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Finite-temperature strong-coupling expansions for the Kondo lattice model
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Strong-coupling expansions, to ordetJ)8, are derived for the Kondo lattice model of strongly correlated
electrons, in one, two, and three dimensions at an arbitrary temperature. Results are presented for the specific
heat, and spin and charge susceptibilities.
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[. INTRODUCTION with this work wherever possible. Haué al. have also con-
sidered the atomic limitt=0), and the ordet? correction
This paper, the second of a sequence, studies the thermterms. Our work was largely motivated by this paper.
dynamic properties of the Kondo lattice model, described by Our approach, which will be described in the following
the Hamiltonian section, treats the single-site terms exactly and treats the hop-
ping term perturbatively. It is, thus, an expansion about the
+ “atomic limit.” We summarize here, for completeness and
"= _t<%r (Ci"CJ'UJFH'C')J“]Z S'S_MZU Nie- (D for later reference, the exact results in this limit.
For variable conduction electron density, there are eight
The first term describes a single band of conduction elecstates per site: two states with no conduction electrons and
trons, the “Kondo coupling” term represents an exchangeocalized spin up or down, two states with two conduction
interaction between conduction electrons and a set of locaklectrons of opposite spins, and two statese singlet and
ized S=1 spins, and the final term allows for variable con- three triplet$ with one conduction electron coupled to the
duction electron density via a chemical potential. localized spin. For a lattice ol sites, the grand partition
The Kondo lattice model combines two competing physi-function is
cal effects. In the strong couplingarge|J|) limit, the con- N
duction electrons will form local singletsIt0) or triplets Zo=Tr{e M=z 2
(J<0) with the localized spin at each site. In either case,
there will be a gap to spin excitations and spin correlations
will be short ranged. On the other hand, at weak coupling, zo=2+(e3K+3e7X)+2¢2 3)
the conduction electrons can induce the usual RKKY inter-
action between localized spins, leading to magnetic order. andK=BJ/4, =eP*, B=1/kgT.
The antiferromagnetic model is believed to be relevant to  The internal energy per site is given by
heavy-electron systems such as CgG#u, ,* where non-
Fermi liquid behavior is observed near a quantum critical _ §J(e3K—e*K)§

point. A popular scenarfois that low-energy spin fluctua- 4
tions, as represented by the Kondo lattice model, are an es- u(g,m)=- B Inzo= 2+ (e3+3e )7 +272 )
sential part of the physics of these systems. While we do not ¢
address this connection here, it is hoped that our results wilThe fugacity can, as usual, be eliminated in favor of the
be of interest in this context. electron densityr by using the relation
Despite the apparent simplicity of the model, no exact
results are known, either @t=0 or at finite temperatures, in 4 q¢+2¢°
any spatial dimension. In the preceding papere studied n(§,T)=§a—§ Tlnzo= 1+ql+ % ®

the ground-state properties of the model Tat 0, using
linked-cluster series expansions. We refer to that paper for where we have introduceg= 3 (e*+3e~¥). Solving this
discussion on other work, which has been, almost exclugives
sively, restricted also td=0. In the present paper, we focus

on finite-temperature thermodynamic properties. We know of —q(1-n)+g*(1-n)?+4n(2—n)

only a few previous studies of this kind.”Ber et al* con- (= 2(2—n) ' ©®
sidered the ferromagnetic model in the liddit>- — <, on the

simple cubic lattice, via a high-temperature expansion. Herel he specific heat is then obtained from E¢®. and (6) via

we treat the general case and focus on the antiferromag- the usual relatiorC,=du/dT.

netic model. Shibatat al® have studied the one-dimensional  Also of interest are the compressibility or “charge suscep-
(1D) antiferromagnetic model via a finite-temperature den-ibility”

sity matrix renormalization groufODMRG) approach. Haule

et al® have treated the 2D case, primarily via a numerical :a_” @
finite-temperature Lanczos method. We compare our results Xe ap’
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which can be expressed as ©
—BF=NInzy+ >, (=1)'T,, (16)
r=1
L a(l-n)¢+2(2-n)g?

