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Infrared conductivity of a one-dimensional charge-ordered state: Quantum lattice effects
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The optical properties of the charge-orderif@0) phase of the one-dimensiondlD) half-filled spinless
Holstein model are derived at zero temperature within a well-known variational approach improved including
second-order lattice fluctuations. Within the CO phase, the static lattice distortions give rise to the optical
interband gap, that broadens as the strength of the electron-plielph) interaction increases. The lattice
fluctuation effects induce a long subgap tail in the infrared conductivity and a wide band above the gap energy.
The first term is due to the multiphonon emission by the charge carriers and the second to the interband
transitions accompanied by the multiphonon scattering. The results show a good agreement with experimental
spectra of quasi-1D conductors such as¥oO; and (TaSg),l.
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In recent years there has been a renewed interest in chargalization methods, the spectral weight of the conductivity
density wave(CDW) materialst The transition to a charge- can be deduced showing the onset of the infrared absorption
ordering (CO) phase is common to a wide range of for lattices of a few sites. Recently, an analytical variational
compound$,including many quasi-1D materials such as or-approact*?2 valid in the weak el-ph coupling regime, has
ganic conjugated polymers, charge transfer salts, molybddseen developed to study the phase diagram and the optical
num bronzes, anM X chains!™ These materials undergo a conductivity of the Holstein model. The employed approxi-
Peierls instability driven by the el-ph interaction in the half- mation has different effects on the phase diagram and the
filled band case. For most quasi-1D systems, the lattice zermptical properties. In fact, the maximum in the optical spec-
point motion is comparable to the Peierls lattice distortion,tra does not directly correspond to the gap calculated within
so quantum lattice fluctuations must be taken into account tthe variational approach. Actually the peak position of the
satisfactorily describe spectral, transport and opticabptical conductivity is higher than the gap with an energy
propertieS 2 In particular the study of the optical absorption separation of the order of the electron transfer integral in the
of CO materials represents a very useful tool to extract theadiabatic limit. Therefore, experimental findings of a tail in
gap energy and, in general, to investigate the properties ahe optical spectra below the gap enelggrresponding to
the ordered state’ ! In this framework, the experimental the maximum of experimental conductivitiefoes not find a
measurements have pointed out that the lattice fluctuationlear explanation within previous approaches.
effects can remove the inverse square-root singularity ex- In this paper we employ the variational scheme proposed
pected for the case of a static distorted laffqarofoundly ~ for the one-dimensiona(1D) half-filled spinless Holstein
affecting the conductivity spectfad>**Actually these effects model by Zheng, Feinberg, and Avigrf8ZFA) in order to
give rise to the subgap optical absorption seen in these maalculate the spectral properties and the infrared response.
terials where a significant tail below the maximum of the We note that the ZFA method improves the mean-field solu-
interband transition term is measured. Moreover the opticafion showing a good agreement with other numerical
absorption above the interband optical gap band also preworks®1"2324Actually this approach is able to introduce
sents deviations from the behavior obtained within the meantattice fluctuations on the mean-field Peierls solution since
field approach of the static lattic¢@. the lattice deformation is allowed to follow the electrons

The challenge of understanding the effect of quantum latinstantaneously. The calculated conductivity spectra are char-
tice fluctuations on the Peierls dimerization and the absorpacterized by a transfer of spectral weight from low to high
tion spectra has determined an intense study of the Holsteienergies and by a broadening of the optical interband gap,
model® that is a typical el-ph coupling model developing a with increasing the el-ph coupling. The effect of the quantum
CO state at half filling. Actually the Holstein Hamiltonian lattice fluctuations is able to determine in the infrared con-
has been investigated by using various techniques, such dsictivity a subgap absorption term near the phonon energy
Monte Carlo simulation&$’ renormalization-group and a wide band above the gap energy. The first contribution
analysis;®*? variational method?~2? density-matrix renor- is due to the multiphonon emission by the charge carriers,
malization group® and exact diagonalizatidf These studies the second to the interband transitions accompanied by the
reveal that, in the spinless case, there is a quantum phaseultiphonon scattering. The inclusion of lattice fluctuation
transition from a Luttinger liqguidmetallic phase to an in- effects beyond the ZFA approach is able to smooth the in-
sulating phase with CDW long-range order. Because of limverse square-root singularity of the ZFA and mean-field con-
ited system sizes in numerical approaches, except for theuctivity. Moreover these effects strengthen the features of
antiadiabatic regime, the behavior of the conductivity spectrahe conductivity below and above the gap already found in
is not well determined, so the extraction of the gap from thethe ZFA approach inducing an actual subgap tail. Therefore
optical data is not precisé.However, through exact diago- lattice fluctuations influence the optical absorption at the
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low-energy subgap, at the gap and at the high-energy scale The first transformation is the variational Lang-Firsov
above the interband optical gap term. These features amnitary oné®
found in the measured spectra of quasi-1D conductors such
as Ky 3MoO; and (TaSg),l. 1>

