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Infrared conductivity of a one-dimensional charge-ordered state: Quantum lattice effects
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The optical properties of the charge-ordering~CO! phase of the one-dimensional~1D! half-filled spinless
Holstein model are derived at zero temperature within a well-known variational approach improved including
second-order lattice fluctuations. Within the CO phase, the static lattice distortions give rise to the optical
interband gap, that broadens as the strength of the electron-phonon~el-ph! interaction increases. The lattice
fluctuation effects induce a long subgap tail in the infrared conductivity and a wide band above the gap energy.
The first term is due to the multiphonon emission by the charge carriers and the second to the interband
transitions accompanied by the multiphonon scattering. The results show a good agreement with experimental
spectra of quasi-1D conductors such as K0.3MoO3 and (TaSe4)2I.
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In recent years there has been a renewed interest in ch
density wave~CDW! materials.1 The transition to a charge
ordering ~CO! phase is common to a wide range
compounds,2 including many quasi-1D materials such as o
ganic conjugated polymers, charge transfer salts, molyb
num bronzes, andMX chains.1–5 These materials undergo
Peierls instability driven by the el-ph interaction in the ha
filled band case. For most quasi-1D systems, the lattice z
point motion is comparable to the Peierls lattice distortio
so quantum lattice fluctuations must be taken into accoun
satisfactorily describe spectral, transport and opti
properties.6–8 In particular the study of the optical absorptio
of CO materials represents a very useful tool to extract
gap energy and, in general, to investigate the propertie
the ordered state.1,9–11 In this framework, the experimenta
measurements have pointed out that the lattice fluctua
effects can remove the inverse square-root singularity
pected for the case of a static distorted lattice12 profoundly
affecting the conductivity spectra.6,13,14Actually these effects
give rise to the subgap optical absorption seen in these
terials where a significant tail below the maximum of t
interband transition term is measured. Moreover the opt
absorption above the interband optical gap band also
sents deviations from the behavior obtained within the me
field approach of the static lattice.13

The challenge of understanding the effect of quantum
tice fluctuations on the Peierls dimerization and the abso
tion spectra has determined an intense study of the Hols
model15 that is a typical el-ph coupling model developing
CO state at half filling. Actually the Holstein Hamiltonia
has been investigated by using various techniques, suc
Monte Carlo simulations,16,17 renormalization-group
analysis,18,19 variational method,20–22 density-matrix renor-
malization group23 and exact diagonalization.24 These studies
reveal that, in the spinless case, there is a quantum p
transition from a Luttinger liquid~metallic! phase to an in-
sulating phase with CDW long-range order. Because of l
ited system sizes in numerical approaches, except for
antiadiabatic regime, the behavior of the conductivity spec
is not well determined, so the extraction of the gap from
optical data is not precise.24 However, through exact diago
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nalization methods, the spectral weight of the conductiv
can be deduced showing the onset of the infrared absorp
for lattices of a few sites. Recently, an analytical variation
approach,21,22 valid in the weak el-ph coupling regime, ha
been developed to study the phase diagram and the op
conductivity of the Holstein model. The employed appro
mation has different effects on the phase diagram and
optical properties. In fact, the maximum in the optical spe
tra does not directly correspond to the gap calculated wit
the variational approach. Actually the peak position of t
optical conductivity is higher than the gap with an ener
separation of the order of the electron transfer integral in
adiabatic limit. Therefore, experimental findings of a tail
the optical spectra below the gap energy~corresponding to
the maximum of experimental conductivities! does not find a
clear explanation within previous approaches.

In this paper we employ the variational scheme propo
for the one-dimensional~1D! half-filled spinless Holstein
model by Zheng, Feinberg, and Avignon20 ~ZFA! in order to
calculate the spectral properties and the infrared respo
We note that the ZFA method improves the mean-field so
tion showing a good agreement with other numeri
works.16,17,23,24Actually this approach is able to introduc
lattice fluctuations on the mean-field Peierls solution sin
the lattice deformation is allowed to follow the electro
instantaneously. The calculated conductivity spectra are c
acterized by a transfer of spectral weight from low to hi
energies and by a broadening of the optical interband g
with increasing the el-ph coupling. The effect of the quantu
lattice fluctuations is able to determine in the infrared co
ductivity a subgap absorption term near the phonon ene
and a wide band above the gap energy. The first contribu
is due to the multiphonon emission by the charge carrie
the second to the interband transitions accompanied by
multiphonon scattering. The inclusion of lattice fluctuatio
effects beyond the ZFA approach is able to smooth the
verse square-root singularity of the ZFA and mean-field c
ductivity. Moreover these effects strengthen the features
the conductivity below and above the gap already found
the ZFA approach inducing an actual subgap tail. Theref
lattice fluctuations influence the optical absorption at
©2003 The American Physical Society01-1
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C. A. PERRONIet al. PHYSICAL REVIEW B 67, 214301 ~2003!
low-energy subgap, at the gap and at the high-energy s
above the interband optical gap term. These features
found in the measured spectra of quasi-1D conductors s
as K0.3MoO3 and (TaSe4)2I. 13,14

