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Local lattice relaxations in random metallic alloys: Effective tetrahedron model
and supercell approach
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We present a simple effective tetrahedron model for local lattice relaxation effects in random metallic alloys
on simple primitive lattices. A comparison with directab initio calculations for supercells representing random
Ni0.50Pt0.50 and Cu0.25Au0.75 alloys as well as the dilute limit of Au-rich CuAu alloys shows that the model
yields a quantitatively accurate description of the relaxtion energies in these systems. Finally, we discuss the
bond length distribution in random alloys.
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I. INTRODUCTION

In spite of the substantial progress made in understan
the structural properties of different materials in general1 a
quantitative description of lattice relaxation effects throu
simplified models still remains a problem. There is, howev
a class of systems where a simple and accurate solution
be found. In alloys of the late transition and noble met
noncentral forces~or multiatom interactions! are quite small
due to an almost emptyp band and a nearly fully occupiedd
band. The local lattice relaxations caused by a specific a
configuration on the lattice are therefore mainly determin
by the atomic size mismatch of the alloy components and
a result, one may expect to be able to derive a simple
quite accurate model for the relaxation energies involved

In general, one may distinguish between three differ
types of lattice relaxations which may occur in metallic
loys due to a specific atomic configuration on the underly
lattice: ~1! anisotropic lattice distortions leading to a chan
in the form of the unit cell,~2! isotropic or volume relax-
ations, and~3! local displacements of atoms from the ide
underlying lattice positions. The anisotropic lattice dist
tions are caused by a reduction of the global symmetry of
underlying lattice due to a specific long range order. T
energy of such relaxations can be quite large and may ea
dominate the ordering energy itself. For instance, in the c
of the CuAu-L10 ordered alloy the energy of the tetragon
lattice distortion is only about 0.012 eV. However, in the ca
of the Z2 ‘‘phase-separated’’-like structure it reaches 0.1
eV.2 In the case ofZ3-Au3Cu alloy the relaxation energy i
0.08 eV, and this is sufficient to make theZ3 structure more
stable thanL12 at 0 K.2 At the same time, in a number o
ordered phases such relaxations are either absent (L12 , B2,
andDO3), or very small (DO22, DO23, and so on! due to
the symmetry.

If the global symmetry of the underlying lattice is pr
served~on average in the case of random alloys!, but the
point group of different sites is much lower than that of t
underlying lattice due to the local atomic configuration, th
local displacements of atoms from the ideal~underlying
primitive! lattice positions may occur. The energy of su
local relaxations can also be quite large. For instance,
cording to the results of first-principles calculations for t
0163-1829/2003/67~21!/214302~12!/$20.00 67 2143
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so-called special quasirandom structures~SQS’s!,2 the en-
ergy of the local relaxations in random Cu0.75Au 0.25 and
Cu0.50Au 0.50 alloys is about 0.05 eV, which is half of th
value of theL12 ordering energy,2 and therefore a quantita
tively accurate theoretical description of the configuratio
energetics of CuAu alloys is impossible without a prop
account taken of these lattice relaxation effects.

In contrast, the isotropic volume relaxations associa
with the change of the atomic configuration on the lattice
usually very small: For instance, the volume relaxati
energy due to the order-disorder phase transition
Cu0.75Au0.25 alloy is about 2 meV for the theoretical chang
of the lattice spacing of 0.02 Å obtained without short ran
order and local atomic relaxations in random alloy.3 Such a
change of the lattice spacing is in fact of the order of t
thermal expansion of the Cu3Au from O K to ambient tem-
peratures, and the commonly used approximations for
exchange-correlation energy do not provide a better accu
for the enthalpies of formation of metallic alloys~which
seems to be in itself related to the problem of the error in
equilibrium lattice spacing—see below!.

Despite the fact that the lattice relaxations can be qu
accurately obtained in first-principles calculations, their ge
eral account in statistical thermodynamic calculations
random and partially ordered alloys is still a problem. F
instance, the most widely used mixed-space cluster exp
sion ~MSCE! is not only cumbersome, but also has i
defined limits: The so-called constituent strain energy te
prescribes a constant value for the ‘‘strain’’ energy of
concentration waves in a given direction. That is, accord
to this model the ‘‘strain’’ energies of, for instance, theL12
andZ3 (Z1) structures are the same, since their atomic c
figurations are described by the concentration wave goin
the @001# direction. However, there can be no relaxatio
except isotropic volume relaxations in theL12 structure,
while the tetragonal distortions of theZ3 structure could be
quite substantial, as indeed is the case of the Au3Cu alloy
mentioned above.

An effort has been made in Ref. 4 to use another mo
for the relaxation energy which, as in the concentration wa
formalism, is determined in reciprocal space, but now
relaxation interactions have been chosen to depend ex
sively on the absolute value of the wave number of the c
©2003 The American Physical Society02-1
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centration wave. Nevertheless, the whole scheme, applie
the CuAu system, turned out to be quite complicated a
sensitive: It seems that it is necessary to do a lot of q
accurate calculations of different ordered structures to g
reasonable convergence of the expansion.

The main reason for the problems with the MSCE and
approach of Ref. 4 is an attempt to account for the wh
variety of lattice relaxation effects by using an analytica
simple term taken from the static displacement formalism
Krivoglaz5 and Khachaturyan,6 which can in fact only be
obtained due to some very specific assumptions about f
constants in the system.5 However, there is noa priori need
to take into consideration all kinds of relaxation effects if n
all of them are simultaneously important in the description
the phenomena of interest. For example, in the simulation
order-disorder phase transitions in binary alloys, it makes
sense to include in the Hamiltonian a term which accou
for inhomogeneous lattice distortions or the strain energy
long-period superstructuresAmBn , if such structures are
known not to appear and the system does not undergo
inhomogeneous lattice distortion during the transition. W
should be taken into consideration in such a case, howeve
the local lattice relaxations.

