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Electron injection in a nanotube: Noise correlations and entanglement
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Transport through a metallic carbon nanotube is considered, where electrons are injected in the bulk by a
scanning tunneling microscope tip. The charge current and noise are computed. For an infinite homogeneous
nanotube, the shot noise exhibits effective charges different from the electron charge. Noise correlations
between both ends of the nanotube are positive, and occur to second order only in the tunneling amplitude. The
positive correlations are symptomatic of an entanglement phenomenon between quasiparticles moving right
and left from the tip. This entanglement involves many body states of the boson operators which describe the
collective excitations of the Luttinger liquid.
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I. INTRODUCTION

Over the years, the study of current noise and noise
relations has become a respected and useful diagnosi
transport measurements on mesoscopic conductors. The
cally, noise was first computed mostly for noninteracti
systems.1 However, it soon became clear that low-frequen
noise could be used to isolate the quasiparticle charge2,3 and
to study the statistical correlations4,5 in specific quasi-one-
dimensional correlated electron systems, such as the
waves in the quantum Hall effect. In these chiral Lutting
liquids, the charge of the collective excitations along t
edges corresponds to the electron charge multiplied by
filling factor.

Attention is now turning towards conductors—individu
nanoobjects—which occur naturally, and which can be c
nected to current/voltage probes in order to perform a tra
port experiment. The crucial advantage of such nanoobj
is that they are essentially free of defects and in some
cumstances they have an inherent one-dimensional chara
Carbon nanotubes constitute the archetype of such 1D
noobjects: single wall armchair nanotubes have metallic
havior, with two propagating modes at the Fermi level. In
dentally, electronic correlations are known to play
important role in such systems. Carbon nanotubes see
constitute good candidates to study Luttinger-liquid beh
ior. In particular, their tunneling density of states—and th
the tunnelingI (V) characteristics is known to have a pow
law behavior6–8 in accordance with Luttinger liquid theory

Luttinger models for nanotubes differ significantly fro
their quantum Hall effect counterpart, because of their n
chiral character. Forward and backward fields describing
lective excitations effectively mix, because the interactio
between electrons are spread along the whole length of
nanotube. For this reason, a straightforward transpositio
the results obtained for chiral edge system proves diffic
Nevertheless, nonchiral Luttinger liquids can be describ
with chiral fields.9,10 Such chiral fields correspond to excit
tions with anomalous~noninteger! charge, which has elude
detection so far.

In the present work, we propose an experimental geo
0163-1829/2003/67~20!/205408~10!/$20.00 67 2054
r-
for
eti-

y

ge
r
e
e

-
s-
ts

ir-
ter.
a-

e-
-

to
-

s

-
l-
s
he
of
t.
d

-

etry which allows to probe directly the underlying charges
the collective excitations. The setup consists of a nanot
whose bulk is contacted by a scanning tunneling microsc
~STM! tip which injects electrons, while both extremities
the nanotube collect the current~Fig. 1!. The current, the
noise and the noise correlations are computed, and the e
tive charges are determined by comparison with the Scho
formula11 for an ‘‘infinite’’ nanotube, the striking result is
that noise correlations contribute to second order in the e
tron tunneling, in sharp contrast with a fermionic syste
which requires fourth order. The noise correlations are th
positive, because the tunneling electron wave function
split in two counter propagating modes of the collective e
citations in the nanotube. We conjecture that in the prese
of 1D Fermi liquid leads, modeled as in Ref. 12, the abse
of renormalization/interaction effects of the nanotube is
covered.

A recent two terminal experiment studied the curren
current fluctuations in ropes of nanotubes.13 There, it is
pointed out that the strong reduction of the low frequen
noise cannot be understood within the context of scatte
theory.14 Naive comparison with existing non-chiral Lu
tinger liquid models10 would imply an interaction paramete
much inferior to the free electron case. Also, we mention t
other multi-terminal geometries where a nanotube or a o
dimensional wire is attached to more than two leads, h
been considered.15–19 Our proposal deals with the same g
ometry as Ref. 16, where a renormalization analysis ide
fied the exponents of the current voltage characterist
However, here the emphasis is put on the low freque
current fluctuation spectrum, both for the autocorrelation a
the cross correlations between the two ends of the nanot

The paper is organized as follows. The Hamiltonian of o
setup is specified in the next section, followed by a gene
nonequilibrium scheme based on the Keldysh formalism
study transport in this device, which is independent of
type of leads chosen~Sec. III!. Results for an infinite homo-
geneous nanotube are then presented in Sec. IV. A con
tion with the effective charges of Refs. 9,10,16 is establish
in Sec. V.
©2003 The American Physical Society08-1
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II. MODEL HAMILTONIAN

The transport geometry~Fig. 1! implies tunneling from
the tip ~normal or ferromagnetic metal! to the nanotube, and
subsequent propagation of collective excitations along
nanotube. In the absence of tunneling, the Hamiltonian
thus simply the sum of the nanotube Hamiltonian, descri
by a two mode Luttinger liquid, together with the tip Ham
tonian. Using the standard conventions,20 the operator de-
scribing an electron with spins moving along the direction
r, from modea is specified in terms of a bosonic field