In Sec. I the model and the ZFA variational approach
briefly reviewed. In Sec. II the spectral properties are
duced in order to characterize the quasiparticle gap of the
phase. In Sec. III the infrared spectra obtained within
ZFA approach are discussed. Finally, in Sec. IV the effect
lattice fluctuations beyond the ZFA approach are analyze

I. MODEL AND ZFA VARIATIONAL APPROACH

In this paper we deal with the 1D spinless Holste
model15 at half filling. The Holstein Hamiltonian is

H52t(
^ i , j &

ci
†cj1v0(

i
ai

†ai1gv0(
i

ci
†ci~ai1ai

†!

2m(
i

ci
†ci . ~1!

Heret is the electron transfer integral between nearest ne
bor ~NN! sites^ i , j &, ci

†(ci) creates~destroys! an electron at
the i th site, andm is the chemical potential. In the secon
term of Eq.~1! ai

†(ai) is the creation~annihilation! phonon
operator at the sitei, v0 denotes the frequency of the optic
phonon mode, and the parameterg represents the couplin
constant between electrons and phonons. The dimensio
parameterl

l5
g2v0

2t
, ~2!

indicating the ratio between the small polaron binding ene
and the energy gain of an itinerant electron on a rigid latti
is useful to measure the strength of the el-ph interaction
the adiabatic regime. We consider spinless electrons s
they, even if at a very rough level, mimic the action of
on-site Coulomb repulsion preventing the formation of lo
pairs. Actually, for one dimensional systems in the limit
infinite local repulsionU, the charge sector of the Hubba
model maps onto a spinless model, therefore the spin
Holstein model can be considered as a reliable model
typical one-dimensional systems.

The hopping of electrons is supposed to take place
tween the equivalentnn sites of a 1D lattice separated by th
distancea. The units are such that the Planck constan\
51 and the lattice parametera51.

As stressed in the original ZFA paper,20 the starting point
of the approach is the consideration that the strong coup
and infinite phonon frequency limit of the model are d
scribed by polarons. The ZFA approach extends the pola
formation to intermediate regimes recovering the mean-fi
solution of the zero phonon frequency limit. Following th
ZFA variational scheme, three successive canonical trans
mations are performed in order to treat the electron-pho
interaction variationally and to introduce the charge-order
solution.
21430
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The first transformation is the variational Lang-Firso
unitary one25

U15expFg(
j

~ f cj
†cj1D j !~aj2aj

†!G , ~3!

where f and D j are variational parameters. The quantityf
controls the degree of the antiadiabatic polaronic effect si
the lattice deformation is allowed to follow instantaneous
the electrons. MoreoverD j denotes a displacement field d
scribing lattice distortions due to the average electron m
tion. At half filling the charge-ordered solution is obtained
assuming

D i5D1DCOeiQRi, ~4!

where D represents the lattice distortion unaffected by t
instantaneous position of electrons andDCO the additional
local lattice distortion due to the Peierls dimerization w
Q5p. The second transformation is

U25expFa(
j

~aj
†aj

†2ajaj !G , ~5!

where the variational parametera determines a phonon fre
quency renormalization.

The transformed HamiltonianH̃5U2
21U1

21HU1U2 is

H̃52t(
^ i , j &

Xi
†Xjci

†cj1v̄0(
i

ai
†ai1Lv0 sinh2~2a!

1g2v0(
i

D i
21v0 sinh~2a!cosh~2a!(

i
~ai

†ai
†1aiai !

2gv0e2a(
i

D i~ai1ai
†!

1gv0~12 f !e2a(
i

ci
†ci~ai1ai

†!1(
i

ci
†ci~h i2m!,

~6!

where we have introduced the phonon operatorXi

Xi5exp@g f e22a~ai2ai
†!#, ~7!

the renormalized phonon frequencyv̄05v0cosh(4a), the
number of lattice sitesL, and the quantityh i

h i5g2v0f ~ f 22!12g2v0~ f 21!D i . ~8!

In the ZFA approach the energy is deduced introducin
test Hamiltonian characterized by noninteracting elect
and phonon degrees of freedom such that^H̃2H test& t50,
where ^ & t indicates the mean value obtained by using
ground state ofH test. The test Hamiltonian is given by
1-2



he

et,
r-

INFRARED CONDUCTIVITY OF A ONE-DIMENSIONAL . . . PHYSICAL REVIEW B 67, 214301 ~2003!
FIG. 1. The phase diagram of the system. T
line separates the CO from theA phase, that rep-
resents the disordered normal state. In the ins
the transition line between the CO and the diso
deredA phase calculated in the mean-field~white
squares!, ZFA ~white circles!, and DMRG ap-
proach~black squares!.
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H test52teff(
^ i , j &

ci
†cj1v̄0(

i
ai

†ai1Lv0 sinh2~2a!

