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No spin-glass transition in the mobile-bond model
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The recently introduced “mobile-bond” model for two-dimensional spin glasses is studied. The model is
characterized by an annealing temperailyye On the basis of Monte Carlo simulations of small systems it has
been claimed that this model exhibits a nontrivial spin-glass transition at finite temperature for small values of
T4 Here the model is studied by means of exact ground-state calculations of large systenis =p56& .

The scaling of domain-wall energies is investigated as a function of the system size. For smallTyalues
<0.95 the system behaves similar tégauge-transformederromagnet having a small fraction of frustrated
plaquettes. Folf;=0.95 the system behaves similar to the standard two-dimensiodadpin glass, i.e., it
doesnot exhibit a phase transition t>0.
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Spin glassesare the prototype model for disordered sys-the same site are allowed to exchange their positions. Each
tems investigated extensively during the last three decades thoice occurs with probability 0.5. Each step is accepted
statistical physics. These systems exhibit complex energwith the usual Metropolis probability depending on the en-
landscapes resulting in many interesting phenomena such aggy change according to the Hamiltoniéh. First, the sys-
glassy behavior and aging. Despite much effort, still manytem is equilibrated at high temperatufe=5 for 1000 MC
open questions exists. The question about the lower criticadteps per spifMCS).*® Finally the system is quenched to
dimension of Ising spin glasses had been discussed for quite=T, and simulated for further 1000 MCS. The result is a
a while?"> Now it is clear that in two dimensions no stable realization of the disorder which can be used for further
spin-glass phase at finite temperature eXistSThis has mo-  treatment, here ground-state calculations are applied.
tivated the search for other two-dimensional spin-glass-like |n greater than two dimensions, or in the presence of a
systems _exhibiting aT.>0." Recently Sunko has magnetic field, the exact calculation of spin-glass ground
proposed® a “mobile-bond” model where quenched- states belongs to the class of NP-hard probl&i This
disorder realizations of-J spin glasses are created by anmeans that only algorithms with exponentially increasing
annealed simulation, allowing the bonds to move. The sysrunning time are known. However, for the special case of a
tem is equilibrated at high temperature, followed by aplanar system without magnetic field, e.g., a square lattice
quench to a temperaturg;. Sunko has performed Monte with periodic boundary conditions in at most one direction,
Carlo simulations of systems up to size=16 and claimed there are efficient polynomial-time “matching” algorithmi.
that for low quenching temperaturég the model exhibits a The basic idea is to represent each realization of the disorder
spin-glass transition at finite temperatdrg>0. by its frustrated plaquettés.Pairs of frustrated plaquettes

In this article, the model is studied by means of exactare connected by paths in the lattice and the weight of a path
ground-state calculations of large systems up+4a256. The s defined by the sum of the absolute values of the coupling
scaling of domain-wall energi3*is studied as a function constants which are crossed by the path. A ground state cor-
of the system size. It is shown here that the model exhibitsesponds to the set of paths with minimum total weight, such
no spin-glass transition at finite temperature. For small valthat each frustrated plaquette is connected to exactly one
ues of T;<0.95 the system exhibits ferromagnetic order,other frustrated plaquette. This is called a minimum-weight
while at T, a transition to the normal two-dimensional spin- perfect matching. The bonds which are crossed by paths con-

glass behavior is found, i.el,.=0. necting the frustrated plaquettes are unsatisfied in the ground
The model consists o=L? Ising spinsS==1 on a state, and all other bonds are satisfied.
square lattice with the Hamiltonian For the calculation of the minimum-weight perfect match-

ing, efficient polynomial-time algorithms are availaBfe?
H:_E 35S ) Recently, an implementation has been prese_??teﬂhere
R ' ground-state energies of large systems of dire 180G
were calculated. Here, an algorithm from the LEDA libfary
where the sum runs over all pairs of nearest neighbioj$  has been applied, which allows a quick implementation. It
and theJ;;==J are quenched random variables. was not necessary to go beyond=256 (with is much
The realizations are prepared exactly in the same way aarger thanN=16? in the original work?) to obtain reliable
in Ref. 12. For each realization, first bonds with strength  results.
+J andN bonds with strength-J are distributed randomly To study whether an ordered phase is stable at finite tem-
among all N bonds. Then the values of all spins are setperatures, the following procedure is usually
randomly to orientation§ =+ 1. Next, an annealed Monte applied®>®711242%Fjrst a ground state of the system is cal-
Carlo (MC) simulatiort* is performed. This means, at each culated. Then the system is perturbed to introduce a domain
step either a spin is allowed to flip or two bonds incident towall and the new ground-state energy is evaluated. Typically,
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FIG. 1. DistributionP(AE,L) of domain-wall energies for, FIG. 2. Distribution of domain-wall energies fdr,=1.5 and
=0.1 and system sizds=8,32,64,128,256. system size4 =8,256. The inset shows the variance of the distri-

bution as a function of system size.