Just for this particular purpose we suggest in the pres
paper an alternative effective tetrahedron model~ETM!,
which greatly simplifies the inclusion of the local lattice r
laxation effects in statistical thermodynamic simulations. A
though its application is restricted to metallic alloys witho
strong noncentral forces and anisotropic lattice distortion
is extremely simple and durable, and, it appears, quite a
rate. The ETM is based on the assumption that the lo
lattice relaxations in alloys are the result of the localvolume
relaxations. It is in fact similar to the effective-cluster vo
ume scheme proposed by Amadoret al.7 As we demonstrate
in this paper, being extremely simple and easily adaptabl
configurational thermodynamic simulations, it yields quan
tatively accurate energetics of the local relaxations in l
transition metal alloys and nobel metal alloys.

II. EFFECTIVE TETRAHEDRON MODEL

A starting point for the model is the division of the Ham
tonian of a binaryA12cBc alloy into two parts~although the
model may easily be generalized to the case of multicom
nent alloys!,

H~V0!5E0~V0!1Erel~V0!, ~1!

where the first term,E0(V0), is the energy of the alloy with
a given atomic configuration~and concentration! on the ideal
primitive underlying lattice and the second term,Erel(V0),
the local relaxation energy, i.e., the energy which the sys
gains by fully relaxing all atomic positions.V0 is the equi-
librium volume per atom for a given alloy composition~we
will neglect its configuration dependence, since in ma
cases it is quite small, as has been discussed in the Intro
tion!.

Let us assume next that the relaxation energy of the sm
est cluster in the underlying alloy lattice is a function main
of the change in volume of that cluster. If this is the case th
21430
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the total relaxation energy of an alloy may be expressed
sum over such clusters. Since the smallest cluster ha
non-zero volume is a tetrahedron the relaxation energy o
binary AcB12c alloy can be written in the form

Erel5
1

4 (
i , j ,k,l

Vrel~ci ,cj ,ck ,cl !, ~2!

whereVrel is the relaxation interaction which is a function o
the occupation numbers$ci%5ci , cj , ck , andcl (ci51 if
site i is occupied by aB atom; otherwise it is 0! for the
corresponding tetrahedron verticiesi, j, k, and l. In the case
of the fcc lattice the tetrahedron of the nearest neighbor
the smallest one. In this caseVrel depends only on the com
position of the tetrahedron, which can beA4 , A3B, A2B2 ,
AB3, and B4, since all configurations are equivalent for
fixed number ofA andB atoms in the tetrahedron. Note, th
this form may be transformed into the usual form of t
Ising-type Hamiltonian, used in statistical thermodynam
simulations~see the Appendixes!, although it is also easily
implemented directly in the Monte Carlo method.

Given this definition of the relaxation energy, we no
need to find a method to obtainVrel from first-principles
calculations. A simple way to proceed is the followin
~which conceptually is similar to the well-known averag
t-matrix approximation in alloy theory8!. Let us consider a
random alloy given by ‘‘effective medium’’ atoms in th
ideal crystal lattice positions. Such an alloy is, for instan
given by the coherent potential approximation.8–10ThenVrel
is the relaxation energy of a given tetrahedron of real ato
embedded in this rigid effective medium. Since it is hard
possible to obtainVrel defined in this way from first-
principles calculations, we follow another approach. We
gin by noting that certain ordered structures consist of o
one type of tetrahedron. In the case of an fcc binary al
they are: fcc-A for the A4 tetrahedron,L12-A3B for A3B,
L12-AB3 for AB3 , L10 for A2B2 and fcc-B for B4. In this
way we may calculate the relaxation interactions as thevol-
umerelaxation energy of some speciala structures:

Vrel~$ci%!5Ea@V rel~$ci%!#2Ea~V0!, ~3!

whereEa is the total energy per atom of an ordereda struc-
ture associated with a given tetrahedron configuration$ci%,
V0 the volume of the unrelaxed tetrahedron, andV rel($ci%)
the volume of the fully relaxed tetrahedron with configur
tion $ci% embedded in the effective medium.

In the case of binary bcc alloys, where the smallest te
hedron is formed by 4 sides connecting the nearest neigh
atoms and two sides connecting the next nearest neig
atoms, one has actually two nonequivalentA2B2 tetrahedra:
one is present in theB2 structure and the other one in th
B32 structure. TheA3B andAB3 tetrahedra in the bcc struc
ture are given by theDO3 structure and pureA4 and B4
tetrahedra by the bcc structure.

III. HARMONIC SPRING MODEL FOR A-A, A-B, AND
B-B BOND LENGTHS

The volume of the fully relaxed tetrahedron,V rel($ci%),
may be obtained from the corresponding bond lengths wh
2-2
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LOCAL LATTICE RELAXATIONS IN RANDOM . . . PHYSICAL REVIEW B 67, 214302 ~2003!
form the tetrahedron sides. The latter can be determined
simple harmonic spring model, which takes into consid
ation only the interactions along a givenA(B)-B(A) bond.
Let us consider the chainM -A-B-M , whereM are the effec-
tive medium atoms. The positions of the effective mediu
atoms are assumed to be fixed, while the positions of thA
and B atoms are allowed to relax according to the init
equilibrium bond lengths,dXY

0 and spring constants,KXY for
the individual pair ofX andY atoms~see Fig. 1!.

To solve the spring model for every pair of atoms o
needs to know the equilibrium lengths and spring consta
of the following bonds:A-A, A-B, B-B, M -M , M -A, and
M -B. It is clear that the parameters for theA-A, B-B, and
M -M bonds are given by the ground state properties of
pureA andB components and of the random alloyA12cBc
on the corresponding underlying crystal lattice. For theA-B
bond we suggest using the simplest orderedAB structure
having the lowest value of the Warren-Cowley short ran
order parameter at the first coordination shell. This is theL10
ordered structure in the case of fcc alloys.