In Sec. | the model and the ZFA variational approach are U1=EXF{92 (fcfe;+A)(aj—a)) |, )
briefly reviewed. In Sec. Il the spectral properties are de- !

duced in order to characterize the quasiparticle gap of the CO

phase. In Sec. lll the infrared spectra obtained within thé"’heref and A; are variationa_ll parameters. Th_e quanﬂity
ZFA approach are discussed. Finally, in Sec. IV the effects Ogontrols the degree of the antiadiabatic polaronic effect since

lattice fluctuations beyond the ZFA approach are analyzed.the lattice deformation is allowed to fpllow |nstantgneously
the electrons. Moreovek; denotes a displacement field de-

scribing lattice distortions due to the average electron mo-
| MODEL AND ZFA VARIATIONAL APPROACH tion. At half filling the charge-ordered solution is obtained by

In this paper we deal with the 1D spinless Holstein@Ssuming
modef® at half filling. The Holstein Hamiltonian is

Ai:A+ACOeiQRi, (4)
=— Te, Ta, fe(ai+al , N
H= t%:) Ci CIJ””OZ a a'+g“’0§i: cici(ai+ay) where A represents the lattice distortion unaffected by the
instantaneous position of electrons afdy the additional
+ local lattice distortion due to the Peierls dimerization with
—uX cle (1) S
= i Q=. The second transformation is

Heret is the electron transfer integral between nearest neigh-

bor (NN) sites(i,j), ¢/ (c;) creategdestroy$ an electron at U2=exp{ a2, (ala/-aja))|, )
the ith site, andu is the chemical potential. In the second )
term of Eq.(1) aiT(ai) is the creationannihilation phonon
operator at the site wy denotes the frequency of the optical
phonon mode, and the parameterepresents the coupling
constant between electrons and phonons. The dimensionless
parameten

where the variational parametardetermines a phonon fre-
quency renormalization.

The transformed HamiltoniaH = U, 'U; *HU, U, is

92w0 H:_tE XiTXjCiTCj-f—;OE a?ai+Lw0 Siﬂf‘?(Za)
A= TR 2) By i

2 2 , tot
indicating the ratio between the small polaron binding energy 9 wOZ Alt oo smt(Za)cosr(Za)Z (ajaj +a;a)

and the energy gain of an itinerant electron on a rigid lattice,
is useful to measure the strength of the el-ph interaction in
the adiabatic regime. We consider spinless electrons since
they, even if at a very rough level, mimic the action of an
on-site Coulomb repulsion preventing the formation of local
pairs. Actually, for one dimensional systems in the limit of
infinite local repulsionU, the charge sector of the Hubbard
model maps onto a spinless model, therefore the spinless (6)
Holstein model can be considered as a reliable model for )

typical one-dimensional systems. where we have introduced the phonon operator

The hopping of electrons is supposed to take place be-

- gwer“E Ai(a+a))
I

+gwo(1—)e?*Y, clci(a+al)+> clei(n—p),

tween the equivalentin sites of a 1D lattice separated by the X;=exggfe ?*(a;— aiT)], (7
distancea. The units are such that the Planck constant B
=1 and the lattice parametar=1. the renormalized phonon frequenay,= wcosh(4y), the

