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Electron injection in a nanotube: Noise correlations and entanglement
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Transport through a metallic carbon nanotube is considered, where electrons are injected in the bulk by a
scanning tunneling microscope tip. The charge current and noise are computed. For an infinite homogeneous
nanotube, the shot noise exhibits effective charges different from the electron charge. Noise correlations
between both ends of the nanotube are positive, and occur to second order only in the tunneling amplitude. The
positive correlations are symptomatic of an entanglement phenomenon between quasiparticles moving right
and left from the tip. This entanglement involves many body states of the boson operators which describe the
collective excitations of the Luttinger liquid.
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[. INTRODUCTION etry which allows to probe directly the underlying charges of
the collective excitations. The setup consists of a nanotube
Over the years, the study of current noise and noise comwhose bulk is contacted by a scanning tunneling microscope
relations has become a respected and useful diagnosis fBTM) tip which injects electrons, while both extremities of
transport measurements on mesoscopic conductors. Theordfie nanotube collect the curre(fig. 1). The current, the
cally, noise was first computed mostly for noninteractingnoise and the noise correlations are computed, and the effec-
systems. However, it soon became clear that low-frequencytive charges are determined by comparison with the Schottky
noise could be used to isolate the quasiparticle ciidrged  formula® for an “infinite” nanotube, the striking result is
to study the statistical correlatichisin specific quasi-one- that noise correlations contribute to second order in the elec-
dimensional correlated electron systems, such as the edggn tunneling, in sharp contrast with a fermionic system
waves in the quantum Hall effect. In these chiral Luttinger\yhich requires fourth order. The noise correlations are then
liquids, the charge of the collective excitations along thepositive, because the tunneling electron wave function is
edges corresponds to the electron charge multiplied by thgy)it in two counter propagating modes of the collective ex-
filling fac_tor._ . o citations in the nanotube. We conjecture that in the presence
Attention is now turning towards conductors—individual of 1D Fermi liquid leads, modeled as in Ref. 12, the absence

nanoobjects—which occur naturally, and which can be Conbf renormalization/interaction effects of the nanotube is re-

nected to current/voltage probes in order to perform a trans-
overed.

ort experiment. The crucial advantage of such nanoob'ect% . . .
P b 9 J A recent two terminal experiment studied the current—

is that they are essentially free of defects and in some cir- f . . ¢ Ba<Th o
cumstances they have an inherent one-dimensional charactEf/Tént fluctuations in ropes of nanotut€srhere, it is

Carbon nanotubes constitute the archetype of such 1D n&ointed out that the strong reduction of the low frequency
noobjects: single wall armchair nanotubes have metallic beP0!S€ ffnnqt be understood within the context of scattering
havior, with two propagating modes at the Fermi level. Inci-theory.” Naive comparison with existing non-chiral Lut-
dentally, electronic correlations are known to play antinger liquid models® would imply an interaction parameter
important role in such systems. Carbon nanotubes seem mUCh inferior to the free electron case. A|SO, we mention that
constitute good candidates to study Luttinger-liquid behavother multi-terminal geometries where a nanotube or a one-
ior. In particular, their tunneling density of states—and thusdimensional wire is attached to more than two leads, have
the tunnelingl (V) characteristics is known to have a power been consideret?~*° Our proposal deals with the same ge-
law behavio?~®in accordance with Luttinger liquid theory. ometry as Ref. 16, where a renormalization analysis identi-
Luttinger models for nanotubes differ significantly from fied the exponents of the current voltage characteristics.
their quantum Hall effect counterpart, because of their nonHowever, here the emphasis is put on the low frequency
chiral character. Forward and backward fields describing coleurrent fluctuation spectrum, both for the autocorrelation and
lective excitations effectively mix, because the interactionghe cross correlations between the two ends of the nanotube.
between electrons are spread along the whole length of the The paper is organized as follows. The Hamiltonian of our
nanotube. For this reason, a straightforward transposition cdetup is specified in the next section, followed by a general
the results obtained for chiral edge system proves difficultnonequilibrium scheme based on the Keldysh formalism to
Nevertheless, nonchiral Luttinger liquids can be describedtudy transport in this device, which is independent of the
with chiral fields?*° Such chiral fields correspond to excita- type of leads chosetSec. Ill). Results for an infinite homo-
tions with anomalousgnonintegey charge, which has eluded geneous nanotube are then presented in Sec. IV. A connec-
detection so far. tion with the effective charges of Refs. 9,10,16 is established
In the present work, we propose an experimental geomin Sec. V.
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@ turns out to be convenient in this problem where both
bosonized nanotube fermions operators and tip fermions op-
erators intervene. For the sake of generality, we allow the