C ras~x,t !5
1

A2pa
eiakFx1 irq Fx1 iwras(x,t), ~1!

with a a short distance cutoff,kF the Fermi momentum,qF
the momentum mismatch associated with the two modes,
the conventionr 56, a56 and s56 are chosen for the
direction of propagation, for the nanotube branch, and for
spin orientation. It is convenient to express this boso
phase in terms of the conventional nonchiral Luttinger liqu
fields u j d and f j d , with j dP$c1,c2,s1,s2% identifying
the charge/spin and total/relative fields

w ras~x,t !5Ap

2(
j d

has j d@f j d~x,t !1ru j d~x,t !#, ~2!

with hasc151, hasc25a, hass15s, andhass25as. u j d
and f j d are dual nonchiral fields. A plausible alternativ
would have been to expressw ras in terms of the chiral Lut-
tinger liquid fields. However, the present choice will be si
pler later on when dealing with inhomogeneous Lutting
liquids ~in order to include the leads!, as the Green’s func
tions for u j d , f j d are known. The Hamiltonian which de
scribes the collective excitations in the nanotube has
standard form

H5
1

2 (
j d

E
2`

`

dxS v j dK j d@]xf j d~x,t !#2

1
v j d

K j d
@]xu j d~x,t !#2D , ~3!

with an interaction parameterK j d and velocityv j d .
For the scanning tunneling microscope~STM! tip, one

assumes for simplicity that only one electronic mode coup
to the nanotube. The tip can thus be described by a se
infinite Luttinger liquid, as in Kondo type problems. Th

FIG. 1. Schematic configuration of the nanotube-STM devi
electrons are injected from the tip atx50 and current is measure
at both nanotube ends, which are set to the ground.
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turns out to be convenient in this problem where bo
bosonized nanotube fermions operators and tip fermions
erators intervene. For the sake of generality, we allow
two spin components of the tip fields to have different Fer
velocitiesuF

s , which allows us to treat the case of a ferr
magnetic metal. The fermion operator at the tip locationx
50 is then

cs~ t !5
1

A2pa
ei w̃s(t). ~4!

Here,w̃s is the chiral Luttinger liquid field, whose Keldys
Green’s function atx50 is given by21

gs(h1h2)~ t1 ,t2![^TK$w̃s~ t1
h1!w̃s~ t2

h2!%&

52
1

2p
ln$11 i @~h11h2!sgn~ t12t2!

2~h12h2!#uF
s~ t12t2!/2a%, ~5!

where h1,256 refer to the upper or lower branch of th
Keldysh contour.

The tunneling Hamiltonian is a standard hopping term

HT~ t !5 (
«ras

G ras
(«) ~ t !@C ras

† ~0,t !cs~ t !# («). ~6!

Here the superscript («) leaves either the operators i
bracket unchanged («51), or transforms them into thei
Hermitian conjugate («52). The voltage bias between th
tip and the nanotube is included using the Peierls subs
tion: the hopping amplitudeG ras

(«) acquires a time dependen
phase exp(i«v0t), with the bias voltage identified asV
5\v0 /e. We will use the convention\→1. Similarly, the
tunneling current is defined as

I T~ t !5 ie (
«ras

«G ras
(«) ~ t !@C ras

† ~0,t !cs~ t !# («). ~7!

In Eqs. ~1! and ~4!, we have omitted the Klein factor
which guarantee the anti-commutation of the three types
fermions operators—written in terms of bosonic fields—f
this problem: the two nanotube branches and the STM sin
mode. It has been established5,22 that Klein factors are in
principle necessary to treat multi-Luttinger system, as illu
trated in the computation of noise correlations between th
edge states in the FQHE. In the present work, Klein fact
can be dropped because we intend to work with lowest or
perturbation theory. To orderG2, statistical correlations be
tween the three Luttinger systems do not occur. Howe
they should show up when calculating higher order corr
tions (G4).

For this problem which implies propagation along t
nanotube, it is also necessary to compute the~total! charge
and~total! spin currents using the bosonized fields of Eq.~1!

:

8-2
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ELECTRON INJECTION IN A NANOTUBE: NOISE . . . PHYSICAL REVIEW B 67, 205408 ~2003!
I r~x,t !5evF(
ras

rC ras
† ~x,t !C ras~x,t !

52evFA2

p
]xfc1~x,t !. ~8!

Similarly, we consider the spin current in theẑ direction:

I sz
~x,t !5evF(

ras
rC ras

† ~x,t !szC ras~x,t !

52evFA2

p
]xfs1~x,t !. ~9!

Note that the contribution from terms containing 2kF oscil-
lations has been dropped. This is equivalent to requiring
the current measurement along the nanotube is effective
spatial average over a length scale larger thanlF . In prac-
tice, 2kF terms are necessary in order to establish a conn
tion between current fluctuations and density fluctuations

III. NONEQUILIBRIUM TRANSPORT FORMALISM

In this section, the general approach used to calculate
tunneling current and noise, as well as the current and n
in the nanotube is described. All quantities are compute
zero temperature for simplicity. The calculation of the tu
neling current and noise is quite similar to the perturbat
results in Ref. 2 for the FQHE. Here it is summarized
order to compare with the nanotube transport quantities.

