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Phase diagram of theSÄ 1
2 two-leg spin ladder with staggered bond alternation
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The ground state of theS51/2 two-leg ladder with the staggered bond alternations is investigated. We have
determined the precise phase diagram on thed-J8 plane (d andJ8 are the magnitudes of the bond alternation
and the rung interaction, respectively!, employing the level spectroscopic analysis of the numerical diagonal-
ization data obtained by the Lanczos algorithm with the twisted boundary condition. The phase boundary
between the leg-dimer state and the rung-dimer state near (d,J8)5(0,0) is of the formJ8}d0.69, which is
consistent with the predictionJ8}d2/3 by Martı́n-Delgado, Duleksky, and Sierra, and also by Wang and
Nersesyan, but not withJ8}d2 by Cabra and Grynberg.
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I. INTRODUCTION

In recent years the spin systems with the excitation g
have been extensively studied theoretically, numerically,
experimentally. In this report we study the ground-st
phase diagram of theS51/2 two-leg ladder with the stag
gered bond alternations, which is sketched in Fig. 1. T
Hamiltonian of our model is given by

H5(
j

(
a51,2

@11~21! j 1ad#Sa, j•Sa, j 111J8(
j

S1,j•S2,j ,

~1!

wherea labels the leg, andd andJ8 are the magnitudes o
the bond alternation and the rung interaction, respectiv
We can setd.0 without loss of generality. All the interac
tions are assumed to be antiferromagnetic.

As is well known, both the bond alternation and the ru
interaction bring about the spin gap due to the format
of the effective singlet pairs. First we consider the case n
(d,J8)5(0,0). WhenJ850, our model is reduced to two
independent bond alternating chains, where two spins c
nected by 11d interactions effectively form a singlet pa
~leg-dimer state!. For thed50 case, on the other hand, th
effective singlet pair is composed of two spins connected
the rung interactions~rung-dimer state!. Next let us consider
thed51 case where the 12d interactions~thick lines in Fig.
2! vanish. In this case, our model is reduced to the usuaS
51/2 chain with the bond alternation. The ground state is
leg-dimer state whenJ8,2, the rung-dimer state whenJ8
.2, and the spin-fluid state whenJ852.

From the above limiting cases, we see that the grou
state phase diagram is composed of the leg-dimer state

FIG. 1. S51/2 two-leg ladder with the staggered bond altern
tions. Thick lines represent the stronger leg interactions 11d, thin
lines the weaker leg interactions 12d, and the dotted lines the run
interactionsJ8.
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the rung-dimer state. On the phase boundary of these s
the spin-fluid state~gapless! is realized. This fact was origi-
nally suggested by Martı´n-Delgado, Shankar, and Sierra1

~MSS! through use of the nonlinears model approach. The
boundary between these two state will start at (d,J8)
5(0,0) and end at (d,J8)5(1,2). Martı́n-Delgado, Dule-
ksky, and Sierra2 ~MDS! stated that the phase boundary ne
(d,J8)5(0,0) is of the formJ8}d2/3. MDS have consider-
ated the following. The gap due to the bond alteration
proportional to3 d2/3 when J850, and that due to the rung
interaction is proportional to4 J8 whend50. Then the phase
boundary is determined by the equationJ8;d2/3, where two
gap-generating mechanisms cancel each other. Later W
and Nersesyan5 ~WN! obtained the same conclusionJ8
;d2/3, by use of the Majorana fermion method, and a
pointed out that the criticality of the present problem is e
sentially the same as that of theS51 bilinear and biqua-
dratic chain with the bond alternation near the Takhtaj6

and Babujian7,8 point which is discussed by Kitazawa an
Nomura.9 On the other hand, Cabra and Grynberg10,11 ~CG!
discussed this problem by use of the bosonization techn
and concluded that the phase boundary is of the formJ8
}d2. Kotov, Oitmaa, and Wielhong12 ~KOW! studied this
problem by use of the dimer series expansion and the
grammatic analysis of an effective Hamiltonian. Althoug
MDA, CG, and KOW performed the numerical diagonaliz
tion of this model, these groups could not determine the p
cise phase diagram because of the numerical errors com
from the extrapolation procedure of the gap data which
comes more severe as the point (d,J8)5(0,0) is approached
Thus the form of the phase boundary remains an unso
problem.

-

FIG. 2. The ground states whend51. ~a! the J8,2 case, and
~b! the J8.2 case. Ellipses denote the effective singlet pair.
©2003 The American Physical Society08-1
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In this report we determine the precise phase diag
from the numerical diagonalization data by use of the le
spectroscopy13,14 with the twisted boundary condition deve
oped by Kitazawa.15 Our result supports the formJ8}d2/3

predicted by MDS and WN.

II. NUMERICAL ANALYSIS

If we redraw the model into the single-chain form~Fig.
3!, the transition between the leg-dimer state and the ru
dimer state is interpreted as the different configuration of
dimers. Namely, the dimers exist on the thick lines in t
leg-dimer state, and on the dotted lines in the rung-dim
state. Kitazawa15 proposed the twisted boundary conditio
~TBC! method for this kind of transition. In his method, th
leg-dimer state and the rung-dimer state are distinguishe
the parityP561 for the space inversion transformationSj
→SL2 j 11 where L is the number of spins. The transitio
point can be known from crossing the energies of the low
states withP561. We have done the numerical diagona
ization by the Lanczos method up to 24 spins. We show
example of the crossing in Fig. 4.