The parameters for theM -A and M -B bonds can be de
termined by an interpolation of the corresponding parame
from the data for theA-A, A-B, andM -M bonds. The sim-
plest choice is just Zen’s law~Vegard’s law may be used
instead! for the bond lengths, and a simple average of
spring constants, i.e.,

dMA
0 5F ~dMM

0 !31~dAA
0 !3

2 G1/3

, ~4!

KMA5
1

2
~KMM1KAA!,

wheredMA
0 and KMA are the ‘‘equilibrium’’ length and the

spring constant between of theM -A bond.
By solving the spring model one finally gets the followin

expressions for the equilibriumA-A (B-B) and A-B inter-
atomic distances in the tetrahedron:

dAA5dAA
0 1

2~dMM
0 2dAA

0 !

2
BA

BM
11

,

dAB5dAB
0 1

2dMM
0 2

1

2
~dAA

0 12dAB
0 1dBB

0 !

BAB

BMB
1

BAB

BMA
11

, ~5!

FIG. 1. ~Color online! Schematic picture of the harmonic sprin
model: The positions of effective medium atoms~M! are fixed,
while A andB atoms are relaxed according to the initial equilibriu
bond lengths and spring constants.
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where we have used the fact that the spring constant,KXY , is
proportional to the corresponding bulk modulusBXY .

IV. DETAILS OF THE CALCULATIONS

The parameters of the spring model and ETM have b
obtained in Korringa-Kohn-Rostoker~KKR! self-consistent
density functional calculations in the atomic sphere appro
mation~ASA!,11 which has been corrected by the use of bo
the muffin-tin correction for the Madelung energy,12 needed
for obtaining an accurate description of ground state prop
ties in the ASA, and the multipole moment correction to t
Madelung potential and energy11 which significantly im-
proves the accuracy by taking into consideration the n
spherical part of polarization effects. Although we have us
the local density approximation~LDA ! with Perdew and
Wang parametrization of the exchange-correlat
potential,13 the total energies have been calculated in th
different approximations for the exchange-correlation e
ergy: LDA,13 local Airy gas,14 and generalized gradient ap
proximation ~GGA!.15 The partial waves in the KKR-ASA
calculations have been expanded up tol max 5 3 inside
atomic spheres, although the multipole moments of the e
tron density have been determined up tol max

M 5 6 for the
multipole moment correction to the Madelung energy. T
core states have been recalculated after each iteration.

The ground state properties of random alloys have b
obtained in density functional theory single-site KKR-AS
coherent potential approximation~CPA! calculations with the
Coulomb screening potential,Vscr

i , and energyEscr :
16

Vscr
i 5e2a

qi

S

Escr52e2
b

2S
a(

i
ciqi

2 ~6!

whereqi andci are the net charge of the atomic sphere a
concentration of thei th alloy component,S the Wigner-Seitz
radius, anda andb are screening constants determined fro
supercell calculations using the locally self-consiste
Green’s function method~LSGF!.17 For fcc-NiPt and fcc-
CuAu alloys thea andb screening constants were 0.74 a
1.16, respectively.

In Table I we show our results for the equilibrium Wigne
Seitz radii and bulk moduli of pure fcc Ni, Cu, Au and P
metals as well as orderedL10-CuAu and NiPt alloys ob-
tained by the KKR-ASA-~CPA! method in the different ap-
proximations for the exchange-correlation energy. It is ob
ous that none of these approximations provides the b
overall description of the ground state properties of all
systems: The LDA being good for 5d metals substantially
underestimates the Wigner-Seitz radius for 3d metals, and
subsequently overestimates their bulk modulus of these m
als. The GGA is, conversely, quite good for the 3d metals,
although it overestimates significantly the Wigner-Seitz
dius of 5d metals and underestimates their bulk modulii. W
would like to point out that this trend is general for the la
transition metals~also see Ref. 18!.
2-3
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The direct first-principles calculations of the local latti
relaxations in random fcc and bcc alloys modeled by sup
cells have been performed by the Viennaab initio simulation
package~VASP!, which is described in detail in Refs. 19 an
20. In these calculations we have assumed the local la
relaxations are well ‘‘screened’’ at distances beyond the
first three or four coordination shells, and therefore we h
used supercells of quite moderate size, which are ca
SQSs following the terminology of Ref. 21. The atomic d
tribution correlation functions, or the Warren-Cowley sho
range order~SRO! parameters were as in the real rando
alloy in the first several coordination shells.

The calculations were performed in a plane-wave ba
utilizing fully nonlocal Vanderbilt-type ultrasof
pseudopotentials22 which allow the use of a moderate cuto
for the construction of the plane-wave basis for the transit
metals.23 The integration over the Brillouin zone was don
on specialk-points determined according to the Monkhor
Pack scheme.24 All necessary convergence tests were p
formed, and generally the required total energy converge
~within 0.2 mRy/atom! was reached for 4–63k points in the
irreducible wedge of the Brillouin zone depending on t
structure and total number of atoms. All the KKR-ASA an
VASP calculations are scalar relativistic.

V. RESULTS

A. Ni 0.50Pt0.50 random alloy

We consider first the local lattice relaxations in the ra
dom Ni0.50Pt0.50 alloy, where the local lattice relaxations a
quite pronounced due to the substantial size mismatch o
alloy components. The GGA nearest neighbor interato
distance in the random alloy on the locally unrelaxed latt
given by the KKR-ASA-CPA calculations is 2.681 Å. Th
relaxed distances obtained in the supercell full potential~FP!
calculations by VASP, are shown in Fig. 2. It is obvio
that there is a substantial dispersion of bond lengths for
three different pairs, and that the Pt-Pt bond length can
much less than that of the alloy average, as well the Ni
bond being much longer. Nevertheless, the average value
the bond lengths follow the expected trend: They increas
the sequence of Ni-Ni, Ni-Pt and Pt-Pt: 2.646, 2.671, a
2.741 Å.

