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Successive valence-bond-state transitions in quantum mixed spin chains
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We study quantum mixed-spin chains consisting of two integer spinsS1 and two half integer spinsS2

arrayed asS1-S1-S2-S2 in a unit cell with antiferromagnetic nearest-neighbor couplingsJ1 (J2) between the
spins of equal~different! magnitudes. By varying the ratio of two competing couplings,a5J2 /J1, the systems
undergo successive quantum phase transitions between different valence-bond-solid~VBS! states accompanied
by the vanishing of the energy gap. By a quantum Monte Carlo simulation with an improved loop cluster

algorithm, we find one critical pointac50.762(1) in a 1-1-12 - 1
2 chain and two critical pointsac1

50.479(1) andac251.318(1) in a 1-1-32 - 3
2 chain, respectively. The calculated expectation values of the

Lieb-Shultz-Mattis twist operator show the characteristic features of the single VBS transition in the 1-1-1
2 - 1

2

chain and two successive VBS transitions in the 1-1-3
2 - 3

2 chain at these critical points.
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Quantum spin chains have been continuously attrac
research interest in both theoretical and experime
condensed-matter physics. The interplay of local spin c
figurations and one-dimensional~1D! quantum fluctuations
leads to a rich variety of exotic magnetic phenomena. On
the most famous results is the Haldane conjecture wh
states that at zero temperature the half-odd-integer antife
magnetic Heisenberg chains should have gapless sp
with algebraic decay of correlations, and the integer s
ones should be gapped with an exponential decay
correlations.1 For S51, this conjecture was confirmed b
many numerical2 and experimental studies.3 The similar
gapped phases exist also in anS51 antiferromagnetic
Heisenberg chain with biquadratic interaction,4 as well as in
a variety of spin chains or spin ladders with bond alternat
and other competing interactions.5–7 Though the gapped
phases fall into a catalog of a generic valence-bond-s
~VBS! picture, they are basically separated by some mass
boundaries. Theoretically, it is quite interesting to distingu
the different VBS states and to demonstrate the phase
sitions among them.

In last two decades, many quasi-1D mixed-sp
materials,8–10 such as ACu(pba)(H2O)3•n(H2O) and
ACu(pbaOH)(H2O)3•nH2O ~wherepba51,3-propylenebis
~oxamato!, pbaOH52-hydroxo-1,3-propylenebis, andA
5Ni, Fe, Co, Mn, Zn!, have been synthesized. These ma
rials are quasi-1D bimetallic molecular magnets contain
two different transition-metal ions per unit cell alternating
distributed on the lattice.11 The model Hamiltonians describ
ing these systems are the antiferromagnetic mixed ch
with a periodic array of the unit cells involving two differen
spinsS1 andS2. The periodic chains with complicated loc
spin configurations in a unit cell will in general result
variations of energy gaps and magnetizations. Owing to
translational invariance of the systems with respect to e
unit cell, a necessary condition for the gap formation in z
field is obtained so that the magnetization per unit c
should be integers. This can be shown by applying a tw
operator on the ground state,U[exp@i(2p/N)(j51

N jSj
z#, as

was first proposed by Lieb, Schultz, and Mattis,12 and gen-
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eralized later by Affleck and Lieb,13 and Oshikawa, Ya-
manaka, and Affleck.14 In the simplest case, each unit ce
involves two spins, denoted byS1-S2. For integerS1 and
half integerS2, this mixed chain is a quantum ferrimagn
and its ground state is gapless and magnetic.15–17 In order to
explore the mixed chain with a nonmagnetic ground sta
one considers the case with twoS1 and twoS2 spins arrayed
alternatively, i.e., each unit cell involves four spins deno
by S1-S1-S2-S2. The model Hamiltonian is

H5(
l 51

N/4

~J1S4l 23
1

•S4l 22
1 1J2S4l 22

1
•S4l 21

2

1J1S4l 21
2

•S4l
2 1J2S4l

2
•S4l 11

1 ! ~1!