As stressed in the original ZFA pap@rthe starting point  number of lattice sitek, and the quantityy,
of the approach is the consideration that the strong coupling

and infinite phonon frequency limit of the model are de-
scribed by polarons. The ZFA approach extends the polaron
formation to intermediate regimes recovering the mean-field _ ) )
solution of the zero phonon frequency limit. Following the  In the ZFA approach the energy is deduced introducing a
ZFA variational scheme, three successive canonical transfof€St Hamiltonian characterized by noninteracting electron
mations are performed in order to treat the electron-phonoand phonon degrees of freedom such tftdt-H g =0,
interaction variationally and to introduce the charge-orderingvhere( ), indicates the mean value obtained by using the
solution. ground state of,.;. The test Hamiltonian is given by

71=0%wof (f=2)+2g%wo(f—1)A; . ®
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R ; . Within the variational approach the kinetic energy mean
Htest: _teﬁUZJ_) Ci Cj + w02i ai ai + L(l)o SlnhZ(Za) VaIUeEkin is
+Lg?wo(A%+AZ0) ~ 20%weA co(1- ) . 0 e
E-=T=—f~de (€) ——=—, (14
on t . kin < > W g ’—62+E2
x>, e®Riclei— o> cley, ©)
| 1 ~
whereW= 2t is the renormalized band half widty(e) the
where the subsidiary chemical potentjig] is 1D density of states, and the electron order paranrates
given by
o= m—9%wof (f—2)+2g2%wo(f—1)A. (10
The quantityt.s=te™S denotes the effective transfer inte- m _(1) iQ-RifnTr_ fo g(e)
. =| - e~ Ni(cic;)=E de——. (15
gral, where the quantity ¢ L Z {eici) W JE2+E2 (19
S=g%f2e 4 (1)  The CO phase is characterized by an order parameter other
than zero.

controls the band renormalization due to the polaron forma- |, Fig. 1 we report the phase diagrétderived within the

tion. The electronic part of the test Hamiltonian is diagonal-zea approach in the thermodynamic limit. The ordered state
ized by a third canonical Bogoliubov transformafigield- g separated with a transition line by thephase that repre-

ing sents the disordered phase Ado=0). Previous
studies”?1232*have pointed out that the normal state has the
Ho.= (F)_ ,ydld+ (-)_ T properties of a Luttinger liquid. This has been verified also
est k%z (&~ mo)cilly k%z (&7~ HolPiPi by using the ZFA wave function and making a finite-size

scaling analysié? In the inset of Fig. 1, there is a compari-
+ oD aaanero sinf?(2a) + Lg2wo(A2+AZ,), son between the transition lines calculated in a mean-field
q approachwhite squares ZFA approachiwhite circleg, and
(12) DMRG approacf® (black squares Here “mean-field ap-
proach” means that we are neglecting the effect of polaron

whered/(d,) createg(destroy$ a quasiparticle in the upper formation (f=0, a=0). In the ranges of parameters rel-

(). [F2 g2 At .. evant for quasi-one-dimensional materials, the ZFA approach
band & €kt B p(pi) createsdestroys a quasipar improves the mean-field solution since the CO phase is

ticle in the lower bandt{ )= — \/eg+E? and'e is the po-  stable for larger values of the el-ph couplings. However the
laronic band. We note that NZ indicates the nevillouin) |attice fluctuation effects introduced by this approach are not
zone defined by the conditiof<0. In the CO phase a gap sufficient to obtain transition lines comparable with those of
opens between the upper and lower bands in the quasiparticd®MRG approach. This indicates that quantum fluctuation ef-

spectrum and it is twice the quantity fects beyond the ZFA scheme are not negligible and can play
a role also in the calculation of the dynamical properties of
E=20%woAco(1—T). (13)  the model.
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II. SPECTRAL PROPERTIES WITHIN ZFA APPROACH