TABLE I. Equilibrium Wigner-Seitz radii and bulk moduli~in
parentheses!, obtained in the KKR-ASA~1M! calculations. The
Wigner-Seitz radii in atomic units and the bulk moduli in Mbar.

System LDA LAG GGA Expt.

fcc-Ni 2.516~2.66! 2.552~2.30! 2.584~1.90! 2.60 ~1.87!
fcc-Cu 2.585~1.96! 2.630~1.63! 2.666~1.37! 2.66 ~1.42!
fcc-Pt 2.871~3.13! 2.899~2.75! 2.926~2.51! 2.89 ~2.78!
fcc-Au 2.990~1.94! 3.034~1.57! 3.071~1.37! 2.89 ~1.73!

L10-CuAu 2.810~1.96! 2.853~1.61! 2.889~1.43! 2.85 ~-!
L10-NiPt 2.715~2.90! 2.747~2.53! 2.775~2.32! 2.75 ~-!
rand-NiPt 2.723~2.81! 2.756~2.46! 2.784~2.26!
21430
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As one can see in Fig. 2 the spring model described in
previous section works quite well for the average bo
lengths, although it does not reproduce a certain asymm
in the relaxations: The average local relaxations of the Ni-
bonds being measured from the equilibrium bond lengths
the pure element is greater than that of Pt-Pt . This is, in fa
a consequence of using the harmonic approximation to
scribe bond interactions in the spring model. In real syste
however, the interatomic bonding is anharmonic: It is usua
much easier to expand the lattice from its equilibrium val
than to squeeze it, an effect which is also the origin of t
thermal lattice expansion. However, as will be demonstra
below, it turns out that the harmonicity of the spring mod
allows one to describe specific local environment effects
the ETM.

Using the values of the bond lengths for individual pai
one can now determine the volume of the corresponding
laxed tetrahedra in the alloy and calculate the relaxation
teractions from Eq.~3!. Such interactions for the Ni0.50Pt0.50
alloy are given in Table II. As one can expect the small
value of the relaxation energy corresponds to the tetrahed
whose composition coincides with that of the alloy. It is,
fact, almost zero in this case, which provides a proper lim
for the local lattice relaxation energy: in the completely o
dered (L10) state, the energy of the local lattice relaxatio
should vanish. The greater the difference between the te
hedron and alloy compositions, the greater the relaxation
ergy is. Moreover, one may also notice that there is a cer
asymmetry in the value of relaxation interactions: The rela
ation energy for the Pt4 is about 50% greater than that fo
Ni 4. Such an asymmetry is again the result of the anh
monic behavior of the equation of state.

The local lattice relaxation energy of a randomA12cBc
alloy, without short-range order effects, will be given by

TABLE II. Relaxation interactions in Ni0.50Pt0.50 alloy ~in
meV!.

VNi4
VNi3Pt VNi2Pt2

VNiPt3
VPt4

LDA 2188.3 258.5 ;0.0 259.2 2270.3
LAG 2159.6 249.9 ;0.0 250.6 2235.4
GGA 2156.1 244.9 ;0.0 249.3 2210.3

FIG. 2. ~Color online! Nearest neighbor bond lengths in a ‘‘qua
sirandom’’ Ni0.50Pt0.50 alloy.
2-4
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LOCAL LATTICE RELAXATIONS IN RANDOM . . . PHYSICAL REVIEW B 67, 214302 ~2003!
Erel5~12c!4VA4
14c~12c!3VA3B16c2~12c!2VA2B2

14c3~12c!VAB3
1c4VB4

. ~7!

In Table III we compare the ETM, the cluster expansi
results by Luet al.,25 and our direct 16- and 48-atom supe
cell GGA calculations for Ni0.50Pt0.50. Although all these
results have been obtained by using entirely different me
ods, the agreement between them is fairly good. This in
cates that the energy of the local lattice relaxations is q
insensitive to the details of the atomic displacements.

There is, however, an important point here: while the
ergy of the local lattice relaxations is insensitive to the d
tails of the model, it is nevertheless quite affected by
choice of approximation for the exchange-correlation ene
One can see from the results presented in Table III that
difference between LDA and GGA results is about 0.01
which is approximately 20% of the the value of the rela
ation energy. At the same time, as has already been m
tioned, none of the existing approximations for t
exchange-correlation energy provides an accurate descrip
of the ground state properties of both Ni and Pt.

B. Cu-Au random alloys and the dilute limit of Cu in Au

As already discussed in Sec. I, lattice relaxation effe
play an important role in the phase equilibria of the Cu
system. This system is also very interesting for studying
tice relaxations since experiment26 and first-principles full-
potential calculations2,4 ~also see the effective medium
theory27 results! report the effect of a ‘‘loosening’’ of the
Cu-Cu bond in Au-rich random alloys leading to a spec
crossover when, with increasing concentration of Au, the
erage Cu-Cu bond length becomes greater than that of
Au.

Note, however, that in fact neither the experimen
data26 nor the theoretical results of Refs. 2 and 4 provi
a completely convincing picture of the existence of su
a phenomenon. First of all, they are not in quantitat
agreement with each other: According to the experime
data the crossover occurs when the content of Au in
random alloy exceeds about 86 at. %, although the theo
cal calculations show that it has already happened in
random Cu0.25Au 0.75 alloy where the average Cu-Cu bon
length is much greater than that of Cu-Au. Second, the
certainty in the experimental results for the Cu-Cu bo
length is too large to make an accurate prediction of its va
relative to the Cu-Au bond length. At the same time, t
eight-atom supercell~SQS-14a) used in the first-principles

TABLE III. The local relaxation in a random Ni0.50Pt0.50 alloy
~in meV/atom!.

Method LDA LAG GGA

ETM 258 250 246
CWM ~Ref. 25! 254
SQS-16 258 246
SQS-48 258 245
21430
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calculations2,4 could be too small to reproduce correctly th
statistics of bond length distributions in the random alloy.