as represented in Fig. 1.
In the case withS151, S251/2, the model was studied

by quantum Monte Carlo~QMC! simulation18 and the non-
linear s model ~NLSM!,19,20 respectively. The ground stat
of the system is nonmagnetic with gapped excitations. T
gap varies as a function of the parametera5J2 /J1, and
vanishes at a critical pointac . This signals a quantum phas
transition between two different VBS states, as shown sc
matically in Fig. 2. The VBS states of Figs. 2~a! and 2~b! are
exact in the limiting casesa→0 and a→`, respectively,
and are approximately correct in the corresponding regi
separated byac . The massless pointac predicted analyti-
cally by the NLSM is 0.5,20 while it is 0.77 calculated nu-
merically by QMC simulations.18 In general, the NLSM es-
timates quantitatively deviate from the actual values,21 but
further numerical studies are needed to confirm the previ
numerical results. Moreover, the numerical investigations

FIG. 1. Graphical representation of the Hamiltonian, Eq.~1!.
The black and white circles represent spinsS1 andS2, respectively.
©2003 The American Physical Society26-1
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characterizing the different VBS states as well as the ph
transitions in nonmagnetic mixed-spin systems are still la
ing.

In this paper, we consider the model Hamiltonian, Eq.~1!,
in the cases ofS151, S251/2 andS151, S253/2, respec-
tively. The former enables us to check our numerical sche
and the latter is the minimal model for successive transiti
in mixed-spin chains. To determine the massless points
first calculate the energy gaps and low-temperature susc
bilities. Then, in order to determine the phase transitions
characterize the different VBS states in a more precise w
we calculate the expectation value of the Lieb-Schultz-Ma
twist operator on the ground state,

z[K expF i
2p

N (
j 51

N

jSj
zG L . ~2!

Here,z serves as an order parameter equivalent to the st
order parameter in the usual Haldane phase.22 According to
the theorem of Lieb-Schultz-Mattis,z vanishes in the gaples
phase as system sizeN→`. On the other hand, in a give
gapped phase, one expects thatz varies between61, but z
Þ0. In exact VBS states,z561, the sign depends on th
number of valence bonds at the boundary. Recently, Na
mura and Todo have shown thatz is more direct than the
string order parameter in detecting VBS states of the gap
phases as well as their boundaries in the bond-alterna
Heisenberg spin chains andS51/2 two-leg frustrated
ladder.23 We find that this new order parameter can be a

used to detect the two different VBS states in the 1-1-1
2 -1

2

chain. Extending the investigations to other higher spins,

find that the 1-1-32 -3
2 chain is more interesting, since it pro

vides a minimal model system to study the successive V
transitions in mixed-spin chains. Our results are briefly sta

below. For the 1-1-12 -1
2 chain, the evidence for the massle

point from the vanishing of the energy gap, the finite ze
temperature susceptibility, and the zero of thez parameter
converge atac50.762(1), very close to the previous nu

merical result given in Ref. 18. For the 1-1-3
2 -3

2 chain, the
three kinds of evidence fit perfectly and show that there
two massless points atac150.479(1) andac251.318(1),
respectively. The three gapped phases by which they
separated are thus represented by three different VBS s

FIG. 2. The valence-bond-solid picture of the 1-1-1
2 - 1

2 model
ground state~a! for a,ac and ~b! for a.ac . The solid circles
represent theS5

1
2 spin, and twoS5

1
2 spins connected by the soli

line form a singlet pair. Each open ellipse surrounding twoS5
1
2

spins represents an operation of constructing aS51 spin from these
S5

1
2 spins by symmetrizing them.
21442
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as shown in Fig. 3. Moreover,z varies continuously as a
function of a between61, vanishing only at the two mass
less points.

Our numerical results are determined as accurately as
sible by employing the QMC method based on the loop cl
ter algorithm.24,25 This algorithm is fully ergordic and dras
tically reduces the autocorrelation time, especially at l
temperatures. Furthermore, by using the continuous-t
version of the algorithm and the improved estimators,26 it
can be used to study rather large systems and estimate
physical quantities within satisfactory accuracy. More
cently, Haradaet al.27 and Todo and Kato28 have developed
this algorithm for the quantum spin systems with an arbitr
spin size, while the Haldane-type gap is directly related
the correlation lengthjt,0 in the imaginary time direction and
can be precisely estimated by

n5 lim
N→`

1

jt,0~L !
~3!

without further extrapolation procedures.28 Their strategy is
improved in our QMC study of the mixed chains. We fir
perform 103 Monte Carlo steps for thermalization, and the
Monte Carlo averages 105 times. To test the efficiency of ou
program, we calculate several physical quantities of differ
models including a pure spin-1 chain and the mixed-s

chains 1-12 and 1-32 , respectively. A comparison of our nu
merical results with previous ones obtained by the QMC
density-matrix renormalization-group~DMRG! method is
listed in Table I.

