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Zero-temperature series expansions for the Kondo lattice model at half filling
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We present results for the Kondo lattice model of strongly correlated electrons, in one, two, and three
dimensions, obtained from high-order linked-cluster series expansions. Results are given for various ground-
state properties at half filling, and for spin and charge excitations. Estimates for the location of the quantum
critical point in the square and simple cubic lattices are made.
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[. INTRODUCTION conclude that a quantum phase transition, at which the spin
gap vanishes continuously, occurs aftj.=1.45+0.05 in
The Kondo lattice mode{KLM ), described by the usual the 2DJ>0 case, while Refs. 9 and 11 givé/{).~1.833
Hamiltonian and 2.0, respectively, for the 3D>0 case. There have not
been, to the best of our knowledge, any similar studies for
the case of ferromagnetic coupling.
"= _t%q (c?(,ch+H,c,)+\]Z S-S, 1) Our aim in this paper is to study the Kondo lattice model
in one, two, and three dimensions via series expansion meth-
represents a band of conduction electrons, interacting via ads. We have considerably extended the calculations of Ref.
spin-exchange term with a set of immobdle 3 spinsS (f 11, by obtaining longer series, by using also expansions

electrons. about the Ising limit, and by studying also the energies of
The model has been extensively studied in connectiorelementary excitations.
with a class of materials known as “Kondo insulatorsT ( Linked-cluster series expansions have been used success-

>0),%2and in connection with the manganiteb<(0).> De-  fully for many years to study strongly interacting lattice
spite the apparent simplicity of the model, in which neithermodels. A recent reviet? describes the basic approach and
the conduction electrons nor the localized spins interact disome of the results which have been obtained. The method is
rectly among themselves, the spin exchange leads to a@pplicable in any dimension, is particularly suited to locating
strongly correlated many-body system. No exact results areritical points, and is free from finite-size corrections or mi-
known for either ground-state or thermodynamic propertiesius sign problems which hamper other numerical ap-

for generall/t, in any dimension. proaches. On the other hand, a good convergence may be
The model incorporates two competing physical pro-limited to particular regions of the phase diagram.
cesses. In the strong-coupliriarge |J|) limit, the conduc- The Hamiltonian is written in the generic forid=H,

tion electrons are “frozen out” via the formation of local +AV, whereHy has a simple known ground state. The re-
singlets 0>0) or triplets J<0). In either case there will be maining ternts) in H are treated perturbatively, to high order.
a gap to spin excitations and spin correlations will be shorin this way the ground-state energy, correlations, suscepti-
ranged. On the other hand, at weak coupling, the conductiohilities, etc., are expressed as power series.imhese are
electrons can induce the usual RKKY interaction betweerthen analyzed by standard methddisAn extension of the
localized spins, giving rise to possible magnetically orderedasic linked-cluster methd8™ allows the computation of
phases with no spin gap and long-range correlations. In onée full dispersion relation for elementary excitations, which
dimension there will be a smooth crossover from lddjeo can yield energy gaps.
small|J| behavior, but in higher dimension a quantum phase For the present model, the simplest choice is to teke
transition is expected. =J3;S-s, a sum of single-site exchange terms. The unper-
There is a considerable interest in the model in connectioturbed ground state is then a simple product state of dimer
with experiments on heavy fermion materials, where anomastates. This is the approached used in Ref. 11, and also our
lous behavior is seen in the vicinity of the antiferromagneticfirst method here. We refer to these as “dimer expansions.”
quantum critical poinf.A popular scenarid,within the con-  An alternative is to write the exchange term as
text of the Kondo lattice model, invokes the role of antifer-
romagnetic spin fluctuations coupling to the Fermi liquid
properties. While we do not address this connection here, we ,, L
hope our results may be of some relevance in this area. ‘]Z Sisi+ E(S' S +Ss) @
A great deal of work has been carried out on the one-
dimensional model, using a variety of analytic and numerical
methods, and we refer the reader to a recent re¥iéw. and to take only the first term ad,, In such an “Ising
higher dimension there have been mean-field approdcfies, expansion” both the spin-fluctuation and hopping terms are
quantum Monte Carlo calculatiod$and a series expansion treated perturbatively. To remove the degeneracif in we
study These studies, which are all for the half filled case,add following two terms for conduction spins inkty:
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J<E> (SIST+ 14 +h> [(—1)'si+1/2] (3)
1] I

and subtract them from the perturbation term, so the overall
Hamiltonian is

H=Ho+\V (4)

