence for the masslesslisted in Table I.

point from the vanishing of the energy gap, the finite zero- Our program is then used to reexamine the mixed chain
temperature susceptibility, and the zero of thparameter 1.1.1.1 without using the least-squares fittings. The energy
converge ata.=0.7621), very close to the previous nu- gan has a deep dip very closeds-0.762. At this point, the
merical result given in Ref. 18. For the 133 chain, the  susceptibility of the low-temperature saturatesyat0.324.
three kinds of evidence fit perfectly and show that there ar&@he lowest temperature issT=0.01 (set asJ;=1) in our
two massless points at.;=0.479(1) anda.,=1.31§1), QMC calculation, while it is 0.05 in Ref. 18. Since the en-
respectively. The three gapped phases by which they arergy gap and low-temperature susceptibility have been re-
separated are thus represented by three different VBS statperted in Ref. 18, we only list the new results in Fig. 4, i.e.,

()
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TABLE I. Comparison of ours and other previous numerical
results.eq is the ground-state energy per cell,is the energy gap,

and ys is the staggered magnetic susceptibility of the purelS 3
chain. DMRG results are from Ref. 2 and Ref. 17, and QMC results 0.6
are from Ref. 28. 0‘5'_
Model Previous results Our results <]0-4-
PureS=1 chain  ey=—-1.4015(DMRG)  e,=—1.40138 3
PureS=1 chain A =0.411 27(QMC) A=0.4113 02l
PureS=1 chain  y<=18.4028(QMC) Xs=18.413 0
Mixed %-1 chain  e,=—1.4541(DMRG)  e,=—1.4537 i
Mixed 3-1 chain  e,=—3.8619(DMRG)  e,=—3.8616 003 L i
o

the parametez. Notice thatz is complex in general, butits  F!G- 5. The energy gap of the 1-13-3 chain. The result is

imaginary part vanishes in the largelimit. Thus it is suf- ~ °Ptained for system sizi=200 at temperaturksT=0.01.

ficient to calculate the real part afin the following. The . 1 5 o

calculated(real part of z changes sign accurately at this With t1=2n—1/4S", t;=2n—1/45" for pa)osrtzwe integem.

point (within accuracy of 103, i.e., up to the last digif ~ ~or antiferromagnetic couplings argl=3, $’=1, one ob-

showing a phase transition between the two different VBJ@inS two vanishing points=0.255 anda=1.714, respec-

states. Thus the very location of the massless paipt tVely, quantitatively different from ours.

=0.762(1) should be more precise thap=0.77 obtained The thermodynamics of the 1-4-3 chain are calculated

in Ref. 18. by varying temperatures frokgT=2.0 to kgT=0.02 with
Now we turn to the main results of this paper for the size N=200 fixed. The result of magnetic susceptibility is

mixed chain 1-13-%. The ground-state energy, (per site sr_loyvn in Fig. 6. Whern deviates from 0.479 anq 1...318II

and energy gap are calculated as functions of for the within the same accuracy of 18), the suscept|bll_|ty ap-
system size fromN=16 to N=200 and temperaturgT proaches zero as the temperature decreases. But it is at about
—0.01. The ground-state energy shows almosNmdepen- X = 0-090 andy=0.050 per site at temperatukgT =0.02 at
dence while the energy gap shows rather wealependence these two points that significantly shows the criticality.

for largeN. For N=200, thea dependence ak is shown in The ground-state energy per site is continuous on the pa-
Fig. 5, where two dips are located around at 0.479 and 1.31§2Metera, and the previous results imply that at zero tem-
respectively. To convince us that these two points are criticaP€rature the ground state of the system undergoes two suc-
ones, we observe that at these two poitapproaches zero C€SSive phase transitions of second ordexgt=0.479(1)
between I and 1AN for large N. Analytically, the exis- 2ndac=1.3181), respectively. To give a general VBS pic-

tence of the massless points in the mixed chains are expecté‘é‘"e of the transitions, one first notices that in the limiting
within the nonlinearo-model approacR’ where the mass- casea—0, the valence bonds are composed of two nearest

less points satisfy S'=1 and $?=3/2 spins, respectively, each of them with
two and three numbers of bonds. This VBS state is denoted
) by (2,0,3; see Fig. 8a). In the opposite limit,@a— o, the
1 1-t,1 1-4S bonds of two neare§'=1 spins are completely broken, and
i T ) 3w .
J, 2t; J; 2t & the bonds of two neare§ = 3/2 spins are partially broken,
thus forming new bonds between the nearest sptrsl and