A. Tunneling current and noise

The Keldysh technique is used to compute the aver
tunneling current and noise. We adopt the convention that
coefficientsh,h1,256 identify the upper/lower branch o
the Keldysh contour:
20540
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^I T~ t !&5
1

2 (
h

^TK$I T~ th!e2 i *Kdt1HT(t1)%&, ~10!

ST~ t,t8!5
1

2 (
h

^TK$I T~ th!I T~ t82h!e2 i *Kdt1HT(t1)%&,

~11!

which applies in typical tunneling situations where the pro
uct of the current averages is of orderG4. In order to collect
the lowest order contribution in the tunneling amplitude, t
exponential is expanded to first order for the current, and
zeroth order for the noise

^I T~ t !&5
eG2

2 (
ras«hh1

h«E
2`

1`

dt1e2 i«v0(t2t1)

3^TK$C ras~0,th!(«)C ras~0,t1
h1!(2«)%&

3^TK$cs~ th!(2«)cs1
~ t1

h1!(«)%&, ~12!

ST~ t,t8!5
e2G2

2 (
ras«h

e2 i«v0(t2t8)

3^TK$C ras
1 ~0,th!(«)C ras

1 ~0,t82h!(2«)%&

3^TK$cs~ th!(«)cs~ t82h!(2«)%&, ~13!

where the last factor in Eqs.~12! and~13! is the tip fermion
Green’s function. Next the nanotube and tip fields are sp
fied in terms of the bosonized fields~nonchiral and chiral!,
and the two Keldysh ordered exponential products are c
puted:
unctions
^I T~ t !&5
eG2

2~2pa!2 (
ras«hh1

h«E
2`

1`

dt1e2 i«v0(t2t1)e2pgs(hh1)(t2t1)

3ep/2( j d[Gj d(hh1)
ff (0,0,t2t1)1rG j d(hh1)

fu (0,0,t2t1)1rG j d(hh1)
uf (0,0,t2t1)1Gj d(hh1)

uu (0,0,t2t1)] , ~14!

ST~ t,t8!5
e2G2

~2pa!2 (
ras«h

e2 i«v0(t2t8)e2pgs(h2h)(t2t8)

3ep/2( j d[Gj d(h2h)
ff (0,0,t2t8)1rG j d(h2h)

fu (0,0,t2t8)1rG j d(h2h)
uf (0,0,t2t8)1Gj d(h2h)

uu (0,0,t2t8)] . ~15!

As expected, the stationary current and the real time current correlator call for the time differencest2t1 , t2t8 only.
Integrating over time, the zero frequency noise is introduced. Further using the symmetry properties of the Green’s f
gs(hh)(t)5gs(hh)(utu) andGj d(hh)

ff (0,0,t)5Gj d(hh)
ff (0,0,utu) ~similarly for uu, uf andff), only h52h1 is retained for the

current

^I T&52
2ieG2

~2pa!2 (
rsh

hE
2`

1`

dtsin~v0t!e2pgs(h2h)(t)ep/2( j d[Gj d(h2h)
ff (0,0,t)1rG j d(h2h)

fu (0,0,t)1rG j d(h2h)
uf (0,0,t)1Gj d(h2h)

uu (0,0,t)] ,

~16!

ST~v50!52
e2G2

~pa!2 (
rsh

E
2`

1`

dt cos~v0t!e2pgs(h2h)(t)ep/2( j d[Gj d(h2h)
ff (0,0,t)1rG j d(h2h)

fu (0,0,t)1rG j d(h2h)
uf (0,0,t)1Gj d(h2h)

uu (0,0,t)] .

~17!
The tunneling current and noise imply the knowledge of the Green’s functions at the tunneling location only.
8-3
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B. Nanotube current and noise

The operator averages along the nanotube require a
turbative calculation up to second order in the tunnel
Hamiltonian for the tunneling current and for the noise. Tu
neling of an electron from the STM tip is followed by prop
gation of the collective excitations of the Luttinger liqu
towards both ends of the nanotube.

^I r~x,t !&52
1

4 (
hh1h2

h1h2K TKH I r~x,th!E E dt1dt2

3HT~0,t1
h1!HT~0,t2

h2!J L , ~18!
er-
g
-

Sr~x,t;x8,t8!52
1

4 (
hh1h2

h1h2K TKH I r~x,th!I r~x8,t82h!