Z
o)
>
Ho=3>, (S{sf)ﬂ';) (S'7+ 1A +hY, [(—1)'si+1/2] ™
i ij i
(5
V=3 (gxsix+3ysiy)—.1'z> (s7s7+1/4)
i ij
oo by by by
—hi2S [(~1)iS+ 12—t (cfyej,+H.c). ° 0 ' 1o @
i o t/J
(6) FIG. 1. The ground-state energy for the one-dimensi¢hB)

Kondo lattice model. The lines represent different approximants to

Series in power of are computed for given values of the series. The solid points are the DMRG res(Ref. 15.

J,t,J’, andh, and extrapolated ta =1 where the original

Hamiltonian is recovered. Such expansions are appropriatghere the quantities,(\) are expressed as power series in
for magnetically ordered phases, although they can also yielf —t/J. For the 1D case we have computed these up to
accurate results in other cases. It must be stressed that, ing (order 18 in\), and for the interested reader we provide
both forms of expansion, the unperturbed ground state hasjs data in the Appendix. Figurg@ shows the triplet spin-
conduction electron at each site, and the perturbation consycitation energy versuk, for value of t/J=0.25,0.4,0.5.
serves electron number. Thus, the system is at half fillingrgr t/3=0 the excitation will, of course, have energynd
There is no simple way to include the doped case within thisyjl pe dispersionless. Increasing the hopping amplitude
formalism. _ . . gives increasing bandwidth, with the energykatO raised

In the remainder of this paper, we will present and discusgjightly and a minimum ak=. We are unaware of any

our results for the one-dimensiondlD) case(Sec. I), for  hrevious reported calculations of this dispersion relation,
the 2D square lattice, and for the 3D simple cubic Iattlceapart from the second-order result given in Ref. 6.

(Sec. Il). An overall summary is given at the end. It is worth noting that the error bars shown in Fig. 2, and
in subsequent figures, represent “confidence limits” only,
Il. THE 1D KONDO LATTICE MODEL based on the degree of convergence among different approxi-

ants. The large error bars ndar 0 for the largest/J in
ig. 2(a) reflect the irregularity of the corresponding series.
From Eq.(8) atk=7r, we obtain a series iR for the spin

Using the dimer expansion approach, we have compute
series for the ground-state energy in the form

o gap, which is again evaluated using integrated differential
Eo/NJ= ey(t/3)° @) approximants. Results are shown in Fig. 3. The series is well
0 &o° converged up ta/J=1.1. For a comparison, we show spin

. . ) _ gaps calculated by DMRG calculatigRef. 16§ and a mean-
and the coefficients, to order 20, are given in the Appendixfig|q approact? Agreement with DMRG is excellent over
Our coefficients agree exactly. with Re.f. 11, and add thregpe range shown, while the mean-field method appear to se-
new terms(odd coefficients vanish for this serjetntegrated  rjoysly under estimate the size of the gap. Al of the results,
differential approximants are used to evaluate the series forincluding ours, are consistent with a spin gap that decreases

particulart/J, and the resulting energy is shown in Fig. 1. ;apidly, but does not vanish until=0.