the system initially has periodic boundary conditions in bothIOW (see Fig. Jit is shown that indeed the disorder average

directions, and the perturbation involves replacing periodic:<AE> rows linearlv withL. as in the normal ferromaanet
by antiperiodic boundary conditions in one direction. The 9 Y ' gnet.

domain-wall energyAE is given by the difference of the two But the model exhibits no global magnetic moment, as found

: . 0
ground-state energies. In case the model exhibits long-ran gready in Ref. 12. This is due to the fact that 50% of all

ferromagnetic order at nonzero temperatures, the domairh—Onds are antiferromagnetic. Neverthelessz the model be-
. aves similar to a ferromagnet. The reason is that the bonds
wall energy, averaged over many independent samples, has

to increase with system size. For example, for a pute 2 are distributed in the system such that only few frustrated

ferromagnet, the domain wall consists of a straight line, re_plaquettes. are present. Hence, each realization can be
sulting iNAE ~L . For a spin alass. none of the around Statesmapped via a local gauge transformation on a ferromagnet

1ING AL ) asping ’ €g - with a small number of antiferromagnetic bonds. This ex-
with periodic and antiperiodic boundary conditions hai-

ori a lower energy. Hence one studies the absolute value &Iams the fact that in Ref. 12 the critical exponent of the

the domain-wall energy to detect whether the systems exhi correlation length found al;/J=2.22 was indeed that of

its spin-glass ordering at finite temperatures. he pure ferromagnet.

However, we cannot apply the matching algorithm for Next, a large quenching temperatufg=1.5 is consid-
boundary conditions which “wrap around” in both direc- ered. In Fig. 2 again the distribution of domain-wall energies

tions. For this reason, here the periodic boundary conditionfsor different sizes are shown. For large sizes, the distrubtions

ey decton ae broken o eac realzaliy seting 1 STET SOUAEL 6 deauno e s o e
the bonds connecting the first and the last row to k€rhis 9 : '

has no influence on the fact of whether the systems orders grecreases slightly with increasing system sizee inset

not because the change of the boundary conditions to crea%hwh shows that spin-glass order is not stable against ther-

the domain walls occurs in the direction perpendicular to :neg_él_tgéﬂitg):;;ghsls;]s ﬁgiégs(ﬁzl .iltt#_atllc‘J]rlBo)und for the
the open boundaries. wo-dl lonak=J spin g vingT./J=0).

Here system sizek=4,6.8 . ..192,256 are considered. To understand the behavior of the system better, next it is

For each size, 1000 independent realizations of the diSord%n;?zzeddetgfm?ngcjjngtl(Er?e(f):-;(;ti;r:gf kf)rir;?r\gg d'slaF)Jogft‘glsy In
were generated for quenching temperatures, Y y plauq :

~0.1,0.9, 0.95, 1.0 and 1.5. Then ground states with peri!:'g' 3 the average fraction of frustrated plaquettes of the

