
PHYSICAL REVIEW B 67, 214406 ~2003!
Zero-temperature series expansions for the Kondo lattice model at half filling

Weihong Zheng* and J. Oitmaa†

School of Physics, The University of New South Wales, Sydney NSW 2052, Australia
~Received 11 September 2002; published 6 June 2003!

We present results for the Kondo lattice model of strongly correlated electrons, in one, two, and three
dimensions, obtained from high-order linked-cluster series expansions. Results are given for various ground-
state properties at half filling, and for spin and charge excitations. Estimates for the location of the quantum
critical point in the square and simple cubic lattices are made.
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I. INTRODUCTION

The Kondo lattice model~KLM !, described by the usua
Hamiltonian

H52t (
^ i j &s

~cis
† cj s1H.c.!1J(

i
Si•si , ~1!

represents a band of conduction electrons, interacting v
spin-exchange term with a set of immobiles5 1

2 spinsSi ( f
electrons!.

The model has been extensively studied in connec
with a class of materials known as ‘‘Kondo insulators’’ (J
.0),1,2 and in connection with the manganites (J,0).3 De-
spite the apparent simplicity of the model, in which neith
the conduction electrons nor the localized spins interact
rectly among themselves, the spin exchange leads t
strongly correlated many-body system. No exact results
known for either ground-state or thermodynamic proper
for generalJ/t, in any dimension.

The model incorporates two competing physical p
cesses. In the strong-coupling~large uJu) limit, the conduc-
tion electrons are ‘‘frozen out’’ via the formation of loca
singlets (J.0) or triplets (J,0). In either case there will be
a gap to spin excitations and spin correlations will be sh
ranged. On the other hand, at weak coupling, the conduc
electrons can induce the usual RKKY interaction betwe
localized spins, giving rise to possible magnetically orde
phases with no spin gap and long-range correlations. In
dimension there will be a smooth crossover from largeuJu to
small uJu behavior, but in higher dimension a quantum pha
transition is expected.

There is a considerable interest in the model in connec
with experiments on heavy fermion materials, where anom
lous behavior is seen in the vicinity of the antiferromagne
quantum critical point.4 A popular scenario,5 within the con-
text of the Kondo lattice model, invokes the role of antife
romagnetic spin fluctuations coupling to the Fermi liqu
properties. While we do not address this connection here
hope our results may be of some relevance in this area.

A great deal of work has been carried out on the o
dimensional model, using a variety of analytic and numeri
methods, and we refer the reader to a recent review.6 In
higher dimension there have been mean-field approache7–9

quantum Monte Carlo calculations,10 and a series expansio
study.11 These studies, which are all for the half filled cas
0163-1829/2003/67~21!/214406~8!/$20.00 67 2144
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conclude that a quantum phase transition, at which the s
gap vanishes continuously, occurs at (J/t)c.1.4560.05 in
the 2D J.0 case, while Refs. 9 and 11 give (J/t)c.1.833
and 2.0, respectively, for the 3DJ.0 case. There have no
been, to the best of our knowledge, any similar studies
the case of ferromagnetic coupling.

Our aim in this paper is to study the Kondo lattice mod
in one, two, and three dimensions via series expansion m
ods. We have considerably extended the calculations of
11, by obtaining longer series, by using also expansi
about the Ising limit, and by studying also the energies
elementary excitations.

Linked-cluster series expansions have been used suc
fully for many years to study strongly interacting lattic
models. A recent review12 describes the basic approach a
some of the results which have been obtained. The metho
applicable in any dimension, is particularly suited to locati
critical points, and is free from finite-size corrections or m
nus sign problems which hamper other numerical
proaches. On the other hand, a good convergence ma
limited to particular regions of the phase diagram.

The Hamiltonian is written in the generic formH5H0
1lV, whereH0 has a simple known ground state. The r
maining term~s! in H are treated perturbatively, to high orde
In this way the ground-state energy, correlations, susce
bilities, etc., are expressed as power series inl. These are
then analyzed by standard methods.13 An extension of the
basic linked-cluster method12,14 allows the computation of
the full dispersion relation for elementary excitations, whi
can yield energy gaps.