The different approximants agree well up tiJ=1.2, but Next, we consider the so-called “quasiparticle” excita-
then splay outwards. We also show, for a comparison, th@on, which we prefer to call a one-hole excitation. This cor-
energy obtained from an early DMRG calculatin. responds to the removal of an electron from the half-filled

Next we turn to the spin excitations. In the strong-hand and thus, in the strong-coupling limit, to a single local-
coupling '|Imlt, a spin excitation corresponds to a spin t.rlpletized spin on one site with singlets on the others. FeD,
at one site, which is able to propagate coherently via thgne energy gap is thusJ®. For the 1D case, we have com-
conduction electron hoping term. The dispersion relation Cayted this series up to order 12in Figure Zb) shows the
be expressed in the form one-hole excitation spectrum for valugg=0.25, 0.4, and
0.5. The minimum occurs &=0 and the bandwidth seems
Ay(k)= E t,(\)cosnk, (8) roug_hly proportional ta/J. We are, again, not aware of any
n previous calculations of this dispersion curve. The series at
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FIG. 2. The triplet spin excitation spectru@ and one-holéquasiparticlg excitation spectruntb) for 1D case.

k=0 allow us to compute the one-hole gap, and our results Ill. THE SQUARE AND SIMPLE CUBIC LATTICES
are plotted in Fig. 3. A notable feature is thi{, becomes
approximately constant farJ>0.5. We know of no previ-
ous calculations for the one-hole gap apart, again, from th

In two or more spatial dimensions, it is believed that the
Kondo lattice model has a true quantum phase transition at

: : : ome (/t)., between a gapped spin-liquid phase and a small
second-order stro“ng coupling ,,result in Ref. 6. There is ye magnetically ordered gapless phase. For the square lattice,
another gap, the “charge gap,” which corresponds to an ex- : . . L

N . . : . quantum Monte Carlo simulatiosprovide strong indica-
citation in which the system remains half filled, but with a i :
. . . tions of a transition att(J).=0.69, while a bond-operator
doubly occupied site and an empty site. We are not able tQ

compute this via series, at this stage. However, in the stron [nean-field theory gives (t/3);=0.664 and 0.546 for the

. - - L . guare and simple cubic lattices, respectively. A previous se-
coupling limit A;=2A, (this is valif to at least second ries study® has given {/J).~0.7 and 0.5, respectively.

order |n.t/32é The charge gap ha? been computed by DMRGThese latter estimates are relatively imprecise, and it seemed
calculation,” and we show in Fig. 3, the result fax /2. . - ) . . '
worthwhile to investigate this using longer series.

Evidently, for larger hopping parametar,/Aqp<2. We have derived dimer series for the square lattice for the
following quantities: ground-state ener@y, antiferromag-
netic spin susceptibilities for both local and conduction spins
(x1 and x.), and the triplet spin excitation spectru@ll to
order 12, and the one-hole(“quasiparticle”) excitation
spectrum(to order 1}. This adds two nonzero terms to the
results of Ref. 11. The excitation series are new. In addition,
we have computed Ising expansions for the ground-state en-
ergy and for the staggered magnetizati¢fos both local and
itinerant sping to order 13. Series, to the same order, have
been derived for the simple cubic lattice for all of the same
quantities, except for the excitations, where we have only
computed the minimum gap rather than the full spectrum.
The dimer series for ground-state eneigy, antiferromag-
netic spin susceptibilities for both local and conduction spins
(x; and x.), and the minimum triplet spin gap are given in
Table I. Our results agree completely with those of Ref. 11
for the square lattice but disagree for the simple cubic lattice
FIG. 3. The triplet spin gap,/J and quasiparticle gagg,/J susceptibilitigs bgyond the fourth term. We have been unaple
vs t/J obtained from different integrated differential approximants. {0 resolve this with the authors of Ref. 11, but we are confi-
The points are the results of density matrix renormalization grougl€nt that our results are correct.
(DMRG) calculation(Ref. 16 for A¢/J (points with errorbansand We first show, in Fig. 4, our estimate of the ground-state
A /23 (solid circles. The short dashed line is the result of a mean-€nergy, as a function af obtained from both dimer and Ising
field approach(Ref. 17. The inset gives a logarithmic plot for expansions. Both series converge well for snalbut the
A/t Ising expansion has better convergence for latg€here are

A/d
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TABLE |. Series coefficients for dimer expansions for the ground energy peEgitéN, the minimum triplet spin gap¢/J, and the
antiferromagnetic spin susceptibilities for both local and conduction spipar(d x.). Nonzero coefficientst(J)" up to ordern=12 for

square lattice and simple cubic lattice are listed.