3E E dt1dt2HT~0,t1
h1!HT~0,t2

h2!J L , ~19!

where the contribution to the noise coming from^I r(x,t)&
3^I r(x8,t8)& has been dropped because it contributes to
derG4. Expressing the Hamiltonian in terms of the fields, t
limit lim

g→0
( ig)21]xexp@igfc1#5]xfc1 is used in order to

cast the time ordered averages into correlators of expon
ression
nneling
e

tial
tials only:

^I r~x,t !&52
evFG2

4pa
A2

p (
hh1h2«1r 1a1s1

h1h2E E dt1dt2e2 i«1v0(t12t2)^TK$cs1

(2«1)
~ t1

h1!cs1

(«1)
~ t2

h2!%&

3 lim
g→0

1

ig
]x^TK$eigfc1(x,th)e2 i«1wr 1a1s1

(0,t
1

h1)ei«1wr 1a1s1
(0,t

2

h2)%&, ~20!

Sr~x,t;x8,t8!52
e2vF

2G2

p2a
(

hh1h2«1r 1a1s1

h1h2E E dt1dt2e2 i«1v0(t12t2)^TK$cs1

(2«1)
~ t1

h1!cs1

(«1)
~ t2

h2!%&

3 lim
g→0

1

g2
]x]x8^TK$eigfc1(x,th)e2 igfc1(x8,t82h)e2 i«1wr 1a1s1

(0,t
1

h1)ei«1wr 1a1s1
(0,t

2

h2)%&, ~21!

where the contribution from the STM tip is the same as before. The two time ordered products~one for the tip and one for the
nanotube! are expressed in terms of Luttinger liquid Green’s functions. Taking the spatial derivative, one obtains an exp
with Green’s functions as prefactors—implying propagation—as well as exponentiated Green’s functions at the tu
location. Operating variable changes in the integrals and noticing that onlyh152h2 contributes, the current and nois
become

^I r~x!&52
evFG2

2p2a2 (
hh1r 1s1

E
2`

1`

dt8]x@Gc1(hh1)
ff ~x,0,t8!2Gc1(h2h1)

ff ~x,0,t8!1r 1Gc1(hh1)
fu ~x,0,t8!2r 1Gc1(h2h1)

fu ~x,0,t8!#

3E
2`

1`

dt sin~v0t!e2pgs1(h12h1)(t)ep/2( j d[Gj d(h12h1)
ff (0,0,t)1Gj d(h12h1)

uu (0,0,t)1r 1Gj d(h12h1)
fu (0,0,t)1r 1Gj d(h12h1)

uf (0,0,t)] , ~22!

Sr~x,x8,v50!52
e2vF

2G2

~pa!2 (
hh1r 1s1

E
2`

1`

dt cos~v0t!e2pgs1(h12h1)(t)

3ep/2( j d[Gj d(h12h1)
ff (0,0,t)1r 1Gj d(h12h1)

fu (0,0,t)1r 1Gj d(h12h1)
uf (0,0,t)1Gj d(h12h1)

uu (0,0,t)]E
2`

1`

dt1]x@Gc1(hh1)
ff ~x,0,t1!

2Gc1(h2h1)
ff ~x,0,t1!1r 1Gc1(hh1)

fu ~x,0,t1!2r 1Gc1(h2h1)
fu ~x,0,t1!#E

2`

1`

dt2]x8@Gc1(2hh1)
ff ~x8,0,t2!

2Gc1(2h2h1)
ff ~x8,0,t2!1r 1Gc1(2hh1)

fu ~x8,0,t2!2r 1Gc1(2h2h1)
fu ~x8,0,t2!#. ~23!

Note the temporal decoupling~which occurs after operating variable changes! in these expressions. The integral overt
contains information on electron tunneling atx50, while the remaining integrals involve propagation, thus the spa
dependence in the Green’s functions arguments.

205408-4
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IV. CURRENT AND NOISE FOR AN INFINITE NANOTUBE

In the previous section, general expressions were der
for the current and noise, which were independent of
form of the Green’s functionsGj d

ff , Gj d
fu , Gj d

fu , andGj d
uu .

The Green’s functions are described in Appendix A and
used to compute the tunneling noise and current as we
the nanotube noise and current.

A. Tunneling current and noise

After substitution of the Green’s function of a nanotub
the tunneling current reads

^I T&52
2ieG2

~2pa!2 (
rsh

hE
2`

1` sin~v0t!dt

S 12 ih
uF

st

a D S 12 ih
vFt

a D n ,

~24!

ST~v50!5
e2G2

~pa!2 (
rsh

E
2`

1` cos~v0t!dt

S 12 ih
uF

s

a
t D S 12 ih

vF

a
t D n ,

~25!
an
en
a

20540
ed
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with the exponents

n5
1

8 (
j d

S K j d1
1

K j d
D , ~26!

n is the bulk tunneling exponent of the current–voltage ch
acteristicŝ I T(v0)&.6 The integrals are computed in Appen
dix B, we obtain:

^I T&5
2eG2

pa S (
s

1

uF
sD S a

vF
D n sgn~v0!uv0un

G~n11!
~27!

where we used the definition of the Gamma functionG. Only
electrons can tunnel from the tip to the nanotube, so one
check that the classical Schottky formula holds always:

ST~v50!5eu^I T&u. ~28!