STM two spin components of the tip fields to have different Fermi
Hr velocitiesu?, which allows us to treat the case of a ferro-
J;[M—Q—Q—LH_}MQ—Q]L magnetic metal. The fermion operator at the tip locatkon
7 Nanotube 7 =0 is then
FIG. 1. Schematic configuration of the nanotube-STM device: 1
electrons are injected from the tip &0 and current is measured c, (t)= eiZol,(t) (4)
at both nanotube ends, which are set to the ground. 7 V27a '

Il. MODEL HAMILTONIAN Here, ¢, is the chiral Luttinger liquid field, whose Keldysh

The transport geometrFig. 1) implies tunneling from  Green’s function ak=0 is given by"
the tip (normal or ferromagnetic medatio the nanotube, and
subsequent propagation of collective excitations along the tot ) =(Tol e (1™ (72
nanotube. In the absence of tunneling, the Hamiltonian is Gotnyn)(11:82) =(Til 91D 00 (17)})

thus simply the sum of the nanotube Hamiltonian, described 1

by a two mode Luttinger liquid, together with the tip Hamil- == 5 IM1+il(71F 72)sgnt 1)
tonian. Using the standard conventidfishe operator de-

scribing an electron with spior moving along the direction — (11— m2) JU(t,—t,)/2a}, (5)

r, from modec« is specified in terms of a bosonic field

where 7, ,=* refer to the upper or lower branch of the
Keldysh contour.

— | akpX+HirqEX+i@p o (X,t) - . . . .
Frao(X.t) ’_Zwae ] ] ’ (1) The tunneling Hamiltonian is a standard hopping term
with a a short distance cutofkg the Fermi momentunge
the momentum mismatch associated with the two modes, and He(t)= >, T ()[Ww! (0t)c,(t)]E). (6)
the conventiorr ==, a=* ando=* are chosen for the erao

direction of propagation, for the nanotube branch, and for the . _ .
spin orientation. It is convenient to express this bosonidiere the superscripte{ leaves either the operators in
phase in terms of the conventional nonchiral Luttinger liquidPracket unchangeds¢ +), or transforms them into their
fields 6,5 and ¢;5, With j 6 {c+,c—,s+,5—} identifying ~ Hermitian conjugate{=—). The voltage bias between the
the charge/spin and total/relative fields tip and the nanotube is included using the Peierls substitu-
tion: the hopping amplitud&®)acquires a time dependent
T phase expéwgt), with the bias voltage identified a¥
Prac(X,t)= \[525 haojdl js(X, ) +16j5(X,0], (2 =%wy/e. We will use the conventioi— 1. Similarly, the
J tunneling current is defined as
with hyper =1, hpoe- =a, ypsy =0, andh, s =ao. 0;s
and ¢;s are dual nonchiral fields. A plausible alternative
would have been to express,, in terms of the chiral Lut- I(t)=ie X eI (D[P, (0b)c, ()] (7
tinger liquid fields. However, the present choice will be sim- srac
pler later on when dealing with inhomogeneous Luttinger
liquids (in order to include the leafisas the Green's func-  In Egs. (1) and (4), we have omitted the Klein factors
tions for 6,5, ¢;s are known. The Hamiltonian which de- which guarantee the anti-commutation of the three types of

scribes the collective excitations in the nanotube has thé&rmions operators—uwritten in terms of bosonic fields—for
standard form this problem: the two nanotube branches and the STM single

mode. It has been establisfiéd that Klein factors are in
o 5 principle necessary to treat multi-Luttinger system, as illus-
H= 2 % J'_xdx vjsKjal xdjs(X.1)] trated in the computation of noise correlations between three
edge states in the FQHE. In the present work, Klein factors
can be dropped because we intend to work with lowest order
, () perturbation theory. To orddr?, statistical correlations be-
tween the three Luttinger systems do not occur. However,
with an interaction parameté;; and velocityv;s. they should show up when calculating higher order correc-
For the scanning tunneling microscop®8TM) tip, one tions (I'%).
assumes for simplicity that only one electronic mode couples For this problem which implies propagation along the
to the nanotube. The tip can thus be described by a semiranotube, it is also necessary to compute (tbéal) charge
infinite Luttinger liquid, as in Kondo type problems. This and(total) spin currents using the bosonized fields of Eqg.