In this section we calculate the spectral properties

AK,w)=—=2ImG,(k,w)

the ZFA approach. They are discussed in order to character-

ize the gap in the quasiparticle spectrum.
The electron retarded Green’s function can be

within =2me Jups(o— &) +ogs(w— )]
(e ] n o .
disen- +2me™S 3 H[H(0—nwo) +H(-w=-nwp)],

tangled into electronic and phononic teffhisy using the test

Hamiltonian(9), hence
Grefk,t) =€ SGO(k )+ Fexp(Se o) —1]

X_ 2 Gret(klnt)+e_s[eXFXSé;0t)—1]

(20)

where the functiorH (w) is

H(w)= 9o E )H(w E)O(VEZ+W?—w), (21)
E?
1__

1
_ (=)
X klEZNZ G (K t). (16) 2

In Eq. (16) G{I(k,t) is

GEI(kt)=ulGH (k) +v2G k), (17

with 0(x) Heaviside function. Two physically distinct
term<® appear in Eq(20): the coherent and incoherent one.
The first derives from the coherent motion of charge carriers
and their surrounding phonon cloud. In the normal phase it
represents the purely polaronic band contribution and shows

where G (k,t) and G{,(k,t) are the Green’s functions a delta behavior. In the CO phase, this term is equal to the
associated to the qua5|part|cles of the upper and the lowgesult of the mean-field approach when one neglects the

bands, respectively, W|tbk given by

renormalization of the upper and lower band due to the po-
laron effect. The incoherent term in E@O) is due to pro-
cesses changing the number of phonons during the hopping

1 . L .
uZ=—| 1+ L (18)  of the charges and provides a contribution spreading over a
F2, 2 wide energy range.

€k+ E A ) )

In Fig. 2 we report the renormalized density of states
andv? by N(w) calculatgd in the'ZFA approadBolid line) and mean-
field (dashed lingat a fixed value of the el-ph coupling and

_ t=5w,. In the CO phase, a gap opens in the quasiparticle
5 1 € spectrum and it is larger for the mean-field solution than the
UkZE 1- —2 . (19 ZFA one. We note that, at the energies corresponding to the
Ve tE gap, the inverse square-root singularity occurs for both ap-

One obtains the spectral function

proaches. The other sharp feature in the density of states
derived in the ZFA approach is due to one-phonon processes
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in the upper and lower bands that are relevant in the inter- 4Amre2t? 0 g(e) &2
mediate el-ph coupling regime. Reo ()= Eze*ZSJ' de——|1-=—
w ~W (§(+))2 W2

Ill. OPTICAL PROPERTIES WITHIN ZFA APPROACH X 5(w—2§(+)), (28)

In this section we focus our attention on the optical prop-yith &)= Je2+EZ We note that this term gives contribu-
erties within the ZFA approach. Since we are primarily inter-tion to the conductivity only in the CO phase since it directly
ested to the absorption spectra in the CO phase, we evalua(g@pendS on the semigdp Furthermore it is equal to the

the conductivity for the frequency different from zero. mean-field conductivit¥ when the renormalization of the
~ Inaregime of linear response the real part of the conducypper and lower bands due to the polaron effect is neglected.
tivity is given by the current-current correlation function The incoherent term of the conductivity can be divided
1—eBo| (= into two components:
— | iot/: T H ) . )
Rea'(a)) ;'Li( 2wl )j_we <J (t)](0)>, (22) ReO'(mCOh)(w)ZREU'(llnCOh)(a))-l—Rea'(zlnmh)(w). (29)

where g is the inverse of the temperature anthe current  1he quantity Rer{"*"(«w) is due to the multiphonon emis-
operator. Performing the two canonical transformationssion by the charge carriers in the lower bagjd’ that does

(3),(5) and making the decoupnﬁ@of the correlation func- not change the electron momentum. This first term reads
tion in the electron and phonon terms through the introduc-

tion of Hg (9), we get (incoh) 2me’t? e 2 o]

test \9/ Reo} (w)= e T kZNZ cog k) (vi—uy)
<J'T(t)j(0)>=i25 2 (8:8)D(i,i",8,8 VA", 1), i (29)" —