1Lg2v0~D21DCO
2 !22g2v0DCO~12 f !

3(
i

eiQRici
†ci2m0(

i
ci

†ci , ~9!

where the subsidiary chemical potentialm0 is

m05m2g2v0f ~ f 22!12g2v0~ f 21!D. ~10!

The quantityteff5te2S denotes the effective transfer inte
gral, where the quantity

S5g2f 2e24a ~11!

controls the band renormalization due to the polaron form
tion. The electronic part of the test Hamiltonian is diagon
ized by a third canonical Bogoliubov transformation20 yield-
ing

H̃ test5 (
keNZ

~jk
(1)2m0!dk

†dk1 (
keNZ

~jk
(2)2m0!pk

†pk

1v̄0(
q

aq
†aq1Lv0 sinh2~2a!1Lg2v0~D21DCO

2 !,

~12!

wheredk
†(dk) creates~destroys! a quasiparticle in the uppe

bandjk
(1)5Aẽk

21E2, pk
†(pk) creates~destroys! a quasipar-

ticle in the lower bandjk
(2)52Aẽk

21E2, and ẽk is the po-
laronic band. We note that NZ indicates the new~Brillouin!

zone defined by the conditionẽk<0. In the CO phase a ga
opens between the upper and lower bands in the quasipa
spectrum and it is twice the quantity

E52g2v0DCO~12 f !. ~13!
21430
-
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Within the variational approach the kinetic energy me
value Ēkin is

Ēkin5^T̂&52E
2W̃

0

deg~e!
e2

Ae21E2
, ~14!

whereW̃52teff is the renormalized band half width,g(e) the
1D density of states, and the electron order parameterme is
given by

me5S 1

L D(
i

eiQW •RW i^ci
†ci&5EE

2W̃

0

de
g~e!

Ae21E2
. ~15!

The CO phase is characterized by an order parameter o
than zero.

In Fig. 1 we report the phase diagram20 derived within the
ZFA approach in the thermodynamic limit. The ordered st
is separated with a transition line by theA phase that repre
sents the disordered phase (DCO50). Previous
studies17,21,23,24have pointed out that the normal state has
properties of a Luttinger liquid. This has been verified a
by using the ZFA wave function and making a finite-si
scaling analysis.24 In the inset of Fig. 1, there is a compar
son between the transition lines calculated in a mean-fi
approach~white squares!, ZFA approach~white circles!, and
DMRG approach23 ~black squares!. Here ‘‘mean-field ap-
proach’’ means that we are neglecting the effect of pola
formation (f 50, a50). In the ranges of parameters re
evant for quasi-one-dimensional materials, the ZFA appro
improves the mean-field solution since the CO phase
stable for larger values of the el-ph couplings. However
lattice fluctuation effects introduced by this approach are
sufficient to obtain transition lines comparable with those
DMRG approach. This indicates that quantum fluctuation
fects beyond the ZFA scheme are not negligible and can p
a role also in the calculation of the dynamical properties
the model.
1-3
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FIG. 2. The renormalized density of states d
rived in the ZFA~solid line! and mean-field ap-
proach~dashed line! at t55v0 and g52.2 as a
function of the energy~in units of v0).
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II. SPECTRAL PROPERTIES WITHIN ZFA APPROACH

In this section we calculate the spectral properties wit
the ZFA approach. They are discussed in order to chara
ize the gap in the quasiparticle spectrum.

The electron retarded Green’s function can be dis
tangled into electronic and phononic terms26 by using the test
Hamiltonian~9!, hence

Gret~k,t !5e2SGret
(co)~k,t !1e2S@exp~Se2 i v̄0t!21#

3
1

L (
k1eNZ

Gret
(1)~k1 ,t !1e2S@exp~Sei v̄0t!21#

3
1

L (
k1eNZ

Gret
(2)~k1 ,t !. ~16!

In Eq. ~16! Gret
(co)(k,t) is

Gret
(co)~k,t !5uk

2Gret
(1)~k,t !1vk

2Gret
(2)~k,t !, ~17!

where Gret
(1)(k,t) and Gret

(2)(k,t) are the Green’s function
associated to the quasiparticles of the upper and the lo
bands, respectively, withuk

2 given by

uk
25

1

2 F 11
ẽk

Aẽk
21E2

G ~18!

andvk
2 by

vk
25

1

2 F 12
ẽk

Aẽk
21E2

G . ~19!