and the magnetic susceptibility, which is given by

B Tr—1 ~ v/
r= [an [ Can @y Ve an

1 _ 1+4e "¢+ 2 and the subscrip\l signifies that only the part proportional to
4 = ——————. 9) . ;
1+qf+ 2 N is to be included.
This approach is, of course, well known and has been
Simpler analytic results can be obtained in various limits: aused in the past for both pure spin modedad for the Hub-
high or Iow.temperature, and at or near half fiII.ing. .Some ofbard modeP Any contribution toT, in Eq. (17) comes from
these are given in Ref. 6, although these contain minor errorg particular cluster of sites and bonds, a “graph.” It is pos-

in a few cases. sible to restrict the class of graphs to connected ones only, as
Of course, in the atomic limit, all of these quantities aredone in Ref. 7. In our work we also included disconnected
smooth functions of temperature and electron density. graphs, of more than one component, as these are rather easy
to deal with directly. Since each bond contributé¢ apera-
Il. THERMODYNAMIC PERTURBATION THEORY tor and hence a factdy it is obvious that to carry the expan-

. . . . sion to ordett", all topologically distinct graphs with up to
Our_goal IS to obtain an expression fqr the thermodynamubonds need to be considered. There are a total of 115 graphs
poten_tlal, and hence oth_er quantities, in powe_rs*./df we . through eighth order, which is as far as we have been able to
WOT" in the grand canonical ensemble and write the Ham'l'compute. Technically, these are multigraphs with all vertices
tonian as of even degrees. Many bare graphs with eight edges do not
contribute at this order.
H=Ho+V (10 The contribution of a particular gragg to the free energy

i can be expressed in the form
with

T (G)=Cq(t/1d)'z5P D, ag; nK'e™ ¢S, 18
Ho=0S S5 43 N a1 (G)=Colth)2" 2, asimk'e™ 3" (19
where Cg is the embedding factor, or “weak lattice con-
stant” of graphG in the particular lattice considereg,s the
V=—t E (chcj,,Jr H.c.). (12) number of points or vertices in the graph, the o, are nu-
(iho merical constants, and the sum contains, for each graph, a
" . . finite set of terms labeled by integesd ,m. Evaluation of
The lgrand partition function can then be expanded in thethese expressions is a lengthy procedure, involving a trace
usual way as over a space off8states and evaluation, for each term in the
trace, of anr-fold multiple integral. It is possible to find

Zg:Tr{e_ﬁ(HO+V)} many time saving refinements, but, even so, the evaluation of
w the worst case, the octagon, took about 260 h of CPU time
—z 11+ 1) ona 1'GHz Compagq alpha processor. o
0[ Zl (=1 Having computed th&l(G) factors for all graphs, it is

then a simple matter to combine these and to obtain, for any
lattice, the free energy per site in the form

B Tr—1 ~ ~
XfodTl"'fO dTr<V(71)"'V(Tr)>] (13

)

with —pf=Inzot 3 2 "F(K,O)(UI)", (19)
V(7)=e™ove o (140  where theF, are complete expressions K and { of the
form
and
1 F (K, 0)= 2, ag nK'e™es. (20)
(A)= 5 T oA}, (15 slim

These expressions are too lengthy to display here, but can be
where Z is the atomic limit partition functiori2). The free  supplied on request. To give some idea of the size, the eighth
energy(grand potentialis then given by order factorFg contains 1042 separate terms.
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From Eqs(19) and(20), one can compute expressions for benefit of the reader, we give in Table | coefficients for some
the internal energy and specific heat. The internal energy camepresentative cases. Other series can be supplied on request.
be expressed in the form While the general expressions are too lengthy to write

