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No spin-glass transition in the mobile-bond model

Alexander K. Hartmann
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~Received 3 February 2003; published 5 June 2003!

The recently introduced ‘‘mobile-bond’’ model for two-dimensional spin glasses is studied. The model is
characterized by an annealing temperatureTq . On the basis of Monte Carlo simulations of small systems it has
been claimed that this model exhibits a nontrivial spin-glass transition at finite temperature for small values of
Tq . Here the model is studied by means of exact ground-state calculations of large systems up toN52562.
The scaling of domain-wall energies is investigated as a function of the system size. For small valuesTq

,0.95 the system behaves similar to a~gauge-transformed! ferromagnet having a small fraction of frustrated
plaquettes. ForTq>0.95 the system behaves similar to the standard two-dimensional6J spin glass, i.e., it
doesnot exhibit a phase transition atT.0.
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Spin glasses1 are the prototype model for disordered sy
tems investigated extensively during the last three decade
statistical physics. These systems exhibit complex ene
landscapes resulting in many interesting phenomena suc
glassy behavior and aging. Despite much effort, still ma
open questions exists. The question about the lower crit
dimension of Ising spin glasses had been discussed for q
a while.2–5 Now it is clear that in two dimensions no stab
spin-glass phase at finite temperature exists.6–10This has mo-
tivated the search for other two-dimensional spin-glass-
systems exhibiting a Tc.0.11 Recently Sunko has
proposed12 a ‘‘mobile-bond’’ model where quenched
disorder realizations of6J spin glasses are created by
annealed simulation, allowing the bonds to move. The s
tem is equilibrated at high temperature, followed by
quench to a temperatureTq . Sunko has performed Mont
Carlo simulations of systems up to sizeL516 and claimed
that for low quenching temperaturesTq the model exhibits a
spin-glass transition at finite temperatureTc.0.

In this article, the model is studied by means of ex
ground-state calculations of large systems up toL5256. The
scaling of domain-wall energies2,3,13 is studied as a function
of the system size. It is shown here that the model exhi
no spin-glass transition at finite temperature. For small v
ues of Tq,0.95 the system exhibits ferromagnetic ord
while at Tq a transition to the normal two-dimensional spi
glass behavior is found, i.e.,Tc50.

The model consists ofN5L2 Ising spinsSi561 on a
square lattice with the Hamiltonian

H52(
^ i , j &

Ji j SiSj , ~1!

where the sum runs over all pairs of nearest neighbors^ i , j &
and theJi j 56J are quenched random variables.

The realizations are prepared exactly in the same wa
in Ref. 12. For each realization, firstN bonds with strength
1J andN bonds with strength2J are distributed randomly
among all 2N bonds. Then the values of all spins are s
randomly to orientationsSi561. Next, an annealed Mont
Carlo ~MC! simulation14 is performed. This means, at eac
step either a spin is allowed to flip or two bonds incident
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the same site are allowed to exchange their positions. E
choice occurs with probability 0.5. Each step is accep
with the usual Metropolis probability depending on the e
ergy change according to the Hamiltonian~1!. First, the sys-
tem is equilibrated at high temperatureT55 for 1000 MC
steps per spin~MCS!.15 Finally the system is quenched t
T5Tq and simulated for further 1000 MCS. The result is
realization of the disorder which can be used for furth
treatment, here ground-state calculations are applied.

In greater than two dimensions, or in the presence o
magnetic field, the exact calculation of spin-glass grou
states belongs to the class of NP-hard problems.16,17 This
means that only algorithms with exponentially increasi
running time are known. However, for the special case o
planar system without magnetic field, e.g., a square lat
with periodic boundary conditions in at most one directio
there are efficient polynomial-time ‘‘matching’’ algorithms.18

The basic idea is to represent each realization of the diso
by its frustrated plaquettes.19 Pairs of frustrated plaquette
are connected by paths in the lattice and the weight of a p
is defined by the sum of the absolute values of the coup
constants which are crossed by the path. A ground state
responds to the set of paths with minimum total weight, su
that each frustrated plaquette is connected to exactly
other frustrated plaquette. This is called a minimum-weig
perfect matching. The bonds which are crossed by paths
necting the frustrated plaquettes are unsatisfied in the gro
state, and all other bonds are satisfied.