For the present model, the simplest choice is to takeH0
5J( iSi•si , a sum of single-site exchange terms. The unp
turbed ground state is then a simple product state of di
states. This is the approached used in Ref. 11, and also
first method here. We refer to these as ‘‘dimer expansion
An alternative is to write the exchange term as

J(
i

FSi
zsi

z1
1

2
~Si

1si
21Si

2si
1!G ~2!

and to take only the first term asH0, In such an ‘‘Ising
expansion’’ both the spin-fluctuation and hopping terms
treated perturbatively. To remove the degeneracy inH0, we
add following two terms for conduction spins intoH0:
©2003 The American Physical Society06-1
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J8(̂
i j &

~si
zsj

z11/4!1h(
i

@~21! isi
z11/2# ~3!

and subtract them from the perturbation term, so the ove
Hamiltonian is

H5H01lV ~4!

H05J(
i

~Si
zsi

z!1J8(̂
i j &

~si
zsj

z11/4!1h(
i

@~21! isi
z11/2#

~5!

V5J(
i

~Si
xsi

x1Si
ysi

y!2J8(̂
i j &

~si
zsj

z11/4!

2h/2(
i

@~21! isi
z11/2#2t (

^ i j &s
~cis

1 cj s1H.c.!.

~6!

Series in power ofl are computed for given values o
J,t,J8, and h, and extrapolated tol51 where the original
Hamiltonian is recovered. Such expansions are approp
for magnetically ordered phases, although they can also y
accurate results in other cases. It must be stressed tha
both forms of expansion, the unperturbed ground state h
conduction electron at each site, and the perturbation c
serves electron number. Thus, the system is at half filli
There is no simple way to include the doped case within
formalism.

In the remainder of this paper, we will present and disc
our results for the one-dimensional~1D! case~Sec. II!, for
the 2D square lattice, and for the 3D simple cubic latt
~Sec. III!. An overall summary is given at the end.

II. THE 1D KONDO LATTICE MODEL

Using the dimer expansion approach, we have compu
series for the ground-state energy in the form

E0 /NJ5(
s50

`

es~ t/J!s ~7!

and the coefficients, to order 20, are given in the Append
Our coefficients agree exactly with Ref. 11, and add th
new terms~odd coefficients vanish for this series!. Integrated
differential approximants13 are used to evaluate the series f
particular t/J, and the resulting energy is shown in Fig.
The different approximants agree well up tot/J.1.2, but
then splay outwards. We also show, for a comparison,
energy obtained from an early DMRG calculation.15

Next we turn to the spin excitations. In the stron
coupling limit, a spin excitation corresponds to a spin trip
at one site, which is able to propagate coherently via
conduction electron hoping term. The dispersion relation
be expressed in the form

Ds~k!5(
n

tn~l!cosnk, ~8!
21440
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where the quantitiestn(l) are expressed as power series
l5t/J. For the 1D case we have computed these up tn
59 ~order 18 inl), and for the interested reader we provid
this data in the Appendix. Figure 2~a! shows the triplet spin-
excitation energy versusk, for value of t/J50.25,0.4,0.5.
For t/J50 the excitation will, of course, have energyJ and
will be dispersionless. Increasing the hopping amplitu
gives increasing bandwidth, with the energy atk50 raised
slightly and a minimum atk5p. We are unaware of any
previous reported calculations of this dispersion relati
apart from the second-order result given in Ref. 6.