Ujs 2
+ K—w[f?x%(s(xi)]
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Ip(x,t)=ev,:2 r\IfIM(x,t)\Ifrw(x,t) (I4(t))= % 2 <TK{|T(t”)e_i-rKdtlHT(tl)}>' (10)
rao n

2
=2eve \/;ax¢c+<x.t>. ®)

1 )
A Sr(tt) =5 2 (Tl I(t7)5(t' " MeIxduHioy),
Similarly, we consider the spin current in thalirection: K

(11
Ly () =eve 2 TV (X )T, W a(X,1) _ o o
z rao which applies in typical tunneling situations where the prod-
2 uct of the current averages is of ordét. In order to collect
=2evg \ﬁax¢s+(x,t). (9)  the lowest order contribution in the tunneling amplitude, the
a

exponential is expanded to first order for the current, and to
Note that the contribution from terms containingg20scil- zeroth order for the noise
lations has been dropped. This is equivalent to requiring that
the current measurement along the nanotube is effectively a
spatial average over a length scale larger than In prac- el” +
tice, 2 terms are necessary in order to establish a connec- (/1)) =%~ mg,m 778f
tion between current fluctuations and density fluctuations.

X (T g (O W6 (047 7))

I1l. NONEQUILIBRIUM TRANSPORT FORMALISM (Tl e, () Fe, (17} (12)
o lTl ’

oodtle—iaoz)o(t—tl)

— oo

In this section, the general approach used to calculate the
tunneling current and noise, as well as the current and noise -
in the nanotube is described. All quantities are computed at SH(tt') = el 2 a-icwg(t—t')
zero temperature for simplicity. The calculation of the tun- ' 2
neling current and noise is quite similar to the perturbative F— o (—e)
results in Ref. 2 for the FQHE. Here it is summarized in (O =7}
order to compare with the nanotube transport quantities. X(T{c (1B (t' = (=ey, (13

racen

X{(T W, (0t

raoc raoc

A. Tunneling current and noise where the last factor in Eq$12) and(13) is the tip fermion

The Keldysh technique is used to compute the averag&reen’s function. Next the nanotube and tip fields are speci-
tunneling current and noise. We adopt the convention that théed in terms of the bosonized fieldaonchiral and chiral
coefficients n, 7, ,= £ identify the upper/lower branch of and the two Keldysh ordered exponential products are com-
the Keldysh contour: puted:

el? +oo .
)= G rar? ran, ™ | aner oot oezmsnmw
aocenn

— o0

) _ b0 _ 0 ) -
Xeﬂ'/ZE,g[Gjﬁ(nﬂl)(O,Ol t1)+rGj§(7]7]1)(0'01 tl)“st(,ml)(Ovol t1)+Gj5(7]”l)(0,0I tl)], (14)
21’*2
ST(t,t')= . e—iswo(t—t')eZ'n'go(n,n)(t—t’)
(27Ta_) racen
I Tel A4 _ ¢0 _ 0 _ 00 B
X @722 8l g(y— 5y (001 =) +1G5 ) (001—t)+1Gj5, ) (0.01=t")+ G5, (0.0t —t")] (15)

As expected, the stationary current and the real time current correlator call for the time diffeterigest—t’ only.
Integrating over time, the zero frequency noise is introduced. Further using the symmetry properties of the Green’s functions
Yo(rm)(T) = Go(mm () @ndGlg, (0,0 =Gy, ,,(0,0]7]) (similarly for 66, 6¢ and¢ ), only = — 7, is retained for the

current

2ieF2 +o b $0 0¢ 00
(Ity=— —(2 2 > ”J d7sin( wo7) €2™9e(n- (N e™22jslCfs(y— (00N TG 5, 500N +1C 51, 1) (0.00) + G55 ) (0.0N]
mTa ron -

(16)

eI'? +o ¢o 0 00 00

Si(w=0)=— (ra)? > d 7 coq wo7)e2™Ie(n— (D@26l Gl (00N T1C 51— ) (00N F1GC 5, 5)(0.0m)+Cjs— 1y (0.0m]

ma)? oy J -«

(17

The tunneling current and noise imply the knowledge of the Green’s functions at the tunneling location only.
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B. Nanotube current and noise

1
The operator averages along the nanotube require a pe?‘l’(x’t'x v)=- 4 ,7%72 7717’2<TK[|P(X’”)IP(X )
turbative calculation up to second order in the tunneling
Hamiltonian for the tunneling current and for the noise. Tun-
neling of an electron from the STM tip is followed by propa- X f f dtldtzHT(O,tfl)HT(O,th)] > (19
gation of the collective excitations of the Luttinger liquid
towards both ends of the nanotube.

where the contribution to the noise coming frdmy,(x,t))

1 x(1, (x t')) has been dropped because it contributes to or-
(I 0)==7 > mmal Te |p(Xat”)f f dt,dt, der™. Expressing the Hamiltonian in terms of the fields, the