Our program is then used to reexamine the mixed ch

1-1-1
2 -1

2 , without using the least-squares fittings. The ene
gap has a deep dip very close toa50.762. At this point, the
susceptibility of the low-temperature saturates atx50.324.
The lowest temperature iskBT50.01 ~set asJ151) in our
QMC calculation, while it is 0.05 in Ref. 18. Since the e
ergy gap and low-temperature susceptibility have been
ported in Ref. 18, we only list the new results in Fig. 4, i.

FIG. 3. The valence-bond-solid picture of the3
2 - 3

2 -1-1 model
ground state~a! for a,ac1, ~b! for ac1,a,ac2, and ~c! for a
.ac2. The solid circles represent theS5

1
2 spin, and twoS5

1
2

spins connected by the solid line form a singlet pair. Each o
ellipse surrounding two or threeS5

1
2 spin represents an operatio

of constructing aS51 or S5
3
2 spin from theseS5

1
2 spins by

symmetrizing them.
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the parameterz. Notice thatz is complex in general, but its
imaginary part vanishes in the large-N limit. Thus it is suf-
ficient to calculate the real part ofz in the following. The
calculated~real part of! z changes sign accurately at th
point ~within accuracy of 1023, i.e., up to the last digit!,
showing a phase transition between the two different V
states. Thus the very location of the massless pointac
50.762(1) should be more precise thanac50.77 obtained
in Ref. 18.

Now we turn to the main results of this paper for t

mixed chain 1-1-32 -3
2 . The ground-state energyeg ~per site!

and energy gapD are calculated as functions ofa for the
system size fromN516 to N5200 and temperaturekBT
50.01. The ground-state energy shows almost noN depen-
dence while the energy gap shows rather weakN dependence
for largeN. For N5200, thea dependence ofD is shown in
Fig. 5, where two dips are located around at 0.479 and 1.3
respectively. To convince us that these two points are crit
ones, we observe that at these two points,D approaches zero
between 1/N and 1/AN for large N. Analytically, the exis-
tence of the massless points in the mixed chains are expe
within the nonlinears-model approach,20 where the mass
less points satisfy

1

J2
5

12t2

2t1

1

J1
1

12t1

2t1

S2

S1
, ~4!

TABLE I. Comparison of ours and other previous numeric
results.eg is the ground-state energy per cell,n is the energy gap,
and xs is the staggered magnetic susceptibility of the pure S51
chain. DMRG results are from Ref. 2 and Ref. 17, and QMC res
are from Ref. 28.

Model Previous results Our results

PureS51 chain eg521.4015~DMRG! eg521.401 38
PureS51 chain n50.411 27~QMC! n50.4113
PureS51 chain xs518.4028~QMC! xs518.413
Mixed 1

2 -1 chain eg521.4541~DMRG! eg521.4537

Mixed 3
2 -1 chain eg523.8619~DMRG! eg523.8616

FIG. 4. The order parameterz as function ofa in the 1-1-12 - 1
2

chain.
21442
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with t152n21/4S1, t252n21/4S2 for positive integern.
For antiferromagnetic couplings andS15 3

2 , S251, one ob-
tains two vanishing pointsa50.255 anda51.714, respec-
tively, quantitatively different from ours.

The thermodynamics of the 1-1-3
2 -3

2 chain are calculated
by varying temperatures fromkBT52.0 to kBT50.02 with
size N5200 fixed. The result of magnetic susceptibility
shown in Fig. 6. Whena deviates from 0.479 and 1.318~all
within the same accuracy of 1023), the susceptibility ap-
proaches zero as the temperature decreases. But it is at a
x50.090 andx50.050 per site at temperaturekBT50.02 at
these two points that significantly shows the criticality.

The ground-state energy per site is continuous on the
rametera, and the previous results imply that at zero te
perature the ground state of the system undergoes two
cessive phase transitions of second order atac150.479(1)
andac251.318(1), respectively. To give a general VBS pic
ture of the transitions, one first notices that in the limitin
casea→0, the valence bonds are composed of two nea
S151 and S253/2 spins, respectively, each of them wi
two and three numbers of bonds. This VBS state is deno
by ~2,0,3!; see Fig. 3~a!. In the opposite limit,a→`, the
bonds of two nearestS151 spins are completely broken, an
the bonds of two nearestS253/2 spins are partially broken
thus forming new bonds between the nearest spinsS151 and

l

ts

FIG. 5. The energy gapD of the 1-1-32 - 3
2 chain. The result is

obtained for system sizeN5200 at temperaturekBT50.01.