One obtains the spectral function
21430
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A~k,v!522 ImGret~k,v!

52pe2S@uk
2d~v2jk

(1)!1vk
2d~v2jk

(1)!#

12pe2S(
n50

`
Sn

n!
@H~v2nv̄0!1H~2v2nv̄0!#,

~20!

where the functionH(v) is

H~v!5
g~Av22E2!

A12
E2

v2

u~v2E!u~AE21W22v!, ~21!

with u(x) Heaviside function. Two physically distinc
terms26 appear in Eq.~20!: the coherent and incoherent on
The first derives from the coherent motion of charge carri
and their surrounding phonon cloud. In the normal phas
represents the purely polaronic band contribution and sh
a delta behavior. In the CO phase, this term is equal to
result of the mean-field approach when one neglects
renormalization of the upper and lower band due to the
laron effect. The incoherent term in Eq.~20! is due to pro-
cesses changing the number of phonons during the hop
of the charges and provides a contribution spreading ov
wide energy range.

In Fig. 2 we report the renormalized density of stat
N(v) calculated in the ZFA approach~solid line! and mean-
field ~dashed line! at a fixed value of the el-ph coupling an
t55v0. In the CO phase, a gap opens in the quasipart
spectrum and it is larger for the mean-field solution than
ZFA one. We note that, at the energies corresponding to
gap, the inverse square-root singularity occurs for both
proaches. The other sharp feature in the density of st
derived in the ZFA approach is due to one-phonon proces
1-4
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in the upper and lower bands that are relevant in the in
mediate el-ph coupling regime.

III. OPTICAL PROPERTIES WITHIN ZFA APPROACH

In this section we focus our attention on the optical pro
erties within the ZFA approach. Since we are primarily int
ested to the absorption spectra in the CO phase, we eva
the conductivity for the frequencyv different from zero.

In a regime of linear response the real part of the cond
tivity is given by the current-current correlation function

Res~v!5 lim
b→`

S 12e2bv

2vL D E
2`

`

eivt^ j †~ t ! j ~0!&, ~22!

whereb is the inverse of the temperature andj the current
operator. Performing the two canonical transformatio
~3!,~5! and making the decoupling26 of the correlation func-
tion in the electron and phonon terms through the introd
tion of H test ~9!, we get

^ j †~ t ! j ~0!&5(
i ,d

(
i 8,d8

~d•d8!F~ i ,i 8,d,d8,t !D~ i ,i 8,d,d8,t !,

~23!

where the functionD( i ,i 8,d,d8,t) denotes the electron cor
relation function

D~ i ,i 8,d,d8,t !5^ci
†~ t !ci 1d~ t !ci 81d8

† ci 8& t ~24!

and the functionF( i ,i 8,d,d8,t) the phonon correlation func
tion

F~ i ,i 8,d,d8,t !5^Xi
†~ t !Xi 1d~ t !Xi 81d8

† Xi 8& t . ~25!

In order to simplify the analysis of our results, we separateF
into two contributions

F~ i ,i 8,d,d8,t !5@^Xi
†Xi 1dâ& t#

2$F~ i ,i 8,d,d8,t !

2@^Xi
†Xi 1dâ& t#

2%

5e22S1@F~ i ,i 8,d,d8,t !2e22S#, ~26!

whereS is given by Eq.~11!.
Considering Eq.~26!, the conductivity can be expresse

as a sum of two terms26

Res~v!5Res (coh)~v!1Res (incoh)~v!. ~27!

As in the spectral properties, the appearance of two ph
cally distinct contributions, the coherent and incoherent o
occurs. Actually the first term Res (coh) is due to the charge
transfer affected by the interactions with the lattice but
accompanied by processes changing the number of phon
On the other hand, the incoherent term Res (incoh) derives
from inelastic scattering processes of emission and abs
tion of phonons. Both terms of the conductivity can be e
pressed in terms of the Green’s functionGret

(co)(k,t) given in
Eq. ~17!.

The coherent conductivity is derived as
21430
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Res (coh)~v!5S 4pe2t2

v DE2e22SE
2W̃

0

de
g~e!

~j (1)!2 S 12
e2

W̃2D
3d~v22j (1)!, ~28!

with j (1)5Ae21E2. We note that this term gives contribu
tion to the conductivity only in the CO phase since it direc
depends on the semigapE. Furthermore it is equal to the
mean-field conductivity12 when the renormalization of the
upper and lower bands due to the polaron effect is neglec

The incoherent term of the conductivity can be divid
into two components:

Res (incoh)~v!5Res1
(incoh)~v!1Res2

(incoh)~v!. ~29!

