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Finite-temperature strong-coupling expansions for the Kondo lattice model

J. Oitmaa* and Weihong Zheng†

School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
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Strong-coupling expansions, to order (t/J)8, are derived for the Kondo lattice model of strongly correlated
electrons, in one, two, and three dimensions at an arbitrary temperature. Results are presented for the specific
heat, and spin and charge susceptibilities.
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I. INTRODUCTION

This paper, the second of a sequence, studies the the
dynamic properties of the Kondo lattice model, described
the Hamiltonian

H52t (
^ i j &s

~cis
† cj s1H.c.!1J(

i
Si•si2m(

is
nis . ~1!

The first term describes a single band of conduction e
trons, the ‘‘Kondo coupling’’ term represents an exchan
interaction between conduction electrons and a set of lo
ized S5 1

2 spins, and the final term allows for variable co
duction electron density via a chemical potential.

The Kondo lattice model combines two competing phy
cal effects. In the strong coupling~large uJu) limit, the con-
duction electrons will form local singlets (J.0) or triplets
(J,0) with the localized spin at each site. In either ca
there will be a gap to spin excitations and spin correlatio
will be short ranged. On the other hand, at weak coupli
the conduction electrons can induce the usual RKKY int
action between localized spins, leading to magnetic orde

The antiferromagnetic model is believed to be relevan
heavy-electron systems such as CeCu62xAux ,1 where non-
Fermi liquid behavior is observed near a quantum criti
point. A popular scenario2 is that low-energy spin fluctua
tions, as represented by the Kondo lattice model, are an
sential part of the physics of these systems. While we do
address this connection here, it is hoped that our results
be of interest in this context.

Despite the apparent simplicity of the model, no ex
results are known, either atT50 or at finite temperatures, in
any spatial dimension. In the preceding paper,3 we studied
the ground-state properties of the model atT50, using
linked-cluster series expansions. We refer to that paper f
discussion on other work, which has been, almost ex
sively, restricted also toT50. In the present paper, we focu
on finite-temperature thermodynamic properties. We know
only a few previous studies of this kind. Ro¨der et al.4 con-
sidered the ferromagnetic model in the limitJ→2`, on the
simple cubic lattice, via a high-temperature expansion. H
we treat the generalJ case and focus on the antiferroma
netic model. Shibataet al.5 have studied the one-dimension
~1D! antiferromagnetic model via a finite-temperature de
sity matrix renormalization group~DMRG! approach. Haule
et al.6 have treated the 2D case, primarily via a numeri
finite-temperature Lanczos method. We compare our res
0163-1829/2003/67~21!/214407~9!/$20.00 67 2144
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with this work wherever possible. Hauleet al.have also con-
sidered the atomic limit (t50), and the ordert2 correction
terms. Our work was largely motivated by this paper.

Our approach, which will be described in the followin
section, treats the single-site terms exactly and treats the
ping term perturbatively. It is, thus, an expansion about
‘‘atomic limit.’’ We summarize here, for completeness an
for later reference, the exact results in this limit.

For variable conduction electron density, there are ei
states per site: two states with no conduction electrons
localized spin up or down, two states with two conducti
electrons of opposite spins, and two states~one singlet and
three triplets! with one conduction electron coupled to th
localized spin. For a lattice ofN sites, the grand partition
function is

Z0[Tr$e2bH%5z0
N ~2!

with

z0521~e3K13e2K!z12z2 ~3!

andK[bJ/4, z5ebm, b51/kBT.
The internal energy per site is given by

u~z,T!52
]

]b U
z

lnz05

2
3

4
J~e3K2e2K!z

21~e3K13e2K!z12z2
. ~4!

The fugacity can, as usual, be eliminated in favor of t
electron densityn by using the relation

n~z,T!5z
]

]z U
T

lnz05
qz12z2

11qz1z2 , ~5!

where we have introducedq[ 1
2 (e3K13e2K). Solving this

gives

z5
2q~12n!1Aq2~12n!214n~22n!