R X S(w—nNwy), 30
3 2~ de—nw) (30

where the functiom\(i,i’,d,8’,t) denotes the electron cor- which, making the envelope of the delta functigpsocedure
relation function exact in the limitwg—0), becomes

Aii’,8,8 1)={(cl(t)c,, s(t)c!,. ,ci 24 : me? 23)@/@o —

( ) ( |( ) |+6( ) it 8 Vi >t ( ) RGO'g_mCOh)(w)Z —Eﬁin ( ) e(w_wo)'

and the functiorib (i,i’, 8, 6',t) the phonon correlation func- 20wo T'(1+wlw) 31
tion

whereEy;, is the mean value of the kinetic energy equal to
Eqg. (14) andI'(x) is the gamma function.
In Eq. (29), Redi"*"(w) takes into account the inter-

band transitions accompanied by multiphonon scattering.
This second term is given by

®(i,i",8,8 1) =X (OX, 5OX, . X (25

In order to simplify the analysis of our results, we sepadate
into two contributions

B(i,i",8,8 1) =[(XXi, s JH{P(i,i",58,8.1)

— (XXt 500
=e BSH[dD(ii",5,8 ) —e 2], (26)

: 2me’t? 1
Reo " @)= e - 1+4vy Uy vy U
§reow) =—— i klngz< Uk, Uk,Uk,)

(29
n!

n
Slo—Nwot &= &), (32)

x 2
n=1

which, enveloping the delta functions, can be transformed as

whereSis given by Eq.(11).
Considering Eq(26), the conductivity can be expressed
as a sum of two term3$

2me?t? (2S)Y

Reo(w)=Red ™V w)+Red"N( y). (27) ~_ |e 2 ° de f ’ de,—————
wag -7, )T, T(1+y)

Reo "o )=

As in the spectral properties, the appearance of two physi-
cally distinct contributions, the coherent and incoherent one, E2
occurs. Actually the first term Re“®V is due to the charge xg(el)g(ez)( 1+ T)

transfer affected by the interactions with the lattice but not 45(1 ) f(z )
accompanied by processes changing the number of phonons. —

On the other hand, the incoherent term 8" derives X (o= wo—2E), (33)
from inelastic scattering processes of emission and absorp- - —
tion of phonons. Both terms of the conductivity can be ex-where Ty=min W,y (0= wo—E)*~ E7], T2

pressed in terms of the Green’s functiGi”(k,t) given in =min[W,\/(0—wo— &)~ E2], &) is defined as
Eq. (17).
The coherent conductivity is derived as &)= \el+E?, (34
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0.20 T—— T spreads for a wide range of frequencies above the energy gap
1 i i '\ following the coherent interband absorption band.
0.15] ' \\ t/(,)0= In Fig. 3(b) the conductivity spectra within ZFAsolid
T i ! line) and mean-fielddashed lingapproaches at=5w, and
E 1 ! \ g=2.4 g=2.4 are compared. Not only the optical gap within ZFA is
D 0.10 i \‘ smaller than mean-field one, but the two incoherent terms
e i i % due to lattice fluctuation effects are able to provide a non
] i * negligible contribution below and above the gédipe arrow
0.05 7 i \\ in figure indicates this last contributipnThis suggests that a
10 \\\ better treatment of the lattice fluctuations allows to capture
000t pemmm I---,--—;—-j-—-}f-lf-“-,:-zf - features of the optical conductivities that are found in experi-
(@ O 5 10 15 20 mental spectr&® In the next section we will see that lattice
0)/(:)0 fluctuation effects beyond the ZFA approach give rise in the
conductivity to an actual subgap tail in good agreement with
0.20 . . experimental data.
] i \ A With rising the gl-ph coupling, a transfer of spectral
! [ Mean-Field weight from low to high energies takes place and the optical
0.15 - : \ gap broadens. The optical response within ZFA approach is
E E \\ t/o.=5 strongly dependent on adiabaticity ratio since the incoherent
D 0.10 ] ! \ 0 terms acquire increasing spectral weight compared with that
o | * g=2.4 of the coherent interband term as the rati@, decreases.
] E This transfer of spectral weight can be measured through the
0.05 7 i w-integrated function
0.00 i A