We can determine the final transition point by theL→`
extrapolation of the crossing datadc(J8,L). Thus we obtain
the phase diagram in Fig. 5. From the log-log plot@Fig.
5~b!#, we see that the phase boundary near (d,J8)5(0,0) is
expressed by

Jc851.9d0.69 @near~d,J8!5~0,0!#, ~2!

which is consistent with the predictionJ8}d2/3 by MSS and
WN. We note that the estimated error for the exponent 0
is less than 0.01. Similar log-log plot near (d,J8)5(1,2)
shown in Fig. 5~c! leads to

FIG. 3. Linear chain representation of our model. Thick lin
represent 11d interactions, thin lines 12d interactions, and the
dotted linesJ8 interactions.

FIG. 4. Crossing of the energies of the lowest states with
different parity whenJ850.1 andL520. Open circles denote th
energies withP51, and closed circles those withP521. From
the crossing point we can estimatedc(J850.1,L520)50.012 53 as
indicated by the arrow.
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22Jc851.50~12d! @near~d,J8!5~1,2!#. ~3!

III. DISCUSSION

We have obtained the boundary equationJc851.9d0.69

near (d,J8)5(0,0), which is consistent with the predictio
J8}d2/3 by MSS and WN. Our exponent, 0.69, is slight
larger than the predicted value 2/3. This can be explaine
follows. For the bond alternating chain, the dimer gap b
haves asd2/3/Au ln du when we take into account the margin

e

FIG. 5. ~a! Phase diagram of the present model.~b! The log-log
plot of the phase boundary near (d,J8)5(0,0). which can be fitted
by J851.9d0.69. ~c! The log-log plot of the phase boundary ne
(d,J8)5(1,2), which can be fitted by 22J851.50(12d). The es-
timated errors are less than the size of marks for~a!, ~b!, and~c!.
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BRIEF REPORTS PHYSICAL REVIEW B67, 212408 ~2003!
ally irrelevant operator that generates the Ne´el gap, as
pointed out by Black and Emery.16 Thus the apparent dime
gap exponent will be somewhat larger than 2/3 due to
logarithmic correction effect, if we estimate it from the n
merical data assuming the pure power law.17,18 MSS conjec-
tured that the preceding numerical factor is 2~our value is
1.9!, becauseJc852d2/3 is satisfied even when (d,J8)
5(1,2). However, this is not justified since the formJc8
}d2/3 will be valid only near (d,J8)5(0,0).

CG have discussed the phase boundary near (d,J8)
5(0,0) by use of the bosonization method. They bosoni
the single-chain Hamiltonian using the phase variablesf1
andf2, which are hybridized with each other by the intr
duction of the interchain rung couplings. They first made
linear transformation of these two phase variables to dia
nalize the harmonic part of the bosonized Hamiltonian, a
treated the bond alternation effect perturbationally. In th
treatment, it seems that the effect of the bond alternation
considered after that the spin gap is established due to
interchain rung couplings. In such a case the noninteger
ponent will not appear, because the perturbation with res
to d will be valid as far asd is small. Since the presen
Hamiltonian is symmetric under the transformati
d⇔2d, the perturbational expansion begins withd2. Thus
the conclusion of CG wasJ8}d2.

Near (d,J8)5(1,2) we have obtained

22Jc8}12d. ~4!

If we neglect the 12d interactions~thin lines in Fig. 3!, the
phase boundary near (d,J8)5(1,2) clearly has the form 2
2Jc8512d, because the interactions of the thick lines a
22(22J8) and those of the dotted lines are 22(12d). The
thin line interactions 12d are the third-neighbor interaction
in the linear chain representation of Fig. 3, which m
modify only the coefficient of the relation, resulting in
2Jc8}12d.

Very recently Wang, Essler, Fabrizio, and Nersesya19

~WEFN! discussed the competition between the rung in
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action and the staggered magnetic field inS51/2 two-leg
ladder. Namely, instead of the bond alternation of our mod
there exists the staggered magnetic field

h(
j

(
a51,2

~21! jSj
z ~5!

in their model. The rung interactions are going to form
singlet dimer pair at the rung, whereas the staggered fi
will form a ↑↑ or ↓↓ pair at the rung. They treated thi
competition problem between these two states by use of
bosonization method and the Majonara fermion meth
Their phase boundary wasJ8}h2/3, which is the same form
as our Eq.~2!. In one chain problem, the effects of the bon
alternation and the staggered magnetic field are expresse
very similar mass-generating terms in the language of
bosonized Hamiltonian. We think that our level spectrosco
method of analyzing the numerical data can be also app
to this staggered field problem.

In conclusion, we have numerically determined the ph
diagram of theS51/2 two-leg ladder with the staggere
bond alternations@Fig. 1 and Eq.~1!#. Our phase boundary is
consistent with that predicted by Martı´n-Delgado, Shankar
and Sierra,2 and also by Wang and Nersesyan,5 but not with
that by Cabra and Grynberg.10,11 We believe that our work
gives the definite conclusion on the phase boundary form
the present model.

Note added in proof. After this work was completed, I wa
informed that M. Nakamura, T. Yamamoto, and K. Ide inve
tigated the same model~to be published in J. Phys. Soc
Jpn.!. Their conclusion is essentially the same as that in t
paper.
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