B. Nanotube current and noise

Some of the time integrals in Eq.~22! has already been
encountered when computing the tunneling current a
noise. The current and noise thus become:
^I r~x!&52
eivFG2

pa S (
s

1

uF
sD S a

vF
D n

sgn~v0!
uv0un

G~n811!
(
hh1

h1E
2`

1`

dt8]x@Gc1(hh1)
ff ~x,0,t8!2Gc1(h2h1)

ff ~x,0,t8!#,

Sr~x,x8,v50!52
2e2vF

2G2

pa S (
s

1

uF
sD S a

vF
D n uv0un

G~n811!
F(

hh1

E
2`

1`

dt1]x@Gc1(hh1)
ff ~x,0,t1!

2Gc1(h2h1)
ff ~x,0,t1!#E

2`

1`

dt2]x8@Gc1(2hh1)
ff ~x8,0,t2!2Gc1(2h2h1)

ff ~x8,0,t2!#

1(
hh1

E
2`

1`

dt1]x@Gc1(hh1)
fu ~x,0,t1!2Gc1(h2h1)

fu ~x,0,t1!#

3E
2`

1`

dt2]x8@Gc1(2hh1)
fu ~x8,0,t2!2Gc1(2h2h1)

fu ~x8,0,t2!#G ~29!

52
2e2vF

2G2

pa S (
s

1

uF
sD S a

vF
D n uv0un

G~n811!
@ I ff~x,x8!1I fu~x,x8!#, ~30!
x-
where the last factor is computed in Appendix B. The st
dard assumptions of the calculation of the tunneling curr
and noise are recalled, as the same expressions appe
both results. We obtain

^I r~x!&5
eG2

pa S (
s

1

uF
sD S a

vF
D n uv0unsgn~v0!

G~n11!
sgn~x!,

~31!
-
t

r in
Sr~x,x8,v50!5

~Kc1!21sgn~x!sgn~x8!

2
eu^I r~x!&u.

~32!

Current conservationu^I r(x)&u5u^I T&u/2 is shown to hold.
Results are then valid for arbitrary voltages, with the e
pected power law behavior.
8-5
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V. DISCUSSION

A. Local current correlations

One accepted diagnosis to detect effective or anoma
charges is to compare the noise with the associated cu
with the Schottky formula in mind. A striking result is tha
despite the fact that electrons are tunneling from the STM
to the bulk of the nanotube, the zero frequency current fl
tuations are proportional to the current forx85x..a:

Sr~x,x,v50!5
11~Kc1!2

2
eu^I r~x!&u, ~33!

with an anomalous effective charge for an infinite nanotu

B. Positive cross-correlations

More can be learned from a measurement of the no
correlations. Noise correlations have been proposed to de
statistical correlations in quantum transport.14,5 Indeed, our
geometry can be considered as a Hanbury-Brown and T
correlation device. Such experiments have now been c
pleted for photons and more recently for electrons in qu
tum waveguides. Here the novelty is that electronic exc
tions do not represent the right eigenmodes of the nanot
For x852x@a the noise correlations read:

Sr~x,2x,v50!52
12~Kc1!2

2
eu^I r~x!&u. ~34!

This isa priori negative. However, if the current direction
chosen to be positive from the tip to the extremities of
nanotube, the sign of the cross–correlations is positive.
call that the fermionic version of the Hanbury-Brown a
Twiss experiment yields negative noise correlations.14,23 So
far, positive noise correlations have been attributed in pr
ity to bosonic systems.24 Nevertheless, there are at least tw
other situations where they are encountered. First, when
source of particle is a superconductor, noise correlations
also be positive depending on the junction configuration.25–28

Second, they also occur in systems with floating volta
probes.29 In the case of a superconductor, the emission
electron pairs through separate quantum dots guarantee
the noise correlations are always positive: a~singlet! en-
tangled electron pair is generated outside the su
conductor.30,31

Note that the prefactors in Eq.~36! can readily be inter-
preted using the language of Refs. 9,10,16. A tunneling ev
to the bulk of a nanotube is accompanied by the propaga
of two counter-propagating chargesQ65(16K

c1
)/2. Re-

call that the subscriptc1 identifies the charge~as opposed to
spin! excitation given by the total~rather than relative! con-
tribution of the two modes propagating in the nanotube. E
charge is as likely to go right or left. According to Ref. 1
electron injection in a Luttinger liquid is characterized
chiral chargesQ6 and chiral spin chargesS6 which describe
the elementary excitations of the nanotube:
20540
us
nt

p
-

.

e
ect

ss
-
-
-
e.

e
e-

r-

he
an

e
f
hat

r-

nt
n

h

S Q1

Q2

S1

S2

D 5(
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1

s/2

s/2

D 1JsS ~11Kc1!/2

~12Kc1!/2

s~11Ks1!/4

s~12Ks1!/4

D G ,

~35!

with integersns ,Js50,1,2, . . . (s5↑,↓). In particular, the
addition of an electron with spins corresponds to the choic
ns50 andJs51.

The current noise and noise correlations can be in
preted as an average over the two types of excitations

Sr~x,x!;
~Q1

2 1Q2
2 !