S(w)=fwdw'Rea(w'), 36)

0

whose values,, in the limit of infinite frequency is given by

Eq. (39).
FIG. 3. (a) The conductivity at=5w, andg=2.4 as a function a. (39

of the frequency(in units of wy) decomposed into its different
components: coherent terfdashed ling first incoherent terngdot- IV. FLUCTUATIONS BEYOND ZFA APPROACH
ted Iine_ a_md second in_cohe_rent tertdash-d_otted lirie: () T.he In this section we deal with quantum lattice fluctuation
conductivity spectra derived in the ZR&olid line) and mean-field . .
approach(dashed lingatt=5w, andg=2.4 as a function of the eﬁeCtS. beyond the ZFA appro‘.%h' We first determine the
frequency(in units of wy). The conductivities are expressed in units scattering rate of the quasiparticles of the upper and lower
of e2p/mt, with m=1/2t. _bands_. Next we _W|II analyze the_ gffect qf the sel_f-en_ergy
insertions on the infrared conductivity that is the main aim of
this paper. This is performed following the lines of our pre-
vious works?%27

Now we consider the actual transformed Hamiltonian of
the system in Eq(6) as a perturbation of the test Hamil-
tonian in Eq.(9). At the second order of the perturbation
theory the retarded self-energys((k,0) can be
derived?®=32f only the dominant autocorrelation terms are
is verified by the calculated conductivity spectra in the COretained, the self-energy is local and provides the scattering

with i=1,2, andy=(o— &~ &)/ w,.
We have checked that the sum rule

ko

> e?Eyin (39

dewReU(w)= -
0

phase, wher€&,;, is given by Eq.(14). rates of the quasiparticles of the upper and lower bands
In Fig. 3@ we report the different contributions to the @) (+)
conductivity spectrum derived within the ZFA approach for Fe(k)==-2ImXH(0=§7). (37)

t=5wy andg=2.4: the coherent terrfdashed ling the in-
coherent term due to multiphonon emissididetted ling
and the incoherent term in correspondence with interban
transitions(dash-dotted ling For this value of the el-ph cou- _ _
pling, the gap is larger than the phonon frequency, that rep- F)=T.(k)=T_(k). (38)
resents the absorption threshold of the first incoherent termphe scattering rate can be decomposed as

The incoherent term ab, reaches the largest values in the

intermediate coupling regime where one-phonon scattering F(k):F(§f<+)):rl—phor(§(k+))+qu|tiphor(§(k+))v (39)
processes are important. This contribution is still present for

large el-ph couplings giving rise to a subgap absorptionwhereI’; o, is the contribution due to single phonon pro-
band. The second term of the incoherent conductivitycesses only

These two quantities turn out to be equal, so we have only
gne scattering rate
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T'1pnof 7)) = 2272597126 %gy -1 (£07)) ~ T'(e)
Cl1vd(e,0)=— o) o0 2 48
+gPwee*(1-1)%g,(&("), (40 [2(e)+ (£ ="+ w)
T muitiphon TEPrEsents the scattering rate by multiphonon proh(e)=g(e)(1— €°/4tZy), with g(e) bare density of states,
cesses and the functiomA("1:72)(¢) is expressed by
+oo 262 —4ayl 2
2g-fe _ €
Cinuepnord &) =217 7252, wl—,)gu(ék*’). AT e=AT )= — 49
=2 !
(4D and
In the previous equations the functig@v,(f(k”) reads )
_ _ AT ) e =AC ()= . 50
9u(E) =)+ 1) IK (£ )+ Lag) ( = 50
+[1-np(E7 —lwg) IK(E —1wg) (42) The latter term of the conductivity becomes
andga(&(") | 2632 o o
_ _ Reogllggtoh)(w): w )e_ZST E ~dff _deig(e)
92( &) =[N (&7 + o) IB(& )+ wo) e S W
X g(e)RM172(€,€;,0), (51

+H[1-ne(E = wg) IB(E) — wp), (43

where B(x)=2#n[H(x)+H(—x)], with H(x) given in Eq.
(21). In the CO phase the scattering rate has a gap due to the

where the functioR("1:72) (¢, e, ,w) is given by

+oo (2g2f2674a)|

. . . . Vq,V — (vq1.7v9)
dimerization and the process of phonon spontaneous emis- R 2)(6,61@)—; — (e, 0)
sion by the quasiparticleg.