It is worth noting that the error bars shown in Fig. 2, a
in subsequent figures, represent ‘‘confidence limits’’ on
based on the degree of convergence among different app
mants. The large error bars neark50 for the largestt/J in
Fig. 2~a! reflect the irregularity of the corresponding serie

From Eq.~8! at k5p, we obtain a series inl for the spin
gap, which is again evaluated using integrated differen
approximants. Results are shown in Fig. 3. The series is w
converged up tot/J.1.1. For a comparison, we show sp
gaps calculated by DMRG calculation~Ref. 16! and a mean-
field approach.17 Agreement with DMRG is excellent ove
the range shown, while the mean-field method appear to
riously under estimate the size of the gap. All of the resu
including ours, are consistent with a spin gap that decrea
rapidly, but does not vanish untilJ50.

Next, we consider the so-called ‘‘quasiparticle’’ excit
tion, which we prefer to call a one-hole excitation. This co
responds to the removal of an electron from the half-fill
band and thus, in the strong-coupling limit, to a single loc
ized spin on one site with singlets on the others. Fort50,
the energy gap is thus 3J/4. For the 1D case, we have com
puted this series up to order 12 inl. Figure 2~b! shows the
one-hole excitation spectrum for valuest/J50.25, 0.4, and
0.5. The minimum occurs atk50 and the bandwidth seem
roughly proportional tot/J. We are, again, not aware of an
previous calculations of this dispersion curve. The serie

FIG. 1. The ground-state energy for the one-dimensional~1D!
Kondo lattice model. The lines represent different approximants
the series. The solid points are the DMRG results~Ref. 15!.
6-2
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FIG. 2. The triplet spin excitation spectrum~a! and one-hole~quasiparticle! excitation spectrum~b! for 1D case.
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k50 allow us to compute the one-hole gap, and our res
are plotted in Fig. 3. A notable feature is thatDqp becomes
approximately constant fort/J.0.5. We know of no previ-
ous calculations for the one-hole gap apart, again, from
second-order strong-coupling result in Ref. 6. There is
another gap, the ‘‘charge gap,’’ which corresponds to an
citation in which the system remains half filled, but with
doubly occupied site and an empty site. We are not abl
compute this via series, at this stage. However, in the stro
coupling limit Dc52Dqp ~this is valid6 to at least second
order int/J). The charge gap has been computed by DMR
calculation,16 and we show in Fig. 3, the result forDc/2.
Evidently, for larger hopping parameterDc /Dqp,2.

FIG. 3. The triplet spin gapDs /J and quasiparticle gapDqp /J
vs t/J obtained from different integrated differential approximan
The points are the results of density matrix renormalization gr
~DMRG! calculation~Ref. 16! for Ds /J ~points with errorbars! and
Dc/2J ~solid circles!. The short dashed line is the result of a mea
field approach~Ref. 17!. The inset gives a logarithmic plot fo
Ds /t.
21440
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III. THE SQUARE AND SIMPLE CUBIC LATTICES

In two or more spatial dimensions, it is believed that t
Kondo lattice model has a true quantum phase transitio
some (J/t)c , between a gapped spin-liquid phase and a sm
J magnetically ordered gapless phase. For the square la
quantum Monte Carlo simulations10 provide strong indica-
tions of a transition at (t/J)c.0.69, while a bond-operato
mean-field theory9 gives (t/J)c50.664 and 0.546 for the
square and simple cubic lattices, respectively. A previous
ries study11 has given (t/J)c.0.7 and 0.5, respectively
These latter estimates are relatively imprecise, and it see
worthwhile to investigate this using longer series.

We have derived dimer series for the square lattice for
following quantities: ground-state energyE0, antiferromag-
netic spin susceptibilities for both local and conduction sp
(x l and xc), and the triplet spin excitation spectrum~all to
order 12!, and the one-hole~‘‘quasiparticle’’! excitation
spectrum~to order 11!. This adds two nonzero terms to th
results of Ref. 11. The excitation series are new. In additi
we have computed Ising expansions for the ground-state
ergy and for the staggered magnetizations~for both local and
itinerant spins! to order 13. Series, to the same order, ha
been derived for the simple cubic lattice for all of the sam
quantities, except for the excitations, where we have o
computed the minimum gap rather than the full spectru
The dimer series for ground-state energyE0, antiferromag-
netic spin susceptibilities for both local and conduction sp
(x l andxc), and the minimum triplet spin gap are given
Table I. Our results agree completely with those of Ref.
for the square lattice but disagree for the simple cubic lat
susceptibilities beyond the fourth term. We have been una
to resolve this with the authors of Ref. 11, but we are con
dent that our results are correct.