n Eo/JIN

WA

Xc X
square lattice
0 —7.500000006 10 * 1.000000000 5.000000080L0* 5.00000000& 10 *
2 —1.333333333 —1.33333333% 10" 1.777777778 6.518518519
4 —8.88888888% 10 2 1.61185185% 107 4.632888889 3.8509168%210
6 4.231487360 —2.64079576% 107 6.236968731 4.06753155110
8 —1.519899536 10 —1.07212463% 1C° 4.34013412% 10 6.68741379% 10"
10 8.900723088 10 * 5.49569913% 10° 1.00423254% 107 1.82328900% 10°
12 3.109971534 10 —1.56125901% 1¢° —6.38489751% 107 —4.65486455% 10°

simple cubic lattice

0 —7.500000006 10 * 1.000000000 5.000000080L0 * 5.000000006 10 *
2 —2.000000000 —2.000000006 10 2.666666667 9.777777778
4 6.66666666% 10 * 3.06311111K 107 1.291555556 10" 8.44375308& 10
6 7.834807760 1.0602377%1.0° 5.13258751% 10 2.39939003% 107
8 —7.11479124% 10 —2.76065812% 10° 3.51094698% 107 1.68458863% 10°
10 3.498368488 10 3.86039801k 10° 1.35423237& 10° 1.21724753% 10*
12 —1.603723348& 107 5.55719090& 10° 2.79715623% 10° —2.51487528% 10*

no previously reported data f&,. There is no evidence of bic lattice to be of thed=4 universality class withy=1.0.

any anomaly inE, at the supposed phase transition point,In Table Il we show estimates af (x=1t/J) obtained in this

nor would we expect this. way. As can be seen, a number of consistent estimates of the
The most direct way of identifying any critical point pole are obtained, particularly for the series for the conduc-

(t/3), is from poles of Dlog Padapproximants3 However  tion electron susceptibility. We might reasonably estimate for

the series are irregulaiTable ) and, perhaps not surpris- the square latticet(J).=0.68+0.02, and for the simple cu-

ingly, this yields no consistent results. However if we know, bic lattice ¢/J).=0.46+0.01, where the error are subjective

or assume, the value of the critical exponenthen biased confidence limits. These correspond td/t).=1.48, and

estimates of the critical point can be obtained from direc2.15 for the 2D and 3D cases, values which are consistent

Padeapproximants to the series fgt'”, which should have with previous estimates.

a simple pole. Here, we expect the transition for the square An alternative approach is to evaluate the staggered mag-

lattice to be of the same universality class asdke3 clas-  netization and susceptibility directly via integrated differen-

sical Heisenberg model witly=1.4, and for the simple cu- tial approximants and to look at the behavior as a function of

E,/J

t/J

FIG. 4. The ground-state energy for the square latg¢c@nd for simple cubic latticé). The solid lines are different orders of integrated
differential approximants to the dimer expansion series, while the points with errorbars are the results from Ising expansions.
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TABLE II. Estimates ofx?=(t/J)2 from poles of{N,D] Padeapproximants to the series fag7. The
indexc,| denote the series for conduction electron, localized spin, respectively.

Square Lattice Approximant x2 Approximant x2

y=1.4 [2,3]. 0.45378 [3,3], 0.46298
[3,3], 0.46990 [2,4], 0.46350

Estimatex=0.46+0.02, {/J).=0.68+0.02

Simple Cubic Lattice Approximant x2 Approximant x2

y=1.0 [1,1], 0.20647 [0,2]. 0.20888
[2,2]. 0.21660 [2,2], 0.21637
[1,3], 0.22094 [3,2], 0.19300
[2,3], 0.20601 [4,2], 0.19480
[3,3], 0.20798 [3,3], 0.20078
[2,4], 0.20809

Estimatex?=0.21+0.01, ¢/J).=0.46+0.01

t/J. The staggered magnetizations shown in Fig. 5 are obwith the direct Pad@pproximant estimates.