FIG. 6. Magnetic susceptibility versus temperaturekBT.
6-3
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XU, DAI, YING, AND ZHENG PHYSICAL REVIEW B 67, 214426 ~2003!
S253/2. There remains an unbroken bond for two near
S253/2 spins. This VBS state is denoted by~0,2,1!; see Fig.
3~c!. We have also calculated the nearest-neighbor two-s
correlation functions,

v115^S1
•S1&, v125^S1

•S2&, v225^S2
•S2&, ~5!

for a from 0 to 2 atkBT50.01 andN5200. It is found that
v11(v22)/v12 are enhanced/suppressed for smalla and
suppressed/enhanced for largea. This shows that asa varies
from 0 to `, the valence bond states~2,0,3! and ~0,2,1! are
approximately correct in two sides, but should be repla
by a new valence bond in the intermediate value ofa. In Fig.
3, one expects the intermediate phase with one nearesS1

bond, one nearestS1-S2 bond, and two nearestS2 bonds,
respectively, denoted by~1,1,2!.

To characterize the VBS states in the 1-1-3
2 -3

2 chain in a
more precise way, we calculate the order parameterz defined
by Eq. ~2! for N5200, kBT50.01. The result is plotted in
Fig. 7. Again, within accuracy up to the last digit, we fin
that z vanishes only at the two isolated pointsac1
50.479(1), ac251.318(1), respectively. The three region
~I! 0,a,ac1, ~II ! ac1,a,ac2, and ~III ! ac2,a,2 are
all gapped phases. Though our QMC calculations are lim
in 0,a,2, region III may extend toa→`. In regions I
and III, z is positive, while it is negative in region II. There
fore, asa increases,z varies between61, changing its sign

FIG. 7. The order parameterz as a function ofa in the 1-1-32 - 3
2

chain.
g

tt
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each time it enters the neighboring regions, while vanish
accurately at the two isolated boundaries. Figure 7 sho
also that there is only one intermediate gapped phase in
1-1-3

2 -3
2 chain, confirming the general picture of Fig. 3.

Our numerical results, though obtained for two simp
cases withS151 andS251/2,3/2 by QMC simulations, are
very helpful for understanding the general picture of pha
transitions between different VBS states in quantum a
ferromagnetic mixed-spin chains described by Hamilton
~1! with arbitrary S1 and S2. We predict that asa5J2 /J1
varies, the systems undergo successive VBS quantum p
transitions. There are 2 min(S1,S2)11 numbers of gapped
phases characterized by different VBS states, each den
by (2S1-m, m, 2S2-m), with m50,1, . . . , with
2 min(S1,S2) the number of (S1-S2) valence bonds in a uni
cell. The gapped phases are separated by 2 min(S1,S2) num-
bers of critical pointsaci accompanied by the vanishing o
the energy gap. Their positions can be accurately determ
by QMC simulations or other numerical methods. The s
cessive VBS transitions can be characterized by the expe
tion value of the twist operator,z, which varies between61
@keeping the signs (21)m in mth gapped phases# and van-
ishes exactly at the critical points.

In summary, we have studied the quantum antiferrom

netic mixed chains 1-1-1
2 -1

2 and 1-1-32 -3
2 by QMC simula-

tions based on the loop cluster algorithm. The results for

1-1-1
2 -1

2 chain not only confirm with better accuracy the pr
vious numerical~QMC! ones, but also exhibit clearly th
phase transition between the two different VBS states.

the 1-1-32 -3
2 chain, besides the twist operator, the energy g

and the low-temperature susceptibility suggest the existe
of two massless points, which are located atac150.479(1)
and ac251.318(1), respectively. The gapped phases
which they are separated can be represented by three d
ent VBS states as shown in Fig. 3. Furthermore, the or
parameterz changes the sign for two neighboring phases a
vanishes only at the critical points. It is straightforward
expect similar successive VBS transitions in the mixed-s
chains with arbitraryS1 andS2.
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