2~22n!
. ~6!

The specific heat is then obtained from Eqs.~4! and ~6! via
the usual relationCv5du/dT.

Also of interest are the compressibility or ‘‘charge susce
tibility’’

xc5
]n

]m
, ~7!
©2003 The American Physical Society07-1
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which can be expressed as

b21xc5
q~12n!z12~22n!z2

11qz1z2 ~8!

and the magnetic susceptibility, which is given by

4b21xs5
114e2Kz1z2

11qz1z2
. ~9!

Simpler analytic results can be obtained in various limits
high or low temperature, and at or near half filling. Some
these are given in Ref. 6, although these contain minor er
in a few cases.

Of course, in the atomic limit, all of these quantities a
smooth functions of temperature and electron density.

II. THERMODYNAMIC PERTURBATION THEORY

Our goal is to obtain an expression for the thermodyna
potential, and hence other quantities, in powers oft/J. We
work in the grand canonical ensemble and write the Ham
tonian as

H5H01V ~10!

with

H05J(
i

Si•si2m(
is

nis , ~11!

V52t (
^ i j &s

~cis
† cj s1H.c.!. ~12!

The grand partition function can then be expanded in
usual way as

Zg5Tr$e2b(H01V)%

5Z0H 11(
r 51

`

~21!r

3E
0

b

dt1•••E
0

tr 21
dt r^Ṽ~t1!•••Ṽ~t r !&J ~13!

with

Ṽ~t!5etH0Ve2tH0 ~14!

and

^A&5
1

Z0
Tr$e2bH0A%, ~15!

whereZ0 is the atomic limit partition function~2!. The free
energy~grand potential! is then given by
21440
t
f
rs

ic

l-

e

2bF5Nlnz01(
r 51

`

~21!rTr , ~16!

where

Tr5E
0

b

dt1•••E
0

tr 21
dt r^Ṽ~t1!•••Ṽ~t r !&N ~17!

and the subscriptN signifies that only the part proportional t
N is to be included.

This approach is, of course, well known and has be
used in the past for both pure spin models7 and for the Hub-
bard model.8 Any contribution toTr in Eq. ~17! comes from
a particular cluster of sites and bonds, a ‘‘graph.’’ It is po
sible to restrict the class of graphs to connected ones onl
done in Ref. 7. In our work we also included disconnec
graphs, of more than one component, as these are rather
to deal with directly. Since each bond contributes aṼ opera-
tor and hence a factort, it is obvious that to carry the expan
sion to ordert r , all topologically distinct graphs with up tor
bonds need to be considered. There are a total of 115 gr
through eighth order, which is as far as we have been abl
compute. Technically, these are multigraphs with all vertic
of even degrees. Many bare graphs with eight edges do
contribute at this order.

The contribution of a particular graphG to the free energy
can be expressed in the form

Tr~G!5CG~ t/J!rz0
2p (

s,l ,m
as,l ,mKlemKzs, ~18!

where CG is the embedding factor, or ‘‘weak lattice con
stant’’ of graphG in the particular lattice considered,p is the
number of points or vertices in the graph, theas,l ,m are nu-
merical constants, and the sum contains, for each grap
finite set of terms labeled by integerss,l ,m. Evaluation of
these expressions is a lengthy procedure, involving a tr
over a space of 8p states and evaluation, for each term in t
trace, of anr-fold multiple integral. It is possible to find
many time saving refinements, but, even so, the evaluatio
the worst case, the octagon, took about 260 h of CPU t
on a 1 GHz Compaq alpha processor.

Having computed theT(G) factors for all graphs, it is
then a simple matter to combine these and to obtain, for
lattice, the free energy per site in the form

2b f 5 ln z01(
r 52

`

z0
2rFr~K,z!~ t/J!r , ~19!

where theFr are complete expressions inK and z of the
form

Fr~K,z!5 (
s,l ,m

as,l ,mKlemKzs. ~20!

