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Phase diagram of theS=73 two-leg spin ladder with staggered bond alternation
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The ground state of th&= 1/2 two-leg ladder with the staggered bond alternations is investigated. We have
determined the precise phase diagram ondd plane (6 andJ’ are the magnitudes of the bond alternation
and the rung interaction, respectivglgmploying the level spectroscopic analysis of the numerical diagonal-
ization data obtained by the Lanczos algorithm with the twisted boundary condition. The phase boundary
between the leg-dimer state and the rung-dimer state n&df)E (0,0) is of the formd’ « §%6% which is
consistent with the predictiod’ o §%® by Marfin-Delgado, Duleksky, and Sierra, and also by Wang and
Nersesyan, but not with’ « 5> by Cabra and Grynberg.
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[. INTRODUCTION the rung-dimer state. On the phase boundary of these states
the spin-fluid statégaplesgis realized. This fact was origi-

In recent years the spin systems with the excitation gapsally suggested by Mart:Delgado, Shankar, and Siefra
have been extensively studied theoretically, numerically, andMSS) through use of the nonlinear model approach. The
experimentally. In this report we study the ground-stateboundary between these two state will start & J()
phase diagram of th&=1/2 two-leg ladder with the stag- =(0,0) and end at §J')=(1,2). Marin-Delgado, Dule-
gered bond alternations, which is sketched in Fig. 1. Thesky, and Sierra(MDS) stated that the phase boundary near
Hamiltonian of our model is given by (8,3')=(0,0) is of the formJ’'«= %3 MDS have consider-

ated the follo(\%/vinz% The gap due to the bond alteration is

B . , proportional td §° whenJ’ =0, and that due to the rung
H_; a=21,2 [1+ (=108, Saj1t 2 S-S interaction is proportional faJ’ when§=0. Then the phase

(1) boundary is determined by the equatibn- 5%, where two
gap-generating mechanisms cancel each other. Later Wang
where a labels the leg, and andJ’ are the magnitudes of gng Nersesya’?n (WN) obtained the same conclusiolf
the bond alternation and the rung interaction, respectively.. §23 py use of the Majorana fermion method, and also
We can set5>0 without loss of generality. All the interac- pointed out that the criticality of the present problem is es-
tions are assumed to be antiferromagnetic. sentially the same as that of ttf&=1 bilinear and biqua-

As is well known, both the bond alternation and the runggdratic chain with the bond alternation near the Takhtijan
interaction bring about the spin gap due to the formationgng Babupa?r8 point which is discussed by Kitazawa and
of the effective singlet pairs. First we consider the case neayomura? On the other hand, Cabra and Gryntérd (CG)
(6,9")=(0,0). WhenJ'=0, our model is reduced to two djiscussed this problem by use of the bosonization technique
independent bond alternating chains, where two spins corgnd concluded that the phase boundary is of the fdtm
nected by ¥ & interactions effectively form a singlet pair « 52, Kotov, Oitmaa, and WieIhorJré (KOW) studied this
(leg-dimer state For the =0 case, on the other hand, the problem by use of the dimer series expansion and the dia-
effective singlet pair is composed of two spins connected byyrammatic analysis of an effective Hamiltonian. Although
the rung interactiongrung-dimer state Next let us consider MDA, CG, and KOW performed the numerical diagonaliza-
the 6=1 case where the-1 ¢ interactiongthick lines in Fig.  tion of this model, these groups could not determine the pre-
2) vanish. In this case, our model is reduced to the uSual cise phase diagram because of the numerical errors coming
=1/2 chain with the bond alternation. The ground state is thgrom the extrapolation procedure of the gap data which be-
leg-dimer state whed’ <2, the rung-dimer state wheli  comes more severe as the poitd’)=(0,0) is approached.
>2, and the spin-fluid state wheli=2. Thus the form of the phase boundary remains an unsolved

From the above limiting cases, we see that the groundproblem.
0 T T D

state phase diagram is composed of the leg-dimer state and
a
T T 9 = = & 6
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FIG. 1. S=1/2 two-leg ladder with the staggered bond alterna- O} OO/ \Or=O

tions. Thick lines represent the stronger leg interactioftss1 thin
lines the weaker leg interactions-15, and the dotted lines the rung FIG. 2. The ground states whef+1. (a) the J' <2 case, and
interactions]’. (b) the J’>2 case. Ellipses denote the effective singlet pair.
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FIG. 3. Linear chain representation of our model. Thick lines It
represent ¥ & interactions, thin lines * § interactions, and the L
dotted lines)’ interactions.

rung—dimer

In this report we determine the precise phase diagram
from the numerical diagonalization data by use of the level
spectroscopy'* with the twisted boundary condition devel-
oped by Kitazawa® Our result supports the form’ o 523 I
predicted by MDS and WN. o&Z—~— v

leg—dimer

II. NUMERICAL ANALYSIS

If we redraw the model into the single-chain for(fig.
3), the transition between the leg-dimer state and the rung-
dimer state is interpreted as the different configuration of the
dimers. Namely, the dimers exist on the thick lines in the
leg-dimer state, and on the dotted lines in the rung-dimer
state. Kitazaw® proposed the twisted boundary condition
(TBC) method for this kind of transition. In his method, the
leg-dimer state and the rung-dimer state are distinguished by
the parityP=+1 for the space inversion transformati&p
—8§ —j+1 WherelL is the number of spins. The transition

point can be known from crossing the energies of the lowest 107l
states withP=+1. We have done the numerical diagonal- 10 10 107s 10
ization by the Lanczos method up to 24 spins. We show an
example of the crossing in Fig. 4. ©