2
5

11~Kc1!2

4
, ~36!

Sr~x,2x!;2Q1Q252
12~Kc1!2

4
. ~37!

A drawing where the two types of charges ‘‘flow away’’ from
the tip while propagating along the nanotube is depicted
the lower part of Fig. 2. Both chargesQ6 are equally likely
to go right or left, and they are emitted as a pair with opp
site labels. The noise correlations of Eq.~39! are rendered
positive if one adopts the standard convention for measu
the current in multiterminal conductors.1 Here these ‘‘posi-
tive’’ noise correlations resulting from charges moving t
ward both extremities of the nanotube have the added
ticularity that they occur to second order in a perturbat
tunneling calculation. In superconducting-normal system
the two electrons which emanate from the same Cooper
and which propagate in the two Luttinger liquids provide
manifestation of the nonlocal character of quantum mech
ics. In the present case, only one electron is injected, but
split into left and right excitations, unless one imposes o
dimensional Fermi liquid leads. Here, we are dealing w
entanglement between collective excitations of the Luttin
liquid. Written in terms of the chiral quasiparticle fields, th
addition of an electron with given spins on a nanotube in
the ground stateuOLL& gives

(
ra

C ras
† ~x50!uOLL&

5
1

A2pa
(
ra

expF2 i(
j d
A p

2K j d

has j d

3S 11rK j d

2
w̃ j d

1 ~x!1
12rK j d

2
w̃ j d

2 ~x! D G uOLL&,

~38!

with w̃ j d
r the chiral bosonic fields of the~nonchiral! Luttinger

liquid. This wave function is characterized by right and le
movers r 56 whose fields appear explicitly in the phas
operator of this many-particle wave function. These fie
are independent of each other, therefore the exponential
be written as a product of fields
8-6
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(
ra

C ras
† ~x50!uOLL&

5
1

A2pa
(
a

)
j d

@~ c̃ j d1
† !Qj d1~ c̃ j d2

† !Qj d2

1~ c̃ j d1
† !Qj d2~ c̃ j d2

† !Qj d1#uOLL&, ~39!

where for each sector~charge/spin, total/relative mode! the
chargesQj d65(16K j d)/2 have been introduced, and chir
fractional operators are defined as

c̃ j d6~x!5expF iA p

2K j d

has j dw̃ j d
6 ~x!G . ~40!

The wave function described by Eq.~41! has all the charac
teristics of an entangled state. Because the two types of
citations travel towards opposite ends of the nanotube,
time evolution of this ‘‘injected electron ’’ state is simpl
obtained with the substitutionw̃ j d

r (x)→w̃ j d
r (x2rv j dt). Con-

sequently, quantum mechanical nonlocality is quite expl
here. The detection of a chargeQ6 in one arm is necessaril
accompanied by the simultaneous detection of a chargeQ7

in the other extremity of the nanotube.
This entanglement is the direct consequence of the co

lated state of the Luttinger liquid. When additional electro
are injected, these break up into the specific modes wh
can propagate in either direction in the nanotube. It there
differs significantly from its analogs which use superco
ductors as electron injectors, where two electrons from
same Cooper pair are dissociated.30–34

When considering only one sector, such asj d5c1, it is
interesting to note that the wave function has the same st
ture of say, a triplet spin state~a symmetric combination o
‘‘up’’ and ‘‘down’’ states, or ‘‘plus’’ and ‘‘minus’’ charges!
for electrons, with the electrons being replaced by chiral q
siparticle operators. Indeed, one has to recognize that
chiral field w̃ j d

r can be written as a superposition of bos
operators

w̃ j d
r ~x!5

1

4AK j d
(

r 8as

has j d~r 1r 8K j d! (
(r 8k).0

A 1

ukuL@das
† ~k!

3e2 ikx1das~k!eikx#e2auku/2, ~41!

FIG. 2. Schematic description of entangled quasiparticlesQ6

being emitted right and left of the tunnel junction.
20540
x-
e

it

e-
s
h

re
-
e

c-

-
ch

wheredas
† (k) creates a boson with nanotube modea, spins

and momentumk, and characterizes the collective modes
the one-dimensional liquid. According to the state written
Eq. ~42!, this linear superposition of boson operators appe
in an exponential. This expresses that nonlocal ‘‘man
boson’’ correlations are created when an electron is injec
in a nanotube, and these many-body states are entangl
the present geometry.

C. Spin current

Effects similar to the detection of effective charges sh
up in the spin sector when time reversal symmetry (Ks1

Þ1) does not hold. The spin current and spin noise are
tained in a similar manner:

^I sz
~x!&5

eG2

pa S (
s

s

uF
sD sgn~v0!uv0un

G~n11!
S a

vF
D n

sgn~x!.

~42!

So that at large distances

Ssz
~x,2x,v50!52

12~Ks1!2

2
eu^I sz

~x!&u, ~43!

Ssz
~x,x,v50!5

11~Ks1!2

2
eu^I sz

~x!&u. ~44!