These expressions are too lengthy to display here, but ca
supplied on request. To give some idea of the size, the eig
order factorF8 contains 1042 separate terms.
7-2
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FINITE-TEMPERATURE STRONG-COUPLING . . . PHYSICAL REVIEW B67, 214407 ~2003!
From Eqs.~19! and~20!, one can compute expressions f
the internal energy and specific heat. The internal energy
be expressed in the form

u52
]

]b
uz~2b f !5u01(

r 52

`

z0
2(r 11)Er~K,z!~ t/J!r ,

~21!

whereu0 is the atomic limit result~4! and theEr(K,z) are
complete expressions. The specific heat isCv5du/dT. For
most purposes, it is more useful to express the series in te
of electron densityn, which can be obtained from Eq.~19!
via

n5z
]

]z
~2b f !5n01(

r 52

`

z0
2(r 11)Yr~K,z!~ t/J!r , ~22!

wheren0 is the atomic limit result~5! and theYr(K,z) are,
again, complete expressions inK, z. For fixedn and K we
then use a numerical reversion procedure to obtain exp
sions for the fugacity, in power oft/J, which can then be
eliminated from the thermodynamic functions. For half fi
ing (n51), this reversion can be carried out analytically.

In addition, we have included a magnetic-field term

H85H2h( ~ni ,↑2ni ,↓12Si
z! ~23!

to allow calculation of the zero-field magnetic susceptibil
xs , which is expressed in the form

b21xs5b21x01(
r 52

`

z0
2(r 11)Xr~K,z!~ t/J!r , ~24!

where, again, the first term is the atomic limit result~9! and
the Xr are complete expressions. The fugacity can again
eliminated in favor of the electron density, as describ
above.

Several checks on the correctness of our results have
made. Since temperature enters explicitly, we can take
zero-temperature (K→`) limit analytically, to recover the
ground-state energy series.3,9 Another test is theJ→0 limit,
in which Fr(K,z) in Eq. ~19! has a leading term of orderKr ,
giving an expression in powers ofbt. This can be compared
with the results for free electrons. A complete agreemen
obtained. We are confident that our results are correct,
cannot exclude the possibility of errors not picked up
these checks.

The analysis of the results follows standard lines. For a
fixed K,z, we obtain expressions for thermodynamic qua
tities as a series in the single variablet/J. For smallt/J, the
series converges rapidly and even a naive sum gives a g
accuracy. Pade´ approximants and integrated differenti
approximants11 allow extrapolation to largert/J. For fixedn
we obtain series forz in terms of t/J, which are then sub-
stituted into corresponding expressions~20! and ~24! to ob-
tain a single-variable series int/J, which is then evaluated a
before. To calculate the specific heat, it is necessary to
clude derivatives ofz with respect to temperature. For th
21440
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benefit of the reader, we give in Table I coefficients for so
representative cases. Other series can be supplied on req

While the general expressions are too lengthy to w
down, at high temperatures, one can expand the var
quantities in powers ofb or K. The expressions up to orde
K4 are provided in the Appendix. These are valid for
loose-packed/bipartite lattices.

In the following sections, we present results for the line
chain, the square lattice, and the simple cubic lattice. A d
cussion of other lattices will be presented elsewhere.

III. THE 1D KONDO LATTICE MODEL

We consider the antiferromagnetic model on a line
chain, with an arbitrary electron concentrationn. Using the
procedure described above, we have computed the spe
heat and spin and charge susceptibilities. Figures 1~a!-1~c!
show these quantities, as functions of temperature, atn51
~half filling! for t/J50,0.2,0.4,0.5,0.6. Fort/J&0.4, the se-
ries are well converged and the curves are obtained sim
from the partial sums. For the larger values integrated dif
ential approximants have been used, with the error bars
dicating the variation between different approximants.
good agreement is obtained with the DMRG results for
three quantities. However, our~relatively short! series are
unable to probe the largert/J region as well as DMRG can