tained from an Ising expansions, starting from an antiferro- Next, we consider the spin triplet and one-h@ieasipar-
magnetically ordered state. These are relatively constant fdicle) excitations. Figure (&) shows the full spin triplet dis-
t/3>1, but drop sharply to zero arountl~0.6—-0.7 in 2D  persion curve fot/J=0.25,0.4, both in the Kondo phase, for
case and/J~0.5 in 3D case, confirming the existence of a2D case. For comparison we also show variational Monte
transition to a magnetically disordered phase. The error limCarlo results of Wangt al*® The lowest spin excitation is at
its are rather large, and it is not possible to determine thé, ), and the spin gap clearly decreaseg asreases.
transition point with high precision in this way. Our magne- In Fig. 7(b) we show the dispersion relation for the one-
tization curves in 2D are very similar to the Quantum Montehole excitation, again far/J=0.25,0.4, for the 2D case. The
Carlo (QMC) results'® although our conduction electron minimum occurs ak=(0,0), with a maximum at ¢,).
magnetization is much smaller. We show the QMC resultsThe overall shape is qualitatively similar to the mean-field
for a comparison. In Fig. 6 we show curves of the inverseresults of Ref. 9. We note the large error bars nears() for
susceptibilities, in the Kondo phase, obtained from dimett/J=0.4.

expansions. Again, there is a clear evidence for the transi- Series have also been computed directly for the spin gap
tion, but it is difficult to locate precisely. Our best estimatesand quasiparticle gap, for both 2D and 3D cases. Analysis is
from these figures would bigJ=0.75+0.10 in 2D case and shown in Fig. 8. The data clearly show the spin gap decreas-
t/J=0.50+0.05 in 3D case, less precise but quite consistening to zero at a critical pointt(J)., the position being con-

O e LA L e B e B L L I R R |
C () " (b) -
L M J
i 04 ! —
04 — | i
g | ] i 1
Fg B N ] = i 1
« 02 L { | 02 —
E - 4 u -
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0.5 1 1.6 2 0
t/J t/J

FIG. 5. The staggered magnetizations for both localized spihg @nd conduction electrondV(;) for the square latticéa) and for
simple cubic latticgb). Also shown for square lattice are the staggered monmardbtained from Monte Carlo calculatioiRef.10.
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FIG. 6. The inverse antiferromagnetic spin susceptibilities for both lggdlgnd intinerant spinsy(;) for the square latticéa) and for
simple cubic latticeb).

Q

sistent with our estimates above. For the square lattice, otfactor of 5x 10* increase in CPU time to extend the series

results are in an excellent agreement with the QMC resultsfrom A8 to A2

For the 3D lattice, we are unaware of any previous results for Qur analysis supports the existence of a quantum critical

either energy gap. point in the 2D and 3D cases, separating a Kondo spin-liquid

phase(largeJ) from an ordered phase. Our estimates for the

critical point are {/J)=0.68+0.02, 0.46-0.01 in 2D and

3D cases, respectively. These results are from direct Pade
We have used linked-cluster series methods in a compreapproximants to the series fg’”, and hence are biased by,

hensive study of zero-temperature properties of the Konddut not particularly sensitive to, the choice pf The critical

lattice model at half filling, for the linear chain, square lat- point estimate in 2D agrees very well with previous esti-

tice, and simple cubic lattice. Our work significantly extendsmates, while in 3D we find a slightly higher value d¥/f).,

a previous series stutfyfor the ground-state energy and sus-2.17, compared with 1.833 from mean field.

ceptibility, and presents series results for the magnetization, Our results for the spin and quasipatrticle excitation spec-

spin and quasiparticle dispersion relations, and energy gapsa in two and three dimensions suggest that the spin excita-

Wherever possible we have compared our results with calcuion becomes gapless at the quantum critical point, while the

lations by other methods and, in general, find excellentharge excitations remain gapped. Thus the appropriate low-

agreement. It may interest the reader to know that there ienergy theory will be the nonlinear sigma model. We have