We first show, in Fig. 4, our estimate of the ground-sta
energy, as a function oft, obtained from both dimer and Isin
expansions. Both series converge well for smallt, but the
Ising expansion has better convergence for largert. There are

.
p

-

6-3
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TABLE I. Series coefficients for dimer expansions for the ground energy per siteE0 /JN, the minimum triplet spin gapDs /J, and the
antiferromagnetic spin susceptibilities for both local and conduction spins (x l andxc). Nonzero coefficients (t/J)n up to ordern512 for
square lattice and simple cubic lattice are listed.

n E0 /JN Ds /J xc x l

square lattice
0 27.50000000031021 1.000000000 5.00000000031021 5.00000000031021

2 21.333333333 21.3333333333101 1.777777778 6.518518519
4 28.88888888931022 1.6118518523102 4.632888889 3.8509168723101

6 4.231487360 22.6407957673102 6.236968731 4.0675315513101

8 21.5198995303101 21.0721246323105 4.3401341293101 6.6874137973101

10 8.90072308931021 5.4956991373106 1.0042325413102 1.8232890073103

12 3.1099715343102 21.5612590113108 26.3848975153102 24.6548645543103

simple cubic lattice
0 27.50000000031021 1.000000000 5.00000000031021 5.00000000031021

2 22.000000000 22.0000000003101 2.666666667 9.777777778
4 6.66666666731021 3.0631111113102 1.2915555563101 8.4437530863101

6 7.834807760 1.0602377713103 5.1325875143101 2.3993900353102

8 27.1147912453101 22.7606581233105 3.5109469823102 1.6845886353103

10 3.4983684863102 3.8603980113106 1.3542323783103 1.2172475373104

12 21.6037233483102 5.5571909003108 2.7971562373103 22.5148752893104
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no previously reported data forE0. There is no evidence o
any anomaly inE0 at the supposed phase transition poi
nor would we expect this.

The most direct way of identifying any critical poin
(t/J)c is from poles of Dlog Pade´ approximants.13 However
the series are irregular~Table I! and, perhaps not surpris
ingly, this yields no consistent results. However if we kno
or assume, the value of the critical exponentg then biased
estimates of the critical point can be obtained from dir
Padéapproximants to the series forx1/g, which should have
a simple pole. Here, we expect the transition for the squ
lattice to be of the same universality class as thed53 clas-
sical Heisenberg model withg.1.4, and for the simple cu
21440
,

,

t

re

bic lattice to be of thed54 universality class withg51.0.
In Table II we show estimates ofxc

2 (x5t/J) obtained in this
way. As can be seen, a number of consistent estimates o
pole are obtained, particularly for the series for the cond
tion electron susceptibility. We might reasonably estimate
the square lattice (t/J)c50.6860.02, and for the simple cu
bic lattice (t/J)c50.4660.01, where the error are subjectiv
confidence limits. These correspond to (J/t)c51.48, and
2.15 for the 2D and 3D cases, values which are consis
with previous estimates.

An alternative approach is to evaluate the staggered m
netization and susceptibility directly via integrated differe
tial approximants and to look at the behavior as a function
d
FIG. 4. The ground-state energy for the square lattice~a! and for simple cubic lattice~b!. The solid lines are different orders of integrate
differential approximants to the dimer expansion series, while the points with errorbars are the results from Ising expansions.
6-4
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TABLE II. Estimates ofxc
25(t/J)c

2 from poles of@N,D# Padéapproximants to the series forxc,l
1/g . The

index c,l denote the series for conduction electron, localized spin, respectively.