72 limit fim__ (i7) " oxexdivebe: 1= depe.. is used in order to
XHT(O’t"?l)HT(O'tgz) ' (18) cast the jume ordered averages into correlators of exponen-
1 tials only:

EUFFZ 2 —i _ —& £
(1, (x,1))y=— Ina \ﬁ > 771772f fdtldtze tereo(ty t2)<TK{CE,1 1)('[1]1)05,11)('[;72)})

Tyninoeiriagoy
) 1 . mwoo_i 71y M2
X |lim '_aX<TK{eI Yde+ (Xt )e '51‘Pr1a101(011 )e'el‘Prlal(rl(Ovtz )}>, (20)
|
’)/HO
e’vel? i (—e1) 471y (o)
Sy(x.tx )=~ — > 771772f J’ dtydtye™ 1ot Tfe (/e Y (t2)})
TEA m1meif1a10y ! !
. 1 7 ; 71y 72
X lim a & <TK{e|7¢c+(Xt )e iyder (Xt )e7'81¢r1a1(r1(0xt1 )e'sl‘xﬁrlal(rl(ovtz )}>, (21)
y—0 7

where the contribution from the STM tip is the same as before. The two time ordered pr@hefsr the tip and one for the
nanotubgare expressed in terms of Luttinger liquid Green’s functions. Taking the spatial derivative, one obtains an expression
with Green'’s functions as prefactors—implying propagation—as well as exponentiated Green’s functions at the tunneling

location. Operating variable changes in the integrals and noticing that mnty— 7, contributes, the current and noise
become

<Ip(x)>_ —2 dT &X[GC+(1]7] )(XOT ) GC+(7] ﬂ)(XOT )+rlGC+(7777 )(XIOIT’)_rlG((be(nfﬂ/)l)(Xio!T,)]
2m?a® 717)1f1f71 -
X f dT Sln( wOT)eZﬂ-g‘rl(ﬂl_771)(T)eﬂ-/22j6[6j¢;(5771’7]1)(0'0'7-)+Gj0g(771’7]1)(0'0'7-)+rlGj¢‘§7]1’771)(0'0'7-)+r1Gj0gs(771’771)(0’0'7-)], (22)
ezvérz )
S, (XX, 0=0)=— dT cog wq ) €271 (m—n)(7)

(Wa) 71711r10'1 -

B Tcra b0 00 00 e
X eqﬂzz] E[GJ' 3(my— 771)(0'0’7) G 3(my— 771)(0’0’T)+r161 3(my— ’71)(0'0’T)+Gj 3(my— ’71)(0'0’T)] J' d TlaX[G?f(,,},,} )(X 0 ’Tl)

+ o0
=Gl (X0 + TG (), (%,0,m) — 11 G, (%,0,m1)] f A700[GEY (X 072
_Ggsib(*nfn)(x OTZ)+rlGC+( 71, )(XIYOVTZ) rlGC+( n— n)(X,,O,Tz)]. (23)

Note the temporal decouplingvhich occurs after operating variable changasthese expressions. The integral over
contains information on electron tunneling a0, while the remaining integrals involve propagation, thus the spatial
dependence in the Green’s functions arguments.
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IV. CURRENT AND NOISE FOR AN INFINITE NANOTUBE with the exponents

In the previous section, general expressions were derived
for the current and noise, which were independent of the b E +i (26)
form of the Green’s function$?y, G/¥, G{y, andG/;. 8 43 Kis Kis) '

The Green’s functions are described in Appendix A and are

used to compute the tunneling noise and current as well ag is the bulk tunneling exponent of the current—voltage char-

the nanotube noise and current. acteristics(1t(wg)).? The integrals are computed in Appen-
dix B, we obtain:

A. Tunneling current and noise

2 v v
After substitution of the Green’s function of a nanotube, (I1y= 2el > L& M (27)
the tunneling current reads ma \ "o uf)\Ur I'(v+1)
2iel2 sin(wor)dr where we used the definition of the Gamma functiorOnly
(I1)y=— — > nJ = o electrons can tunnel from the tip to the nanotube, so one can
(2ma)” ron (1—i n“ﬂ') ( 1-i WE check that the classical Schottky formula holds always:
a a
(24 Sr(w=0)=el(I7)|. (29
SH(w=0)= 2 codwor)dT B. Nanotube current and noise
(ma)?ion J—= 1 U_ET 1-i U_FT v Some of the time integrals in EG22) has already been
7a 7 encountered when computing the tunneling current and
(25 noise. The current and noise thus become:
|
eivel? 1)(a)” ,
(1,00)=——"2 (E u | og) SO o>m D) 2 nlj d7' G GLY (.07 ) =G, (x.0.7")],
262U|2:F2 |(1)0|V
S,(x,x',w=0)=— ; o m %‘,1 N dfrlax[eﬁ(,m y(X,0,71)
+ oo
—fo(,], ﬂl)(X’O’Tl)]f,x drz&X,[fo(,Ml)(X’,0,7-2)—Gg’f(,,], nl)(X',O,Tz)]
+2 drlax[eﬁ(,m y(,0,71) = G,y (X,0.71)]
nMnL Y T
A 0 4
% | Ana0u G X' 07— G (X 0721 9
2%y 2I? 1\/a\” |w”
= — =] ————[1?%(x,x") +1%9(x,x")], 30)
7a z(;‘ ug/ \vr F(v’+1)[ ( ) ( )] (
|
where the last factor is computed in Appendix B. The stan- (Kei)2+sgn(x)sgnx’)
. ; ) , c+ g g
dard assumptions of the calculation of the tunneling current  S,(X,X",0=0)= > el(l,(x))!.
and noise are recalled, as the same expressions appear in
both results. We obtain (32)
( (x))— z )2 |w°|s—gr(w°)3 1), Current conservatiof{1 ,(x))| = (I 1)/2 is shown to hold.
? o UZ)\UF I'(v+1) Results are then valid for arbitrary voltages, with the ex-

(31)  pected power law behavior.
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V. DISCUSSION Q. 1 (1+Kqy)/2
A. Local current correlations Q_ 1 (1-K¢1)/2
One accepted diagnosis to detect effective or anomalous S, :; ol g2 o o(1+Ke )4 |’
charges is to compare the noise with the associated current s o2 o(1—K. )/4

with the Schottky formula in mind. A striking result is that (35)

despite the fact that electrons are tunneling from the STM tip

to the bulk of the nanotube, the zero frequency current flucwith integersn, ,J,=0,1,2 ... (¢=1,]). In particular, the

tuations are proportional to the current for=x>>a: addition of an electron with spiar corresponds to the choice
n,=0 andJ,=1.

14 (K )2 The current noise and noise correlations can be inter-
Sp(x,x,wZO)zT“eKlp(x))L (33)  preted as an average over the two types of excitations
(Q3+Q%)  1+(Key)?
with an anomalous effective charge for an infinite nanotube. S,(X,X)~ i > = 4“ , (36)
B. Positive cross-correlations s 1—(Kc+)2 @
) X, —X)~— =
More can be learned from a measurement of the noise ol ) Q:Q 4

correlations. Noise correlations have been proposed to detect ]

statistical correlations in quantum transp@rt.indeed, our A drawing where the two types of charges “flow away” from
geometry can be considered as a Hanbury-Brown and Twisé€ tip while propagating along the nanotube is depicted in
correlation device. Such experiments have now been conihe lower part of Fig. 2. Both charg€g.. are equally likely
pleted for photons and more recently for electrons in quant© 9o right or left, and they are emitted as a pair with oppo-
tum waveguides. Here the novelty is that electronic excitaSite labels. The noise correlations of Hg9) are rendered

tions do not represent the right eigenmodes of the nanotub@0sitive if one adopts the standard convention for measuring
For X’ = —x>a the noise correlations read: the current in multiterminal conductots-ere these “posi-

tive” noise correlations resulting from charges moving to-
ward both extremities of the nanotube have the added par-
ticularity that they occur to second order in a perturbative
tunneling calculation. In superconducting-normal systems,
the two electrons which emanate from the same Cooper pair
and which propagate in the two Luttinger liquids provide a

This isa priori negative. However, if the current direction is . .
chosen to be positive from the tip to the extremities of the_r’namfestatlon of the nonlocal character of quantum mechan-

nanotube, the sign of the cross—correlations is positive. RdSS: ”,1 the present case, on_Iy one electron is injgcted, but itis
call that the fermionic version of the Hanbury-Brown and Spl't Into left and r_|g_ht excitations, unless one IMposes one
Twiss experiment yields negative noise correlatiths.So dimensional Fermi liquid Iead_s. Here_, we are dealing .W'th
far, positive noise correlations have been attributed in priorgntgnglement _betvveen COHeCt'V? excitations 9f thg Luttinger
ity to bosonic system& Nevertheless, there are at least two“qu'_d_' Written in terms of_the phlral q_ua5|part|cle fields, _the
other situations where they are encountered. First, when th%dd't'On of an electron with given spian on a nanotube in

source of particle is a superconductor, noise correlations caii® ground statgOy ) gives
also be positive depending on the junction configuratoR®

Second, they also occur in systems with floating voltage v (x=0)|0
probes? In the case of a superconductor, the emission of 2 raol 10w
electron pairs through separate quantum dots guarantee that