We can determine the final transition point by the-« 10°%—— e
extrapolation of the crossing da&(J’,L). Thus we obtain g
the phase diagram in Fig. 5. From the log-log pl&ig. 27l

5(b)], we see that the phase boundary negd()=(0,0) is

expressed by rung-—dimer

10°F 3

J.=1.95%%° [near(s,J')=(0,0], (2 ]

which is consistent with the predictial « 6% by MSS and leg—dimer 3

WN. We note that the estimated error for the exponent 0.69 i ]
is less than 0.01. Similar log-log plot nea$,§’')=(1,2) 107t

shown in Fig. %c) leads to 10 10 107, 5 10

—17.670 FIG. 5. (a) Phase diagram of the present modb). The log-log
plot of the phase boundary nea#,{')=(0,0). which can be fitted
E by J'=1.96°%%. (c) The log-log plot of the phase boundary near
(6,3")=(1,2), which can be fitted by 2J'=1.50(1- 6). The es-
-17.672 timated errors are less than the size of marks(&yr(b), and(c).
I 2—-J.=1501-6) [near(sJ)=(1,2]. (3)
-17.6741
L . I1l. DISCUSSION
0.0120 3 0.0130
4 We have obtained the boundary equatidj—1.95%%°

FIG. 4. Crossing of the energies of the lowest states with thd'€@" (5,J")=(0,0), which is consistent with the prediction
i : I _ : J' 5% by MSS and WN. Our exponent, 0.69, is slightl
different parity whenJ’ =0.1 andL=20. Open circles denote the y ( - ponent, .59, gntly
energies withP=1, and closed circles those with=—1. From larger than the predicted value 2/3. This can be explained as
the crossing point we can estimaigJ’ =0.1L =20)=0.01253 as  follows. For the bond alternating chain, the dimer gap be-
indicated by the arrow. haves ass??/\/|In § when we take into account the margin-
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ally irrelevant operator that generates théeN@ap, as action and the staggered magnetic fieldSs 1/2 two-leg
pointed out by Black and Emef§.Thus the apparent dimer ladder. Namely, instead of the bond alternation of our model,
gap exponent will be somewhat larger than 2/3 due to théhere exists the staggered magnetic field

logarithmic correction effect, if we estimate it from the nu-

merical data assuming the pure power &4 MSS conjec- hE z (—1)ig? (5)
tured that the preceding numerical factor igar value is j a=12 J

1.9, becausel;=25%% is satisfied even when8(J') in their model. The rung interactions are going to form a
=(1,2). However, this is not justified since the fordd  singlet dimer pair at the rung, whereas the staggered field
= 527 will be valid only near ¢,J’)=(0,0). will form a 1 or || pair at the rung. They treated this
CG have discussed the phase boundary nefd’) competition problem between these two states by use of the
=(0,0) by use of the bosonization method. They bosonizedosonization method and the Majonara fermion method.
the single-chain Hamiltonian using the phase varialggs ~Their phase boundary wak «h?3, which is the same form
and ¢,, which are hybridized with each other by the intro- & our Eq(2). In one chain problem, the effects of the bond
duction of the interchain rung couplings. They first made a@térnation and the staggered magnetic field are expressed as
linear transformation of these two phase variables to diagol€"Y Similar mass-generating terms in the language of the
nalize the harmonic part of the bosonized Hamiltonian, ana)osomzed Hamiltonian. We think that our level spectroscopy

treated the bond alternation effect perturbationally. In theirmethOOI of analyzing the numerical data can be also applied

i . to this staggered field problem.
treatment, it seems that the effect of the bond alternation was In conclusion, we have numerically determined the phase

considered after that the spin gap is established due to th{ﬁagram of theS=1/2 two-leg ladder with the staggered

interchain rung couplings. In such a case the. nonipteger ®Hond alternation§Fig. 1 and Eq(1)]. Our phase boundary is
ponent will not appear, because the perturbation with respe¢lysistent with that predicted by MartDelgado, Shankar,

to 6 will be valid as far ass is small. Since the present 544 Sierrg and also by Wang and Nersesyabuyt not with
Hamiltonian is symmetric under the transformationnat py Cabra and Grynbet§!! We believe that our work
8&— 6, the perturbational expansion begins with Thus  gives the definite conclusion on the phase boundary form of

the conclusion of CG wag’ « §°. the present model.
Near (6,J')=(1,2) we have obtained Note added in proofAfter this work was completed, | was
informed that M. Nakamura, T. Yamamoto, and K. Ide inves-
2-Jix1-4. (49 tigated the same modéto be published in J. Phys. Soc.

If we neglect the 1 & interactiong(thin lines in Fig. 3, the Jpn). Their conclusion is essentially the same as that in this

phase boundary neasd’')=(1,2) clearly has the form 2 Paper.
—J(=1- 6, because the interactions of the thick lines are ACKNOWLEDGMENTS
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