For the calculation of the minimum-weight perfect matc
ing, efficient polynomial-time algorithms are available.20,21

Recently, an implementation has been presented,22 where
ground-state energies of large systems of sizeN<18002

were calculated. Here, an algorithm from the LEDA library23

has been applied, which allows a quick implementation
was not necessary to go beyondN52562 ~with is much
larger thanN5162 in the original work12! to obtain reliable
results.

To study whether an ordered phase is stable at finite t
peratures, the following procedure is usua
applied.2,3,6,7,11,24,25First a ground state of the system is ca
culated. Then the system is perturbed to introduce a dom
wall and the new ground-state energy is evaluated. Typica
©2003 The American Physical Society04-1
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the system initially has periodic boundary conditions in bo
directions, and the perturbation involves replacing perio
by antiperiodic boundary conditions in one direction. T
domain-wall energyDE is given by the difference of the two
ground-state energies. In case the model exhibits long-ra
ferromagnetic order at nonzero temperatures, the dom
wall energy, averaged over many independent samples,
to increase with system size. For example, for a pured
ferromagnet, the domain wall consists of a straight line,
sulting inDE;L. For a spin glass, none of the ground sta
with periodic and antiperiodic boundary conditions hasa pri-
ori a lower energy. Hence one studies the absolute valu
the domain-wall energy to detect whether the systems ex
its spin-glass ordering at finite temperatures.

However, we cannot apply the matching algorithm f
boundary conditions which ‘‘wrap around’’ in both direc
tions. For this reason, here the periodic boundary conditi
in the y direction are broken for each realization~by setting
the bonds connecting the first and the last row to zero!. This
has no influence on the fact of whether the systems orde
not because the change of the boundary conditions to cr
the domain walls occurs in thex direction perpendicular to
the open boundaries.

Here system sizesL54,6,8, . . . 192,256 are considered
For each size, 1000 independent realizations of the diso
were generated for quenching temperaturesTq
50.1, 0.9, 0.95, 1.0 and 1.5. Then ground states with p
odic ~P! and antiperiodic~AP! boundary conditions inx di-
rection were calculated using the exact matching algorith
resulting in ground-state energiesEP

0 , respectively,EAP
0 . The

change in the boundary conditions introduces a domain w
in each realization with energyDE5EAP

0 2EP
0 .

First, we consider a very low quenching temperatureTq
50.1, which was claimed in Ref. 12 to exhibit a spin-gla
transition atTc /J52.22(1) and no ferromagnetic order.
Fig. 1 the distribitionP(DE,L) over the disorder of the
domain-wall energies is displayed for different system si
L. Clearly, the domain-wall energies grow strongly with sy
tem size, which is an indicator for ferromagnetic order. B

FIG. 1. DistributionP(DE,L) of domain-wall energies forTq

50.1 and system sizesL58,32,64,128,256.
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low ~see Fig. 4! it is shown that indeed the disorder avera
^DE& grows linearly withL, as in the normal ferromagne
But the model exhibits no global magnetic moment, as fou
already in Ref. 12. This is due to the fact that 50% of
bonds are antiferromagnetic. Nevertheless, the model
haves similar to a ferromagnet. The reason is that the bo
are distributed in the system such that only few frustra
plaquettes are present. Hence, each realization can
mapped via a local gauge transformation on a ferromag
with a small number of antiferromagnetic bonds. This e
plains the fact that in Ref. 12 the critical exponent of t
correlation length found atTc /J52.22 was indeed that o
the pure ferromagnet.

Next, a large quenching temperatureTq51.5 is consid-
ered. In Fig. 2 again the distribution of domain-wall energ
for different sizes are shown. For large sizes, the distrubti
are centered aroundDE50 indicating the absence of ferro
magnetic order. Furthermore, the width of the distributio
decreases slightly with increasing system size~see inset!,
which shows that spin-glass order is not stable against t
mal fluctuations. This is the usual situation found for t
two-dimensional6J spin glass7,8 ~havingTc /J50).