1-(Kgp)?
Sp(x,—x,w=0)=—Te|<lp(x)>|. (34

the noise correlations are always positive(single) en- 1 ) T
tangled electron pair is generated outside the super- - 2ma E ex _'Z oK Naois
conductor®3! ma e o 19
Note that the prefactors in EG36) can readily be inter- , K.
. . 1+rKjse 1-rKjs~ _
preted using the language of Refs. 9,10,16. A tunneling event X 5 @j5(X)+ T@j(s(x) [OLL),
to the bulk of a nanotube is accompanied by the propagation
of two counter-propagating charg€s. = (1= KC+)/2. Re- (38)

call that the subscript+ identifies the chargéas opposed to _

spin excitation given by the totalrather than relativecon-  with @}5the chiral bosonic fields of th@onchira) Luttinger
tribution of the two modes propagating in the nanotube. Eacliquid. This wave function is characterized by right and left
charge is as likely to go right or left. According to Ref. 10 moversr=* whose fields appear explicitly in the phase
electron injection in a Luttinger liquid is characterized by operator of this many-particle wave function. These fields
chiral charge€)- and chiral spin chargeS. which describe are independent of each other, therefore the exponential can
the elementary excitations of the nanotube: be written as a product of fields
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Wheredzﬂ,(k) creates a boson with nanotube madespino
and momentunk, and characterizes the collective modes of
the one-dimensional liquid. According to the state written in

< __________ e— - ______ > Eq. (42), this linear superposition of boson operators appears
in an exponential. This expresses that nonlocal “many-

m boson” correlations are created when an electron is injected
in a nanotube, and these many-body states are entangled in

the present geometry.

FIG. 2. Schematic description of entangled quasiparties

being emitted right and left of the tunnel junction. C. Spin current

Effects similar to the detection of effective charges show
E WIQU(X=0)|OLL> up in the spin sector when time reversal symmeti§y (
ra #1) does not hold. The spin current and spin noise are ob-
tained in a similar manner:

1
— BT Qs+ (Yt )Qis-
Toma % M 18000 ( <x>>=iz(E 2 Jsotealled & gy
+(¢r§+)Qj§—(’;bir§7)Qj5+]|OLL>, (39) z ma\ % uy '(v+1) = “

where for each sectdicharge/spin, totallrelative mogéne SO that at large distances
chargexQ; ;- = (1*Kj,)/2 have been introduced, and chiral
fractional operators are defined as S, (X,—X,0=0)=—

Pjox(X)= exr{ i\/ %hm 50 5(X)

jo

1_(Ks+)2
— el 00)), @3)

1+(Kgy)?
. (40 S,,Z(x,x,w=0)=Te|<lgz(x)>|. (44)

In practice, when time reversal symmetry hold& (=1),
The wave function described by E@L1) has all the charac- spin noise correlations vanish to ordEf independently
teristics of an entangled state. Because the two types of eXrom the presence or the nature of the leads. In the case
citations travel towards opposite ends of the nanotube, th@here the tip is non magnetized, the spin current and spin
time evolution of this “injected electron ” state is simply noise correlations also vanish.
obtained with the substitutiog] ;(x) — @] 5(x—rv;st). Con-
sequently, guantum mechanical nonlocality is quite explicit D. 1D Fermi liquid leads
here. The detection of a char@e. in one arm is necessarily

) ; . In th f -di ional Fermi liquid |
accompanied by the simultaneous detection of a ch@rge n the presence of one-dimensional Fermi liquid leads,

. . where the leads are considered to be Luttinger liquids whose
in the other extremity of the nanotube. . . - o
interaction parameters are setKﬁpa— 1, quasiparticles suf-

This entanglement is the direct consequence of the corre- . o
lated state of the Luttinger liquid. When additional electronjer Andreev type reflectiofisat both extremities of the nano-

are injected, these break up into the specific modes WhiCEube. Multiple reflections of quasiparticles in this Fabry-

can propagate in either direction in the nanotube. It therefor erot geometry—Fermi Iqu|d{Nanotubg/Ferm| 'Iqu|d—are.
differs significantly from its analogs which use Supercon_expected to lead to a cancellation of the interaction effects in

ductors as electron injectors, where two electrons from th gﬁcr;ag?]gj?]ec;ig; Z]Ittr:]oeut\l\rllotﬁgrgzgiIgzlcgell?gholgﬁo?lf ?SO?]%E:C'
same Cooper pair are dissociaf8d®* ' 9