Some comments on Fig. 1 are in order. Figure 1~a! shows
the specific heat, which shows an interesting crossover f
a single peak for smallt to a two-peak structure at largert. In
the larger t region, the high-temperature peak becom
broadened and less prominent and is, presumably, du
conduction electrons, whereas the low-temperature p
arises from the fluctuating local spins. The spin susceptibi
@Fig. 1~b!# also has a peak at a characteristic temperat
The peak is enhanced and moves to lowerT on increasing
the hopping parametert. Increasingt/J will weaken the sin-
glet correlations, and a lower characteristic temperature
sufficient for thermal fluctuations to become dominant. Th
is some indication of a double peak fort/J50.6, but this
may be an artifact of the numerical analysis. The cha
susceptibility also has a peak at the characteristic temp
ture, and a rapid drop to zero at low temperatures. The p
is depressed with increasingt, but the position stays rela
tively constant.

To display the effect of varying conduction electron de
sity we have chosen an intermediate valuet/J50.4 and
show, in Figs. 2~a!–2~c!, curves ofCv , xs , and xc versus
temperature forn51, 0.75, 0.5, and 0.25. The high
temperature peak inCv @Fig. 2~a!# drops roughly proportion-
ally to n, in agreement with the assignment of this peak
conduction electrons. The series do not allow the low-T spe-
cific heat to be determined with sufficient precision to see
effects of doping. Tsunetsuguet al.10 present a ground-stat
phase diagram of the 1D Kondo lattice~Fig. 6 of Ref. 10!,
where a transition line separates a smalln ferromagnetic
phase from a largen paramagnetic phase. For the parame
ratio t/J50.4, the critical doping isnc.0.65. While there
7-3
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TABLE I. Series coefficients for the internal energyu, specific heatCv , magnetic susceptibilityxs , and charge magnetic susceptibilit
xc at bJ51 and electron densitiesn51,0.5 for the linear chain, the square lattice, and the simple cubic lattice. Nonzero coefficientst/J) r

up to orderr 58 are listed.

Linear chain Square lattice Simple cubic lattice
r n51 n50.5 n51 n50.5 n51 n50.5

u/J
0 21.187 272 7531021 28.781 925 2131022 21.187 272 7531021 28.781 925 2131022 21.187 272 7531021 28.781 925 2131022

2 29.190 836 6731021 26.904 883 8831021 21.838 167 33 21.380 976 78 22.757 251 00 22.071 465 16
4 2.021 668 6831021 1.941 565 9931021 1.239 454 60 8.511 333 4331021 3.111 863 19 1.970 930 23
6 25.813 168 3831022 26.823 522 2231022 21.24540759 28.520 578 5731021 25.900 667 30 22.950 786 62
8 1.714 264 1531022 2.256 626 6631022 1.388 764 32 9.812 273 8931021 1.321 490 473101 5.069 622 22

Cv /kB

0 1.440 457 9931021 1.039 101 3831021 1.440 457 9931021 1.039 101 3831021 1.440 457 9931021 1.039 101 3831021

2 7.423 550 4231021 5.629 691 8831021 1.484 710 08 1.125 938 38 2.227 065 13 1.688 907 57
4 25.053 804 3031021 24.993 487 4531021 23.168 639 38 22.181 705 64 27.989 776 84 25.047 070 69
6 2.395 753 1131021 2.944 841 9731021 5.372 973 55 3.704 600 27 2.575 217 203101 1.274 791 263101

8 29.618 394 1431022 21.348 122 8031021 28.407 262 63 26.027 876 17 28.150 893 183101 23.077 847 243101

b21xs

0 3.025 529 2031021 2.888 719 2831021 3.025 529 2031021 2.888 719 2831021 3.025 529 2031021 2.888 719 2831021

2 22.693 465 0331022 21.341 190 5231022 25.386 930 0631022 22.682 381 0431022 28.080 395 1031022 24.023 571 5731022

4 1.338 589 8731022 7.419 337 2731023 8.146 932 8331022 2.593 216 6331022 2.042 502 8931021 5.553 848 7031022