The quantity Res1
(incoh)(v) is due to the multiphonon emis

sion by the charge carriers in the lower bandjk
(2) that does

not change the electron momentum. This first term reads

Res1
(incoh)~v!5

2pe2t2

v
e22SF 1

L (
keNZ

cos~k!~vk
22uk

2!G2

3 (
n51

`
~2S!n

n!
d~v2nv̄0!, ~30!

which, making the envelope of the delta functions~procedure
exact in the limitv0→0), becomes

Res1
(incoh)~v!5

pe2

2vv̄0

Ēkin
2 ~2S!v/v̄0

G~11v/v̄0!
u~v2v̄0!,

~31!

whereĒkin is the mean value of the kinetic energy equal
Eq. ~14! andG(x) is the gamma function.

In Eq. ~29!, Res2
(incoh)(v) takes into account the inter

band transitions accompanied by multiphonon scatter
This second term is given by

Res2
(incoh)~v!5

2pe2t2

v
e22S

1

L (
k1 ,k2eNZ

~114vk1
uk1

vk2
uk2

!

3 (
n51

`
~2S!n

n!
d~v2nv̄01jk1

(2)2jk2

(1)!, ~32!

which, enveloping the delta functions, can be transformed

Res2
(incoh)~v!5S 2pe2t2

vv̄0
D e22SE

2T̃1

0

de1E
2T̃2

0

de2

~2S!y

G~11y!

3g~e1!g~e2!S 11
E2

4j1
(1)j2

(1)D
3u~v2v̄022E!, ~33!

where T15min@W̃,A(v2v̄02E)22E2#, T2

5min@W̃,A(v2v̄02j1
(1))22E2#, j i

(1) is defined as

j i
(1)5Ae i

21E2, ~34!
1-5
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C. A. PERRONIet al. PHYSICAL REVIEW B 67, 214301 ~2003!
with i 51,2, andy5(v2j1
(1)2j2

(1))/v̄0.
We have checked that the sum rule

E
0

`

dvRes~v!52
p

2
e2Ēkin ~35!

is verified by the calculated conductivity spectra in the C
phase, whereĒkin is given by Eq.~14!.

In Fig. 3~a! we report the different contributions to th
conductivity spectrum derived within the ZFA approach f
t55v0 andg52.4: the coherent term~dashed line!, the in-
coherent term due to multiphonon emissions~dotted line!
and the incoherent term in correspondence with interb
transitions~dash-dotted line!. For this value of the el-ph cou
pling, the gap is larger than the phonon frequency, that r
resents the absorption threshold of the first incoherent te
The incoherent term atv0 reaches the largest values in th
intermediate coupling regime where one-phonon scatte
processes are important. This contribution is still present
large el-ph couplings giving rise to a subgap absorpt
band. The second term of the incoherent conductiv

FIG. 3. ~a! The conductivity att55v0 andg52.4 as a function
of the frequency~in units of v0) decomposed into its differen
components: coherent term~dashed line!, first incoherent term~dot-
ted line! and second incoherent term~dash-dotted line!. ~b! The
conductivity spectra derived in the ZFA~solid line! and mean-field
approach~dashed line! at t55v0 and g52.4 as a function of the
frequency~in units ofv0). The conductivities are expressed in un
of e2r/mt, with m51/2t.
21430
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spreads for a wide range of frequencies above the energy
following the coherent interband absorption band.

In Fig. 3~b! the conductivity spectra within ZFA~solid
line! and mean-field~dashed line! approaches att55v0 and
g52.4 are compared. Not only the optical gap within ZFA
smaller than mean-field one, but the two incoherent ter
due to lattice fluctuation effects are able to provide a n
negligible contribution below and above the gap~the arrow
in figure indicates this last contribution!. This suggests that a
better treatment of the lattice fluctuations allows to capt
features of the optical conductivities that are found in expe
mental spectra.13 In the next section we will see that lattic
fluctuation effects beyond the ZFA approach give rise in
conductivity to an actual subgap tail in good agreement w
experimental data.

With rising the el-ph coupling, a transfer of spectr
weight from low to high energies takes place and the opt
gap broadens. The optical response within ZFA approac
strongly dependent on adiabaticity ratio since the incohe
terms acquire increasing spectral weight compared with
of the coherent interband term as the ratiot/v0 decreases.
This transfer of spectral weight can be measured through
v-integrated function

S~v!5E
0

v

dv8Res~v8!, ~36!

whose valueSm in the limit of infinite frequency is given by
Eq. ~35!.

IV. FLUCTUATIONS BEYOND ZFA APPROACH

In this section we deal with quantum lattice fluctuatio
effects beyond the ZFA approach. We first determine
scattering rate of the quasiparticles of the upper and lo
bands. Next we will analyze the effect of the self-ener
insertions on the infrared conductivity that is the main aim
this paper. This is performed following the lines of our pr
vious works.26,27

Now we consider the actual transformed Hamiltonian
the system in Eq.~6! as a perturbation of the test Hami
tonian in Eq.~9!. At the second order of the perturbatio
theory the retarded self-energyS ret

(2)(k,v) can be
derived.28–32 If only the dominant autocorrelation terms a
retained, the self-energy is local and provides the scatte
rates of the quasiparticles of the upper and lower bands

G6~k!522 ImS ret
(2)~v5jk

(6)!. ~37!