The role of the scattering rate is important not only to +H|(”1”’2)(e,el,w)], (52)

improve the approximations of calculation of the spectral .
properties, but also the optical properties. Through the sca1"2 (e, €;,X) is
tering rate, we can consider the new Green’'s function

iy o 1 [T(e)+T(en)]
Gret (k1) Cl"1"2)(e,e1,X) =5 ) )
2 [T(e)+T (€) ]2+ (£ =P +x)?
Gk H=uGC (kO +vBL k), (49 (53

that substitutes the functio(¢?(k,t) given in Eq.(17). In  and
Eq. (44) the Green’ function&%)(k,t) are £ =y JZFER, (54)

Bk =—i0t)exp —i & )exd —tI'(k)/2], (45  In Eq.(51) the functions)"*"? (e, e;,w)

ret

with v standing for+ or —. Therefore it is possible to derive J(”l'VZ)(e,el,w)

a new spectral function and density of states that include :

lattice fluctuation effects beyond the ZFA approach. A :C(Vl,uz)(6'61’w+|;O)[nF(§(vz)_|;0_w)
pseudogap as precursor of the actual gap at stronger el-ph !

couplings is found in the density of stafés. —nF(§(1V2)— |50)]nF(§(le)) (55)

The inclusion of the scattering rate is able to affect the
features of the infrared absorption. As in the ZFA approachand Hl(Vl'VZ)(e,el,w)
the conductivity is decomposed into a coherent and an inco-

herent term: H1"(e,61,0)
Reqa(®) =Reafiol(w) +Reafic™(w).  (46) = CO1(€, 61,0~ ) [Ne(£72+ 1 wo— w)
The coherent conductivity is given b v — v
Y15 GVERBY —ne(&'?+lw) [1-ne(£?)] (56)
2+2
Reo_(coh)(w):(4e 1 )ezs 2 0 de[ne(£7) — o) describe phonon scattering processes.
fluct ) w In Fig. 4 we show the conductivity at=10w, and \

- =0.45: the solid line represents the quantity obtained adding
—ng(£0)]C1 7€, w)h(€) A1 7€), fluctuations over ZFA, the dashed line that derived within
(47 ZFA, and dotted line that of the mean-field approach. The
values of the parameters have been chosen such that they are
whereC("1"2 (¢, w) is appropriate for quasi-1D inorganic metals. First we observe
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10 4
9
. t/ey,=10
;] A=0.45
5] g=3.0
] FIG. 4. The conductivityin units ofe?p/mt,
B 59 with m=1/2t) obtained including fluctuations be-
oy ] yond the ZFA(solid line), derived in the ZFA
oC 4 (dashed ling and in the mean-field approach
] (dotted ling up to 14 w, at t=10w, and N\
84 =0.45.
2
11
h II \\ : SLLLE P
0 I T T e R

0 1 2 3 4 5 6 7 & 9 10 11 12 13 14
(0/0)0

that the inverse square-root singularity obtained in the meartheir energy gagsee dashed arrow in the figurdhis fea-
field and ZFA approach is reduced. Then, due to quantunture is not consistent with experimental spetithat, atT
lattice fluctuations, the new conductivity not only shows a=0, show the maximum of the infrared optical conductivity
long subgap tail but presents anomalies also over the gagenerally near to the gap determined by other experimental
when compared with the mean-field spectrum. Therefore imeasurements such as the low-temperature resistivity, the
strengthens the tendencies already shown by the ZFA conemperature dependence of the susceptibility and neutron and
ductivity and it is in good agreement with the experimentalRaman scatterintft As clearly shown in Fig. 5, our approach
spectrad 1314 is not affected by this problem. While in the previous wdrk