6 26.152 303 7731023 23.941 947 9631023 21.258 468 1131021 22.899 789 0531022 25.889 728 7231021 25.653 491 3731022

8 2.690 699 2731023 1.925 502 5231023 1.940 268 2431021 3.560 788 1831022 1.787 799 223100 23.464 099 6431022

b21xc

0 4.731 822 5631021 3.603 276 1531021 4.731 822 5631021 3.603 276 1531021 4.731 822 5631021 3.603 276 1531021

2 22.147 521 6231021 21.249 474 4631021 24.295 043 2331021 22.498 948 9331021 26.442 564 8531021 23.748 423 3931021

4 9.574 364 0131022 6.512 836 8431022 5.889 841 9831021 2.452 254 4931021 1.479 721 67 5.402 912 4331021

6 23.932 490 9531022 23.258 454 7931022 28.442 345 5931021 22.816 505 9131021 24.003 014 87 27.064 398 7931021

8 1.515 545 3031022 1.499 960 6031022 1.220 353 14 3.566 654 6831021 1.160 336 533101 5.017 503 6631021
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cannot be true order at a finite temperature, the mar
change in the low-T specific heat between the two curv
with n50.75 and 0.5 may will be a reflection of this effec
The effect of doping onxs is dramatic. Forn51, at low
temperatures, the system is in a gapped singlet phase anxs
goes to zero exponentially. Away from half-filling, there w
be free spins andxs diverges according to the usual Cur
21440
dlaw. The charge susceptibilityxc also shows a sharp cross
over between the undoped and the doped cases. The 1D
sults are consistent with the, presumably, more accu
DMRG calculations. We are not aware of any publish
DMRG results for specific heat at finite doping, or for th
susceptibility forn,0.8. Our results confirm that the serie
approach can be successfully applied to this model. We n
FIG. 1. The specific heatCv ~a!, magnetic susceptibilityxs ~b!, and charge susceptibilityxc ~c! vs T/J for the linear chain atn51 for
t/J50,0.2,0.4,0.5, and 0.6.
7-4
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FIG. 2. The same as Fig.1, but fort/J50.4 andn51,0.75,0.5,0.25.
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turn to the 2D and 3D cases, where far less is known
where other methods have particular difficulties.

IV. THE 2D AND 3D SYSTEMS

We have computed and analyzed series for the spe
heat, spin susceptibility, and charge susceptibility for b
the square and simple cubic lattices. Some representativ
ries are given in Table I. We choose to present results for
two lattices together so as to highlight similarities and diff
ences between them.

Figure 3 shows the specific heat at half filling for vario
t/J ratios. The qualitative behavior is similar to the 1D ca
although smaller values oft/J suffice to produce comparabl
deviations from the atomic limit. A two-peak structure
manifest att/J50.4. Figure 4 shows the dependence of
21440
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specific heat on doping~for fixed t/J50.3). The decrease
with decreasingn again confirms that the high-T specific
heat is due to conduction electrons. Figures 5 and 6 show
magnetic susceptibility, at half filling for varioust/J ratios
and att/J50.3 for various electron densities. Figure 6 sho
a stricking crossover fromn51, wherexs is structureless
and vanishes asT→0, to lower densitiesn50.5 and 0.25,
wherexs appears to diverge. Evidently,n50.75 is near the
critical concentration, asxs appears to start to diverge bu
then drops to zero. There is also some apparent structur
the 3D case atT/J.0.15, which may be an artifact of th
analysis.