These two quantities turn out to be equal, so we have o
one scattering rate

G~k!5G1~k!5G2~k!. ~38!

The scattering rate can be decomposed as

G~k!5G~jk
(1)!5G1-phon~jk

(1)!1Gmultiphon~jk
(1)!, ~39!

whereG1-phon is the contribution due to single phonon pr
cesses only
1-6
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G1-phon~jk
(1)!52Zt2e22Sg2f 2e24ag1,l 51~jk

(1)!

1g2v0
2e4a~12 f !2g2~jk

(1)!, ~40!

Gmultiphon represents the scattering rate by multiphonon p
cesses

Gmultiphon~jk
(1)!5Zt2e22S(

l 52

1`
~2g2f 2e24a! l

l !
g1,l~jk

(1)!.

~41!

In the previous equations the functiong1,l(jk
(1)) reads

g1,l~jk
(1)!5@nF~jk

(1)1 l v̄0!#K~jk
(1)1 l v̄0!

1@12nF~jk
(1)2 l v̄0!#K~jk

(1)2 l v̄0! ~42!

andg2(jk
(1))

g2~jk
(1)!5@nF~jk

(1)1v̄0!#B~jk
(1)1v̄0!

1@12nF~jk
(1)2v̄0!#B~jk

(1)2v̄0!, ~43!

whereB(x)52p@H(x)1H(2x)#, with H(x) given in Eq.
~21!. In the CO phase the scattering rate has a gap due to
dimerization and the process of phonon spontaneous e
sion by the quasiparticles.27

The role of the scattering rate is important not only
improve the approximations of calculation of the spect
properties, but also the optical properties. Through the s
tering rate, we can consider the new Green’s funct
G̃ret

(co)(k,t)

G̃ret
(co)~k,t !5uk

2G̃ret
(1)~k,t !1vk

2G̃ret
(2)~k,t !, ~44!

that substitutes the functionGret
(co)(k,t) given in Eq.~17!. In

Eq. ~44! the Green’ functionsG̃ret
(n)(k,t) are

G̃ret
(n)~k,t !52 iu~ t !exp~2 i jk

(n)t !exp@2tG~k!/2#, ~45!

with n standing for1 or 2. Therefore it is possible to deriv
a new spectral function and density of states that incl
lattice fluctuation effects beyond the ZFA approach.
pseudogap as precursor of the actual gap at stronger e
couplings is found in the density of states.27

The inclusion of the scattering rate is able to affect
features of the infrared absorption. As in the ZFA approa
the conductivity is decomposed into a coherent and an in
herent term:

Resfluct~v!5Resfluct
(coh)~v!1Resfluct

(incoh)~v!. ~46!

The coherent conductivity is given by

Resfluct
(coh)~v!5S 4e2t2

v De22S (
n1 ,n2

E
2W̃

0

de@nF~j (n1)2v!

2nF~j (n1)!#C̃(n1 ,n2)~e,v!h~e!A(n1 ,n2)~e!,

~47!

whereC̃(n1 ,n2)(e,v) is
21430
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C̃(n1 ,n2)~e,v!5
G~e!

G2~e!1~j (n2)2j (n1)1v!2
, ~48!

h(e)5g(e)(12e2/4teff
2 ), with g(e) bare density of states

and the functionA(n1 ,n2)(e) is expressed by

A(1,1)~e!5A(2,2)~e!5
e2

e21E2
~49!

and

A(1,2)~e!5A(2,1)~e!5
E2

e21E2
. ~50!

The latter term of the conductivity becomes

Resfluct
(incoh)~v!5S 2e2t2

v De22ST (
n1 ,n2

E
2W̃

0

deE
2W̃

0

de1g~e!

3g~e1!R(n1 ,n2)~e,e1 ,v!, ~51!

where the functionR(n1 ,n2)(e,e1 ,v) is given by

R(n1 ,n2)~e,e1 ,v!5(
l 51

1`
~2g2f 2e24a! l

l !
@Jl

(n1 ,n2)
~e,e1 ,v!

1Hl
(n1 ,n2)

~e,e1 ,v!#, ~52!

C(n1 ,n2)(e,e1 ,x) is

C(n1 ,n2)~e,e1 ,x!5
1

2

@G~e!1G~e1!#

@G~e!1G~e1!#2/41~j (n1)2j1
(n2)

1x!2
,

~53!

and

j i
(n j )5n jAe i

21E2. ~54!