When considering only one sector, suchjasc+, it is presented here, dimensional analysis of the time integrals

interesting to note that the wave function has the same strué—queSt that, the nanotube current and noise read
ture of say, a triplet spin stai@ symmetric combination of

2
“up” and “down” states, or “plus” and “minus” charges (,(x)= el wo 2 i sgn(x) (45)
for electrons, with the electrons being replaced by chiral qua- g TUF \ "o Uuf ’
siparticle operators. Indeed, one has to recognize that each
chiral field 2,575 can be written as a superposition of boson , 1+sgnx)sgnx’)
operators S,(x, X", @=0)= 5 el(I,(x))]. (46)

Forx=x’, this would give the classical Schottky formula, in
~ 1 1 the very same spirit as in Ref. 12. Poandx’ on opposite
r _ ’ T
Pjo(X) == 2 Nagiar+1'Kjp) 2 V |k||_[d«w(k) ends of the nanotube, this noise correlator should vanish, to
4 KJ,$r'a0' (r'k)>0 . .
_ ‘ this order: the scattering theory result has a lowest nonvan-
xe "y d, (k)ekxje-alkl2 (41)  ishing contribution of ordef™. This low voltage result is

205408-7
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modified by a higher power law behavior at higher voltage,uid entanglement without perturbing the system with leads is
with a threshold voltage specified by the size of the systemmevertheless needed. The issue—how to detect this many-
hvg/L as in Ref. 12. body entanglement—should be addressed while taking into
account different models for the leads, possibly involving
multiple reflections within one contattMultiple reflections

of the quasiparticles from one contact to the other kill this

In summary, a diagnosis for detecting the chiral excita-€ntanglement in one dimensional Fermi liquid leads, which
tions of a Luttinger liquid nanotube has been presentedS implicit in the vanishing of the noise correlations to this
which is based on the knowledge of low frequency currenrder.
fluctuation spectrum in the nanotube. Typical transport cal-
culations either address the propagation in a nanotube, or ACKNOWLEDGMENTS
compute tunnelind (V) characteristics. Here, both are ad- . , ) i
dressed because they constitute the key for obtaining the Discussions with A. Lebedev and I. Safi on the Keldysh
quasiparticle charges. Both the noiGutocorrelationand ~ Green's function and with M. Biiker are gratefully ac-
the noise correlation&ross-correlationsare needed to iden- Knowledged.
tify the chargeQ-. . Independently, note that this measure-
ment could also be confronted to other diagnoses of theAPPENDIX A: GREEN'S FUNCTIONS FOR AN INFINITE
nanotube interaction parameter using tunneling current volt- NANOTUBE
age characteristics. , . , .

This result relies on the assumption that one dimensional " this appendix, the Green’s functions are computed, as-
Fermi liquid leads are avoided. Such leads have been treat@§Ming @ Luttinger liquid with & homogeneous interaction
in different approache®:*® and are also labeled radiative Parametei;; and velocityv; ;. The product;;K;, corre-
contacts. Radiative contacts imply equilibration with theSPONdS to the Fermi velocity . _ o
electrons. In Ref. 16, both radiative contacts and equilibra- 1he finite temperature action associated with this problem
tion with dressed eigenmodes were studied, with the obviouf@s the general form
result that Luttinger liquid renormalization shows up in the
conductance in the latter case. In special circumstances suchy_ % D JBdTJw dX(Ungjﬁ[axd)j 567 ]2

5 Jo —o0

VI. CONCLUSION

as the case of Ref. 13 the nanotube is embedded in the me-
tallic contacts, and is suspended by its ends. Here, the ab-
sence of a screening gate is explicit. Electron transport be-
tween these two entities likely occurs in multiple electron

scattering processes as studied in Ref. 37. In these, or other
contacts fabricated by growing techniqifésjuantities such (AL)

as current and noise may not be affected by the presence 9fhich implies that the Fourier transform of the time ordered

the contacts. Green’s functionG/yy andG/, , defines as
Standard fermion results should be recovered when the

system is connected on one dimensional Fermi liquid leads. 06 ’ gy — / 2
T)rlle autocorrelation noise in one end of the nanotﬂbe should C1am(X:X D= (TOD 015(x",00) = (T6) 5(X't)>iA2)
be related to the charge current with the standard Schottky
formula. The noise correlation signal should also vanish as , , P
expected and the next order correctofl'*) then needs to GJ'(%(?T)(X'X D =(Tejs(x.0) ¢5(x",0)) = (Tjs(x.1)).
be computed. (A3)

A crucial test of the contacts is in order. It should beynereT s the time ordered operator, satisfies the differential
possible in practical situations to analyze the type of CO”taCtﬁquation§.2
which one has between the nanotube and its connections. If
the ratio of the cross-correlations to the curreg(x,
—X,w0)/(l,(x)) does not depend on the tunneling distance
(InT), both contributions are of orddr® and this constitutes