B down, at high temperatures, one can expand the various
d _ quantities in powers oB or K. The expressions up to order
U:_ﬁ g(—ﬁf)=u0+;2 2 "TVE(K.O () K% are provided in the Appendix. These are valid for all
(21)  loose-packed/bipartite lattices.
In the following sections, we present results for the linear

whereuy is the atomic limit result4) and thek(K,¢) are  cpain the square lattice, and the simple cubic lattice. A dis-
complete EXpressions. The specific heaCjs=du/ dT' Fpr cussion of other lattices will be presented elsewhere.
most purposes, it is more useful to express the series in terms

of electron densityn, which can be obtained from E¢L9)

via
Ill. THE 1D KONDO LATTICE MODEL

. d B - C(r+1) ; We consider the antiferromagnetic model on a linear
n_g,g_g(_ﬂf)_n0+22 %o Yi(K.O(UI), (22) chain, with an arbitrary electron concentrationUsing the
procedure described above, we have computed the specific
wheren, is the atomic limit result5) and theY (K, {) are,  heat and spin and charge susceptibilities. Figures-1ic)
again, complete expressions kg ¢. For fixedn andK we  show these quantities, as functions of temperature=at
then use a numengal reversion procedu_re to obtain eXpannalf filling) for t/J=0,0.2,0.4,0.5,0.6. FarJ=<0.4, the se-
sions for the fugacity, in power dfJ, which can then be joq are well converged and the curves are obtained simply
_ehmmated fro_m the th_ermodynamlc fl_"nCt'OHS' For _half fill- from the partial sums. For the larger values integrated differ-
ng (n=1_)_, this reversion can be carried out gnalytlcally. ential approximants have been used, with the error bars in-
In addition, we have included a magnetic-field term dicating the variation between different approximants. A
good agreement is obtained with the DMRG results for all
H’=H—h2 (ni,T_ni,1+ZS|z) (23 three quantities. However, ourelatively short series are
unable to probe the largefJ region as well as DMRG can.
to allow calculation of the zero-field magnetic susceptibility =~ Some comments on Fig. 1 are in order. Figu@ shows
Xs, Which is expressed in the form the specific heat, which shows an interesting crossover from
a single peak for smatlto a two-peak structure at largerdn
* the largert region, the high-temperature peak becomes
B 'xs=B *xot 22 2, "TIX (K, O(H)', (29 broadened and less prominent and is, presumably, due to
"~ conduction electrons, whereas the low-temperature peak
where, again, the first term is the atomic limit req@t and  arises from the fluctuating local spins. The spin susceptibility
the X, are complete expressions. The fugacity can again bfFig. 1(b)] also has a peak at a characteristic temperature.
eliminated in favor of the electron density, as describedThe peak is enhanced and moves to loWeon increasing
above. the hopping parametér Increasing/J will weaken the sin-
Several checks on the correctness of our results have begfet correlations, and a lower characteristic temperature is
made. Since temperature enters explicitly, we can take thsufficient for thermal fluctuations to become dominant. There
zero-temperatureK— ) limit analytically, to recover the is some indication of a double peak fotJ=0.6, but this
ground-state energy serig$Another test is thedd—0 limit, may be an artifact of the numerical analysis. The charge
in which F,(K,¢) in Eq. (19 has a leading term of ordét”, susceptibility also has a peak at the characteristic tempera-
giving an expression in powers gt. This can be compared ture, and a rapid drop to zero at low temperatures. The peak
with the results for free electrons. A complete agreement iss depressed with increasirtg but the position stays rela-
obtained. We are confident that our results are correct, butvely constant.
cannot exclude the possibility of errors not picked up by To display the effect of varying conduction electron den-
these checks. sity we have chosen an intermediate valié=0.4 and
The analysis of the results follows standard lines. For anyshow, in Figs. 2a)—2(c), curves ofC,, xs, and y. versus
fixed K,{, we obtain expressions for thermodynamic quan-temperature forn=1, 0.75, 0.5, and 0.25. The high-
tities as a series in the single varialld. For smallt/J, the  temperature peak i€, [Fig. 2(a)] drops roughly proportion-
series converges rapidly and even a naive sum gives a goadly to n, in agreement with the assignment of this peak to
accuracy. Padeapproximants and integrated differential conduction electrons. The series do not allow the Tospe-
approximant' allow extrapolation to larget/J. For fixedn cific heat to be determined with sufficient precision to see the
we obtain series fot in terms oft/J, which are then sub- effects of doping. Tsunetsuget al® present a ground-state
stituted into corresponding expressidi2®) and (24) to ob-  phase diagram of the 1D Kondo latti¢Eig. 6 of Ref. 10,
tain a single-variable series ihJ, which is then evaluated as where a transition line separates a snralferromagnetic
before. To calculate the specific heat, it is necessary to inphase from a larga paramagnetic phase. For the parameter
clude derivatives of with respect to temperature. For the ratio t/J=0.4, the critical doping i31,=0.65. While there
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TABLE |. Series coefficients for the internal energyspecific heaC, , magnetic susceptibilitys, and charge magnetic susceptibility
Xxc at BJ=1 and electron densitigs=1,0.5 for the linear chain, the square lattice, and the simple cubic lattice. Nonzero coeffitié)its (
up to orderr =8 are listed.