IV. SUMMARY AND DISCUSSION

[
1 1.5 |
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F 1 _ ot
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FIG. 7. The triplet spin excitation spectru@ and quasiparticle excitation spectruiy) for the square lattice. The open points with
errorbars are variational Monte Carlo results for a@® lattice (Ref. 18.
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FIG. 8. The triplet spin gap/J and quasiparticle gap,,/J for the square latticéa) and for simple cubic latticéb) obtained from
different orders of integrated differential approximants. The points are the results of the Quantum Monte CanRetu§).

implicitly assumed this in our estimates of the critical points.made. In particular, they agree with our series for the anti-

We have not yet analyzed the data for the frustrated close€erromagnetic spin susceptibilities on the simple cubic lattice

packed triangular and face-centered cubic lattices, or for they their maximum order X%, where we had found a dis-

body-centered cubic lattice, which we have also computederepancy with Ref. 11.

Nor have we explored the possible existence of bound states,

or the region away from half filling. Recent developments in

series metho_dg'z‘_’ make this possible, and we intend to pur- ACKNOWLEDGMENTS

sue these directions, as well as others, in future work. Of

particular interest, here would be do detect changes in the This work forms part of a research project supported by a

nature of the quantum critical point with finite doping. grant from the Australian Research Council. The computa-

Whether this can be done with series methods remains proltions were performed on an AlphaServer SC computer. We

lematic. are grateful for the computing resources provided by the
After this work was submitted, we learnt of the related, asAustralian Partnership for Advanced ComputitgPAC)

yet unpublished, work of Trebst al?! Their results appear National Facility. We thank Simon Trebst for drawing our

to agree with our in all the cases where a comparison can battention to the work of the Bonn group.

APPENDIX
The dimer series of ground-state energy for 1D KLM are
Eo/NJ=—3/4—2/3\%—14/45\*+0.711 468 547 94°+ 0.192 569 215 65°— 2.852 841 056 81+ 2.280 948 423 § 12
+12.882 850 521 1%~ 30.446 998 09¥ 16— 43.303 667 770+ 270.262 597 765°°+ O(A ?). (A1)

The triplet spin excitation spectrum for 1D KLM are

8\2 2356\°

Ag(k)/I=1— = tTEE 181.930 78\°+2152.5066.2— 27 691.038 19+ 329 428.5445°— (2.591 700 2 10°)\ 14

4
+305.675.5—4076.18.8+ 55 158.531 28%'°

27
—(2.75912< 10")\ 10+ (2.231 2K 10°)\ 18+ | 4 \2—

4
—203.122°

30
— 694363 1%+ 6.4442< 10PN\ 14+ (2.203 85¢ 107)\ 16— (3.674 1K 109)>\18> cogk)+ ( 57
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+3199.476 1358—50109. R0+ 729 779.9658*%— (8.927 78< 10°) A 14+ (5.423 26< 107)\ 6

+(1.72156<10°)\*®| cog 2 k) +[71.0803.6— 1809.22 8+ 35 912.6434 °— 640789, 12

+(1.0026x 10")\ 14— (1.220 82< 10%)\ 16+ (4.1027x 10°) A *8]cog 3 k) +[521.400 048 98— 17575.*°
+416938.0778%—(8.345 62 10°)\ 14+ (1.409 4K 10°) A 16— (1.770 8% 10°)\ ¥ coq 4 k)

+[4305.106.1°— 178 962 12+ (4.919 52< 10°)\ 14— (1.094 05< 10¥)\ 16+ (2.001 28< 10°)\ 8] cog 5 k)
+[38024.84312—(1.87593< 10°) A 14+ (5.855 15< 10") A 16— (1.435 0% 10°) A *¥]coq 6 k)
+[351790.5728%— (2.005 5% 10")A 26+ (7.002 12X 10°) A *¥]coq 7 k) +[ (3.364 97 1(P)\ 16

—(2.17486< 10°)\1®]cog 8 k) +(3.300 8% 10") A Bcog 9 k). (A2)
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