+ %Z[ﬁxﬁj o, )12+ 2i[ 34 o(X, ) I[,6; 50X, )] |
J

a)2 J Ujg
— =y
Ujé‘Kj[S KJ(g

ax) G5 (XX ,@)=4mwd(x—x'),

an indication that the contacts do not affect this quasiparticle (A4)

entanglement. If we are dealing with a Fermi liquid behavior, K 2

the noise correlation-current ratio should behaveI& jo® B¢ R /

rather than a constant. ’ (_ Vs +aXUj5Kj’$aX)Gj5(T)(X'X @) =4mS(X=X").
Finally, we have remarked that the many-body wave func- (A5)

tion which describes a Luttinger liquid with an added elec- , T _

tron has necessarily ERRef. 38 entangled degrees of free- 1€ Greocoan s functiorGjs) is continuous everywhere, and
dom. Both electrons chiralities contribute to the emission oPjsl 9xGjsml/Kjs has a discontinuity at=x". The similar-
quasiparticle pairs moving in opposite direction. This en-ity between Eqs(A4) and(A5) results from the duality prop-
tanglement involves many particle states, unlike its electrorties of the underlying fields. All information 085y, is
counterpart. A suggestion for detection of such Luttinger lig-obtained by dividingG/y ) by K7s.
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ELECTRON INJECTION IN ANANOTUBE: NOIE . ..

According to Egs.(14) and (15), there are additional
Green’s functions in our problem which involve the fieléls

and ¢. For instance,

=(T¢;s(x,1) 0;5(x',0))
—(Tjs(X,1)0;5(X,1)).

Gl (x.x',t)

(AB)

Using the action(Al) one can show thatt(is a real time

variable
<‘9 ¢]5(X t)ajé(x 0)) <‘9t 15 X, t)ajﬁ(x 0)>
(A7)

and similarly forG; g, .

PHYSICAL REVIEW B 67, 205408 (2003

Uit K: s(X—x
Gl(x.x )= ——E rin l+| rM

(A13)

APPENDIX B: INTEGRALS

We now compute the integrals involved in the tunneling
current and noise. The general integrals which will be re-
quired to compute the current and noise read

From these real time Green'’s functions, we further specify

the Keldysh matrix elements which two timéd® are as-

signed to the upper/lower bran¢h +,+—,—+,——). Given
an arbitrary real time Green's functionG(x,x’,t)

=(A(x,1)B(x",0))— (A(x,t)B(x,t)) a general procedutd

for obtaining these elements is as follows

Gl(x,x' |t])

Gfg(xl 7X1 _t)
GLLxX' 1)

Gl x,~|t)) "
(A8)

Gfg(K)(X,X'.t):(
where

is Kjs(x—x")
(xx t)= _8_2 (1+| a wT).
(A9)

The same applies 165, for which we have

G (x,x' t)=— 1+|

ie a

(A10)

1 Jé(x X)
S )

r
The mixed correlators read

GJ'(/);EK)(X,X'.U
t>0:G/y

(x.x",1)
t<0:G/,

GIg(x' x,—t
2(x' %, —1) jo' )

t>0:G/{(x' X, —t)

4 '
Gl3xx",0) t<0:G{y(x,x',t)
(A11)
where
Gl(x,x’ t)———E rin 1+| t M
(A12)
The same applies tG](S(K) for which we have:

+oo sin(wor)d 7 i |wol”
J_oc a a )”NIWﬁF(erl)’ (B1)
——ipr||——inT
F UF
f*w cof w,7)dT |wol”
. la a )”NWI‘(erl)'
ug InT . InT
(B2)

We now write the integral which appears in the nanotube
current, which refer to propagation along the nanotube

|2—f dT 5X[GC+(++)(X O’T ) GC+(__)(X,O,'TI)

+GLL 1 (x07) =G, ) (x,07)]. (B3)

Using the expressions for the Green’s functigAppendix
A):

[ KjsX sgnx)
| ,= —arctal ~i ,
TUE a 20g

(B4)

where the approximate sign holds at large distances.
The integrals which are involved for the computation of
the noise read

199(x,x") =41 5(x) 1 5(X"), (B5)

[29(x,x") =41 ,(X)1 4(X"), (B6)

with
“+ 00
1500 | 4rlG . (%07 - G2 (x00)]

~i sgr(x)/4vg, (B7)

I4(X):f_ dT(?X[GC+(++)(XOT) GC+(+ )(X,O,t)]

~—iK oy /Avg . (B9)
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