In practice, when time reversal symmetry holds (Ks151),
spin noise correlations vanish to orderG2 independently
from the presence or the nature of the leads. In the c
where the tip is non magnetized, the spin current and s
noise correlations also vanish.

D. 1D Fermi liquid leads

In the presence of one-dimensional Fermi liquid lea
where the leads are considered to be Luttinger liquids wh
interaction parameters are set toK j d

L 51, quasiparticles suf-
fer Andreev type reflections9 at both extremities of the nano
tube. Multiple reflections of quasiparticles in this Fabr
Perot geometry—Fermi liquid/Nanotube/Fermi liquid—a
expected to lead to a cancellation of the interaction effect
the nanotube, as in the two terminal calculations of cond
tance and noise.12 Although the detailed calculation is no
presented here, dimensional analysis of the time integ
suggest that, the nanotube current and noise read

^I r~x!&5
eG2v0

pvF
S (

s

1

uF
sD sgn~x!, ~45!

Sr~x,x8,v50!5
11sgn~x!sgn~x8!

2
eu^I r~x!&u. ~46!

For x5x8, this would give the classical Schottky formula,
the very same spirit as in Ref. 12. Forx andx8 on opposite
ends of the nanotube, this noise correlator should vanish
this order: the scattering theory result has a lowest nonv
ishing contribution of orderG4. This low voltage result is
8-7
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modified by a higher power law behavior at higher voltag
with a threshold voltage specified by the size of the sys
\vF /L as in Ref. 12.

VI. CONCLUSION

In summary, a diagnosis for detecting the chiral exci
tions of a Luttinger liquid nanotube has been presen
which is based on the knowledge of low frequency curr
fluctuation spectrum in the nanotube. Typical transport c
culations either address the propagation in a nanotube
compute tunnelingI (V) characteristics. Here, both are a
dressed because they constitute the key for obtaining
quasiparticle charges. Both the noise~autocorrelation! and
the noise correlations~cross-correlations! are needed to iden
tify the chargesQ6 . Independently, note that this measur
ment could also be confronted to other diagnoses of
nanotube interaction parameter using tunneling current v
age characteristics.

This result relies on the assumption that one dimensio
Fermi liquid leads are avoided. Such leads have been tre
in different approaches,35,36 and are also labeled radiativ
contacts. Radiative contacts imply equilibration with t
electrons. In Ref. 16, both radiative contacts and equilib
tion with dressed eigenmodes were studied, with the obvi
result that Luttinger liquid renormalization shows up in t
conductance in the latter case. In special circumstances
as the case of Ref. 13 the nanotube is embedded in the
tallic contacts, and is suspended by its ends. Here, the
sence of a screening gate is explicit. Electron transport
tween these two entities likely occurs in multiple electr
scattering processes as studied in Ref. 37. In these, or o
contacts fabricated by growing techniques,34 quantities such
as current and noise may not be affected by the presenc
the contacts.

Standard fermion results should be recovered when
system is connected on one dimensional Fermi liquid lea
The autocorrelation noise in one end of the nanotube sh
be related to the charge current with the standard Scho
formula. The noise correlation signal should also vanish
expected and the next order correctionO(G4) then needs to
be computed.

A crucial test of the contacts is in order. It should
possible in practical situations to analyze the type of conta
which one has between the nanotube and its connection
the ratio of the cross-correlations to the currentSr(x,
2x,v0)/^I r(x)& does not depend on the tunneling distan
(ln G), both contributions are of orderG2 and this constitutes
an indication that the contacts do not affect this quasipart
entanglement. If we are dealing with a Fermi liquid behav
the noise correlation-current ratio should behave asG2,
rather than a constant.

Finally, we have remarked that the many-body wave fu
tion which describes a Luttinger liquid with an added ele
tron has necessarily EPR~Ref. 38! entangled degrees of free
dom. Both electrons chiralities contribute to the emission
quasiparticle pairs moving in opposite direction. This e
tanglement involves many particle states, unlike its elect
counterpart. A suggestion for detection of such Luttinger l
20540
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uid entanglement without perturbing the system with lead
nevertheless needed. The issue—how to detect this m
body entanglement—should be addressed while taking
account different models for the leads, possibly involvi
multiple reflections within one contact.37 Multiple reflections
of the quasiparticles from one contact to the other kill th
entanglement in one dimensional Fermi liquid leads, wh
is implicit in the vanishing of the noise correlations to th
order.
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APPENDIX A: GREEN’S FUNCTIONS FOR AN INFINITE
NANOTUBE

In this appendix, the Green’s functions are computed,
suming a Luttinger liquid with a homogeneous interacti
parameterK j d and velocityv j d . The productv j dK j d corre-
sponds to the Fermi velocityvF .

The finite temperature action associated with this probl
has the general form

S5
1

2 (
j d

E
0

b

dtE
2`

`

dxS v j dK j d@]xf j d~x,t!#2

1
v j d

K j d
@]xu j d~x,t!#212i @]xf j d~x,t!#@]tu j d~x,t!# D .

~A1!