To check the bond length distribution in Au-rich Cu-A
random alloys we have performed FP VASP calculations
a 32-atom supercell of the Cu0.25Au 0.75 alloy described
above, which produces a much better representation of
random alloy than the SQS-14a(b) cell used in Ref. 2. The
relaxed bond lengths of the SQS-32 are presented in Fig
As in the case of the NiPt random alloy, there is a hu
dispersion of all possible types of pairs. However, the av
age interatomic distances follow the usual behavior:dAuAu
.dAuCu.dCuCu in accordance with the experimental data26

The results of the spring model, which in fact yields a qu
reasonable representation of the average bond lengths,
follow this trend. However, as in the case of the Ni0.50Pt0.50
random alloy, the average Cu-Cu bond length is undere
mated due to the use of the harmonic approximation.

To investigate this problem further we have calculated
the FP-VASP method the local relaxations in the dilute lim
of Au-rich alloys: a single Cu impurity and a pair of C
nearest neighbor atoms in pure Au. A 32-atom supercell
been used in the case of a single impurity and a 72-at
supercell for the pair of Cu atoms. We have again used
LDA, which provides the best ground state properties of p
Au. The FP-VASP result for the lattice spacing is 4.0633
which corresponds to 2.8732 Å for the nearest neigh
Au-Au bond length. In the case of a single Cu impurity th
Cu-Au bond length turned out to be 2.8254 Å~a reduction of
about 1.66%!.

In Fig. 4 we show the atomic displacements of Cu and
atoms for the pair of Cu atoms in Au. The Cu atoms are
the~001! plane, and their positions as well as the positions
the Au atoms in this plane are shown by solid symbols. T
Au atoms in the next~001! plane are shown by dotted sym
bols. In this way every square of nearest neighbors in
figure corresponds to a tetrahedron of nearest neighbor
the underlying fcc structure. The indexes of the Au ato
label the nonequivalent positions. The final interatomic d
tances are given in Table IV together with the average Cu-
distance in this case.

The Cu-Cu bond length in the dilute limit is actually
little bit greater than that of the average Cu-Au bond for t

FIG. 3. ~Color online! Nearest neighbor bond lengths in a ‘‘qua
sirandom’’ Au0.75Cu0.25 alloy.
2-5
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RUBAN, SIMAK, SHALLCROSS, AND SKRIVER PHYSICAL REVIEW B67, 214302 ~2003!
pair of Cu atoms, but it is still less than the Cu-Au bo
length in the case of a single Cu impurity. In the dilute lim
of the Au12cCuc random alloy, however, the last case w
be dominating since the probability of having two Cu ato
as the nearest neighbors isc2, even without taking into ac-
count the specific SRO effects at the first coordination s
in the Cu-Au system, which must decrease even more
value, while it is onlyc(12c) in the case of a single impu
rity.

In other words, our supercell calculations do not confi
the existance of the crossover for Cu-Cu and Cu-Au bo
lengths in random Cu-Au alloys: The average Cu-Au bo
length will never be less than that of the average Cu-Cu.
course, one should notice that the actual atomic displa
ments are only about 2% of the unrelaxed bond length.

The pair of Cu atoms in Au is a very interesting case sin
it shows how the model is able to reproduce some spe
effects connected with the existence of a quite large dis
sion of the bond lengths and at the same time also ma
reasonable partition of theErel onto the corresponding inter

TABLE IV. Cu-Cu and Cu-Au bond length distribution for th
CuCu pair in pure Au. The relative change of the bond length
given in parentheses.

Type of bond Number Bond length~Å!

Cu-Cu 1 2.8230~1.75 %!

Cu-Au1 2 2.8402~1.15 %!

Cu-Au2 8 2.8329~1.40 %!

Cu-Au3 4 2.8201~1.85 %!

Cu-Au4 8 2.7671~3.69 %!

^Cu-Au& 22 2.8162~1.98 %!

FIG. 4. ~Color online! A view of the local relaxations of Au
atoms around a pair of the nearest neghbor Cu-Cu atoms in fcc
Due to the chosen geometry of the 72-atom supercell all the re
ations occur in the~001! plane, shown in the figure. Atoms in th
plane are shown by symbols drawn by solid lines, and atoms in
next ~001! plane by dotted lines. Numbers mark equivalent Au
oms.
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actions. Let us consider the Cu-Au bonds. There are f
different Cu-Au bond lengths presented in Table IV. T
shortest Cu-Au bond, which is, by the way, substantia
shorter than the Cu-Cu one, is between Cu and Au4 atoms.
This is apparently due to specific positions of the Au4 atoms
with respect to the Cu pair: In contrast to the rest of the
atoms they have both Cu atoms as the nearest neighb
That is, the large contraction of Cu-Au4 bond is due to the
presence of another Cu-Au4 for the same Au atom, and thu
it can be viewed as a multisite effect.

On the other hand, this can be also described as a l
volume effect, since the Au4-Cu bond belongs to the
Cu2Au 2 tetrahedron of nearest neighbors, the only o
which consists of two Cu atoms. There is in fact a qu
interesting point about the ETM here. In the real alloy t
Cu2Au 2 tetrahedron has the smallest volume due the sh
est Cu-Au4 bonds. In the ETM it also has the smallest vo
ume, but the reason is different: It is due to the short
Cu-Cu bond, whose contraction is quite overestimated by
harmonic approximation used in the spring model. That
such an overestimation is very important, since it allows
ETM to ‘‘mimic’’ the appearance of very short Cu-Au bond
in the Cu2Au 2 tetrahedron, and thereby to produce the c
rect contribution to the local lattice relaxation energy.