Linear chain

r n=1

n=0.5

Square lattice

Simple cubic lattice

n=1

n=0.5

0-1.1872727%10 1 —8.781 925 2K 10 2 —1.187272 7% 10 1 —8.7819252K 10 2 —1.1872727% 10 ! —8.781 925 2K 10 2

2-9.190836 6kX 10 ' —6.904 883 8% 10 *

4 2.0216686810°*

6 —5.813 168 3& 1072 — 6.823 522 2X 102

8 1.714 264 1% 102

0 1.440457 9% 10!
2 7.4235504%10°!

4 —5.053804 3x 10! —4.993 487 45% 10!

6 2.3957531k10?!

8-9.618394 14102 —1.348 122 8% 10 *

0 3.0255292¢10°*

1.941 565 9% 10~ *
2.256 626 66 10?2

1.039 101 3& 107!
5.629 691 8% 10 ¢

2.944 841 9% 10!

2.888 719 2& 107!

n=1 n=0.5
u/d
—1.838 167 33 —1.380976 78
1.239 454 60 8.511 3334310 *
—1.24540759 —8.5205785% 10 *
1.388 764 32 9.812 2738910 *
C, kg
1.440 457 9% 10" 1.039 101 3& 10 *
1.484 710 08 1.125 938 38
—3.168 639 38 —2.181 705 64
5.372 97355 3.704 600 27
—8.407 262 63 —6.027 876 17
B_le

3.025529 2x 1071

2.888 719 2& 1071

—2.757 251 00
3.111863 19

—5.900 667 30

1.321 490 4% 10

1.440 457 9% 10!

2.227 065 13
—7.989 776 84
2.575 217200

—8.150 893 1& 10"

3.025529 26x 1071

—2.071 465 16
1.970 930 23

—2.950 786 62

5.069 622 22

1.039 101 3& 10!
1.688 907 57
—5.047 070 69
1.274 791 2& 10
—3.077 847 24 10

2.888 719 2& 1071

2 —2.6934650%102 —1.341 190 5X 102 —5.386 930 06 1072 —2.682 381 04 1072 —8.080 395 16 10" 2 —4.023 571 5% 10 ?

4 1.3385898%10 2

7.419 337 2% 10732

8.146 932 8% 102

2.593 216 6% 10?2

2.042 502 8% 107!

5.553 848 7(x 102

6 —6.152303 7K 1072 —3.941 947 96& 10 3 —1.258 468 1K 101 —2.899 789 0% 10" 2 —5.889 728 7X 10" —5.653 491 3K 10" ?

8 2.690 699 2% 103

0 4.73182256&10 1!

1.925502 5103

3.603276 1% 10 *

1.940 268 24 101

3.560 788 1& 10?2

BilXc

4.731822 56101

3.603276 1%10°*

1.787 799 2x 10°

4.731 8225610 *

—3.464 099 64 1072

3.603276 1%10°*

2 -2.1475216X1071 —1.249 474 46 10" 1 —4.295 043 2% 10 ! —2.498 948 9% 10" —6.442 564 8% 10" ! —3.748 423 3% 10" ¢

4 9.574 3640102

6.512 836 8% 10 2

5.889 841 9& 10 *

2.452 254 4% 1071

6 —3.932 490 9% 1072 —3.258 454 7% 1072 —8.442 345 5% 10" —2.816 505 9k 107!