X AT - o uenched realizations is shown as a functioi of This can
odic (P) and antiperiodiqdAP) boundary conditions ix di- q . &
rection were calculated using the exact matching algorithmbe. compared with the stan_dandJ random bond moc_jel
oo . . 0 (with parametep €[ 0,1]), which has on averageN) anti-
resulting in ground-state energlEg, respectivelyE p. The ; : .
. = : . rromagnetic and (1 —p) ferromagnetic bonds. This re-
change in the boundary conditions introduces a domain Wa@ilts in an average fraction
in each realization with energyE=E%,—E2.
First, we conS|der'a very low quenchlng.t(_ampergﬂjae pi=4p(1—p)[p2+(1—p)?] )
=0.1, which was claimed in Ref. 12 to exhibit a spin-glass
transition atT./J=2.22(1) and no ferromagnetic order. In of frustrated plaquette¥. For the =J model, a ferromagnet
Fig. 1 the distribitonP(AE,L) over the disorder of the spin-glass [.=0) transition occurs’’ ~*°nearp=0.11 were
domain-wall energies is displayed for different system sizex(0.11)~0.31. This corresponds to a quenching tempera-
L. Clearly, the domain-wall energies grow strongly with sys-ture T,~0.95, see Fig. 3. Hence, for a comparison, simula-
tem size, which is an indicator for ferromagnetic order. Be-tions at p=0.11 for the =J model and atT,~0.95 for
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FIG. 3. Fraction of frustrated plaquettes present after the quench FIG. 5. Mean absolute value of the domain-wall enefgyE|)

to temperatureT, as a function ofT,. The line is a guide to the @S @ function of system size },=0.1,0.9,0.95,1.Qdisplayed by
eyes only. lines). Also the absolute value of the domain-wall energy for the

+J random-bond model with concentratiops=0.1,0.11,0.12 of

the “mobile-bond” model have been performed. Further—the antiferromagnetic bonds is shosymbols.

more both models were investigated for two other pairs of
parameters exhibiting similar concentrations of frustratechote that it is not claimed here that, e.g,~= 0.9 corresponds

plaquettesT,=0.9; p=0.1 andT,=1.0; p=0.12. exactly top=0.1. But it seems certainly possible to chgse
In Fig. 4 the mean valueAE) of the domain-wall energy such that the results for both models agree exactly.
is shown as a function of the system size far, In Fig. 5 the corresponding results for the m¢akE|) of

=0.1,0.9,0.95,1.0. Fofy=0.1 a clear linear increase oc- the absolute value of the domain-wall energy is shown. For

curs, corresponding to a normal ferromagnet. Foy  valuesT ,<0.9 again an increase is observed, due to the

=0.9 the domain-wall energy still increases with systemincrease of the meafnon absolutg(AE). If spin-glass or-

size. The resulting values are very similar to the domain-walljering existed in a system, thé¢pAE|) would increasewith

energies found ap=0.1 for the=J model. ForT,=0.95  growing L, while (AE) has to decrease. Fdf,=0.95,1.0

and T,=1 the mean domain-wall energies decrease as BAE|) increases only for small system siz@shich may

function of the system size, hence no ferromagnetic ordeggse signs of a stable spin-glass phase when simulating only

persists. In these cases the data is almost equal to the resulis,q) systems while it starts todecreasewith L for larger

for p=0.11, respectivelyp=0.12 of the=J model. Please 3|yes ofL.. Hence spin-glass order is destroyed for any finite
temperatureT>0. Please note that again the resultsTat

1000 gy =0.9,0.95,1.0 agree well with the results ap
; 3 =0.10,0.11,0.12 for the=J model.

To conclude, in this work the recently proposed “mobile-
bond” model has been investigated. An exact ground-state
matching algorithm has been applied, allowing to study large
system sizes such d$=256". The model turns out to be
mainly equivalent to the- J random-bond model, which has
] been studied extensively in the past. Hence, for low values of
= the annealing temperatufig,, the model(corresponding to

3 small concentrationp of the antiferromagnetic bonds in the
+J mode) exhibits ferromagnetic order. The only difference
3 is that the Sunko model exhibits no magnetic moment, since
by construction the number of ferromagnetic bonds equals
the number of antiferromagnetic bonds. Both models can be

1000 mapped onto each other by local gauge-transformations, the

characteristic parameter is the fraction of frustrated

FIG. 4. Mean value of the domain-wall energyE) as a func- ~ Plaquettes. _
tion of system size foff,=0.1,0.9,0.95,1.adisplayed by lines For larger values ofT;=0.95 (corresponding top
Also the domain-wall energy for the:J random-bond model with =0.11) the model displays the standard behavior of a two-
concentrationg=0.1,0.11,0.12 of the antiferromagnetic bonds is dimensional+J spin-glass, hence no order for>0 exists.
shown(symbols. To summarize, the “mobile-bond” model doest exhibit a

<AE>

0.1

0.01
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finite-temperature spin-glass transition at any valud gf
opposed to the claims made in Ref. 12.
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