This can be easily demonstrated, since in the ETM
relaxation energy of the Cu pair isErel

CuCu56VAu3Cu

1VAu2Cu2
while that of a single Cu impurity isErel

Cu

54VAu3Cu , i.e., the later does not contain theVAu2Cu2
inter-

action, which correspons to the Cu2Au 2 tetrahedron. There-
fore, if the ETM reproduces correctly both energies, for t
single impurity and the pair impurity, it provides qualita
tively correct partition of the relaxation energy in terms
the effective relaxation interactions. Indeed, the ETM va
for the relaxation energy of a Cu impurity in Au i
20.124 eV, which is in very good agreement with dire
supercell calculations,20.12 eV, and at the same time th
ETM relaxation energy for the pair of Cu atoms
20.304 eV which is again in fairly good agreement with t
VASP result,20.34 eV.

Finally, in Table V we compare the ETM and superc
results for the local lattice relaxation energies in rand
Cu0.75Au 0.25, Cu0.50Au 0.50 and Cu0.25Au 0.75 alloys. The
agreement is very good, even between SQS-14a(b) and
SQS-32 supercell calculations, despite the fact that they
duce a quite different average picture of the local lattice
laxations~Fig. 3!. Such an insensitivity to the geometry o
the relaxations is a clear indication that the local atomic
laxations in these alloys, as in the case of Ni0.50Pt0.50, is
mostly the local volume relaxation effect.

TABLE V. The local relaxation energy~LDA ! in random CuAu
alloys ~in meV/atom!.

Method Cu0.75Au0.25 Cu0.50Au0.50 Cu0.25Au0.75

ETM 251 252 236
SQS-8,SQS-14a,b

~Ref. 2!
246 254 234

SQS-32 236

s

u.
x-

e
-
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LOCAL LATTICE RELAXATIONS IN RANDOM . . . PHYSICAL REVIEW B 67, 214302 ~2003!
C. Relaxation energies of 5sp- and 4d impurities in Cu

The fact that the volume effect dominates the energe
of local lattice relaxations for 3d, 4d, 4sp, and 5sp impu-
rities in Cu has in fact already been demonstrated in Ref.
Here it was shown that the relaxation energy scales ra
well as the difference between the Wigner-Seitz radii of
host and impurity. On this basis a simple model was p
posed that showed good agreement with calculations
formed using both effective medium theory28 and the full-
potential Korringa-Kohn-Rostoker Green’s functio
method.29 It is therefore very interesting to check how th
ETM works here. The relaxation energy of a single impur
can be obtained as a partial molar quantity30 in the following
way:

Erel
imp5

]Erel~A12cBc!

]c
uc505VA4

14VA3B54VA3B , ~8!

whereVA4
andVA3B are the relaxation interactions, obtaine

as described above.
We have calculated the local lattice relaxation energy

the same set of 4d and 5sp impurities in Cu. We have use
the LDA, which was also the functional used in the FP-KK
Green’s function calculations.29 In Fig. 5 we compare the
results of the ETM model with the corresponding FP-KK
Green’s function results.29 It is obvious that the agreemen
between both calculations is very good for the late transit
andsp metals, while the relaxation energies for earlier tra
sition metals are substantially overestimated. It is difficult
speculate about the origin of the discrepancy for the re
ation energies in the latter case. One of the reasons cou
that the ETM is oversimplified for these systems becaus
the presence of the multiatom forces due to the opend shell.
This will mean that specific local environment effects b
come important, so that the energetics can no longer be
described as a simple volume effect.

In the figure we have also included the results of the
helby theory,31,32 according to which

Erel
imp5

2BBGA~VA2VB!2

3BBVA14GAVB
, ~9!

whereBA , VA andBB , VB are the bulk modulii and equi
librium volume of the host and impurity respectively, andGA
the shear modulus of the host. It appears that this theory

FIG. 5. Relaxation energies for the 4d and 5sp impurities in Cu.
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works reasonably well, as it should, if the local lattice rela
ation effects are indeed a volume effect.

VI. SUMMARY

We have introduced an effective tetrahedron model for
local lattice relaxations in random metallic alloys and de
onstrated that it provides a quantitatively accurate desc
tion of the local lattice relaxation energetics in the case
random alloys of the late transition and noble metals.
believe that the success of this model is due to the fact
the local lattice relaxations in these random alloys is a lo
volume effect. The ETM is very convenient in statistic
thermodynamic simulations since the corresponding con
bution can be represented in terms of the nearest neig
pair, triangle, and tetrahedron interactions. The ETM do
not, of course, describe inhomogeneous lattice distortio
which should be brought into statistical thermodynam
simulations through another means.

We have also performedab initio calculations of the local
lattice relaxations in Ni0.50Pt0.50 and Cu0.75Au 0.25 random
alloys using 16-, 48-, and 32-atom supercells, respectiv
We find that the local lattice relaxation energy is not sen
tive to the size of the supercell, which again demonstrates
local character of the phenomenon. Moreover, our relaxa
energy for a Cu0.75Au 0.25 alloy obtained in the 32-atom su
percell calculations is very close to that found in the eig
atom calculations, despite the fact that the average b
length between different alloy components differs sign
cantly.

Finally, using a 32- and 72-atom supercells we have c
culated the local lattice relaxations for a single Cu impur
and a pair of Cu nearest neighbor atoms in Au. From th
calculations we have deduced the average bond lengt
Cu-Au and Cu-Cu pairs in the dilute limit of the Au-ric
Cu-Au alloys. According our results, the Cu-Au bond leng
should be always larger than the average Cu-Cu length
random Cu-Au alloys. This result is not in contradiction wi
the existing experimental data.26 As far as it concerns the
existence of the crossover in the earlierab initio
calculations,2,4 we attribute it to the too small size of th
supercell used in those calculations.