8 1.515545 310 2

1.499 960 6 102

1.220353 14

3.566 654 681071

1.479 721 67
—4.003 014 87
1.160 336 5% 10"

5.402 912 4310~ *
—7.064398 7% 107!
5.017 503 66 1071

cannot be true order at a finite temperature, the markethw. The charge susceptibility, also shows a sharp cross-
change in the lowr specific heat between the two curves over between the undoped and the doped cases. The 1D re-
with n=0.75 and 0.5 may will be a reflection of this effect. sults are consistent with the, presumably, more accurate

The effect of doping ornys is dramatic. Fom=1, at low

DMRG calculations. We are not aware of any published
temperatures, the system is in a gapped singlet phasg.and DMRG results for specific heat at finite doping, or for the
goes to zero exponentially. Away from half-filling, there will susceptibility forn<<0.8. Our results confirm that the series

be free spins ang diverges according to the usual Curie approach can be successfully applied to this model. We now

L B BN OB T T T T L I R B
n=1 1D ) 02'_
-~ \ t/1=0,0.2,0.4,0.5,0.6] s

0.15 -

o Xoal 2 L
0.l
"ﬁ..& t/1=0.6]
S ] 02 n=1 1D Z wosl
\\\ /1=0,0.2,0.4,0.5,0.6 ] I he1 1D

t/I=0" % t/1=0,0.2,0.4,0.5,0.6 ]

0 M| P | Lo 0 L L | |- |- ) 1 Ll | P I \_

4] 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 4] 02 0.4 0.6 0.8 1

() T/1 (c)

FIG. 1. The specific hea, (a), magnetic susceptibilitys (b), and charge susceptibility, (c) vs T/J for the linear chain ah=1 for
t/J=0,0.2,0.4,0.5, and 0.6.

214407-4



FINITE-TEMPERATURE STRONG-COUPLING.. .. PHYSICAL REVIEW B7, 214407 (2003

12 7T 1.2

;"‘-s;‘ t/1=0.4 (1D) ]

:
x
i 11 ) ]
H
i

—— s
t/1=0.4 (1D)
n=0.25,0.5,0.75,1

0.8 |- g

25" <06
04 -_ «: =0

L ; .. .5
L s "“--.._‘_ i
. 1 0 n=0.25 "]
S . . . L 0A~"'.‘.|...|... 0-,_-3..|...|...|...|...-
. . . . 0 02 0.4 0.6 o 0.2 04 0.8 0.8 1

(a) T/J (b) T/J (c) T/

FIG. 2. The same as Fig.1, but foiJ=0.4 andn=1,0.75,0.5,0.25.

turn to the 2D and 3D cases, where far less is known andpecific heat on dopingfor fixed t/J=0.3). The decrease
where other methods have particular difficulties. with decreasingn again confirms that the high-specific
heat is due to conduction electrons. Figures 5 and 6 show the
magnetic susceptibility, at half filling for variougJ ratios
and att/J= 0.3 for various electron densities. Figure 6 shows
We have computed and analyzed series for the specifia stricking crossover froom=1, wherey, is structureless
heat, spin susceptibility, and charge susceptibility for bothand vanishes a$—0, to lower densities1=0.5 and 0.25,
the square and simple cubic lattices. Some representative s@here y, appears to diverge. Evidently=0.75 is near the
ries are given in Table |. We choose to present results for theritical concentration, ags appears to start to diverge but
two lattices together so as to highlight similarities and differ-then drops to zero. There is also some apparent structure for
ences between them. the 3D case af/J=0.15, which may be an artifact of the
Figure 3 shows the specific heat at half filling for various analysis.
t/J ratios. The qualitative behavior is similar to the 1D case, A mean-field treatmefit suggests the existence of a
although smaller values ¢fJ suffice to produce comparable finite-temperature phase transition to a ferromagnetic phase
deviations from the atomic limit. A two-peak structure is for smalln, at least for the 3D case. To explore this, we plot
manifest att/J=0.4. Figure 4 shows the dependence of thethe inverse susceptibility verssin Figure 7. For both lat-