Re(ZL)-OL

x—kgT

4 0.25

0.2

Re(z))

=0.15

Go0=1.0
] 0.1 B8 4=0.479 |1

vvo=0.3
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FIG. 4. The order parameteras function ofa in the 1-13-3
chain. FIG. 6. Magnetic susceptibility versus temperatlgd .
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Re(z)-a each time it enters the neighboring regions, while vanishing
1 ‘ : ‘ : , : ‘ accurately at the two isolated boundaries. Figure 7 shows
also that there is only one intermediate gapped phase in the
1-1-3-3 chain, confirming the general picture of Fig. 3.
Our numerical results, though obtained for two simple
cases withS'=1 andS?=1/2,3/2 by QMC simulations, are
| very helpful for understanding the general picture of phase
transitions between different VBS states in quantum anti-
ferromagnetic mixed-spin chains described by Hamiltonian
1 (1) with arbitrary S' and S?>. We predict that asr=J,/J;
varies, the systems undergo successive VBS quantum phase
‘ : ‘ ‘ transitions. There are 2 mi8(S?)+1 numbers of gapped
0 0.5 1 L5 2 phases characterized by different VBS states, each denoted
by (2S'-m, m, 28>m), with m=0,1,..., with
FIG. 7. The order parametems a function ofx in the 1-13-3 2 min(S",S) the number of §'-5) valence bonds in a unit
chain. cell. The gapped phases are separated by 23n8j num-
bers of critical pointsa,; accompanied by the vanishing of
S?=3/2. There remains an unbroken bond for two nearesthe energy gap. Their positions can be accurately determined
S%=3/2 spins. This VBS state is denoted 2,1); see Fig. by QMC simulations or other numerical methods. The suc-

3(c). We have also calculated the nearest-neighbor two-spif€ssive VBS transitions can be characterized by the expecta-
correlation functions, tion value of the twist operator, which varies betweer 1

[keeping the signs-£1)™ in mth gapped phas¢snd van-
0 =(S"SY), 0p=(8"S), wxr=(S*F%), (5) ishes exactly at the critical points.
for @ from O to 2 atkgT=0.01 andN=200. It is found that In summary, we have studied the quantum antiferromag-

w11(wy5)/wy, are enhanced/suppressed for smalland  netic mixed chains 1-5-3 and 1-13-3 by QMC simula-
suppressed/enhanced for laigeThis shows that as varies  tions based on the loop cluster algorithm. The results for the
from O to e, the valence bond stat¢2,0,3 and(0,2,) are  1-1-3-3 chain not only confirm with better accuracy the pre-
approximately correct in two sides, but should be replacedious numerical(QMC) ones, but also exhibit clearly the
by a new valence bond in the intermediate valueofn Fig.  phase transition between the two different VBS states. For
3, one expects the intermediate phase with one ne&est the 1-12-2 chain, besides the twist operator, the energy gap

bond, one nearess™-S” bond, and two neares¥” bonds,  ;q the low-temperature susceptibility suggest the existence
respectively, denoted bit,1,2. of two massless points, which are locatechai=0.479(1)

To characterize the VBS states in the -%-chainina  and a,,=1.31§1), respectively. The gapped phases by
more precise way, we calculate the order paranet&fined  which they are separated can be represented by three differ-
by Eq.(2) for N=200, kgT=0.01. The result is plotted in ent VBS states as shown in Fig. 3. Furthermore, the order
Fig. 7. Again, within accuracy up to the last digit, we find parameter changes the sign for two neighboring phases and
that z vanishes only at the two isolated points.;  vanishes only at the critical points. It is straightforward to
=0.4791), a,=1.3181), respectively. The three regions expect similar successive VBS transitions in the mixed-spin
() 0<a<agy, () ag<a<ag, and(lll) a,<a<2 are  chains with arbitrans' and .
all gapped phases. Though our QMC calculations are limited The authors would like to thank K. Harada, N. Ka-
in 0<a<2, region lll may extend tax—<. In regions |  washima, S. Todo, and T. Xiang for discussions. This work
and I, zis positive, while it is negative in region Il. There- was supported in part by the NNSF and SRFDP of China and
fore, asa increasesz varies betweent 1, changing its sign the NSF of the Zhejiang province.
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