As stressed in the introduction, an analytical variationalthe presence of a tail below the peak should be due to usual
approaclt?? valid in the weak el-ph coupling regime and interband transitions, in our approach the peak in the conduc-
based on a similar procedure of calculation, has been develivity corresponds to the gap in the quasiparticle spectrum
oped to study the optical conductivity. In order to emphasizeand is well above a real subgap tail determined by lattice
the different physical results between the present work anéluctuations.
the previous one, in Fig. 5 we compare the conductivity In the inset of Fig. 5 we report the ratigolid line) be-
Reopue (solid line) with the corresponding quantifglashed  tween S(w), the spectral weight of the conductivity calcu-
line) obtained within the preceding approdtior t=10w, lated in this section, an§l,, the same quantity in the limit of
and A=1. This last conductivity is extrapolated from the infinite frequency. This ratio is compared with thaashed
weak coupling limit and, as already noted by the authors ofine) obtained by means of exact diagonalizations of the
the work, it shows a maximum that does not coincide withHamiltonian for a system of six sité$.Our approach cap-

2.0 ot
FIG. 5. The conductivity of the present ap-
proach (solid line) in comparison with that
(dashed lingcalculated in a previous papéRref.
22) att=10w, and\=1.0. The solid arrow in-
dicates the gap in our approach and the dashed
arrow that obtained in a previous wofRef. 22.
In the inset the ratio between the spectral weight
S(w) and S, calculated in the present approach
(solid linel compared with the same quantity
(dashed ling derived from exact numerical
diagonalization$*

15 ]

Re[o]

05 ]

0.0 ]

214301-8



INFRARED CONDUCTIVITY OF A ONE-DIMENSIONAL . .. PHYSICAL REVIEW B 67, 214301 (2003

tures the correct onset of the optical response, even if iinterband gap. The quantum lattice fluctuations considered in
presents sharper features. This could be due to the fact thtite ZFA approach are able to affect the optical response of
we are not considering a small cluster but we are performinghe system that shows bands below and above the gap. When
the thermodynamic limit, and, furthermore, that higher ordeifluctuation effects beyond the ZFA approach are included,
self-energy insertions should be included in order to improvéhe optical conductivities are profoundly changed since they
the approach. are characterized by a subgap tail and a wide band above the
The optical response shows similar features at lower valinterband optical gap term that is smoothed when compared
ues of the adiabaticity ratit/w,. In the regime of near elec- with the mean-field result. Therefore the inelastic scattering

tronic and phononic energy scales the effects due to lattic rocesses influence thg_lov_v-frequency an(_:l high-frgquency
fluctuations are enhanced and the contributions below antfatures of the conductivity in agreement with experimental

3,14
above the gap subtract a larger spectral weight to the ime"s_pe_ctral. Our results make clear that a treatment of the
. . . . : . attice fluctuations beyond the ZFA approach is required to

band gap term. This regime is typically important for inor-

C S . cc]>btain a consistent agreement with experimental data.
ganic linear chain compounds, for example, the compoun

. . . In this paper lattice fluctuation effects beyond the ZFA
TTF-TCNQ, that is a narrow-band one-dimensional metaly,, 5ach are included calculating perturbatively the scatter-

with a relatively strong el-ph coupling. ing rate of the polarons that form the ordered state. A second-
order perturbation calculation on the ZFA solution repro-
V. CONCLUSIONS duces the integrated spectral weights obtained by exact

numerical approaches suggesting that the employed ap-
We have discussed the optical properties of the half-fillecproach can capture the infrared response of the model. Fi-
spinless Holstein model in the 1D case at zero temperatuneally we note that our approach is valid in the infrared range
within the ZFA approach. We have observed that, with in-of frequencies where the interband absorption typically takes
creasing the el-ph coupling, the ordered phase affects thelace. Thus it is not able to reveal the structures attributed to
conductivity spectra inducing a transfer of spectral weightcollective excitation modes arising from the CDW
from low to high energies and a broadening of the opticakcondensaté?®1°
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