Square Lattice Approximant xc
2 Approximant xc

2

g51.4 @2,3#c 0.45378 @3,3#c 0.46298
@3,3# l 0.46990 @2,4#c 0.46350

Estimatexc
250.4660.02, (t/J)c50.6860.02

Simple Cubic Lattice Approximant xc
2 Approximant xc

2

g51.0 @1,1#c 0.20647 @0,2#c 0.20888
@2,2#c 0.21660 @2,2# l 0.21637
@1,3#c 0.22094 @3,2#c 0.19300
@2,3#c 0.20601 @4,2#c 0.19480
@3,3#c 0.20798 @3,3# l 0.20078
@2,4#c 0.20809

Estimatexc
250.2160.01, (t/J)c50.4660.01
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t/J. The staggered magnetizations shown in Fig. 5 are
tained from an Ising expansions, starting from an antifer
magnetically ordered state. These are relatively constan
t/J.1, but drop sharply to zero aroundt/J;0.6–0.7 in 2D
case andt/J;0.5 in 3D case, confirming the existence of
transition to a magnetically disordered phase. The error l
its are rather large, and it is not possible to determine
transition point with high precision in this way. Our magn
tization curves in 2D are very similar to the Quantum Mon
Carlo ~QMC! results,10 although our conduction electro
magnetization is much smaller. We show the QMC resu
for a comparison. In Fig. 6 we show curves of the inve
susceptibilities, in the Kondo phase, obtained from dim
expansions. Again, there is a clear evidence for the tra
tion, but it is difficult to locate precisely. Our best estimat
from these figures would bet/J.0.7560.10 in 2D case and
t/J.0.5060.05 in 3D case, less precise but quite consist
21440
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or

-
e

s
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r
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t

with the direct Pade´ approximant estimates.
Next, we consider the spin triplet and one-hole~quasipar-

ticle! excitations. Figure 7~a! shows the full spin triplet dis-
persion curve fort/J50.25,0.4, both in the Kondo phase, fo
2D case. For comparison we also show variational Mo
Carlo results of Wanget al.18 The lowest spin excitation is a
(p,p), and the spin gap clearly decreases ast increases.

In Fig. 7~b! we show the dispersion relation for the on
hole excitation, again fort/J50.25,0.4, for the 2D case. Th
minimum occurs atk5(0,0), with a maximum at (p,p).
The overall shape is qualitatively similar to the mean-fie
results of Ref. 9. We note the large error bars near (p,p) for
t/J50.4.

Series have also been computed directly for the spin
and quasiparticle gap, for both 2D and 3D cases. Analysi
shown in Fig. 8. The data clearly show the spin gap decre
ing to zero at a critical point (t/J)c , the position being con-
FIG. 5. The staggered magnetizations for both localized spins (Ml) and conduction electrons (Mc) for the square lattice~a! and for
simple cubic lattice~b!. Also shown for square lattice are the staggered momentsm obtained from Monte Carlo calculations~Ref.10!.
6-5



WEIHONG ZHENG AND J. OITMAA PHYSICAL REVIEW B67, 214406 ~2003!
FIG. 6. The inverse antiferromagnetic spin susceptibilities for both local (x l) and intinerant spins (xc) for the square lattice~a! and for
simple cubic lattice~b!.
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sistent with our estimates above. For the square lattice,
results are in an excellent agreement with the QMC resu
For the 3D lattice, we are unaware of any previous results
either energy gap.

IV. SUMMARY AND DISCUSSION

We have used linked-cluster series methods in a com
hensive study of zero-temperature properties of the Ko
lattice model at half filling, for the linear chain, square la
tice, and simple cubic lattice. Our work significantly exten
a previous series study11 for the ground-state energy and su
ceptibility, and presents series results for the magnetizat
spin and quasiparticle dispersion relations, and energy g
Wherever possible we have compared our results with ca
lations by other methods and, in general, find excell
agreement. It may interest the reader to know that ther
21440
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factor of 53104 increase in CPU time to extend the seri
from l8 to l12.