To understand the behavior of the system better, next
analyzed as a function ofTq . The behavior is probably
mainly determined by the fraction of frustrated plauqettes
Fig. 3 the average fraction of frustrated plaquettes of
quenched realizations is shown as a function ofTq . This can
be compared with the standard6J random bond mode
~with parameterpP@0,1#), which has on average 2Np anti-
ferromagnetic and 2N(12p) ferromagnetic bonds. This re
sults in an average fraction

pf54p~12p!@p21~12p!2# ~2!

of frustrated plaquettes.26 For the6J model, a ferromagne
spin-glass (Tc50) transition occurs7,27–30nearp50.11 were
xf(0.11)'0.31. This corresponds to a quenching tempe
ture Tq'0.95, see Fig. 3. Hence, for a comparison, simu
tions at p50.11 for the 6J model and atTq'0.95 for

FIG. 2. Distribution of domain-wall energies forTq51.5 and
system sizesL58,256. The inset shows the variance of the dis
bution as a function of system size.
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the ‘‘mobile-bond’’ model have been performed. Furthe
more both models were investigated for two other pairs
parameters exhibiting similar concentrations of frustra
plaquettes:Tq50.9; p50.1 andTq51.0; p50.12.

In Fig. 4 the mean valuêDE& of the domain-wall energy
is shown as a function of the system size forTq
50.1,0.9,0.95,1.0. ForTq50.1 a clear linear increase oc
curs, corresponding to a normal ferromagnet. ForTq
50.9 the domain-wall energy still increases with syste
size. The resulting values are very similar to the domain-w
energies found atp50.1 for the6J model. ForTq50.95
and Tq51 the mean domain-wall energies decrease a
function of the system size, hence no ferromagnetic or
persists. In these cases the data is almost equal to the re
for p50.11, respectively,p50.12 of the6J model. Please

FIG. 3. Fraction of frustrated plaquettes present after the que
to temperatureTq as a function ofTq . The line is a guide to the
eyes only.

FIG. 4. Mean value of the domain-wall energy^DE& as a func-
tion of system size forTq50.1,0.9,0.95,1.0~displayed by lines!.
Also the domain-wall energy for the6J random-bond model with
concentrationsp50.1,0.11,0.12 of the antiferromagnetic bonds
shown~symbols!.
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note that it is not claimed here that, e.g.,Tq50.9 corresponds
exactly top50.1. But it seems certainly possible to chosep
such that the results for both models agree exactly.

In Fig. 5 the corresponding results for the mean^uDEu& of
the absolute value of the domain-wall energy is shown.
valuesT q<0.9 again an increase is observed, due to
increase of the mean~non absolute! ^DE&. If spin-glass or-
dering existed in a system, then^uDEu& would increasewith
growing L, while ^DE& has to decrease. ForTq50.95,1.0
^uDEu& increases only for small system sizes~which may
cause signs of a stable spin-glass phase when simulating
small systems!, while it starts todecreasewith L for larger
values ofL. Hence spin-glass order is destroyed for any fin
temperatureT.0. Please note that again the results atTq
50.9,0.95,1.0 agree well with the results atp
50.10,0.11,0.12 for the6J model.

To conclude, in this work the recently proposed ‘‘mobil
bond’’ model has been investigated. An exact ground-s
matching algorithm has been applied, allowing to study la
system sizes such asN52562. The model turns out to be
mainly equivalent to the6J random-bond model, which ha
been studied extensively in the past. Hence, for low value
the annealing temperatureTq , the model~corresponding to
small concentrationsp of the antiferromagnetic bonds in th
6J model! exhibits ferromagnetic order. The only differenc
is that the Sunko model exhibits no magnetic moment, si
by construction the number of ferromagnetic bonds equ
the number of antiferromagnetic bonds. Both models can
mapped onto each other by local gauge-transformations,
characteristic parameter is the fraction of frustrat
plaquettes.

For larger values ofTq>0.95 ~corresponding top
>0.11) the model displays the standard behavior of a tw
dimensional6J spin-glass, hence no order forT.0 exists.
To summarize, the ‘‘mobile-bond’’ model doesnot exhibit a

ch FIG. 5. Mean absolute value of the domain-wall energy^uDEu&
as a function of system size forTq50.1,0.9,0.95,1.0~displayed by
lines!. Also the absolute value of the domain-wall energy for t
6J random-bond model with concentrationsp50.1,0.11,0.12 of
the antiferromagnetic bonds is shown~symbols!.
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finite-temperature spin-glass transition at any value ofT q ,
opposed to the claims made in Ref. 12.
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