Which implies that the Fourier transform of the time order
Green’s functionsGj d(T)

uu andGj f(T)
ff , defines as

Gj d~T!
uu ~x,x8,t !5^Tu j d~x,t !u j d~x8,0!&2^Tu j d

2 ~x,t !&,
~A2!

Gj d~T!
ff ~x,x8,t !5^Tf j d~x,t !f j d~x8,0!&2^Tf j d

2 ~x,t !&,
~A3!

whereT is the time ordered operator, satisfies the differen
equations:12

S v2

v j dK j d
2]x

v j d

K j d
]xDGj d~T!

uu ~x,x8,v!54pd~x2x8!,

~A4!

S 2
K j dv2

v j d
1]xv j dK j d]xDGj d~T!

ff ~x,x8,v!54pd~x2x8!.

~A5!

The Green’s functionGj d(T)
uu is continuous everywhere, an

v j d@]xGj d(T)
uu #/K j d has a discontinuity atx5x8. The similar-

ity between Eqs.~A4! and~A5! results from the duality prop-
erties of the underlying fields. All information onGj d(T)

ff is
obtained by dividingGj d(T)

uu by K j d
2 .
8-8
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According to Eqs.~14! and ~15!, there are additiona
Green’s functions in our problem which involve the fieldsu
andf. For instance,

Gj d~T!
fu ~x,x8,t !5^Tf j d~x,t !u j d~x8,0!&

2^Tf j d~x,t !u j d~x,t !&. ~A6!

Using the action~A1! one can show that (t is a real time
variable!

^]xf j d~x,t !u j d~x8,0!&5
1

v j dK j d
^] tu j d~x,t !u j d~x8,0!&,

~A7!

and similarly forGj d(T)
uf .

From these real time Green’s functions, we further spec
the Keldysh matrix elements which two timest,0 are as-
signed to the upper/lower branch~11,12,21,22!. Given
an arbitrary real time Green’s functionG(x,x8,t)
5^A(x,t)B(x8,0)&2^A(x,t)B(x,t)& a general procedure39

for obtaining these elements is as follows

Gj d(K)
uu ~x,x8,t !5S Gj d

uu~x,x8,utu! Gj d
uu~x8,x,2t !

Gj d
uu~x,x8,t ! Gj d

uu~x8,x,2utu!D ,

~A8!

where

Gj d
uu~x,x8,t !52

K j d

8p (
r

lnS 11 i
vFt

a
1 ir

K j d~x2x8!

a D .

~A9!

The same applies toGj d(K)
ff for which we have

Gj d
ff~x,x8,t !52

1

8pK j d
(

r
lnS 11 i

vFt

a
1 ir

K j d~x2x8!

a D .

~A10!

The mixed correlators read

Gj d(K)
fu ~x,x8,t !

5S t.0:Gj d
fu~x,x8,t !

t,0:Gj d
uf~x8,x,2t !

Gj d
uf~x8,x,2t !

Gj d
fu~x,x8,t !

t.0:Gj d
uf~x8,x,2t !

t,0:Gj d
fu~x,x8,t !

D ,

~A11!

where

Gj d
uf~x,x8,t !52

1

8p (
r

r lnS 11 i
vFt

a
1 ir

K j d~x2x8!

a D .

~A12!

The same applies toGj d(K)
uf for which we have:
20540
y

Gj d
fu~x,x8,t !52

1

8p (
r

r lnS 11 i
vFt

a
1 ir

K j d~x2x8!

a D .

~A13!

APPENDIX B: INTEGRALS

We now compute the integrals involved in the tunneli
current and noise. The general integrals which will be
quired to compute the current and noise read

E
2`

1` sin~v0t!dt

S a

uF
s2 iht D S a

vF
2 iht D n ' iph

uv0un

G~n11!
, ~B1!

E
2`

1` cos~vot!dt

S a

uF
s 2 iht D S a

vF
2 iht D n 'p

uv0un

G~n11!
.

~B2!

We now write the integral which appears in the nanotu
current, which refer to propagation along the nanotube

I 25E
2`

1`

dt8]x@Gc1(11)
ff ~x,0,t8!2Gc1(22)

ff ~x,0,t8!

1Gc1(21)
ff ~x,0,t8!2Gc1(12)

ff ~x,0,t8!#. ~B3!

Using the expressions for the Green’s functions~Appendix
A!:

I 25
i

pvF
arctanS K j dx

a D' i
sgn~x!

2vF
, ~B4!

where the approximate sign holds at large distances.
The integrals which are involved for the computation

the noise read

I ff~x,x8!54I 3~x!I 3~x8!, ~B5!

I fu~x,x8!54I 4~x!I 4~x8!, ~B6!

with

I 3~x!5E
2`

1`

dt]x@Gc1(11)
ff ~x,0,t!2Gc1(12)

ff ~x,0,t !#

' i sgn~x!/4vF , ~B7!

I 4~x!5E
2`

1`

dt]x@Gc1(11)
fu ~x,0,t!2Gc1(12)

fu ~x,0,t !#

'2 iK c1/4vF . ~B8!
8-9
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