In Eq. ~51! the functionsJl
(n1 ,n2)(e,e1 ,v)

Jl
(n1 ,n2)

~e,e1 ,v!

5C(n1 ,n2)~e,e1 ,v1 l v̄0!@nF~j1
(n2)

2 l v̄02v!

2nF~j1
(n2)

2 l v̄0!#nF~j1
(n2)

! ~55!

andHl
(n1 ,n2)(e,e1 ,v)

Hl
(n1 ,n2)

~e,e1 ,v!

5C(n1 ,n2)~e,e1 ,v2 l v̄0!@nF~j1
(n2)

1 l v̄02v!

2nF~j1
(n2)

1 l v̄0!#@12nF~j1
(n2)

!# ~56!

describe phonon scattering processes.
In Fig. 4 we show the conductivity att510v0 and l

50.45: the solid line represents the quantity obtained add
fluctuations over ZFA, the dashed line that derived with
ZFA, and dotted line that of the mean-field approach. T
values of the parameters have been chosen such that the
appropriate for quasi-1D inorganic metals. First we obse
1-7
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FIG. 4. The conductivity~in units ofe2r/mt,
with m51/2t) obtained including fluctuations be
yond the ZFA~solid line!, derived in the ZFA
~dashed line!, and in the mean-field approac
~dotted line! up to 14 v0 at t510v0 and l
50.45.
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that the inverse square-root singularity obtained in the me
field and ZFA approach is reduced. Then, due to quan
lattice fluctuations, the new conductivity not only shows
long subgap tail but presents anomalies also over the
when compared with the mean-field spectrum. Therefor
strengthens the tendencies already shown by the ZFA
ductivity and it is in good agreement with the experimen
spectra.6,13,14

As stressed in the introduction, an analytical variatio
approach,21,22 valid in the weak el-ph coupling regime an
based on a similar procedure of calculation, has been de
oped to study the optical conductivity. In order to emphas
the different physical results between the present work
the previous one, in Fig. 5 we compare the conductiv
Resfluct ~solid line! with the corresponding quantity~dashed
line! obtained within the preceding approach22 for t510v0
and l51. This last conductivity is extrapolated from th
weak coupling limit and, as already noted by the authors
the work, it shows a maximum that does not coincide w
21430
n-
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n-
l

l

el-
e
d

y

f

their energy gap~see dashed arrow in the figure!. This fea-
ture is not consistent with experimental spectra13 that, atT
50, show the maximum of the infrared optical conductivi
generally near to the gap determined by other experime
measurements such as the low-temperature resistivity,
temperature dependence of the susceptibility and neutron
Raman scattering.14 As clearly shown in Fig. 5, our approac
is not affected by this problem. While in the previous work22

the presence of a tail below the peak should be due to u
interband transitions, in our approach the peak in the cond
tivity corresponds to the gap in the quasiparticle spectr
and is well above a real subgap tail determined by latt
fluctuations.

In the inset of Fig. 5 we report the ratio~solid line! be-
tweenS(v), the spectral weight of the conductivity calcu
lated in this section, andSm , the same quantity in the limit o
infinite frequency. This ratio is compared with that~dashed
line! obtained by means of exact diagonalizations of
Hamiltonian for a system of six sites.24 Our approach cap-
-

hed

ht
h
y
l

FIG. 5. The conductivity of the present ap
proach ~solid line! in comparison with that
~dashed line! calculated in a previous paper~Ref.
22! at t510v0 and l51.0. The solid arrow in-
dicates the gap in our approach and the das
arrow that obtained in a previous work~Ref. 22!.
In the inset the ratio between the spectral weig
S(v) and Sm calculated in the present approac
~solid line! compared with the same quantit
~dashed line! derived from exact numerica
diagonalizations.24
1-8
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tures the correct onset of the optical response, even
presents sharper features. This could be due to the fact
we are not considering a small cluster but we are perform
the thermodynamic limit, and, furthermore, that higher ord
self-energy insertions should be included in order to impro
the approach.

The optical response shows similar features at lower
ues of the adiabaticity ratiot/v0. In the regime of near elec
tronic and phononic energy scales the effects due to la
fluctuations are enhanced and the contributions below
above the gap subtract a larger spectral weight to the in
band gap term. This regime is typically important for ino
ganic linear chain compounds, for example, the compo
TTF-TCNQ, that is a narrow-band one-dimensional me
with a relatively strong el-ph coupling.33

V. CONCLUSIONS

We have discussed the optical properties of the half-fil
spinless Holstein model in the 1D case at zero tempera
within the ZFA approach. We have observed that, with
creasing the el-ph coupling, the ordered phase affects
conductivity spectra inducing a transfer of spectral wei
from low to high energies and a broadening of the opti
,

.