IV. THE 2D AND 3D SYSTEMS

[ ] R |/'\' T I_.l..l.|l..l..l|.I..I._I ]
L 4 L / \ L {k‘ 4 4
1.5 | - 1.5 | [\ B 414
- : a [\ roa 14
L J L / \ i } 1 14
I | I fl \\ | : } T
] 05 .
I | R A\ - 17
— - — [ —
1 ] o AN ; t/J=0.4
O> i 4 * N N P N i 7 U> I 1 : P I A N
- d] \\ 0 01 02 03 - L 0.1 02 03]
| ' Z
N, t/1=0.4 i
0.5 - :::. \\n,‘““*‘/ 0.5
- 'fl \ - -
- L n=1 sq \\".3‘-??*‘%; BEH n=1 sc
L 1) ~ S =0020.3.04 —_
| B/ t/1=0,02,0304 t/J=0 ] [ | 1/1=00203.04
1 1 | 1 1 1 | 1 1 1 I 1 1 1 | 1 1 1 ] 1 | 1 1 1 | 1 1 1 I 1 1 1 | 1 1 1
% 0.2 0.4 0.8 0.8 1 % 0.2 0.4 0.6 0.8 1
(@) T/J (b) T/J

FIG. 3. The specific hea, vs T/J for square latticésq) (a) and simple cubic latticésc) (b) atn=1 fort/J=0, 0.2, 0.3, and 0.4. The
insets enlarge the smallJ region fort/J=0.4
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[
t/J=0.3

(se) ]

T/J

FIG. 4. The specific hea, vs T/J for square latticésq) (a) and simple cubic latticésc) (b) att/J=0.3 forn=1, 0.75, 0.5, and 0.25.

tices,)(;l appears to vanish linearly 8s—0 atn=0.5. For

Finally, in Figs. 8 and 9, we show the charge susceptibil-
the simple cubic lattice, there is some indication that thety versus temperature. The behavior is qualitatively similar

curves fory; ! atn=0.25 andh=0.1 vanish at a small finite to the 1D case.
T, confirming a finite-temperature ferromagnetic phase.
However, the analysis at low temperature is imprecise and
does not allow for an accurate determinatiorTef The data

for the square lattice appear to show no finite-temperature We have used thermodynamic perturbation theory to in-

ferromagnetic transition. vestigate the antiferromagnetic Kondo lattice model at finite

0.8

0.6

IX

0.4

0.2

(@)

FIG. 5. The magnetic susceptibilitys vs T/J for square

0.3, and 0.4.

n=1 sq
t/J=0,0.2,0.4,0.5

Ixg
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V. CONCLUSIONS
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t/J=0,0.2,0.3,0.4,0.5:

T/J

lattice(sg) (a) and simple cubic latticéso (b) at n=1 for t/J=0, 0.2,
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r \ t/J=0.3 (sq) 1

IXs
IXs

@ IV O B 3

FIG. 6. The magnetic susceptibilitys vs T/J for square lattice(sg (a) and simple cubic latticésc (b) at t/J=0.3 for n=1,
0.75, 0.5, and 0.25.

temperatures. Our calculations focus, in particular, on therate and high temperatures. We do, however, see an indica-
specific heat and spin and charge susceptibilities, and theiion of a finite-temperature ferromagnetic transition in three-
variations both with the rati¢/J and with electron concen- dimensions for a smah, consistent with expectations. This
tration. We have presented results for the linear chain, squais not seen in one and two dimensions.
lattice, and simple cubic lattice. For the linear chain, our results are in excellent agreement
Overall, for the parameter region where our series can baith the previous finite-temperature DMRG calculativns
analyzed with reasonable precision, the behavior of the threand serve to confirm the accuracy of both methods. There are
lattices is qualitatively similar. This is to be expected at mod-few existing results in higher dimension and our work