Our analysis supports the existence of a quantum crit
point in the 2D and 3D cases, separating a Kondo spin-liq
phase~largeJ) from an ordered phase. Our estimates for t
critical point are (t/J)50.6860.02, 0.4660.01 in 2D and
3D cases, respectively. These results are from direct P´
approximants to the series forx1/g, and hence are biased b
but not particularly sensitive to, the choice ofg. The critical
point estimate in 2D agrees very well with previous es
mates, while in 3D we find a slightly higher value of (J/t)c ,
2.17, compared with 1.833 from mean field.

Our results for the spin and quasiparticle excitation sp
tra in two and three dimensions suggest that the spin exc
tion becomes gapless at the quantum critical point, while
charge excitations remain gapped. Thus the appropriate
energy theory will be the nonlinear sigma model. We ha
th
FIG. 7. The triplet spin excitation spectrum~a! and quasiparticle excitation spectrum~b! for the square lattice. The open points wi
errorbars are variational Monte Carlo results for a 636 lattice ~Ref. 18!.
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FIG. 8. The triplet spin gapDs /J and quasiparticle gapDqp /J for the square lattice~a! and for simple cubic lattice~b! obtained from
different orders of integrated differential approximants. The points are the results of the Quantum Monte Carlo study~Ref. 10!.
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implicitly assumed this in our estimates of the critical poin
We have not yet analyzed the data for the frustrated clo
packed triangular and face-centered cubic lattices, or for
body-centered cubic lattice, which we have also compu
Nor have we explored the possible existence of bound sta
or the region away from half filling. Recent developments
series methods19,20 make this possible, and we intend to pu
sue these directions, as well as others, in future work.
particular interest, here would be do detect changes in
nature of the quantum critical point with finite dopin
Whether this can be done with series methods remains p
lematic.

After this work was submitted, we learnt of the related,
yet unpublished, work of Trebstet al.21 Their results appea
to agree with our in all the cases where a comparison ca
21440
.
e-
e

d.
s,

f
e

b-

s

be

made. In particular, they agree with our series for the a
ferromagnetic spin susceptibilities on the simple cubic latt
to their maximum order (l10), where we had found a dis
crepancy with Ref. 11.
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APPENDIX

The dimer series of ground-state energy for 1D KLM are

E0 /NJ523/422/3l2214/45l410.711 468 547 91l610.192 569 215 65l822.852 841 056 9l1012.280 948 423 5l12

112.882 850 521l14230.446 998 097l16243.303 667 770l181270.262 597 75l201O~l22!. ~A1!

The triplet spin excitation spectrum for 1D KLM are

Ds~k!/J512
8 l2

3
1

2356l4

135
2181.930 78l612152.5066l8227 691.038l101329 428.5445l122~2.591 700 23106!l14

2~2.759 123107!l161~2.231 293109!l181S 4 l22
272l4

9
1305.675l624076.18l8155 158.531 287l10

2694363l1216.44423106l141~2.203 853107!l162~3.674 193109!l18D cos~k!1S 308l4

27
2203.122l6
6-7
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13199.476 135l8250 109.7l101729 779.9656l122~8.927 783106!l141~5.423 263107!l16

1~1.721 563109!l18D cos~2 k!1@71.0803l621809.21l8135 912.6434l102640789l12

1~1.00263107!l142~1.220 823108!l161~4.10273108!l18#cos~3 k!1@521.400 048 9l8217575l10

1416 938.0779l122~8.345 623106!l141~1.409 493108!l162~1.770 873109!l18#cos~4 k!

1@4305.106l102178 962l121~4.919 523106!l142~1.094 053108!l161~2.001 283109!l18#cos~5 k!

1@38 024.843l122~1.875 933106!l141~5.855 153107!l162~1.435 073109!l18#cos~6 k!
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4H. von Löhneysen, T. Pietrus, G. Portisch, H.G. Schlager,
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