,

un

.
e,
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interband gap. The quantum lattice fluctuations considere
the ZFA approach are able to affect the optical response
the system that shows bands below and above the gap. W
fluctuation effects beyond the ZFA approach are includ
the optical conductivities are profoundly changed since th
are characterized by a subgap tail and a wide band above
interband optical gap term that is smoothed when compa
with the mean-field result. Therefore the inelastic scatter
processes influence the low-frequency and high-freque
features of the conductivity in agreement with experimen
spectra.13,14 Our results make clear that a treatment of t
lattice fluctuations beyond the ZFA approach is required
obtain a consistent agreement with experimental data.

In this paper lattice fluctuation effects beyond the ZF
approach are included calculating perturbatively the scat
ing rate of the polarons that form the ordered state. A seco
order perturbation calculation on the ZFA solution repr
duces the integrated spectral weights obtained by e
numerical approaches suggesting that the employed
proach can capture the infrared response of the model.
nally we note that our approach is valid in the infrared ran
of frequencies where the interband absorption typically ta
place. Thus it is not able to reveal the structures attribute
collective excitation modes arising from the CDW
condensate.1,9,10
ys.
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Sólyom ~Springer-Verlag, Heidelberg, 1985!.

3One-Dimensional Conductors, by S. Kagoshima, H. Nagasawa
and T. Sambongi~Springer-Verlag, New York, 1988!.

4G. Traviglini et al., Solid State Commun.37, 599 ~1981!.
5N. Tsuda, K. Nasu, A. Yanese, and K. Siratori,Electronic Con-

duction in Oxides~Springer-Verlag, Berlin, 1990!; Organic Con-
ductors, edited by J.-P. Farges~Dekker, New York, 1994!.

6R.H. McKenzie and J.W. Wilkins, Phys. Rev. Lett.69, 1085
~1992!.

7K. Kim, R.H. McKenzie, and J.W. Wilkins, Phys. Rev. Lett.71,
4015 ~1993!.

8L. Perfetti, H. Berger, A. Reginelli, L. Degiorgi, H. Ho¨chst, J.
Voit, G. Margaritondo, and M. Grioni, Phys. Rev. Lett.87,
216404~2001!.
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Grüner, B.P. Gorshunov, A.A. Volkov, G.V. Kozlov, S. Thiem
L. Degiorgi, and F. Le´vy, Phys. Rev. B52, 5643~1995!.

15T. Holstein, Ann. Phys.~Leipzig! 8, 325 ~1959!; 8, 343 ~1959!.
16J.E. Hirsch and E. Fradkin, Phys. Rev. Lett.49, 402 ~1982!; J.E.
.

Hirsch and E. Fradkin, Phys. Rev. B27, 4302~1983!.
17R.H. McKenzie, C.J. Hamer, and D.W. Murray, Phys. Rev. B53,

9676 ~1996!.
18C. Bourbonnais and L.G. Caron, J. Phys.~Paris! 50, 2751~1989!.
19D. Schmeltzer, J. Phys. C18, L1103 ~1985!.
20H. Zheng, D. Feinberg, and M. Avignon, Phys. Rev. B39, 9405

~1989!.
21H. Zheng and M. Avignon, Phys. Rev. B58, 3704~1998!.
22Q. Wang, H. Zheng, and M. Avignon, Phys. Rev. B63, 14 305

~2000!.
23R.J. Bursill, R.H. McKenzie, and C.J. Hamer, Phys. Rev. Lett.80,

5607 ~1998!.
24A. Weisse and H. Fehske, Phys. Rev. B58, 13 526~1998!.
25I. J. Lang and Yu. A. Firsov, Sov. Phys. JETP16, 1301 ~1963!;

Yu. A. Firsov,Polarons~Nauka, Moscow, 1975!.
26C.A. Perroni, G. De Filippis, V. Cataudella, and G. Iadonisi, Ph

Rev. B64, 144302~2001!.
27C.A. Perroni, V. Cataudella, G. De Filippis, G. Iadonisi, V. Mar

gliano Ramaglia, and F. Ventriglia, Phys. Rev. B67, 094302
~2003!.

28J. Schnakenberg, Z. Phys.190, 209 ~1966!.
29J. Loos, Z. Phys. B: Condens. Matter92, 377 ~1993!.
30J. Loos, Z. Phys. B: Condens. Matter96, 149 ~1994!.
31L. P. Kadanoff and G. Baym,Quantum Statistical Mechanic

~Benjamin/Cumming, Reading, MA, 1962!.
32H. Fehske, J. Loss, and G. Wellein, Z. Phys. B: Condens. Ma

104, 619 ~1997!.
33A. J. Heeger, inHighly Conducting One-Dimensional Solids, ed-

ited by J.T. Devreese, R.P. Evrard, and V.E. van Doren~Plenum
Press, New York, 1979!.
1-9