2 _ I I I I I I I l |J-;--;--;-.-;‘._— 2 _ I I I I I I I I I I I I I I =
- - ne0.75 1"
L L .I ’/ i
1.5 | 1.5 | \h{’
~ 1~ ~ 1
0.5 0.5
i {? t/J=0.3 (sq) ] j ¥ t/1=0.3 (sc) ]
o 1 1 1 1 | 1 1 1 1 | 1 1 1 1 0 1 1 1 1 I 1 1 1 1 I 1 1 1 1
0 0.1 0.2 0.3 0 0.1 0.2 0.3
(a) T/J (b) T/3

FIG. 7. The inverse of magnetic susceptibilitydAs T/J for square latticésg) (a) and simple cubic latticésc) (b) att/J=0.3 forn
=0.75, 0.5, 0.25, and 0.1.
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0.2

0.15

Ix.

0.1

0.05

FIG. 8. The charge susceptibility, vs T/J for square lattice(sg (a) and

0.3, and 0.4.

should provide a valuable benchmark for other approachesvestigate the antiferromagnetic phase boundary. This
While we have not attempted a detailed comparison on or fitvould require substantial additional work, but we hope to do

LN L L B AL B BRI
= 0.2
| 0.15
I >

-]
= 0.1
= 0.05
t/1=0,0.2,0.4,0.5 |
1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 | O
0 0.2 04 0.6 0.8 1
T/J (b)
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t/1=0,0.2,0.3,0.4 |

0.2 0.4 0.6 0.8
T/J

to experiment, this would be possible. We plan to reporthis in future work.
results for close-packed latticésiangular and face-centered
cubig and for the ferromagnetic Kondo lattice model else-

where.
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the lines above, would be possible and would be important tgrant from the Australian Research Council. The computa-
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§+82)\2 +3K— §(4—18n+9n2)

X K2—24z\?K?—962(2—6n+3n?)\*K?
APPENDIX

The following high-temperature expansions up to order —962,n(2—n)\*K? | +O(K®). (A3)

K* have been obtained from the general results. The series i o
are expressed in terms &f=BJ/4. The parameters ane  Magnetic susceptibility:
=t/J, z=coordination numbermp, is weak embedding con- 1
stant of square cluster, which has value 0, 1, 3, and 12 forB71XS=Z+ gn(Z—n)
1D, square lattice, simple cubig lattice, and BCC lattice, re-
spectively, andz,=2(4 ps+2z+2z9)/3.

pFugac>ilty§: 2= 24P ) —4zn(2—n)A2K 2+ %(2—6n+3n2)K3

1
1—2K—Z(8—6n+3n2)K2

1
_ 2K 3 _ 2
n n(1-—n) +8zn(2—n)A°K +24(80 180n+ 198

- - @ 2+ 3
2—n 2—n KE+K

3+8 A2
2 A

{
2

1 — 1083+ 27K+ §z(12+ 10n—41n?+36n°

— =(11-27n+9n?)K*—4z(4—3n)A?K*

8 —9n*)\2K4+16zn(2—n)(7— 180+ 9In?)\4K*

—32z(1—6n+3n?)\*K*

—322,n(2—n)(1—4n+2n?)\*K* |+ O(K®).

—322,(1+n—n?)\*K* |+ O(K5). (A1)

(Ad)

Charge susceptibility:
Internal energy: ¢ P y

3 1
—+22)\2) K2+ ZK3

1
-1, —— _ _n2(9_n\2
B xe=5n(2—m)—n%2-n | g

1
U= = gzn(2=n(12+ 642\ 5K ~ (10~ 181+ 9n) K4~ 2(1+ 6n— 3n)A°K*

2_ _ 2 3_ 213
+12K%—(4—18n+9n?)K3— 64z\ %K _82(7— 180+ 92N 4K
—2562(2—6n+3n?)\*K3—2562,n(2—n)A K3

_ 2\y die b
—5(4—6n+3n2)K4—802)\2K4]+O(K5)_ (A2) +162,(1—4n+2n°)\*K

+0(K®). (A5)
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