APPENDIX A: TRANSFORMATION OF THE ETM
INTERACTIONS TO THE ISING TYPE HAMILTONIAN

Let us show how Eq.~2! can be transformed to the usu
Ising-type Hamiltonian in the simplest case, when relaxat
interactions depend only on the number ofA or B atoms in
the binary alloyA12cBc . For this purpose we will use the
spin-representation in whichErel ~per atom! is determined as

Erel5Vr
(0)1(

i
Vr

(1)s i1
1

2 (
i , j

8

Vr
(2)s is j

1
1

3 (
i , j ,k

8

Vr
(3)s is jsk1

1

4 (
i , j ,k,l

8

Vr
(4)s is jsks l

5
1

4 (
i , j ,k,l

Vrel~ci ,cj ,ck ,cl !, ~A1!
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RUBAN, SIMAK, SHALLCROSS, AND SKRIVER PHYSICAL REVIEW B67, 214302 ~2003!
where,s i52ci21 is the spin-variable,Vr
(n) then-site effec-

tive relaxation interaction, andN the number of atoms in the
system.

In the case of the fcc lattice the one gets the followi
expressions for theVr

(n) by solving this set of equations fo
some particular chosen tetrahedron with all possible occu
tion numbers and taking into consideration the number
tetrahedra shared by every geometrical element:

Vr
(0)5

1

16
~VA4

14VA3B16VA2B2
14VAB3

1VB4
!,

Vr
(1)52

1

4
~VA4

12VA3B22VAB3
2VB4

!,

Vr
(2)5

1

16
~VA4

22VA2B2
1VB4

!, ~A2!

Vr
(3)52

1

32
~VA4

22VA3B12VAB3
2VB4

!,

Vr
(4)5

1

32
~VA4

24VA3B16VA2B2
24VAB3

1VB4
!.

The first term in Eq.~A1! is just a constant shift and
therefore can be neglected. The second term can be
omitted in configurational thermodynamic simulations a
fixed concentration.

APPENDIX B: SPECIAL QUASIRANDOM STRUCTURES

Special quasirandom structures~SQSs! ~Ref. 21! are
N-atom per cell periodic structures designed in such a w
that their distinct correlation functionsPk,m ~Ref. 21! best
match the ensemble-averaged^Pk,m& of the random alloy.
Here (k,m) corresponds to the figure defined by the num
k of atoms located on its vertices (k52,3,4 . . . are pairs
triangles, tetrahedra, etc.! with m being the order of neighbo
distances separating them (m51,2 . . . are first, second
neighbors etc.!. Obviously, all ^Pk,m& of the perfectly ran-
dom binary alloy equal to (2x21)k, wherex is the alloy
concentration. The SQSs used in the present work are
following.

1. SQS-16

SQS-16 is a supercell designed forA50B50 fcc-based al-
loys and has the space groupC2/m ~space group No. 12 in
the International Tables for Crystallography! and a base-
centered monoclinic unit cell. Its basis vectors are

a5S 1

2
A8

3
,2

1

2
,2

10

12
A3Dha,

b5S 1

2
A8

3
,
1

2
,2

10

12
A3Dha, ~B1!

c5~0,0,A3!ha,
21430
a-
f

lso

y

r

he

wherea is the fcc lattice constant andh 5 A2. TheA atoms
lie at sites with Cartesian coordinates~in h a units!:

A15S 2A3

8
,0,

3

4
A3D ,

A25SA3

8
,0,2

3

4
A3D ,

A35SA3

8
,0,2

1

4
A3D ,

A45S 2A38,0,
1

4
A3D ,

~B2!

A55S 2
1

8
A8

3
,
1

4
,
1

3
A3D ,

A65S 2
1

8
A8

3
,2

1

4
,
1

3
A3D ,

A75S 1

8
A8

3
,
1

4
,2

1

3
A3D ,

A85S 1

8
A8

3
,2

1

4
,2

1

3
A3D .

TheB atoms lie at sites with Cartesian coordinates~in h a
units!:

B15S 1

8
A8

3
,0,2

1

12
A3D ,

B25S 2
1

8
A8

3
,0,

1

12
A3D ,

B35S 1

8
A8

3
,
1

4
,
1

6
A3D ,

B45S 1

8
A8

3
,2

1

4
,
1

6
A3D ,

B55S 2
1

8
A8

3
,
1

4
,2

1

6
A3D , ~B3!

B65S 2
1

8
A8

3
,2

1

4
,2

1

6
A3D ,

B75S 2
1

8
A8

3
,0,

7

12
A3D ,

B85S 1

8
A8

3
,0,2

7

12
A3D .

Several first correlation functionsPk,m of SQS-16 are
2-8
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P2,1@6#50.000,

P2,2@3#50.000,

P2,3@12#50.000,

P2,4@6#50.000,

P2,5@12#50.000,

P2,6@3#50.000,

P2,7@18#50.000,

P3,1@8#50.000,

P3,2@12#50.000,

P4,1@2#50.000,

P4,2@12#50.000,

where the square brackets next toPk,m give the degeneracy
factor for the corresponding figure.21 Notice that for the per-
fectly randomA50B50 alloy all ^P2,m&, ^P3,m&, and ^P4,m&
are equal to zero.

2. SQS-48

SQS-48 is a supercell designed forA50B50 fcc-based al-
loys and has the space groupP1 ~space group No. 1 in the
International Tables for Crystallography! and a triclinic unit
cell. Its basis vectors are

a5S 3

2
,0,0Da,

b5~0,1,0!a, ~B4!

c5~0,0,1!a.

The A atoms lie at sites with Cartesian coordinates~in a
units!:

A15S 0,
1

4
,
1

4D ,

A25S 2
1

4
,
1

4
,0D ,

A35S 2
1

4
,0,

1

4D ,

A45S 2
1

2
,
1

4
,
1

4D ,

A55S 1

2
,
1

4
,
1

4D ,
21430
A65S 1

4
,
1

4
,0D ,

A75S 1

4
,0,

1

4D ,

A85S 2
1

2
,
1

2
,0D ,

A95S 1

2
,2

1

4
,
1

4D ,

A105S 1

4
,2

1

4
,0D ,

A115S 0,
1

4
,2

1

4D ,

A125S 2
1

4
,
1

4
,
1

2D , ~B5!