A mean-field treatment10 suggests the existence of
finite-temperature phase transition to a ferromagnetic ph
for smalln, at least for the 3D case. To explore this, we p
the inverse susceptibility versusT in Figure 7. For both lat-
FIG. 3. The specific heatCv vs T/J for square lattice~sq! ~a! and simple cubic lattice~sc! ~b! at n51 for t/J50, 0.2, 0.3, and 0.4. The
insets enlarge the smallT/J region for t/J50.4
7-5
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FIG. 4. The specific heatCv vs T/J for square lattice~sq! ~a! and simple cubic lattice~sc! ~b! at t/J50.3 for n51, 0.75, 0.5, and 0.25
th
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tices,xs
21 appears to vanish linearly asT→0 atn50.5. For

the simple cubic lattice, there is some indication that
curves forxs

21 at n50.25 andn50.1 vanish at a small finite
T, confirming a finite-temperature ferromagnetic pha
However, the analysis at low temperature is imprecise
does not allow for an accurate determination ofTc . The data
for the square lattice appear to show no finite-tempera
ferromagnetic transition.
21440
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Finally, in Figs. 8 and 9, we show the charge suscepti
ity versus temperature. The behavior is qualitatively simi
to the 1D case.

V. CONCLUSIONS

We have used thermodynamic perturbation theory to
vestigate the antiferromagnetic Kondo lattice model at fin
FIG. 5. The magnetic susceptibilityxs vs T/J for square lattice~sq! ~a! and simple cubic lattice~sc! ~b! at n51 for t/J50, 0.2,
0.3, and 0.4.
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FIG. 6. The magnetic susceptibilityxs vs T/J for square lattice~sq! ~a! and simple cubic lattice~sc! ~b! at t/J50.3 for n51,
0.75, 0.5, and 0.25.
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temperatures. Our calculations focus, in particular, on
specific heat and spin and charge susceptibilities, and t
variations both with the ratiot/J and with electron concen
tration. We have presented results for the linear chain, sq
lattice, and simple cubic lattice.

Overall, for the parameter region where our series can
analyzed with reasonable precision, the behavior of the th
lattices is qualitatively similar. This is to be expected at mo
21440
e
eir

re

e
ee
-

erate and high temperatures. We do, however, see an ind
tion of a finite-temperature ferromagnetic transition in thre
dimensions for a smalln, consistent with expectations. Th
is not seen in one and two dimensions.

For the linear chain, our results are in excellent agreem
with the previous finite-temperature DMRG calculation5

and serve to confirm the accuracy of both methods. There
few existing results in higher dimension and our wo
FIG. 7. The inverse of magnetic susceptibility 1/xs vs T/J for square lattice~sq! ~a! and simple cubic lattice~sc! ~b! at t/J50.3 for n
50.75, 0.5, 0.25, and 0.1.
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FIG. 8. The charge susceptibilityxc vs T/J for square lattice~sq! ~a! and simple cubic lattice~sc! ~b! at n51 for t/J50,0.2,
0.3, and 0.4.
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should provide a valuable benchmark for other approac
While we have not attempted a detailed comparison on o
to experiment, this would be possible. We plan to rep
results for close-packed lattices~triangular and face-centere
cubic! and for the ferromagnetic Kondo lattice model els
where.

A calculation of the staggered spin susceptibility, alo
the lines above, would be possible and would be importan
21440
s.
fit
t

-

to

investigate the antiferromagnetic phase boundary. T
would require substantial additional work, but we hope to
this in future work.
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APPENDIX

The following high-temperature expansions up to ord
K4 have been obtained from the general results. The se
are expressed in terms ofK5bJ/4. The parameters arel
5t/J, z5coordination number,p4 is weak embedding con
stant of square cluster, which has value 0, 1, 3, and 12
1D, square lattice, simple cubic lattice, and BCC lattice,
spectively, andz252(4 p41z1z2)/3.

Fugacityz:

z5
n

22n
2

n~12n!

22n F S 3

2
18zl2DK21K3

2
1

8
~11227n19n2!K424z~423n!l2K4

232z~126n13n2!l4K4

232z2~11n2n2!l4K4G1O~K5!. ~A1!

Internal energy:

u/J52
1

32
n~22n!@~12164zl2!K

112K22~4218n19n2!K3264zl2K3

2256z~226n13n2!l4K32256z2n~22n!l4K3

25~426n13n2!K4280zl2K4#1O~K5!. ~A2!
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