A135S 2
1

4
,0,2

1

4D ,

A145S 2
1

2
,
1

4
,2

1

4D ,

A155S 3

4
,0,2

1

4D ,

A165S 1

2
,0,

1

2D ,

A175S 1

4
,
1

4
,
1

2D ,

A185S 1

4
,0,2

1

4D ,

A195S 0,
1

2
,
1

2D ,

A205S 0,2
1

4
,2

1

4D ,

A215S 2
1

4
,2

1

4
,
1

2D ,

A225S 2
1

4
,
1

2
,2

1

4D ,

A235S 3

4
,2

1

4
,
1

2D ,
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A245S 1

4
,
1

2
,2

1

4D .

The B atoms lie at sites with Cartesian coordinates~in a
units!

B15~0,0,0!,

B25S 2
1

2
,0,0D ,

B35S 3

4
,
1

4
,0D ,

B45S 3

4
,0,

1

4D ,

B55S 1

2
,0,0D ,

B65S 0,
1

2
,0D ,

B75S 0,2
1

4
,
1

4D ,

B85S 2
1

4
,2

1

4
,0D ,

B95S 2
1

4
,
1

2
,
1

4D ,

B105S 2
1

2
,2

1

4
,
1

4D ,

B115S 3

4
,2

1

4
,0D ,

B125S 3

4
,
1

2
,
1

4D , ~B6!

B135S 1

2
,
1

2
,0D ,

B145S 1

4
,
1

2
,
1

4D ,

B155S 0,0,
1

2D ,

B165S 2
1

2
,0,

1

2D ,

B175S 3

4
,
1

4
,
1

2D ,
21430
B185S 1

2
,
1

4
,2

1

4D ,

B195S 2
1

2
,
1

2
,
1

2D ,

B205S 2
1

2
,2

1

4
,2

1

4D ,

B215S 3

4
,
1

2
,2

1

4D ,

B225S 1

2
,
1

2
,
1

2D ,

B235S 1

2
,2

1

4
,2

1

4D ,

B245S 1

4
,2

1

4
,
1

2D .

Several first correlation functionsPk,m of SQS-48 are

P2,1@6#50.000,

P2,2@3#50.000,

P2,3@12#50.000,

P2,4@6#50.000,

P2,5@12#50.000,

P2,6@3#520.083,

P2,7@18#520.056,

P3,1@8#50.000,

P3,2@12#520.056,

P4,1@2#520.167,

P4,2@12#520.056.

3. SQS-32

SQS-32 is a supercell designed forA75B25 fcc-based al-
loys and has the space groupP1 ~space group No. 1 in the
International Tables for Crystallography! and a triclinic unit
cell. Its basis vectors are

a5SA8

3
,0,2

1

3Dha,

b5~0,1,0!ha, ~B7!

c5~0,0,A3!ha,
2-10
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wherea is the fcc lattice constant andh5A2. TheA atoms
lie at sites with Cartesian coordinates~in h a units!:

A15~0,0,0!,

A25S 0,
1

2
,0D ,

A35S 1

2
A8

3
,0,2

1

6
A3D ,

A45S 2
1

4
A8

3
,
1

4
,

1

12
A3D ,

A55S 2
1

4
A8

3
,2

1

4
,

1

12
A3D ,

A65S 0,2
1

4
,2

1

4
A3D ,

A75S 0,
1

4
,2

1

4
A3D ,

A85S 1

4
A8

3
,
1

2
,2

1

3
A3D ,

A95S 1

4
A8

3
,0,2

1

3
A3D ,

A105S 1

2
A8

3
,2

1

4
,2

5

12
A3D ,

A115S 2
1

4
A8

3
,0,2

1

6
A3D ,

A125S 2
1

4
A8

3
,
1

2
,2

1

6
A3D , ~B8!

A135S 0,
1

2
,
1

2
A3D ,

A145S 1

4
A8

3
,
1

4
,

5

12
A3D ,

A155S 1

4
A8

3
,2

1

4
,

5

12
A3D ,

A165S 1

2
A8

3
,0,

1

3
A3D ,

A175S 1

2
A8

3
,
1

2
,
1

3
A3D ,

A185S 2
1

4
A8

3
,2

1

4
,

7

12
A3D ,
21430
A195S 2
1

4
A8

3
,
1

4
,

7

12
A3D ,

A205S 0,
1

4
,
1

4
A3D ,

A215S 0,2
1

4
,
1

4
A3D ,

A225S 1

4
A8

3
,0,

1

6
A3D ,

A235S 1

2
A8

3
,2

1

4
,

1

12
A3D ,

A245S 2
1

4
A8

3
,
1

2
,
1

3
A3D .

TheB atoms lie at sites with Cartesian coordinates~in h a
units!:

B15S 1

4
A8

3
,2

1

4
,2

1

12
A3D ,

B25S 1

4
A8

3
,
1

4
,2

1

12
A3D ,

B35S 1

2
A8

3
,
1

2
,2

1

6
A3D ,

B45S 1

2
A8

3
,
1

4
,2

5

12
A3D , ~B9!

B55S 0,0,
1

2
A3D ,

B65S 1

4
A8

3
,
1

2
,
1

6
A3D ,

B75S 1

2
A8

3
,
1

4
,

1

12
A3D ,

B85S 2
1

4
A8

3
,0,

1

3
A3D .

Several first correlation functionsPk,m of SQS-32 are

P2,1@6#50.250,

P2,2@3#50.250,

P2,3@12#50.229,

P2,4@6#50.250,

P2,5@12#50.250,
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P2,6@3#50.286,

P2,7@18#50.244,

P3,1@8#50.125,

P3,2@12#50.0625,
ds

ct

l-

B

. A
.

ed

21430
P4,1@2#50.000,

P4,2@12#50.0417.

Notice that for the perfectly randomA75B25 alloy all
^P2,m&50.25, all ^P3,m&50.125, and all̂ P4,m&50.0625.
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